• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatiotemporal variations of maximum seasonal freeze depth in 1950s–2007 over the Heihe River Basin,Northwest China

    2014-12-15 05:55:24QingFengWangTingJunZhang
    Sciences in Cold and Arid Regions 2014年3期
    關(guān)鍵詞:試探網(wǎng)絡(luò)拓?fù)?/a>讀數(shù)

    QingFeng Wang ,TingJun Zhang

    1.State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou,Gansu 730000,China

    2.College of Earth and Environmental Sciences,Lanzhou University,Lanzhou,Gansu 730000,China

    3.National Snow and Ice Data Center,Cooperative Institute for Research in Environmental Sciences,University of Colorado at Boulder,80309,USA

    1 Introduction

    Frozen ground,consisting of both seasonally frozen ground and permafrost,plays an essential role in high latitude and altitude environments (Frauenfeld and Zhang,2011),as well as global thermal,water and carbon budgets (Jinet al.,2009).Soil seasonal freezing/thawing processes in cold regions play a major role in ecosystem diversity,productivity,and hydrological process through affecting the soil thermal regime and its physical properties directly (Zhanget al.,2003;Frauenfeldet al.,2004).Furthermore,this process also affects water exchange between the ground surface and the atmosphere,which ultimately impacts weather and climate systems through changes in surface energy balance.Soil temperature is linked to the climate through the ground surface,vegetation,snow cover,and perhaps most importantly,the top layer of the ground that thaws and freezes seasonally(Lachenbruch and Marshall,1986;Zhanget al.,1997;Zhang and Stamnes,1998).In permafrost regions,active layer thickness (ALT) is an indicator of climate change (Nelsonet al.,1997;Brownet al.,2000;Osterkamp,2007).Similarly,maximum seasonal frozen depth (MSFD) can also be used to study long-term changes in climate and regional environments (Zhanget al.,2001).Therefore,investigation on spatiotemporal variations of MSFD over the Heihe River Basin is of great importance for systematic understanding of regional climate and environmental change,ecological-hydrological processes,water resources assessment,construction and resource development.

    The individual and combined interactions of the freezing/thawing layer in cold regions with climate changes at local,regional,and hemispheric scales are still relatively poorly understood.Most research mainly focused on the ALT changes in permafrost regions of the Arctic (Hinkelet al.,1997;Romanovsky and Osterkamp,1997;Zhanget al.,1997;Nelsonet al.,1998;Streletskiyet al.,2008) and on the Qinghai-Tibetan Plateau (QTP) (Wu and Zhang,2010;Wuet al.,2012a).However,research on MSFD changes in seasonally frozen ground regions is very limited.

    The main purpose of this study is to investigate the spatiotemporal variations of MSFD over the Heihe River Basin in Northwest China over the period from the 1950s to 2007.Based on soil and air temperatures at the meteorological stations of the China Meteorological Administration (CMA),the averaged time series of MSFD for 1960–2007 over the basin is structured.In order to investigate the driving factors in spatiotemporal changes of MSFD,we also investigated impacts of changes in mean annual air temperature (MAAT),winter air temperature,mean annual ground surface temperature (MAGST),degree days of thawing for air (DDTa) and for the surface (DDTs),degree days of freezing for the surface (DDFs),as well as annual precipitation and winter precipitation on MSFD across the study area.

    2 Study area

    The Heihe River Basin is the second largest inland river basin in Northwest China,located in central part of Hexi Corridor and roughly between 98°00'E–101°30'E,38°00'N–42°00'N (Gao and Li,1991).The basin originates in the watershed between the Zoulangnanshan and Tuolainanshan Mts.in the Qilian mountain range.Geographically,the Heihe River Basin is divided into three parts from south to north,the upper reaches (from Yingluoxia valley upstream),the middle reaches (between Yingluoxia valley and Zhengyixia valley),and the lower reaches(from Zhengyixia valley downstream) (Cheng,2009)(Figure 1).

    The upper reaches with elevation ranging from 2,000 m a.s.l.to 5,500 m a.s.l.,belong to the cold semi-arid mountain zone dominated by shrubs and trees.MAAT in this area is lower than 2 °C,and mean annual precipitation increases from about 250 mm in the low-mountain or hill zone to about 500 mm in the high-mountain zone (Chen and Qu,1992).It has been calculated that the average decreasing rate of MAAT and the increasing rate of annual precipitation with elevation from Yingluoxia valley to Yeniugou is 0.80 °C/100m and 15 mm/100m,respectively (Chenget al.,2010).The middle reaches belong to the mid-stream temperate zone controlled by cash crops like wheat and corn,with MAAT lower than 8 °C.The elevation in the middle reaches decreases from about 2,000 m a.s.l.to 1,000 m a.s.l.,and mean annual precipitation decreases from 250 mm to less than 100 mm from south to north (Liet al.,2001).Mainly occupied by bare gobi with mean elevation of about 1,000 m a.s.l.,the lower reaches pertain to the downstream warm temperate zone,with MAAT of 8–10 °C and annual precipitation of less than 50 mm (Qi and Luo,2005;Liet al.,2012).

    3 Data source and method

    We collected daily soil and monthly air temperatures at the meteorological stations from CMA located over the Heihe River Basin and its adjacent area.Data from 15 meteorological stations located over the Heihe River Basin and eight meteorological stations in the adjacent area (Figure 1) are collected for this study.It is noted that:(1) considering the integrity of the Heihe River Basin area coverage,i.e.,without blank area in the north of Ejinaqi-Jihede through Kriging interpolation method,the data at Hami and Yiwu meteorological stations are supplemented;(2)both soil and air temperatures were measured at 20 stations over the Heihe River Basin and its adjacent area except three stations with only air temperature data (Table 1).All measurements were conducted by well trained technicians and professionals with established and uniform guidelines by CMA.Soil temperatures are measured at depths of 0.00,0.05,0.10,0.15,0.20,0.40,0.60,0.80,1.60 and 3.20 m,respectively,except that they are only measured at 0.00 m depth at Jihede,Wutonggou and Yeniugou.

    Though some of the meteorological stations have long continuous records,analyzing soil/air temperature time series of these individual stations would only result in partial conclusions as most observation records contain many missing data and some only cover short periods.In order to ensure data consistency and comparability at all stations,missing data is interpolated based on a nearby station through the regression method at the significance level of at leastp≤0.05.Then all the meteorological stations are composited to structure an averaged time series that provides an integrated view over the Heihe River Basin.

    Figure 1 The meteorological stations distribution map of CMA over the Heihe River Basin and its adjacent area.The red line in bold is the boundary of the Heihe River Basin;the black line is the river system of Heihe River

    We linearly interpolate the depth of the 0 °C isotherm throughout the 0.00–3.20 m temperature profile,which is considered to be the freeze/thaw depth.Frauenfeldet al.(2004) found that the available observed annual MSFD and the linearly interpolated values had an excellent correlation during 1930–1990 for 242 stations throughout Russia.However,if some data throughout the 0.00–3.20 m depth are missing,especially during the period when MSFD may occur,the MSFD of that year is excluded from its time series.Based on daily observations of soil temperatures,the daily freeze depth can be interpolated.The annual MSFG is selected from which is the maximum in all daily depths in cold season.

    In this study,when performing the calculation based on daily data we compute the annualDDFs/DDTsas the sum of ground surface temperature for all days below/above 0 °C during the freezing/thawing period.Moreover,DDFsis computed over a period from Jul.1 to Jun.30 of the following calendar year,whileDDTsis calculated from Jan.1 to Dec.31 of the same calendar year (Zhanget al.,1997;Frauenfeldet al.,2007;Wuet al.,2012b).We calculatedDDFs/DDTsusing the following equations:

    whereDDFsandDDTsare the annual degree days of freezing and thawing index for ground surface,respectively;Tirepresents the daily ground surface temperature;MFandMTcorrespond to the last day of freezing and thawing periods,respectively.

    Similarly,we use monthly air temperatures to estimate the annualDDFa/DDTafor the air.Furthermore,we define the freezing period to be July to June in the following year in order to sum the freezing index in a continuous cold season and the thawing period of January–December (Frauenfeldet al.,2007;Wuet al.,2012b).DDFa/DDTais calculated using the following equations:

    當(dāng)試探失敗時,我們可以將該決策神經(jīng)元的返回值作為參數(shù)反饋到前一個神經(jīng)元去。這樣我們得到了一個只有兩個神經(jīng)元的神經(jīng)網(wǎng)絡(luò),但顯然它比純粹經(jīng)驗(yàn)框架下的線性運(yùn)算要精確多了。此外,我們還可以從另一個方向改造原神經(jīng)元,將每個輸入本身改造成一個神經(jīng)元,輸出值并不是簡單讀數(shù),而是計(jì)算后的數(shù)值。實(shí)際上,利用類似的原理,我們可以設(shè)計(jì)出相當(dāng)復(fù)雜的神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)。

    whereDDFaandDDTaare the annual degree days of freezing and thawing for the air respectively;MFandMTare months when the mean monthly temperature is above/below 0 °C during the freezing/thawing periods;Tiis the mean monthly air temperature;Diis the number of days inMForMT.Therefore,time series of annualDDFa/DDTafor each weather station were obtained.The estimation of accuracy for using monthly air or ground surface temperature observations in the calculation of the approximate annualDDFandDDTwas discussed in previous studies and it was found to be more than 95% (Zhanget al.,1996;Frauenfeldet al.,2007;Wuet al.,2011).

    4 Results and discussion

    4.1 Interannual variation

    Among the 12 meteorological stations of CMA over the Heihe River Basin,soil temperatures at three stations were observed in a relatively comprehensive long-term at depths of 0.00,0.05,0.10,0.15,0.20,0.40,0.80,1.60 and 3.20 m,respectively,including Ejinaqi,Jiuquan and Zhangye.Accordingly,the MSFD time series at the three stations could be obtained through the interpolation method at 0.00–3.20 m depth.However,due to data missing at a deeper depth of 0.00–3.20 m in many years,the overall trends of MSFDs at other meteorological stations are difficult to estimate.

    Table 1 Location of the meteorological stations of CMA and the observation records of soil temperature,air temperature and precipitation at the meteorological stations over the Heihe River Basin and its adjacent area

    Here the "edaphic factor" E is introduced to estimate MSFDs at the meteorological stations.MSFD can be estimated from a variant of the Stefan solution using a freezing index in the following manner:

    whereZis MSFD (m);ktis the thermal conductivity of the frozen soil (W/(m·°C));ntis the n-factor;Lis the latent heat of fusion (J/kg);ρis the soil bulk density (kg/m3);Wisthe soil water content by weight(dimensionless);andDDFais the annual freezing index (°C-day).

    The formula(5)can be described as:

    where

    From the formula(6),E factor can be expressed as:

    The E factor can be calculated through the formula(8),and then the mean of E factor and MSFD time series at each station could be calculated over the Heihe River Basin.The decreasing rates for MSFD time series at Ejinaqi,Tuole,Qilian and Shandan stations are all larger than the averaged time series (Figures 2 and 3).The reason is that the decreasing rates forDDFatime series at these four stations are all larger than at other stations over the basin.The MSFDs at nine meteorological stations of CMA are averaged into a time series for 1960–2007.Evaluating the averaged MSFD time series in the period between 1960 and 2007 over the basin exhibits a statistically significant trend of-4.0 cm/decade or a net change of-19.2 cm for the 48-year period (Figure 3).

    Similar results have been noted by other studies.For example,Frauenfeldet al.(2004) reported that MSFD decreased by 34 cm over the 1956–1990 period across Russia.It was revealed that the MSFD decreased by 0.1–0.2 m since the 1980s in the source area of the Yellow River on the QTP in China (Jinet al.,2009).Evaluating MSFD at 387 stations for 1930–2000 in the Eurasian high latitudes in Russia revealed a statistically significant trend of-4.5 cm/decade and a net change of-31.9 cm (Frauenfeld and Zhang,2011).

    Figure 2 MSFD time series at the nine meteorological stations for the 1950s to 2007 over the Heihe River Basin.Dotted line presents the linear least squares regression line

    Figure 3 Averaged time series of MSFD in 1960–2007 over the Heihe River Basin.Grey line in bold presents the three-year moving line.Black dotted line presents the linear least squares regression line

    4.2 Potential forcing variables

    The MAAT exhibits a statistically significant increase of 0.37 °C/decade in 1960–2008,or a net change of approximately 1.8 °C over the 49-year period (Figure 4).Winter air temperature has increased at a rate of 0.50 °C/decade in 1960–2007.MAGST indicates a statistically significant increase over the 1972–2006 period of 0.58 °C/decade,or a net change of approximately 2.0 °C over the 35-year period.The correlation coefficients between MSFD and MAAT,winter air temperatures as well as MAGST areR=-0.64,-0.94,and-0.66 (p<0.01),respectively.The negative correlation illustrates that,as the MAAT,winter air temperature and MAGST increased in 1960–2008 over the basin,MSFD decreased over the same period.

    Figure 4 Time series of potential forcing variables for MSFD in 1959–2008:(a) MAAT;(b) winter air temperature;(c) MAGST;(d) DDTa;(e) DDFs;(f) DDTs;(g) annual precipitation;and (h) winter precipitation.Dotted lines in bold present the linear least squares regression lines (if significant)

    As the MSFDs usually occur in the end of the cold seasons,the DDF should be a better indicator of cold season conditions than MAAT and MAGST.TheDDFshas decreased at a rate of-42.5 °C-day/decade over the 1959–2005 period,indicating that as the climate has been warming,the magnitude and duration of cold conditions have significantly decreased.DDTaandDDTshave increased at a rate of 68.1 °C-day/decade over the 1960–2008 period and 85.4 °C-day/decade over the 1960–2006 period,respectively.DDFs,DDTaandDDTsare significantly correlated with the MSFD time series whenR= 0.89,-0.58 and-0.59 (p<0.01),indicating that 79.2%,33.6% and 34.8% of the variance in MSFD can be accounted for changes inDDFs,DDTaandDDTs,respectively.

    Precipitation changes over the Heihe River Basin also likely affect the soil thermal regime and hence MSFD.There is both no statistically significant trend in annual precipitation and winter precipitation for the 1960–2004 period.The correlation coefficients between annual precipitation,winter precipitation and MSFD are-0.01 and-0.15,respectively,and they are both not statistically significant.

    4.3 Spatial variation

    Based on the MSFD of the 20 meteorological stations over the Heihe River Basin and its adjacent area,spatial distribution maps of the MSFD during 2003–2005 were compiled through Kriging interpolation method over the basin (Figure 5).The blue zone was possibly overlain by permafrost and it covered about 10.3% of the Heihe River Basin (Zhanget al.,2012).MSFD was shallower in the east-central basin,gradually deepened in other sections of the basin,and changed greatly in the Heihe River source area.The maximum of MSFD appeared in the Tuole area,which was 2.6–2.7 m in 2003 and 2.4–2.5 m in 2004 and 2005.

    However,the maximum of MSFD may be not accurate,because there are only three meteorological stations in the Heihe River source area,and there are no long term observation data in the deep seasonally frozen ground regions near the lower boundary of permafrost.It was found that the lower boundary of permafrost along the provincial highway S204 in the west branch of the Heihe River in its source area is preliminarily between 3,650 and 3,700 m a.s.l.(Zhanget al.,2012;Wanget al.,2013).Two boreholes,T5#(99°04'50"E,38°46'24"N;3,650 m a.s.l.) and T6#(99°07'.43"E,38°45'12"N;3,609 m a.s.l.),were drilled during the summer of 2011 in seasonally frozen ground regions near the lower boundary of permafrost.With elevation increasing,the date reaching MSFD became later (Figure 7).It could be estimated that the date reaching MSFD at boreholes T5# and T6# are in mid or late March.Based on ground temperature profiles of the two boreholes in early March,2013,the MSFD at boreholes T5# and T6# could be 4.9 m and 3.1 m,respectively (Figure 6).

    Figure 5 Spatial distribution of MSFD in 2003–2005 over the Heihe River Basin.The blue zone is the possible distribution area of permafrost (Zhang et al.,2012)

    With elevation increasing,the MSFD deepened.The MSFD increased by 7.7,7.0 and 6.7 cm with elevation increasing by every 100 m in 2003,2004 and 2005,respectively (Figure 7).

    The MSFD distribution pattern in 2003–2005 was consistent with that of averagedDDFain 1960–2007.AveragedDDFawas larger and changed greatly in the Heihe River source area.It was shallower in the east-central basin and gradually became larger in other sections of the basin (Figure 8).The minimum of averagedDDFaappeared in the northeast of Gaotai(550–600 °C-day),and the maximum appeared in Tuole and Yeniugou areas (2,050–2,100 °C-day).With elevation increasing,averagedDDFabecame larger at a rate of 51.6 °C-day/100m (Figure 8),and therefore,the MSFD and the date reaching MSFD are becoming deeper and later,respectively (Figure 7).

    Figure 6 Ground temperature profiles of boreholes T5# and T6# in the west branch of the Heihe River in its source area

    Figure 7 MSFD and the date reaching MSFD changing with elevation in 2003–2005 over the basin.Black lines in bold present the linear least squares regression lines (if significant)

    Figure 8 Spatial distribution of averaged DDFa in 1960–2007 (a) and averaged DDFa changing with elevation (b) over the basin

    5 Conclusions

    Based on soil and air temperatures at the meteorological stations of CMA over the Heihe River Basin,MSFD time series are structured into a composite time series over the period of 1960–2007.Evaluating the averaged MSFD time series for 1960–2007 over the basin exhibits a statistically significant trend of-4.0 cm/decade or a net change of-19.2 cm for the 48-year period.

    To determine the driving factors in MSFD changes,we analyzed MAAT,winter air temperature,MAGST,DDTa,DDTs,DDFs,annual precipitation,and winter precipitation.The MSFD had significantly negative correlation with MAAT,winter air temperatures,MAGST,DDTa,as well asDDTs.There was significantly positive correlation betweenDDFsand MSFD time series.

    The MSFD was deeper and changed greatly in the Heihe River source area.MSFD was shallower in the east-central basin and gradually became deeper in other sections of the basin.The maximum of MSFD appeared in the Tuole area,which was 2.6–2.7 m in 2003 and 2.4–2.5 m in 2004 and 2005.The MSFD distribution pattern in 2003–2005 is consistent with that of averagedDDFain 1960–2007.However,the maximum of MSFD may be not accurate,because there are only three meteorological stations in the Heihe River source area,and there is no long term observation data in the deep seasonally frozen ground regions near the lower boundary of permafrost.With elevation increasing,the MSFD and the date reaching MSFD became deeper and later,respectively.The MSFG increased by 7.7 cm,7.0 cm and 6.7 cm with elevation increasing by every 100 m in 2003,2004 and 2005,respectively.The reason is that averagedDDFaincreased with increasing elevation(51.6 °C-day/100m).

    This study is supported by the Global Change Research Program of China (No.2010CB951402),the Natural Science Foundation of China (Nos.91025013,91325202),the State Key Laboratory of Frozen Soil Engineering (No.SKLFSE-ZY-06),CAS,China,and the Major Research Plan of the Natural Science Foundation of China (No.2013CBA01802).

    Brown J,Hinkel KM,Nelson FE,2000.The Circumpolar Active Layer Monitoring (CALM) program:Research designs and initial results.Polar Geography,24(3):166–258.DOI:10.1080/10889370009377698.

    Chen LH,Qu YG,1992.Rational Development and Utilization on Water and Soil Resources in Hexi Region.Science Press,Beijing,pp.9–13.(in Chinese)

    Cheng GD,2009.Study on Water-Ecology-Economic System Integrated Management over the Heihe River Basin.Science Press,Beijing,pp.1–2.(in Chinese)

    Cheng GD,Xiao HL,Chen YN,2010.Eco-hydrology Study of the Typical Inland River in Western China.Meteorological Press,Beijing,pp.28–29.(in Chinese)

    Frauenfeld OW,Zhang T,2011.An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes.Environmental Research Letters,6:044024.DOI:10.1088/1748-9326/6/4/044024.

    Frauenfeld OW,Zhang T,Barry RG,et al.,2004.Interdecadal changes in seasonal freeze and thaw depths in Russia.Journal of Geophysical Research,109:D5101.DOI:10.1029/2003JD004245.

    Frauenfeld OW,Zhang T,McCreight JL,2007.Northern hemisphere freezing/thawing index variations over the twentieth century.International Journal of Climatology,27(1):47–63.DOI:10.1002/joc.1372.

    Gao QZ,Li FX,1991.Case Study of Rational Development and Utilization of Water Resources in the Heihe River Basin.Gansu Science and Technology Press,Lanzhou,pp.1–5.(in Chinese)

    Hinkel KM,Outcalt SI,Taylor AE,1997.Seasonal patterns of coupled flow in the active layer at three sites in northwest North America.Canadian Journal of Earth Sciences,34:667–678.

    Iijima Y,Fedorov AN,Park H,et al.,2010.Abrupt increases in soil temperatures following increased precipitation in a permafrost region central Lena River Basin Russia.Permafrost and Periglacial Processes,21(1):30–41.DOI:10.1002/ppp.662.

    Jin HJ,He RX,Cheng GD,et al.,2009.Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau,China,and their eco-environmental impacts.Environmental Research Letters,4(4):045206.DOI:10.1088/1748-9326/4/4/045206.

    Lachenbruch AH,Marshall BV,1986.Changing climate:Geothermal evidence from permafrost in the Alaskan Arctic.Science,234:689–696.DOI:10.1126/science.234.4777.689.

    Li X,Lu L,Cheng GD,et al.,2001.Quantifying landscape structure of the Heihe River Basin,northwest China using FRAGSTATS.Journal of Arid Environments,48:521–535.DOI:10.1006/jare.2000.0715.

    Li ZL,Li ZJ,Xu ZX,et al.,2012.Temporal variations of reference evapotranspiration in Heihe River Basin of China.Hydrology Research.DOI:10.2166/nh.2012.125.

    Nelson FE,Hinkel KM,Shiklomanov NI,et al.,1998.Active-layer thickness in north-central Alaska:Systematic sampling,scale,and spatial autocorrelation.Journal of Geophysical Research,103(D22):28963–28973.DOI:10.1029/98JD00534.

    Nelson FE,Shiklomanov NI,Mueller GR,et al.,1997.Estimating active-layer thickness over a large region:Kuparuk River basin,Alaska,U.S.A..Arctic Antarctic and Alpine Research,29(4):367–378.

    Osterkamp TE,2007.Characteristics of the recent warming of permafrost in Alaska.Journal of Geophysical Research,112:F02S02.DOI:10.1029/2006JF000578.

    Qi SZ,Luo F,2005.Water environmental degradation of the Heihe River Basin in arid northwestern China.Environmental Monitoring and Assessment,108:205–215.DOI:10.1007/s10661-005-3912-6.

    Romanovsky VE,Osterkamp TE,1997.Thawing of the active layer on the coastal plain of the Alaskan Arctic.Permafrost and Periglacial Processes,8(1):1–22.DOI:10.1002/(SICI)1099-1530(199701)8:1<1::AID-PPP243>3.0.CO;2-U.

    Streletskiy DA,Shiklomanov NI,Nelson FE,et al.,2008.13 years of observations at Alaskan CALM sites:Long-term active layer and ground surface temperature trends.In:Kane DL,Hinkel KM (eds.).Proceedings of the 9th International Conference on Permafrost.June 29–July 3,Fairbanks,Alaska,Institute of Northern Engineering,University of Alaska Fairbanks,2:1727–1732.

    Wang QF,Zhang T,Wu JC,et al.,2013.Investigation on permafrost distribution over the upper reaches of the Heihe River in the Qilian Mountains.Journal of Glaciology and Geocryology,35(1):19–25.DOI:10.7522/j.issn.1000-0240.2013.0003.(in Chinese)

    Wu QB,Zhang T,2010.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007.Journal of Geophysical Research,115:D09107.DOI:10.1029/2009JD012974.

    Wu QB,Zhang T,Liu YZ,2012a.Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) railway from 2006 to 2010.The Cryosphere,6:607–612.DOI:10.5194/tc-6-607-2012.

    Wu TH,Wang QX,Zhao L,et al.,2011.Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia.Cold Regions Sciences and Technology,69(1):105–111.DOI:10.1016/j.coldregions.2011.07.003.

    Wu TH,Zhao L,Li R,et al.,2012b.Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau.International Journal of Climatology,33(4):920–930.DOI:10.1002/joc.3479.

    Zhang T,Armstrong RL,Smith J,2003.Investigation of the near-surface soil freeze/thaw cycle in the contiguous United States:Algorithm development and validation.Journal of Geophysical Research,108(D22):8860.DOI:10.1029/2003JD003530.

    Zhang T,Barry RG,Gilichinsky D,et al.,2001.An amplified signal of climatic change in soil temperatures during the last century at Irkutsk Russia.Climatic Change,49:41–76.DOI:10.1023/A:1010790203146.

    Zhang T,Osterkamp TE,Stamnes K,1996.Some characteristics of the climate in northern Alaska,U.S.A..Arctic and Alpine Research,28:509–518.

    Zhang T,Osterkamp TE,Stamnes K,1997.Effect of climate on the active layer and permafrost on the North Slope of Alaska,U.S.A..Permafrost and Periglacial Processes,8(1):45–67.DOI:10.1002/(SICI)1099-1530(199701)8:1<45::AID-PPP24 0>3.0.CO;2-K.

    Zhang T,Stamnes K,1998.Impact of climatic factors on the active layer and permafrost at Barrow,Alaska.Permafrost Periglacial Processes,9(3):229–246.DOI:10.1002/(SICI)1099-1530(199807/09)9:3<229::AID-PPP286>3.0.CO;2-T.

    Zhang T,Wang QF,Wu JC,et al.,2012.Preliminary investigation on permafrost distribution over the upper reaches of Heihe River Basin in western China.In:Proceedings of the 10th International Conference on Permafrost.Volume 4:International Contributions,Salekhard,Russia,pp.585–586.

    猜你喜歡
    試探網(wǎng)絡(luò)拓?fù)?/a>讀數(shù)
    基于通聯(lián)關(guān)系的通信網(wǎng)絡(luò)拓?fù)浒l(fā)現(xiàn)方法
    靜守百年:試探西貝意象
    電子制作(2018年23期)2018-12-26 01:01:16
    試探著向硅谷伸出觸角
    能源(2018年5期)2018-06-15 08:56:20
    西游新記9
    讀數(shù)
    中國公路(2017年19期)2018-01-23 03:06:36
    讀數(shù)
    中國公路(2017年15期)2017-10-16 01:32:04
    讀數(shù)
    中國公路(2017年9期)2017-07-25 13:26:38
    讀數(shù)
    中國公路(2017年7期)2017-07-24 13:56:40
    勞斯萊斯古斯特與魅影網(wǎng)絡(luò)拓?fù)鋱D
    久久久久精品性色| 黄色一级大片看看| 国产野战对白在线观看| 亚洲精品成人av观看孕妇| 亚洲,一卡二卡三卡| 久久久久精品国产欧美久久久 | 免费高清在线观看视频在线观看| 亚洲成人国产一区在线观看 | 自线自在国产av| 曰老女人黄片| 久久97久久精品| 国产人伦9x9x在线观看| 国产成人免费观看mmmm| 亚洲欧洲国产日韩| av免费观看日本| 国产精品国产三级专区第一集| 午夜福利网站1000一区二区三区| 欧美人与善性xxx| 国产精品久久久久久精品古装| 一二三四在线观看免费中文在| 校园人妻丝袜中文字幕| 精品久久久久久电影网| 欧美人与善性xxx| 欧美97在线视频| 亚洲精品国产区一区二| www日本在线高清视频| 国产人伦9x9x在线观看| 亚洲综合色网址| 亚洲精品,欧美精品| 人成视频在线观看免费观看| 人人妻人人澡人人爽人人夜夜| 欧美激情 高清一区二区三区| 亚洲成人免费av在线播放| 丝瓜视频免费看黄片| 天堂俺去俺来也www色官网| 97人妻天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 中文字幕av电影在线播放| 午夜久久久在线观看| 一边亲一边摸免费视频| 最近最新中文字幕免费大全7| 男人操女人黄网站| 青草久久国产| 日韩大码丰满熟妇| 超色免费av| 最新的欧美精品一区二区| 国产精品 国内视频| 男女免费视频国产| 一级毛片黄色毛片免费观看视频| 性高湖久久久久久久久免费观看| 人妻 亚洲 视频| 美女视频免费永久观看网站| 国产精品久久久久久精品电影小说| 久久ye,这里只有精品| 成人影院久久| 大片电影免费在线观看免费| e午夜精品久久久久久久| 久久久精品国产亚洲av高清涩受| 日本午夜av视频| 欧美亚洲 丝袜 人妻 在线| 国产精品偷伦视频观看了| 在线观看免费日韩欧美大片| 国产极品天堂在线| 亚洲精品aⅴ在线观看| 香蕉丝袜av| 女性生殖器流出的白浆| 午夜福利乱码中文字幕| 成人三级做爰电影| 亚洲美女黄色视频免费看| 国产成人精品久久二区二区91 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产男女超爽视频在线观看| 国产在线免费精品| 男女床上黄色一级片免费看| 精品人妻熟女毛片av久久网站| 中文字幕人妻丝袜一区二区 | 精品一区在线观看国产| 久久久久精品国产欧美久久久 | 老司机靠b影院| 亚洲国产成人一精品久久久| 成年av动漫网址| 999久久久国产精品视频| 亚洲国产欧美日韩在线播放| 久久久久久久大尺度免费视频| 国产精品一二三区在线看| 青春草国产在线视频| 亚洲欧美精品综合一区二区三区| 97人妻天天添夜夜摸| 亚洲精品日本国产第一区| 高清欧美精品videossex| 中文字幕高清在线视频| 天美传媒精品一区二区| 国产一区亚洲一区在线观看| 亚洲天堂av无毛| 91aial.com中文字幕在线观看| 日韩大码丰满熟妇| 天天操日日干夜夜撸| 男的添女的下面高潮视频| 满18在线观看网站| 一级片免费观看大全| 久久精品国产亚洲av涩爱| 男女下面插进去视频免费观看| 亚洲天堂av无毛| 两性夫妻黄色片| 少妇人妻 视频| 成人三级做爰电影| 国产片内射在线| 日本爱情动作片www.在线观看| 久久久久久久精品精品| 99久久综合免费| 777久久人妻少妇嫩草av网站| 成年人午夜在线观看视频| 国产乱来视频区| 国产乱人偷精品视频| 久久久精品免费免费高清| 欧美黑人欧美精品刺激| 99国产综合亚洲精品| 男女免费视频国产| 久久性视频一级片| 成人国语在线视频| 国产成人啪精品午夜网站| 搡老乐熟女国产| 亚洲 欧美一区二区三区| 色播在线永久视频| 美国免费a级毛片| 国产一级毛片在线| 自线自在国产av| 久久久久久人妻| 欧美97在线视频| 99国产精品免费福利视频| 丝袜美腿诱惑在线| 亚洲精品aⅴ在线观看| 美女大奶头黄色视频| 丝袜人妻中文字幕| bbb黄色大片| 日本vs欧美在线观看视频| 亚洲欧洲国产日韩| 亚洲av男天堂| 成人影院久久| 最近中文字幕高清免费大全6| 咕卡用的链子| 一边摸一边做爽爽视频免费| 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 热99久久久久精品小说推荐| 黑丝袜美女国产一区| 麻豆av在线久日| 超色免费av| 日韩大片免费观看网站| 中文字幕最新亚洲高清| 在线观看免费高清a一片| 美女国产高潮福利片在线看| 激情视频va一区二区三区| 日本91视频免费播放| 精品人妻熟女毛片av久久网站| 久久人妻熟女aⅴ| 色精品久久人妻99蜜桃| 男人操女人黄网站| 可以免费在线观看a视频的电影网站 | 欧美av亚洲av综合av国产av | 大片电影免费在线观看免费| 国产精品一区二区在线不卡| 咕卡用的链子| 久久精品久久久久久久性| 亚洲图色成人| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕另类日韩欧美亚洲嫩草| av在线观看视频网站免费| 1024视频免费在线观看| 在线看a的网站| 欧美亚洲 丝袜 人妻 在线| 精品国产乱码久久久久久小说| 亚洲欧洲日产国产| 热re99久久国产66热| 男人爽女人下面视频在线观看| 五月天丁香电影| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 亚洲精品自拍成人| 亚洲色图 男人天堂 中文字幕| 中文精品一卡2卡3卡4更新| 国产视频首页在线观看| 人人妻人人添人人爽欧美一区卜| 国精品久久久久久国模美| 欧美乱码精品一区二区三区| 国产成人a∨麻豆精品| 成年人午夜在线观看视频| 精品人妻一区二区三区麻豆| 久久精品aⅴ一区二区三区四区| 19禁男女啪啪无遮挡网站| 满18在线观看网站| 这个男人来自地球电影免费观看 | 日韩免费高清中文字幕av| 热re99久久精品国产66热6| 韩国精品一区二区三区| 精品视频人人做人人爽| 精品国产乱码久久久久久男人| 亚洲精品自拍成人| 亚洲av成人精品一二三区| 国产片内射在线| 一区二区三区乱码不卡18| 丝袜在线中文字幕| h视频一区二区三区| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 国产成人欧美在线观看 | 美女脱内裤让男人舔精品视频| 别揉我奶头~嗯~啊~动态视频 | 久久天堂一区二区三区四区| 久久女婷五月综合色啪小说| 一区二区三区精品91| 婷婷色综合大香蕉| 777米奇影视久久| 免费观看性生交大片5| 热re99久久国产66热| 国产精品一二三区在线看| 男女午夜视频在线观看| 久久av网站| 你懂的网址亚洲精品在线观看| 成人黄色视频免费在线看| 免费久久久久久久精品成人欧美视频| 色播在线永久视频| 欧美日韩亚洲高清精品| 国产精品久久久人人做人人爽| 亚洲av电影在线进入| 美女主播在线视频| 9色porny在线观看| 日韩免费高清中文字幕av| 在线 av 中文字幕| 国产野战对白在线观看| 看免费成人av毛片| 日韩av在线免费看完整版不卡| 看非洲黑人一级黄片| 一级毛片电影观看| 在现免费观看毛片| 亚洲国产精品国产精品| 亚洲视频免费观看视频| 男女之事视频高清在线观看 | 亚洲人成77777在线视频| 只有这里有精品99| 亚洲精品国产一区二区精华液| 午夜福利影视在线免费观看| 中文字幕制服av| 欧美老熟妇乱子伦牲交| 天天操日日干夜夜撸| 女人精品久久久久毛片| 91精品国产国语对白视频| 亚洲精品国产区一区二| 亚洲精品久久成人aⅴ小说| 欧美日韩一区二区视频在线观看视频在线| 最黄视频免费看| 国产视频首页在线观看| 久久久久网色| 在线观看一区二区三区激情| 国产精品av久久久久免费| 国产国语露脸激情在线看| 精品一区二区三区av网在线观看 | 欧美精品av麻豆av| 亚洲国产最新在线播放| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久久久99蜜臀 | 男的添女的下面高潮视频| 少妇的丰满在线观看| 精品久久久精品久久久| 亚洲专区中文字幕在线 | 久久久久久久久免费视频了| 水蜜桃什么品种好| 巨乳人妻的诱惑在线观看| 91老司机精品| 中文乱码字字幕精品一区二区三区| 免费黄频网站在线观看国产| 黑丝袜美女国产一区| 色吧在线观看| 亚洲欧美清纯卡通| 99久久人妻综合| 精品国产乱码久久久久久男人| 久久精品亚洲av国产电影网| 亚洲欧洲精品一区二区精品久久久 | 久久久久人妻精品一区果冻| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 久久久久久久久久久久大奶| 亚洲欧洲日产国产| 亚洲精品第二区| 欧美激情 高清一区二区三区| 国产极品天堂在线| 精品第一国产精品| 日韩一区二区三区影片| 亚洲第一av免费看| 亚洲欧美一区二区三区黑人| 国产男人的电影天堂91| 我要看黄色一级片免费的| 国产亚洲精品第一综合不卡| 精品国产一区二区三区久久久樱花| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 国产精品久久久久久久久免| 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 国产日韩欧美在线精品| 你懂的网址亚洲精品在线观看| 一本—道久久a久久精品蜜桃钙片| 色播在线永久视频| 久久久久久人妻| 精品国产一区二区三区久久久樱花| 亚洲av成人精品一二三区| 免费观看性生交大片5| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 男男h啪啪无遮挡| 亚洲av在线观看美女高潮| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 亚洲色图综合在线观看| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 精品一区二区三区四区五区乱码 | 亚洲av男天堂| 精品卡一卡二卡四卡免费| 涩涩av久久男人的天堂| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 日日爽夜夜爽网站| 亚洲av在线观看美女高潮| 叶爱在线成人免费视频播放| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 考比视频在线观看| 大香蕉久久成人网| 综合色丁香网| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| av片东京热男人的天堂| 老司机深夜福利视频在线观看 | 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 欧美成人午夜精品| 免费看不卡的av| 看非洲黑人一级黄片| 亚洲情色 制服丝袜| 午夜福利影视在线免费观看| 亚洲图色成人| 国产精品av久久久久免费| 免费久久久久久久精品成人欧美视频| 女性被躁到高潮视频| 国产精品香港三级国产av潘金莲 | 亚洲国产欧美一区二区综合| 国产亚洲最大av| 亚洲av综合色区一区| 国产免费现黄频在线看| 亚洲成国产人片在线观看| 美女国产高潮福利片在线看| 久热这里只有精品99| 亚洲av中文av极速乱| 国产亚洲最大av| 婷婷成人精品国产| 免费高清在线观看日韩| av网站在线播放免费| 亚洲国产欧美网| 老司机靠b影院| 国产成人午夜福利电影在线观看| 最近最新中文字幕大全免费视频 | 免费不卡黄色视频| 欧美国产精品va在线观看不卡| 秋霞伦理黄片| 日韩av不卡免费在线播放| 搡老乐熟女国产| 免费黄网站久久成人精品| 最近最新中文字幕大全免费视频 | 最近最新中文字幕免费大全7| 卡戴珊不雅视频在线播放| 欧美av亚洲av综合av国产av | 日本欧美国产在线视频| 美女午夜性视频免费| 日韩av在线免费看完整版不卡| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网 | 午夜福利影视在线免费观看| 午夜免费男女啪啪视频观看| 美女主播在线视频| 最近手机中文字幕大全| 久久精品aⅴ一区二区三区四区| 成人手机av| 嫩草影院入口| 亚洲成人av在线免费| 少妇的丰满在线观看| 老司机亚洲免费影院| 久久婷婷青草| 香蕉国产在线看| av电影中文网址| 成人午夜精彩视频在线观看| 青草久久国产| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 婷婷色综合大香蕉| 久久精品亚洲熟妇少妇任你| 人妻一区二区av| 国产精品人妻久久久影院| 天堂俺去俺来也www色官网| 色网站视频免费| 爱豆传媒免费全集在线观看| 久久久久精品性色| 大香蕉久久网| 大片电影免费在线观看免费| 韩国av在线不卡| 精品国产露脸久久av麻豆| 黑人猛操日本美女一级片| 如何舔出高潮| 欧美xxⅹ黑人| 久久影院123| 国产野战对白在线观看| 这个男人来自地球电影免费观看 | 亚洲,欧美,日韩| 午夜老司机福利片| 欧美精品亚洲一区二区| 岛国毛片在线播放| 一边亲一边摸免费视频| 久久久久久久大尺度免费视频| 国产成人精品无人区| 亚洲 欧美一区二区三区| 精品国产一区二区三区四区第35| 欧美日韩视频精品一区| 丰满少妇做爰视频| 美女视频免费永久观看网站| 久久精品国产亚洲av涩爱| 国产精品偷伦视频观看了| 国产视频首页在线观看| 久久亚洲国产成人精品v| 国产黄频视频在线观看| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| 在线观看三级黄色| 三上悠亚av全集在线观看| 永久免费av网站大全| 啦啦啦在线免费观看视频4| 国产成人系列免费观看| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 黄色一级大片看看| 伦理电影免费视频| 精品亚洲成国产av| 亚洲精品,欧美精品| 中文字幕精品免费在线观看视频| 99国产精品免费福利视频| 夫妻午夜视频| 国产日韩欧美亚洲二区| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲 | 男女边摸边吃奶| 王馨瑶露胸无遮挡在线观看| 高清视频免费观看一区二区| 久久久国产一区二区| 九九爱精品视频在线观看| 欧美精品人与动牲交sv欧美| 色播在线永久视频| 欧美人与善性xxx| 熟女少妇亚洲综合色aaa.| 亚洲国产精品国产精品| 久久精品亚洲av国产电影网| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 亚洲第一av免费看| 久久久精品国产亚洲av高清涩受| 亚洲三区欧美一区| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 亚洲精品一二三| 国产精品人妻久久久影院| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 久久精品亚洲熟妇少妇任你| 女人久久www免费人成看片| 青春草亚洲视频在线观看| tube8黄色片| 欧美日韩一级在线毛片| 国产精品国产三级国产专区5o| 国产伦人伦偷精品视频| 日日爽夜夜爽网站| 尾随美女入室| 午夜久久久在线观看| 无遮挡黄片免费观看| 国产熟女午夜一区二区三区| a 毛片基地| 国产av精品麻豆| av国产精品久久久久影院| 亚洲视频免费观看视频| 久久久国产一区二区| 女人高潮潮喷娇喘18禁视频| 日本午夜av视频| 亚洲五月色婷婷综合| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡| 搡老乐熟女国产| 在线观看免费视频网站a站| 日本vs欧美在线观看视频| 飞空精品影院首页| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 亚洲欧美精品自产自拍| 精品少妇内射三级| 男女床上黄色一级片免费看| 亚洲av电影在线观看一区二区三区| 秋霞伦理黄片| av又黄又爽大尺度在线免费看| 人人妻,人人澡人人爽秒播 | 亚洲中文av在线| 久久青草综合色| 一本一本久久a久久精品综合妖精| 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 日本wwww免费看| 国产爽快片一区二区三区| 国产精品一国产av| 97精品久久久久久久久久精品| 天天操日日干夜夜撸| 热99国产精品久久久久久7| 国产av码专区亚洲av| 嫩草影院入口| 欧美激情极品国产一区二区三区| 亚洲情色 制服丝袜| 黄片小视频在线播放| 精品第一国产精品| 亚洲成人国产一区在线观看 | 精品一区在线观看国产| 欧美变态另类bdsm刘玥| 亚洲精品国产一区二区精华液| 一区福利在线观看| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 在线观看免费午夜福利视频| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到| 国产乱来视频区| 欧美在线一区亚洲| 国产精品久久久久久精品电影小说| 亚洲一码二码三码区别大吗| 老司机亚洲免费影院| 大话2 男鬼变身卡| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| 丝袜美足系列| 亚洲人成77777在线视频| 99久久99久久久精品蜜桃| 色94色欧美一区二区| 热re99久久国产66热| 久久久国产精品麻豆| 美女福利国产在线| 久久久国产精品麻豆| 色播在线永久视频| 国产男女超爽视频在线观看| 中文字幕高清在线视频| 午夜福利免费观看在线| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密 | 亚洲色图 男人天堂 中文字幕| 亚洲精品在线美女| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 别揉我奶头~嗯~啊~动态视频 | 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 亚洲美女视频黄频| 亚洲国产精品国产精品| 日日撸夜夜添| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 欧美av亚洲av综合av国产av | 精品人妻一区二区三区麻豆| 99热网站在线观看| av在线老鸭窝| 色综合欧美亚洲国产小说| 成年动漫av网址| 欧美国产精品一级二级三级| 赤兔流量卡办理| 又粗又硬又长又爽又黄的视频| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 亚洲精品在线美女| 国产免费福利视频在线观看| 啦啦啦在线免费观看视频4| 人体艺术视频欧美日本| 99久国产av精品国产电影| 亚洲人成电影观看| 999久久久国产精品视频| 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 性少妇av在线| 欧美精品高潮呻吟av久久| 国产精品三级大全| 亚洲精品一二三| 91老司机精品| 国产精品.久久久| 美国免费a级毛片| 男女免费视频国产| 少妇人妻精品综合一区二区| 成人手机av| 亚洲精品国产av蜜桃| 女人精品久久久久毛片| 男女无遮挡免费网站观看| 精品一区在线观看国产| 亚洲成av片中文字幕在线观看| 国精品久久久久久国模美| 黑丝袜美女国产一区| 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 亚洲熟女毛片儿| 如日韩欧美国产精品一区二区三区| 亚洲美女搞黄在线观看|