• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of fertilization on population density and productivity of herbaceous plants in desert steppe

    2014-10-09 08:11:02JieQiongSuXinRongLiHaoTianYang
    Sciences in Cold and Arid Regions 2014年3期

    JieQiong Su , XinRong Li , HaoTian Yang ,2

    1. Shapotou Desert Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

    2. University of Chinese Academy of Sciences, Beijing 100049, China

    1 Introduction

    Water and nutrients can co-limit plant growth and reproduction in desert ecosystems (Harpoleet al.,2007). Usually, water is believed to be the first factor limiting plant growth in desert ecosystem. However,nitrogen (N) as well as phosphorus (P) has been shown to impact plant growth in consistent ways, due to the increasingly anthropogenic inputs on nutrients to the Earth’s ecosystems (Austinet al., 2004; Elseret al., 2007). Herbaceous plants, as an important component and primary producer of the desert ecosystem,is of importance to prevent desertification and protect biodiversity (Hallet al., 2011; Waseemet al., 2011).

    Recently, community composition and productivity of herbaceous vegetation are experiencing impacts from altering soil nutrients, and the plant response is more sensitive for herbaceous vegetation relative to woody plants (Boyer and Zedler, 1998, 1999). N and P fertilizers can promote plant growth and increase community productivity in desert ecosystems through either individual (Chenet al., 2004; Qiuet al., 2004;Maet al., 2007; Zhenget al., 2007) or combined ways(Jameset al., 2005; Harpoleet al., 2007). However,the plant response to fertilizer additions is known to differ both between and within plant communities(Wescheet al., 2007; Xia and Wan, 2008).

    It is well known that plant productivity is largely determined by soil fertility, which can be meliorated by surface fertilization (Liet al., 1999). However, far fewer studies have been reported on desert steppe,which is controlled by soil moisture and is covered by fewer plants, in contrast to the grassland and alpine meadow. In this study, we estimate the effects of fertilization on herbaceous plants on desert steppe at a regional scale. The specific objectives of the present study are to (1) estimate the effect of applications of fertilizer to desert steppe on population density and biomass; (2) compare fertilization response on total community of the dominate species; (3) suggest guidelines for fertilization frequency to manage and restore the desert ecosystem.

    2 Methods

    2.1 Study site

    The experimental site, Cuiliugou (37°32′N,105°02′E), is located 40 km west of the Shapotou Desert Research and Experiment Station of the Chinese Academy of Sciences. This region is located in the southeastern fringe of the Tengger Desert, northwestern China. It is a typical transitional zone between steppe desert and desert steppe, with a mean altitude of 1,250 m. The mean annual air temperature is 10.4 °C, and the minimum and maximum temperatures are –25.1 °C in January and 38.1 °C in July, respectively. The mean annual precipitation (MAP) is 180.2 mm; and more than 80 % of annual precipitation occurs during May to September. Average annual wind velocity is 2.8 m/s;an average of 59 dust-storm days occurs annually. The soil is a loamy sand soil. The groundwater is too deep to sustain a large area of vegetation cover. The experimental site is a species-poor system, typically dominated by several herbaceous species, such asStipa breviflora,Tragus mongolorumk,Cleistogenes songorica,Allium polyrhizum,Enneapogon brachystachyus,Salsola ruthenica,andArtemisia capillaris(Li, 2005).

    2.2 Fieldwork

    Three experimental treatments (N, P, and NP)were replicated in eight 2.5m×7.0m blocks in a randomized complete block design with no replication within blocks. Each treatment included four fertilization levels (0, 5, 10, and 20 g/m2). Each block was split into ten 1m×1m subplots separated by a 0.5-m buffer zone. Every ten plots of the same block were assigned randomly to receive fertilization treatment.N and P fertilizers were added in the solution as NH4NO3and NaH2PO4all at once in mid-May, respectively, and NP fertilizer was applied at an N/P ratio of 3/1. Fertilizers were dissolved in distilled water equivalent to 0.75 L/m2, and the same amount of water was added to the control plots at the same time as the fertilizer additions were made.

    The experiment was carried out in 2009, in which annual precipitation was less than the MAP (Figure 1).The tested soil showed relatively high levels of potassium (K), but otherwise low levels of N and P (Table 1). The species, number of individuals, height, and coverage of the herbaceous plants in each plot were recorded monthly from June to September. The aboveground biomass was collected randomly in a 0.5m×0.5m area in each plot during 10–15 September,at the time when aboveground biomass of the herbaceous vegetation attained its peak value in this region.We distinguished between the main groups ofA.capillaris,A.polyrhizum,E.brachystachyusand the rest. The underground biomass was collected by mixing three root cores (5 cm diameter, 10 cm and 20 cm deep, respectively) in each plot. Plant samples were oven-dried at 75 °C for 48 h to a constant weight, and then weighed.

    Figure 1 The amount of monthly precipitation of Shapotou area in 2009

    Table 1 Physico-chemical properties of the experimental soil (mean±SE)

    2.3 Chemical analysis

    Measurement of soil physico-chemical properties included soil sampling at depths of 0–10 cm and 10–20 cm in each plot. Air-dried soil samples were sieved to pass through a 2-mm mesh prior to analysis.The soil pH was determined with a pH meter (PHS-4,Jiangsu Manufactory of Electrical Analysis Instruments, Jiangyin, China) in a soil/water solution (1:2.5,w:v). The soil organic carbon was determined using the K2Cr2O7oxidation method. The soil moisture in each plot was measured using a TDR probe (TDR300 Spectrum Technologies, Plainfield, IL) at 2-week intervals during May to September. The soil nutrient content (total and available N, P, and K) was determined using the routine methods of Bao (2000).

    2.4 Data analysis

    All the values expressed are mean±SE (standard error) of the eight replicates. When data deviated markedly from assumptions of normality and homogeneity of variances, data were transformed using lgX.To test whether the impacts of fertilizer addition on community density and biomass differed between fertilization levels, one-way analysis of variance(ANOVA) followed by multiple comparisons using Duncan’s multiple-range test was performed to separate means. Linear and exponential regression models were used to determine the general relationship between fertilization levels and biomasses for the dominant species and the total population. Statistical differences were considered significant atp<0.05. All statistical analyses were performed using SPSS 16.0;all the figures were drawn by Origin 8.0.

    3 Results

    3.1 Effects of fertilizer addition on plant density

    The changes on population density in response to additions of N, P, and NP fertilizers are given in table 2. In general, plant density on both total community and dominant species (A.capillaris,A.polyrhizum,andE.brachystachyus) decreased as the fertilization levels increased, no matter whether the fertilizer application was single or combined. More specifically,N fertilizer significantly decreased not only total community density but also density of the three dominant species in 20 g/m2treated plots (p<0.05), as compared with the unfertilized control plots. However,in the case of P and NP fertilizers, only the density ofA.polyrhizumsignificantly decreased in 20 g/m2treated plots (p<0.05).

    Table 2 Variations of population density under different fertilization levels (mean±SE, n=8)

    3.2 Effects of fertilizer addition on plant aboveground biomass

    As shown in figures 2 to 4, a general decreasing trend that is similar to the density (Table 2) was noted on aboveground biomasses of both the dominant species and the total population. Nonetheless, the regression models between fertilization levels and aboveground biomasses were different. In the case of total population, the aboveground biomass showed an exponential decrease with increasing fertilization levels regardless of the sort of fertilizer, with determination coefficients (R2) up to 0.898, 0.999, and 0.993 on plots treated with N, P, and NP fertilizers, respectively.

    In contrast, significant species differences in degrees of biomass reduction were found for each of the three fertilizers. Specifically, an exponential reduction on plots treated with N fertilizer and a linear reduction on plots treated with P and NP fertilizers were observed forA.polyrhizum, whereas a completely opposite responding pattern was noted forA.capillaris; that is,linear reduction for N fertilizer and exponential reduction for P and NP fertilizers. As forE.brachystachyus,its aboveground biomass showed an exponential reduction on plots treated with single fertilizer of N and P,whereas plots treated with the combined NP fertilizer showed a linear reduction. Furthermore, aboveground biomasses of the three dominant species on fertilized plots decreased to less than a half of that produced on the unfertilized control plots (Figures 2 to 4).

    Figure 2 Changes of aboveground biomass under different N fertilization levels

    Figure 3 Changes of aboveground biomass under different P fertilization levels

    Figure 4 Changes of aboveground biomass under different NP fertilization levels

    3.3 Effects of fertilizer addition on plant underground biomass

    The underground biomass production of the total population with different fertilizer addition levels is presented in figure 5. The underground biomass decreased sharply as the fertilization level increased,with the highest reduction noted on plots treated with the highest fertilization level at 20 g/m2, no matter whether the fertilizer application was single or combined. In addition, shallow roots showed more reduction than deep roots.

    Figure 5 Changes of underground biomass under different fertilization levels

    4 Discussion

    In dryland ecosystems, the dominate species,which is robust with high density and large biomass,has an advantage over the rare and dwarf species because resources such as water and nutrients are limited. In this study, nonetheless, we found that not only total plant density but also density of the dominant species decreased in response to fertilizer additions,no matter if fertilizer applications were single or combined. The results reflected that fertilization to desert steppe could inhibit reproduction of herbaceous plants, even though the dominant species. This is largely because plant density is co-limited by numbers of the limiting factors (Clark and Tilman, 2008); that is, greater numbers of limiting factors can allow greater numbers of species to coexist through species’tradeoffs for different limiting resources. Thus, on the one hand, fertilization increased concentrations of the soil available nutrient, which enlarged the plant body because of enhanced tillering and reproduction, causing extreme competition among species and even the death of rare and dwarf species (Chenet al., 2004).On the other hand, soil moisture became the main limiting factor when nutrient limitation was eliminated, causing reduction in plant density as a result of lower nutrient uptake induced by water limitation(Gutiérrez, 1992).

    The stimulation of aboveground biomass as a result of nutrient enrichment has been demonstrated in many terrestrial biomes (Chenet al., 2004; Qiuet al.,2004; Jameset al., 2005; Maet al., 2007; Zhenget al.,2007). However, we observed an opposite result that fertilizer additions decreased aboveground biomasses of both the total community and dominant species.This is consistent with the finding of St. Clairet al.(2009) that fertilization can inhibit the development of aboveground biomass for herbaceous plants grown on dryland ecosystems with annual precipitation below the MAP. Although there were positive studies in desert steppe, the improved biomass largely benefited from annual precipitation above the MAP (Suet al.,2010, 2013). Several causes are put forward to explain the observed decreases in aboveground biomass.Firstly, this effect commonly referred to the scarce and unevenly distributed precipitation. More specifically, precipitation is the only effective supply of soil moisture for the vegetation in this region (Wanget al.,2005), with more than 60% occurring during August to October (Figure 1), leading to inhibitions on germination of annuals and resprouting of perennials(Zhanget al., 2011). In addition, the uptake of P by roots and then its translocation from roots to shoots could probably be restrained when soil moisture content was less than 25% of the field water holding capacity, resulting in an imbalance of the N/P ratio (Ji,2002). Furthermore, relatively low precipitation might decrease leaf construction and photosynthetic rate, which is expected to increase with increasing availability of N in the soil (Wanget al., 2007). Secondly, accumulations of high levels of N and P in the leaves would likely lead to deficiency of trace elements such as calcium, magnesium, and aluminum(Drenovsky and Richards, 2004). Then, the imbalanced nutrient uptake might cause reductions in plant net photosynthetic efficiency and increases in plant dark respiration rate, and eventually plant death(McLaughlinet al., 1991; Mcnultyet al., 1996; Baueret al., 2004).

    The change of underground biomass is always related to the content of soil nutrients, as the root contacts directly with the substrate. As far as we known,the dominant species, such asA. capillarisandA.polyrhizum, have strong capability to compete for limited resources in desert ecosystems, due to their high root/shoot ratio (Jungk, 2001; Liet al., 2003;Walkeret al., 2003; Zhanget al., 2006). Thus, the decreased root biomass in this study was largely because of soil nutrient enrichment, leading to less competition of roots on nutrients, due to the reduced quantities of rootlets and root tips (Schulze, 1989;Perssonet al., 1998).

    5 Conclusions

    The fertilizer addition experiment in Shapotou desert steppe showed that soil nutrient enrichment decreased herbaceous plants’ density and biomass(both aboveground and root biomasses) of both total population and dominant species, no matter what kind of fertilizer was applied. The results suggest that fertilization to dryland ecosystems is not an optimal approach to promote plant growth when annual precipitation is below the MAP.

    This research was supported by the Major State Basic Research Development Program of China (973 Program, Grant No. 2013CB429901-2), and the Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (Y451121001).

    Austin AT, Yahdjian L, Stark JM,et al., 2004. Water pulses and biochemical cycle in arid and semiarid ecosystems. Oecologia,141: 221–235. DOI: 10.1007/s00442-004-1519-1.

    Bao SD, 2000. Soil and Agricultural Chemistry Analysis. Agriculture Press, Beijing, China, pp. 138–162.

    Bauer GA, Bazzaz FA, Minocha R,et al., 2004. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (PinusresinosaAit.) stand in the NE United States. Forest Ecology and Management, 196: 173–186. DOI: 10.1016/j.foreco.2004.03.032.

    Boyer KE, Zedler JB, 1998. Effects of nitrogen addition on the vertical structure of a constructed cord grass marsh. Ecological Applications, 8: 692–705. DOI: 10.1890/1051-0761(1998)008[0692:EONAOT]2.0.CO;2.

    Boyer KE, Zedler JB, 1999. Nitrogen addition could shift plant community composition in a restored California salt marsh.Restoration Ecology, l7: 74–85. DOI: 10.1046/j.1526-100X.1999.07109.x.

    Chen YM, Li ZZ, Du GZ, 2004. Effects of fertilization on plant diversity and economic herbage groups in alpine meadow. Acta Bot Boreal-Occident Sinica, 24(3): 424–429. DOI:10.3321/j.issn:1000-4025.2004.03.009.

    Clark CM, Tilman D, 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grassland. Nature, 451:712–715. DOI: 10.1038/nature06503.

    Drenovsky RE, Richards JH, 2004. Critical N:P values: Predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259:59–69. DOI: 10.1023/B:PLSO.0000020945.09809.3d.

    Elser JJ, Bracken MES, Cleland EE,et al., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letter,10: 1135–1142. DOI: 10.1111/j.1461-0248.2007.01113.x.

    Gutiérrez JR, 1992. Effects of low water supplementation and nutrient addition on the aboveground biomass production of annual plants in a Chilean coastal desert site. Oecologia, 90:556–559. DOI: 10.1007/BF01875450.

    Hall SJ, Sponseller RA, Grimm NB,et al., 2011. Ecosystem response to nutrient enrichment across an urban airshed in the Sonoran Desert. Ecological Applications, 3: 640–660.

    Harpole WS, Potts DL, Suding KN, 2007. Ecosystem responses to water and nitrogen amendment in a California grassland.Global Change Biology, 13: 2341–2348. DOI:10.1111/j.1365-2486.2007.01447.x.

    James JJ, Tiller RL, Richards JH, 2005. Multiple resources limit plant growth and function in a saline-alkaline desert community. Journal of Ecology, 93: 113–126. DOI:10.1111/j.0022-0477.2004.00948.x.

    Ji YJ, 2002. Primary study on fertilizer application to alpine rangeland in Qinghai, China. Pratacultural Science, 19(5):14–18. DOI: 10.3969/j.issn.1001-0629.2002.05.003.

    Jungk A, 2001. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science, 164(2):121–129. DOI: 10.1002/1522-2624(200104)164:2<121:AID-JPLN121>3.0.CO;2-6.

    Li DJ, Mo JM, Fang YT,et al., 2003. Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica, 23(9): 1893–1900.

    Li KJ, Zhang SF, Jia WZ,et al., 1999. Effect of long-term fertilization on crop yield and soil fertility in semi-arid area. Plant Nutrition and Fertilizer Science, 5(1): 21–25. DOI:10.3321/j.issn:1008-505X.1999.01.004.

    Li XR, 2005. Influence of variation of soil spatial heterogeneity on vegetation restoration. Science in China (Series D: Earth Sciences), 48(11): 2020–2031. DOI: 10.1360/04yd0139.

    Ma T, Wu GL, He YL,et al., 2007. The effect of simulated mowing of the fertilizing level on community production and compensatory responses on the Qinghai-Tibetan. Acta Ecologica Sinica, 27(6): 2288–2293.

    McLaughlin SB, Anderson CP, Hanson PJ,et al., 1991. Increased dark respiration and calcium deficiency of red spruce in relation to acidic deposition at high-elevation southern Appalachian Mountain sites. Canadian Journal of Forest Research, 21:1234–1244.

    Mcnulty SG, Aber JD, Newman SD, 1996. Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management, 84: 109–121.

    Persson H, Ahlstr K, Clemensson LA, 1998. Nitrogen addition and removal at Gardsjn effects on fine-root growth and fine-root chemistry. Forest Ecology and Management, 101: 199–206.

    Qiu B, Luo YJ, Du GZ, 2004. The effect of fertilizer gradients on vegetation characteristics in alpine meadow. Acta Prataculturae Sinica, 13(6): 65–68.

    Schulze ED, 1989. Air pollution and forest decline in a spruce(Picea abies) forest. Science, 244: 776–783. DOI:10.1126/science.244.4906.776.

    St. Clair SB, Sudderth EA, Castanha C,et al., 2009. Plant responsiveness to variation in precipitation and nitrogen is consistent across the compositional diversity of a California annual grassland. Journal of Vegetation Science, 20: 860–870. DOI:10.1111/j.1654-1103.2009.01089.x.

    Su JQ, Li XR, Li XJ,et al., 2010. Response of vegetation herb layer to nitrogen fertilizer in steppe desert. Journal of Desert Research, 30(6): 1336–1340.

    Su JQ, Li XR, Li XJ,et al., 2013. Effects of additional N on herbaceous species of desertified steppe in arid regions of China: a four-year field study. Ecological Research, 28: 21–28. DOI:10.1007/s11284-012-0994-9.

    Walker TS, Bais HP, Grotewold E,et al., 2003. Root exudation and rhizosphere biology. Plant Physiology, 132: 44–51.http://dx.doi.org/10.1104/pp.102.019661.

    Wang B, Liu WZ, Dang TH,et al., 2007. Distribution features of soil water content in the profile of rainfed cropland with long-term fertilization. Plant Nutrition and Fertilizer Science,13(3): 411–416.

    Wang XP, Zhang ZS, Zhang JG,et al., 2005. Review to researches on desert vegetation influencing soil hydrological processes.Journal of Desert Research, 25(2): 196–201.

    Waseem M, Ali A, Tahir M, 2011. Mechanism of drought tolerance in plant and its management through different methods.Continental Journal of Agricultural Science, 5: 10–25.

    Wesche K, Nadrowski K, Retzer V, 2007. Habitat engineering under dry conditions: the impact of pikas (Ochotona pallasi)on southern Mongolian mountain steppes. Journal of Vegetation Science, 18: 665–674. DOI: 10.1111/j.1654-1103.2007.tb02580.x.

    Xia JY, Wan SQ, 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179:428–439. DOI: 10.1111/j.1469-8137.2008.02488.x.

    Zhang XL, Zeng FJ, Liu B,et al., 2011. Effect of irrigation on root growth and distribution of the seedlings ofAlhagi sparsifoliaShap., in the Taklimakan Desert. Journal of Desert Research,31(6): 1459–1466.

    Zhang Z, Fan HW, Zhao JL,et al., 2006. Root distribution and dynamics of re-vegetated communities in desert area. Journal of Desert Research, 26(4): 637–643.

    Zheng HP, Chen ZX, Wang SR,et al., 2007. Effect of fertilizer on plant diversity and productivity of desertified alpine grassland at Maqu, Gansu. Acta Prataculturae Sinica, 16(5): 34–39. DOI:10.3321/j.issn:1004-5759.2007.05.004.

    亚洲精品中文字幕在线视频| 国产亚洲精品久久久com| av播播在线观看一区| 在线精品无人区一区二区三| 中文字幕制服av| 国内精品宾馆在线| 午夜久久久在线观看| 国产免费现黄频在线看| 亚洲欧美色中文字幕在线| a 毛片基地| 欧美性感艳星| 国产一区二区在线观看av| 我的老师免费观看完整版| 美女中出高潮动态图| 日本黄色片子视频| 黄色毛片三级朝国网站| 亚洲av福利一区| 国产免费现黄频在线看| 免费黄频网站在线观看国产| xxxhd国产人妻xxx| 精品久久久久久久久av| 久久久久精品久久久久真实原创| 国产av码专区亚洲av| 少妇精品久久久久久久| 久热久热在线精品观看| 熟女人妻精品中文字幕| 国产免费一区二区三区四区乱码| 少妇人妻久久综合中文| 一级,二级,三级黄色视频| 九草在线视频观看| 男女无遮挡免费网站观看| 18禁在线无遮挡免费观看视频| 国产精品欧美亚洲77777| 少妇人妻 视频| 高清午夜精品一区二区三区| 国产成人一区二区在线| 欧美日韩av久久| 综合色丁香网| 亚州av有码| 亚洲精品,欧美精品| 久久久久久久久久人人人人人人| 人人澡人人妻人| 美女脱内裤让男人舔精品视频| 亚洲精品一二三| 国产精品麻豆人妻色哟哟久久| 国产乱来视频区| 国内精品宾馆在线| 成人影院久久| 3wmmmm亚洲av在线观看| 天天躁夜夜躁狠狠久久av| 久久这里有精品视频免费| 亚洲不卡免费看| 久久久久精品性色| 国产免费视频播放在线视频| 97在线视频观看| 极品人妻少妇av视频| 亚洲精品视频女| 99精国产麻豆久久婷婷| 少妇的逼水好多| 特大巨黑吊av在线直播| 成人无遮挡网站| 精品一区在线观看国产| 精品午夜福利在线看| 久久久亚洲精品成人影院| 大香蕉久久网| 久久精品国产鲁丝片午夜精品| 日韩 亚洲 欧美在线| 日日爽夜夜爽网站| 日本wwww免费看| 肉色欧美久久久久久久蜜桃| 热99久久久久精品小说推荐| 新久久久久国产一级毛片| 韩国高清视频一区二区三区| 大片免费播放器 马上看| xxxhd国产人妻xxx| 色吧在线观看| 亚洲精品,欧美精品| 天天躁夜夜躁狠狠久久av| 色94色欧美一区二区| 在线精品无人区一区二区三| 亚洲欧美成人精品一区二区| videos熟女内射| 伊人久久国产一区二区| 热re99久久精品国产66热6| 性色avwww在线观看| 国产综合精华液| 国产视频首页在线观看| 桃花免费在线播放| 蜜臀久久99精品久久宅男| 中文字幕人妻丝袜制服| 成人亚洲精品一区在线观看| 日韩电影二区| 在线观看国产h片| 精品国产一区二区三区久久久樱花| 午夜福利视频在线观看免费| 中文字幕免费在线视频6| 国产精品一二三区在线看| 免费日韩欧美在线观看| 国模一区二区三区四区视频| 中文字幕av电影在线播放| 青青草视频在线视频观看| 在线观看三级黄色| 精品久久久久久电影网| 欧美日韩在线观看h| 久久久亚洲精品成人影院| 久久久久久久久久人人人人人人| videosex国产| 国产精品.久久久| 精品人妻熟女毛片av久久网站| 18+在线观看网站| 亚洲国产精品999| 精品人妻在线不人妻| 国产午夜精品一二区理论片| 成年av动漫网址| 丝袜在线中文字幕| 丝袜在线中文字幕| 国产欧美日韩一区二区三区在线 | 少妇人妻精品综合一区二区| 婷婷色综合www| 亚洲欧美清纯卡通| 一级二级三级毛片免费看| 18禁在线播放成人免费| 一级a做视频免费观看| 国产精品无大码| 久久99蜜桃精品久久| 3wmmmm亚洲av在线观看| 久久精品久久久久久噜噜老黄| 大香蕉久久成人网| 2022亚洲国产成人精品| 亚洲一区二区三区欧美精品| 久久人妻熟女aⅴ| 国产免费福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区三区四区免费观看| 色5月婷婷丁香| 色5月婷婷丁香| 精品少妇黑人巨大在线播放| 免费看光身美女| 不卡视频在线观看欧美| 九草在线视频观看| 国产男女超爽视频在线观看| 亚洲经典国产精华液单| 人人妻人人澡人人爽人人夜夜| 欧美日韩综合久久久久久| 免费观看在线日韩| 三级国产精品欧美在线观看| 精品熟女少妇av免费看| 寂寞人妻少妇视频99o| 国产精品久久久久久久电影| 夫妻性生交免费视频一级片| 免费av不卡在线播放| .国产精品久久| 天堂中文最新版在线下载| 男的添女的下面高潮视频| 成人毛片a级毛片在线播放| 精品国产一区二区久久| av免费在线看不卡| 亚洲欧洲日产国产| 久久久久人妻精品一区果冻| 亚洲精品国产av成人精品| 在线观看www视频免费| 久热久热在线精品观看| 国产成人精品一,二区| 80岁老熟妇乱子伦牲交| 日韩成人伦理影院| 国产精品99久久久久久久久| 国产欧美亚洲国产| 国产精品.久久久| 日本黄大片高清| 日韩一本色道免费dvd| 69精品国产乱码久久久| 亚洲国产av新网站| 亚州av有码| 色哟哟·www| 99九九线精品视频在线观看视频| 免费观看性生交大片5| 久久久久网色| 美女视频免费永久观看网站| 美女视频免费永久观看网站| 老熟女久久久| 国产日韩欧美在线精品| 午夜视频国产福利| 色5月婷婷丁香| 亚洲成人av在线免费| 午夜福利在线观看免费完整高清在| 亚洲av日韩在线播放| 日韩av不卡免费在线播放| 亚洲色图 男人天堂 中文字幕 | 成年女人在线观看亚洲视频| kizo精华| 国产精品一区二区三区四区免费观看| 老司机影院毛片| 天天影视国产精品| 又黄又爽又刺激的免费视频.| 美女中出高潮动态图| 99国产精品免费福利视频| 99视频精品全部免费 在线| 满18在线观看网站| 国产欧美日韩综合在线一区二区| 我的女老师完整版在线观看| 一边亲一边摸免费视频| 免费大片18禁| 人人妻人人添人人爽欧美一区卜| 国产免费视频播放在线视频| 最近手机中文字幕大全| 亚洲精品第二区| 亚洲人成网站在线播| 麻豆乱淫一区二区| 人妻人人澡人人爽人人| 女性被躁到高潮视频| 久久韩国三级中文字幕| 欧美精品国产亚洲| 日本色播在线视频| 亚洲av中文av极速乱| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美在线一区| 国精品久久久久久国模美| 最近2019中文字幕mv第一页| 女的被弄到高潮叫床怎么办| 精品一区二区三卡| 欧美变态另类bdsm刘玥| 亚洲成人av在线免费| 国产精品国产三级专区第一集| 视频区图区小说| 男男h啪啪无遮挡| 在线 av 中文字幕| 老熟女久久久| 亚洲,欧美,日韩| 亚洲欧美一区二区三区黑人 | 国产综合精华液| 国产精品欧美亚洲77777| av在线播放精品| 一级黄片播放器| 亚洲国产毛片av蜜桃av| 日韩在线高清观看一区二区三区| 亚洲av二区三区四区| 日韩av不卡免费在线播放| 少妇被粗大猛烈的视频| 日韩大片免费观看网站| 多毛熟女@视频| 校园人妻丝袜中文字幕| 亚洲精品国产av成人精品| 国产黄色视频一区二区在线观看| 香蕉精品网在线| 丁香六月天网| 久久av网站| 亚洲成人av在线免费| 亚洲一区二区三区欧美精品| 一区在线观看完整版| 日韩伦理黄色片| av一本久久久久| 简卡轻食公司| 老熟女久久久| 狠狠婷婷综合久久久久久88av| 日韩中字成人| 人人澡人人妻人| 国产亚洲一区二区精品| 精品一区二区三卡| 国产永久视频网站| 精品午夜福利在线看| 2021少妇久久久久久久久久久| 少妇精品久久久久久久| 制服丝袜香蕉在线| 十分钟在线观看高清视频www| 精品少妇内射三级| 久久久a久久爽久久v久久| 亚洲久久久国产精品| 国产男女超爽视频在线观看| 欧美精品一区二区免费开放| 国产欧美另类精品又又久久亚洲欧美| 观看美女的网站| 国内精品宾馆在线| 18禁动态无遮挡网站| 久久国产精品男人的天堂亚洲 | 午夜影院在线不卡| 成年人免费黄色播放视频| 亚洲av日韩在线播放| 哪个播放器可以免费观看大片| 一边亲一边摸免费视频| 久久国产亚洲av麻豆专区| 麻豆乱淫一区二区| 一个人免费看片子| 欧美日本中文国产一区发布| 午夜福利网站1000一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 亚洲av不卡在线观看| 久久精品熟女亚洲av麻豆精品| 精品酒店卫生间| 亚洲av中文av极速乱| 久久久久久伊人网av| 人人妻人人添人人爽欧美一区卜| 在线 av 中文字幕| 亚洲美女搞黄在线观看| 在线播放无遮挡| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 久久久精品94久久精品| 插阴视频在线观看视频| 欧美 日韩 精品 国产| 日韩欧美一区视频在线观看| 亚洲精品视频女| 极品人妻少妇av视频| 黑人欧美特级aaaaaa片| 黄色视频在线播放观看不卡| 极品少妇高潮喷水抽搐| 国产成人freesex在线| 亚洲一区二区三区欧美精品| 久久久久视频综合| 热re99久久国产66热| 婷婷色av中文字幕| 成人午夜精彩视频在线观看| 大陆偷拍与自拍| 看非洲黑人一级黄片| 中文字幕最新亚洲高清| a级毛片黄视频| 女的被弄到高潮叫床怎么办| 久久久久久久久久久丰满| 青春草视频在线免费观看| 国产男女超爽视频在线观看| av福利片在线| 久久综合国产亚洲精品| 亚洲欧美中文字幕日韩二区| 中文字幕人妻熟人妻熟丝袜美| 日本黄色日本黄色录像| 2022亚洲国产成人精品| 有码 亚洲区| 日韩亚洲欧美综合| 乱码一卡2卡4卡精品| 九九在线视频观看精品| 成人国产麻豆网| 天堂8中文在线网| 51国产日韩欧美| 亚洲三级黄色毛片| 一级毛片黄色毛片免费观看视频| 又大又黄又爽视频免费| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩另类电影网站| 欧美一级a爱片免费观看看| 九草在线视频观看| 精品久久久久久久久亚洲| 日日摸夜夜添夜夜爱| 纯流量卡能插随身wifi吗| 国产成人freesex在线| 日本av免费视频播放| 久久人人爽av亚洲精品天堂| a 毛片基地| 蜜桃在线观看..| 亚洲av日韩在线播放| 亚洲精品色激情综合| 毛片一级片免费看久久久久| 久热久热在线精品观看| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕 | 久久女婷五月综合色啪小说| 免费播放大片免费观看视频在线观看| 久久青草综合色| 丝瓜视频免费看黄片| 久久久久久久久久久免费av| 国产极品粉嫩免费观看在线 | 天堂俺去俺来也www色官网| 国产精品一区二区三区四区免费观看| 免费播放大片免费观看视频在线观看| 丝袜美足系列| 久久久国产欧美日韩av| 边亲边吃奶的免费视频| 九色成人免费人妻av| 狂野欧美激情性bbbbbb| 国产精品人妻久久久久久| 成人手机av| 中文字幕av电影在线播放| av在线app专区| 男女免费视频国产| 啦啦啦在线观看免费高清www| 欧美精品亚洲一区二区| 亚洲人成网站在线观看播放| 国产精品偷伦视频观看了| 久久青草综合色| 亚洲精品一区蜜桃| 午夜福利在线观看免费完整高清在| 国产精品免费大片| 欧美3d第一页| 亚洲精品一二三| 欧美日韩精品成人综合77777| av卡一久久| 免费少妇av软件| 国产精品成人在线| 黄色怎么调成土黄色| 老女人水多毛片| 交换朋友夫妻互换小说| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 多毛熟女@视频| 国产亚洲一区二区精品| 成人免费观看视频高清| 久久久久久伊人网av| 久久久久精品性色| 亚洲无线观看免费| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 亚洲精品一二三| 久久久久精品久久久久真实原创| 免费观看的影片在线观看| 亚洲精品一二三| 国产精品秋霞免费鲁丝片| 亚洲国产色片| 免费看光身美女| 777米奇影视久久| 亚洲av不卡在线观看| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 日韩欧美一区视频在线观看| 欧美bdsm另类| 美女国产高潮福利片在线看| 在线观看人妻少妇| 亚洲经典国产精华液单| 69精品国产乱码久久久| 人人澡人人妻人| 青春草视频在线免费观看| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 欧美激情国产日韩精品一区| 久久久久久久久大av| 少妇人妻精品综合一区二区| 性高湖久久久久久久久免费观看| 国产欧美另类精品又又久久亚洲欧美| 国产乱来视频区| 黑丝袜美女国产一区| 男女国产视频网站| av在线app专区| 久久久午夜欧美精品| 18禁在线无遮挡免费观看视频| 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| 伦理电影大哥的女人| 国产精品女同一区二区软件| 在线观看人妻少妇| 国产欧美日韩综合在线一区二区| 性色av一级| 亚洲精品日韩在线中文字幕| 国内精品宾馆在线| 日本免费在线观看一区| 大片免费播放器 马上看| www.av在线官网国产| 美女xxoo啪啪120秒动态图| 在线观看人妻少妇| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 男的添女的下面高潮视频| 一本大道久久a久久精品| 老司机影院毛片| 免费观看无遮挡的男女| 国产成人一区二区在线| 国国产精品蜜臀av免费| 黄色欧美视频在线观看| 中国三级夫妇交换| 伊人久久国产一区二区| 亚洲精品日韩av片在线观看| 欧美日韩国产mv在线观看视频| 国产精品不卡视频一区二区| 男女国产视频网站| 天天影视国产精品| 免费不卡的大黄色大毛片视频在线观看| 在线免费观看不下载黄p国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品久久午夜乱码| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 久久这里有精品视频免费| 大片电影免费在线观看免费| 日本欧美视频一区| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 啦啦啦中文免费视频观看日本| 伦精品一区二区三区| 中文字幕最新亚洲高清| 久久久精品免费免费高清| 国产男女内射视频| av黄色大香蕉| 九九久久精品国产亚洲av麻豆| 欧美成人午夜免费资源| 少妇丰满av| 特大巨黑吊av在线直播| 国产 一区精品| 免费看av在线观看网站| 国产午夜精品久久久久久一区二区三区| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 国产 精品1| 日韩人妻高清精品专区| 99热6这里只有精品| 国产黄色免费在线视频| 少妇熟女欧美另类| 久久精品久久久久久噜噜老黄| 国产日韩欧美在线精品| 免费大片18禁| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 亚洲av成人精品一二三区| 日韩电影二区| av国产精品久久久久影院| 免费观看在线日韩| 性色av一级| av免费在线看不卡| 亚洲欧美成人精品一区二区| av国产久精品久网站免费入址| 久久久亚洲精品成人影院| 欧美日韩亚洲高清精品| 又粗又硬又长又爽又黄的视频| 人妻一区二区av| 国语对白做爰xxxⅹ性视频网站| 亚洲精品亚洲一区二区| 蜜桃久久精品国产亚洲av| 国产亚洲欧美精品永久| 精品少妇黑人巨大在线播放| 国产亚洲精品久久久com| 免费人妻精品一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 国产视频首页在线观看| 亚洲人成77777在线视频| 51国产日韩欧美| 日韩不卡一区二区三区视频在线| 日韩一区二区视频免费看| 久久青草综合色| 男女免费视频国产| 香蕉精品网在线| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇黑人巨大在线播放| 免费日韩欧美在线观看| 国产精品一国产av| 日本欧美视频一区| 91在线精品国自产拍蜜月| 制服丝袜香蕉在线| 飞空精品影院首页| 国产国拍精品亚洲av在线观看| 亚洲,欧美,日韩| 国产亚洲精品久久久com| 欧美日韩在线观看h| 少妇精品久久久久久久| 欧美性感艳星| 天堂中文最新版在线下载| 婷婷色av中文字幕| 中文精品一卡2卡3卡4更新| 亚洲精品美女久久av网站| 成年人午夜在线观看视频| 男人操女人黄网站| 久久狼人影院| 美女福利国产在线| 亚洲精品日韩在线中文字幕| av在线app专区| 欧美性感艳星| 大话2 男鬼变身卡| 亚洲精品国产av蜜桃| 高清av免费在线| 国产精品.久久久| 久久久久国产精品人妻一区二区| 亚洲国产精品专区欧美| 久久毛片免费看一区二区三区| 成人无遮挡网站| 国产精品成人在线| 黄色欧美视频在线观看| 黄色毛片三级朝国网站| 亚洲激情五月婷婷啪啪| 乱码一卡2卡4卡精品| 天堂8中文在线网| 高清黄色对白视频在线免费看| 三上悠亚av全集在线观看| 黑人猛操日本美女一级片| 老司机影院毛片| 丰满饥渴人妻一区二区三| 五月玫瑰六月丁香| 精品酒店卫生间| 午夜激情福利司机影院| 成人国语在线视频| 99国产精品免费福利视频| 久久久久网色| 精品国产一区二区久久| 尾随美女入室| 中文乱码字字幕精品一区二区三区| 99热国产这里只有精品6| 午夜免费男女啪啪视频观看| 国产成人免费无遮挡视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品一二三区在线看| 97超视频在线观看视频| 岛国毛片在线播放| 99热6这里只有精品| 各种免费的搞黄视频| 欧美激情极品国产一区二区三区 | 亚洲五月色婷婷综合| 国产精品国产三级国产av玫瑰| 日本黄色日本黄色录像| 日韩 亚洲 欧美在线| 亚洲av男天堂| 国产一区二区三区综合在线观看 | 亚洲人成网站在线观看播放| 婷婷色综合www| av福利片在线| 国产淫语在线视频| 国模一区二区三区四区视频| 国产精品一国产av| 久热这里只有精品99| av电影中文网址| 少妇被粗大猛烈的视频| av视频免费观看在线观看| 夜夜骑夜夜射夜夜干| av福利片在线| 在线播放无遮挡| 国产老妇伦熟女老妇高清| 亚洲国产av新网站| 欧美激情国产日韩精品一区| 国产精品99久久99久久久不卡 | 日韩在线高清观看一区二区三区| 亚洲av免费高清在线观看| 一区二区av电影网|