• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of broadband achromatic metasurface device based on phase-change material Ge2Sb2Te5

    2022-12-28 09:53:30ShuyuanLv呂淑媛XinhuiLi李新慧WenfengLuo羅文峰andJieJia賈潔
    Chinese Physics B 2022年12期
    關鍵詞:淑媛文峰

    Shuyuan Lv(呂淑媛), Xinhui Li(李新慧), Wenfeng Luo(羅文峰), and Jie Jia(賈潔)

    Xi’an University of Posts&Telecommunications,School of Electronic Engineering,Xi’an 710121,China

    Keywords: metasurface,optical device,phase-change material,achromatic

    1. Introduction

    So far, transmission-type[1,2]and reflection-type[3,4]metasurface devices have gradually replaced bulky and huge traditional optics devices, due to the compact and easy-tomanufacture characteristics, as well as for flexible and effective control of electromagnetic wave polarization, amplitude,phase,and propagation mode,[5–11]by adjusting the geometric parameters of the nanopillar. With these advantages, metasurface devices are extensively used in such fields as invisibility cloaks,[12]high-dimensional holograms,[13,14]ultra-thin metalenses,[15–19]and vortex beams.[20,21]At the same time,metasurface devices have obvious dispersion problems mainly due to the intrinsic dispersion of the material itself. Intrinsic dispersion is caused by many factors,like the resonance phase of the metasurface nanopillars,different refractive index at different wavelengths and the difference of the propagation phase in free space,which leads to the decline of imaging quality. In a word,it is still a major challenge to realize achromatic metasurface devices.

    In order to solve the chromatic aberration problem, researchers used different methods to realize various achromatic devices based on different materials. For instance, in 2017,Wang Shuminget al.[22]used Au as a nanopillar unit,SiO2/Au as a substrate, designed a metasurface integration unit with smooth linear phase dispersion, and combined with geometric phase to achieve broadband achromatic optics device. It is proved that the designed metalenses and beam deflector metasurface can achieve achromatic effect within the near-infrared waveband of 1.2 μm–1.68 μm. In 2018, Sajan Shresthaet al.[23]used positive squares, hollow squares, concentric squares, cross-positive squares, and inner-cut squares to increase the dispersion of the metasurface, resulting in higher passivity of nanopillar.In the transmission mode,polarizationindependent achromatic devices can be realized in the nearinfrared waveband 1.2 μm–1.65 μm, and the focusing efficiency can reach 50%. This method is an important step in the practical application of metalens.

    In recent years, the unique characteristics of the phasechange materials have been developed by researchers and achromatic metasurface devices have been implemented with phase-change material. With appropriate stimulation of light, electricity or temperature, the phase-changing material can alter between the crystalline state and the amorphous state. Optical devices, like optical switch and achromatic metalenses,[24–26]have been realized based on these phasechanging material. In 2020, Ding Xiyaet al.[26]proposed a chromatic aberration compensation metasurface scheme based on phase-changing materials, and designed corresponding achromatic metalenses and beam deflector metasurface within the continuous waveband 8 μm–11 μm by uniformly adjusting the crystallization fraction of the phase-change material Ge2Sb2Te5(GST). This literature used the incident wavelength of 8.5μm as the basic wavelength, and the size of the nanopillars is obtained by scanning when the phase-change material crystal fractionmis 0.6.Finally,the achromatic function of the metasurface device was realized by adjusting the crystalline fraction of the phase-change material.

    Combined with the design method in this article, the phase-change material GST is selected as the material of the nanopillar,because it has the characteristics of obvious phase change, significant refractive index change between amorphous and crystalline states,and fast switching speed.[27]Both crystalline and amorphous states in the longer-infrared band have low absorptivity, which makes it possible to achieve achromatic design in the longer-infrared band. In this article,the corresponding phase is obtained by changing the radius of the nanopillars,so linearly polarized light is used as thexpolarization state to realize the achromatic function.

    In order to realize a wider bandwidth of achromatic metasurface optical device, a lot of work needs to be done on the resonant unit. In this article,we use the linear phase gradient combined with the crystalline fraction of the phase-changing material GST to design an achromatic metasurface optical device within the continuous wavelength range of 9.5 μm–13 μm. Simulation results demonstrated that this achromic metalenses is well realized with focus to the same focal plane in the working waveband,and the diffraction limit is reached.In addition, to further demonstrate the practicability of this method, the method is used to realize a beam deflector metasurface with a deflection angle of 19?in the working waveband. Our study not only provides a way to the realization of broadband achromatic metasurface, but also has potential application in fields,like communication technology,medical equipment,and holographic technology,and so on.

    2. Design principles and method

    Two types of metasurface devices, a transmissive achromatic metalenses and a beam deflector metasurface with the same deflection angle, are designed by the phase-change material GST. The working wavelength is 9.5 μm–13 μm, and the minimum wavelength is 9.5 μm used as the basic wavelength. The basic unit structure of the device consists of two parts shown in Figs. 1(a) and 1(b). The top part of the unit consists of concentric solid and hollow cylindrical nanopillar with the high refractive index material of GST.The substrate is CaF2with low refractive index of 1.34. The near-field distributions of these two structures are shown in Figs. 1(c) and 1(d), and both nanopillars support the waveguide cavity resonance. Whenh=6.5 μm, it can be seen that the phases of both nanopillars cover 0–2π.

    Periodic boundary conditions are used in thexandydirections,perfect matching layer(PML)is used in thezdirection, and the thickness of the PML is set to 2π/k0, wherek0is the wave vector in vacuum. The periodsPxandPyof the basic unit are set to be 2.3μm in order to satisfy the Nyquist sampling lawP<λ/2NA,whereλis the wavelength andNAis the numerical aperture with the value of 0.584.

    In order to achieve high-efficiency and wide-bandwidth achromatic metasurface devices, two types of nanopillars are used in this article,as shown in Fig.1.The device is composed of solid cylinders and hollow cylinders of different diameters,through the combination of linear phase gradient and phasechange material fraction to realize an achromatic metasurface device.

    Fig. 1. (a) Front view of nanopillars unit. (b) Top view of nanopillars unit. Solid nanopillar is GST with height h and radius r1. Hollow nanopillar have outer radius r2 and inner radius r3, and the substrate is CaF2. (c) The near-field image of a hollow cylinder, r2 =0.96 μm,r3=0.4μm,λ =9.5μm. (d)The near-field image of a solid cylinder,r1=0.88μm,λ =9.5μm.

    At the operating wavelength, the phase distribution formula required by the achromatic device is

    wherecandfare the speed and frequency in vacuum, respectively,Frepresents the focal length of the metalenses,and (x,y) are the position coordinates of the lens unit in the plane lens. In order to realize the achromatic metalenses, an additional phase shift is introduced shown in Fig. 2, and the corresponding formula is written as

    where?shift(f)is a reference phase function that has nothing to do with (x,y). After interacting with the metalens, only the spatial phase difference has an effect on the focal point of the lens. So we only need to consider the phase shift, that is,when (x,y)=0, the phase difference between the phase and the reference phase(9.5μm). And the phase shift distribution equation of the vertically incident wave is

    wherem(x,y)is the slope of the phase shift frequency. From Eqs. (3) and (4), it is concluded that the phase shift of the broadband achromatic metalenses at all positions has a linear relationship with frequency. In this work, hollow cylinders and solid cylinders are used as nanopillars to increase the dispersion of nanopillars. Since the phase distribution of each wavelength is completely independent, each GST nanopillar unit should provide a unique phase response. Each nanopillar is designed by changing the diameterr1of the cylinder and the diametersr2andr3of the hollow cylinder. Therefore,this work uses the linear phase gradients dispersion of the nanopillar to realize the achromatic device of 9.5μm–13μm,as shown in Fig.3(a). The size and shape of its 12 nanopillars are shown in Table 1.

    Fig.2. Phase distribution of wide-band achromatic metalenses at working wavelengths.

    Figure 3(a) shows the linear relationship with 12 GST nanopillars as a representative. The slope from unit 1 to unit 7 increases, but the slope from unit 8 to unit 12 decreases slightly compared to unit 1 and unit 7. Considering the problem of craftsmanship, the size of the hollow and solid cylinders selected in this article cannot be accurate to 1 nm,so the size searched by the slope cannot be a perfect match. There is a certain deviation, and the achromatic effect cannot reach the ideal state. Therefore, a wider achromatic effect can be achieved by adjusting the crystalline fractionmof the phasechange material.

    Table 1. Data of dimensions of unit structures.

    Figure 3(b) is a metalenses composed of 49 GST solid cylinders and hollow cylinders. Since metalenses are symmetrically arranged in the simulation design,there are 25 nanopillars in the designed metalenses a linear relationship. And Fig. 3(b) shows that there is still chromatic aberration within the bandwidth of 9.5 μm–13 μm, and it can be seen that the larger the wavelength,the more the derivative focus.

    In addition, the unique properties of the phase-change material are also used to increase the working bandwidth of the achromatic metalenses by the adjustment of crystalline fraction of the phase-change material. The dielectric constant of GST under different crystalline fraction conditions can be realized by the effective medium theory. The Lorentz–Lorenz[28]relationship is used to define the crystalline fraction formula of GST as

    whereεaGSTandεcGSTare the dielectric constants related to the frequency of crystalline and amorphous GST, respectively. The dielectric constant of the phase-change material is obtained from the literature.[29]mis the crystalline fraction,ranging from 0 (amorphous) to 1 (crystalline). In this work,the refractive index of GST in the amorphous and crystalline states is used within the waveband of 9.5μm–13μm,and the corresponding refractive index varies from 4.27 (amorphous state) to 6.3 (crystalline state). The simulation result of the metalenses designed by the change of themvalue of GST is shown in Fig.4.

    Fig.3. (a)The output phase of some unit selected in the metalenses varies with frequency. (b)Distribution of the electric field intensity of the metalenses at each wavelength.

    Fig.4. The m-tuned achromatic metalenses. By adjusting the crystalline fraction m of the phase-change material, the distribution of electric field intensity of achromatic metalens is studied.

    In the experiment, the pulse energy can be controlled by the local heating of femtosecond laser pulses.[30]The crystallization fraction of GST is adjusted by the pulse energy after heating, so as to achieve the achromatic effect of the phasechange material.[31,32]

    The metalenses are designed with the size of GST nanopillars at 9.5μm. The types of nanopillars used are solid cylinders. After simulation calculation, only by adjusting the crystalline fractionmvalue of the phase-change material, the achromatic effect will be achieved in the wavelength range of 9.5 μm–10.5 μm, when the wavelength is greater than 10.5 μm, the focal length is significantly reduced, so further adjustment and optimization are still needed to realize achromatic lenses in a larger wavelength range.

    3. Results and discussion

    Without any phase compensation, the result of incident wave is shown in Fig.5(a). The focal length decreases as the incident wavelength increases, which is due to the inherent chromatic aberration of the material. If the cell size data is only found by the slope of the relationship between the phase and frequency, the achromatic bandwidth of the metalens is limited. In addition, due to the variable characteristics of the phase-change material between the crystalline and the amorphous, the metalens can exhibit a certain achromatic effect.The simulation result of only adjusting the crystalline fractionmof the phase-change material is shown in Fig.4. Although there is achromatic effect, the achromatic effect is not ideal,and the wavelength range is small.

    Therefore, two methods are combined together to compensate for the chromatic aberration and realize the achromatic metasurface device. Firstly, hollow cylinders and solid cylinders are chosen as nanopillars and their sizes are selected according to the linear relationship between phase and frequency. However, considering the problem of craftsmanship,some practical sizes of the nanopillars do not match the required sizes. Therefore, the achromatic effect can be realized only within the small bandwidth. In order to realize the achromatic device with a larger bandwidth, we can change the refractive index of the phase-change material between the crystalline and the amorphous, and the achromatic effect can be realized correspondingly. With the combination of these two methods,the achromatic effect of the metalens with larger bandwidth is realized.

    Through simulation calculations,this method realizes an achromatic metalenses with a larger bandwidth,increasing the original bandwidth of 9.5μm–10.5μm to 9.5μm–13μm,with the increase of the bandwidth of 2.5μm.The electric field distribution in itsx–zplane is shown in Fig.5(b),the focal lengthf=80μm remains almost unchanged,and the result is as expected. The relationship between the achromatic focal length and the incident wavelength is shown in Fig. 5(c). The focal length oscillates at 80μm in the bandwidth of the incident wavelength from 9.5 μm to 13 μm, and it shows that the designed achromatic metalens is feasible.

    The corresponding FWHMs are 7.428 μm, 7.442 μm,7.231 μm, 7.338 μm, 8.074 μm, 8.737 μm, 8.742 μm, and 9.122μm,respectively. According to the diffraction limit formula FWHMlim=λ/2NA,whereλis the incident wavelength andNAis the numerical aperture of 0.584,and the calculation results show that the FWHM of the metalenses are close to the diffraction limit. The wavelength dependence of the FWHM spot size and focusing efficiency is shown in Fig.5(d). It can be seen from the figure that the focusing efficiency is above 60%. It is proved that the achromatic metalens designed in this article has a good focusing effect.

    Fig. 5. (a) Chromatic metalenses. The distribution of electric field intensity at each wavelength using a metalenses designed with a solid cylinder at λ =9.5 μm. (b) Achromatic metalenses. The distribution of electric field intensity of achromatic metalenses at each wavelength and its FWHM distribution at each wavelength. (c)The relationship between wavelength and focal length. (d)The relationship between FWHM,focusing efficiency and wavelength.

    In addition, Table 2 summarizes some of the work on achromatic metalenses, comparing materials, working bands,and focusing efficiency. Compared with literature,[18,22,26]the achromatic metalens designed in this paper not only has a larger working bandwidth,but also has a higher focusing efficiency. Moreover,the achromatic method used in this paper is relatively novel,which brings new ideas for the realization of achromatic lenses with larger bandwidth in the future.

    Table 2. Comparison of the work in this article and other work of the same type.

    An achromatic beam deflector metasurface with the same deflection angle is also designed and analyzed with the combination of these two methods mentioned above. According to the generalized Snell’s law, the phase gradient distribution formula of the achromatic beam deflector metasurface is designed as

    whereλis the incident wavelength,θ1andθ2are the incident angle and refraction angle,andn1andn2the refractive indices of the incident medium and output medium, respectively. In the air with normal incidence,the generalized Snell’s law can be rewritten as

    whereωrepresents the angular frequency, andcrepresents the speed of light in vacuum. The term d?/dxrepresents the phase gradient required to guide the beam to a certain angle at a certain frequency,and there should be a certain linear relationship between the phase gradient?and the positionxof the beam deflector along the air–metasurface interface. Therefore,the relationship between the required transmission phase of the unit and its positionxand angular frequencyωcan be written as the following formula:

    In order to construct the beam deflector with the same refractive angle at different frequencies,the nanopillar unit needs to satisfy the linear dispersion d?/dω,which can be obtained by changing the radius of the nanopillars to control the dispersion shown in Fig.6(a).

    In this work, the deflection angle 19?of the achromatic beam deflector metasurface is designed by combining the linear phase gradients with the crystalline fractionmvalue of the GST. In order to satisfy the linear relationship between the phase and frequency of each nanopillar within the designed waveband, the phase difference is ??=π/6 with the incident wavelength 9.5μm,and ??=2π/15 with 12.5μm. Figure 6(b)shows that the deflection angle of the designed beam deflector at 9.5μm wavelength is 19?,which has obvious chromatic aberration in the working waveband. Through the individual design of the nanopillar unit and the calculation of themvalue of the phase-change material, the achromatic beam deflector metasurface is realized with the incident at wavelengths of 9.5μm,10μm,10.5μm,11μm,11.5μm,12μm,12.5μm,and 13μm,and the corresponding crystal fractionmare 0,0,0,0,0,0.3,0.5,and 0.7,respectively. And the deflection angles are 19.35?,19.05?,19.89?,19.98?,19.61?,20.07?,20.24?, and 21.25?, respectively, which are all within the acceptable error range. In addition,it can also be seen from the output electric field diagram of the deflector in Fig. 7(a) that the deflection angle is about 19?. The functional relationship between the transmission field strength, deflection angle and wavelength of the achromatic deflector is shown in Fig.7(b).

    Fig.6.(a)The output phase of some unit selected in the beam deflector metasurface varies with frequency.(b)Chromatic beam deflector.Beam deflector designed with a hollow cylinder is used atλ=9.5μm,and its deflection angle changes with the increase of wavelength,and there is obvious chromatic aberration. (c)Achromatic beam deflector metasurface. After optimization,the beam deflector metasurface deflection angle is almost unchanged,which is about 19?.

    Fig.7. (a)Output electric field diagram at each wavelength. (b)3D plot of transmitted field strength versus deflection angle,incident wavelength.

    4. Conclusion

    This article proposes and simulates an achromatic metalenses and beam deflector metasurface device based on a phasechange material GST. The metasurface consisting of hollow cylinders and solid cylinders, is designed with the method of linear phase gradients relationship of the nanopillars, as well as the method related to the change of the crystalline fractionmvalue of GST. The size of the nanopillar reduces or even eliminates chromatic aberration in the longer-infrared wavelength range of 9.5 μm–13 μm, and realizes the achromatic beam deflector metasurface with the same deflection angle of 19?. The simulation results demonstrate the FWHM of the metalens is close to the diffraction limit. The combination design method provides a new way for realizing phase-change material achromatic metasurface devices.

    Acknowledgement

    Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466).

    猜你喜歡
    淑媛文峰
    利用BRDF模型改進PRI反演水稻光能利用率
    “一軸兩翼、雙發(fā)驅動”的數字化轉型模型與應用
    好慘好慘的事
    胡文峰博士簡介
    美人靠(短篇小說)
    作品(2019年10期)2019-09-10 07:22:44
    Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak?
    蓑衣草展姿
    文峰街
    重慶與世界(2016年6期)2016-10-09 06:27:10
    油庫是我家
    洗腦
    国产美女午夜福利| 老女人水多毛片| 欧美高清性xxxxhd video| 免费人成在线观看视频色| 亚洲经典国产精华液单| 看非洲黑人一级黄片| 九色成人免费人妻av| 嫩草影院入口| 亚洲美女搞黄在线观看| 大香蕉久久网| 最新中文字幕久久久久| 99久久无色码亚洲精品果冻| 成人二区视频| 亚洲无线观看免费| www.av在线官网国产| 精品国产露脸久久av麻豆 | 亚洲天堂国产精品一区在线| 看免费成人av毛片| 在线观看av片永久免费下载| 亚洲成人中文字幕在线播放| 99热这里只有精品一区| 插阴视频在线观看视频| 国语对白做爰xxxⅹ性视频网站| 美女内射精品一级片tv| 国产麻豆成人av免费视频| 又爽又黄无遮挡网站| 久久久久久久国产电影| 亚洲丝袜综合中文字幕| 日韩成人伦理影院| 亚洲精华国产精华液的使用体验| 久久久久免费精品人妻一区二区| 一个人看的www免费观看视频| 精品少妇黑人巨大在线播放 | 91久久精品电影网| av.在线天堂| 国产老妇女一区| 国产精品人妻久久久久久| 精品酒店卫生间| 国内少妇人妻偷人精品xxx网站| 爱豆传媒免费全集在线观看| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产白丝娇喘喷水9色精品| 美女大奶头视频| 18禁在线播放成人免费| 久久久国产成人精品二区| 蜜桃久久精品国产亚洲av| 久99久视频精品免费| 国内精品一区二区在线观看| 国产黄片美女视频| 久久亚洲国产成人精品v| 免费av不卡在线播放| 三级男女做爰猛烈吃奶摸视频| 久久99精品国语久久久| 日日撸夜夜添| 亚洲内射少妇av| 久久久久久大精品| 中文亚洲av片在线观看爽| 亚洲av二区三区四区| 日韩国内少妇激情av| 午夜福利网站1000一区二区三区| 哪个播放器可以免费观看大片| 波多野结衣高清无吗| 国产精品一区www在线观看| 精品人妻熟女av久视频| 亚洲人成网站在线播| av在线老鸭窝| 高清视频免费观看一区二区 | 国产精品日韩av在线免费观看| 免费播放大片免费观看视频在线观看 | 亚洲久久久久久中文字幕| 国产精品电影一区二区三区| 久久久久免费精品人妻一区二区| 国语自产精品视频在线第100页| 2022亚洲国产成人精品| 男的添女的下面高潮视频| 国产三级在线视频| 丰满乱子伦码专区| 午夜爱爱视频在线播放| 久久99热6这里只有精品| 秋霞伦理黄片| 国产免费福利视频在线观看| 爱豆传媒免费全集在线观看| 久久午夜福利片| 嘟嘟电影网在线观看| 成人欧美大片| 亚洲欧美日韩东京热| 国产黄片美女视频| 欧美日本亚洲视频在线播放| 亚州av有码| 免费搜索国产男女视频| 秋霞在线观看毛片| 亚洲精品456在线播放app| 嘟嘟电影网在线观看| 免费观看精品视频网站| 女人久久www免费人成看片 | av女优亚洲男人天堂| 又爽又黄无遮挡网站| 一级爰片在线观看| 九草在线视频观看| 免费观看在线日韩| 神马国产精品三级电影在线观看| 五月伊人婷婷丁香| 97超视频在线观看视频| 少妇裸体淫交视频免费看高清| 禁无遮挡网站| 老司机福利观看| 91精品一卡2卡3卡4卡| 国产高潮美女av| 精品午夜福利在线看| 亚洲精品影视一区二区三区av| 久久精品夜色国产| 午夜福利成人在线免费观看| 国产精品人妻久久久久久| 久久久午夜欧美精品| 爱豆传媒免费全集在线观看| av卡一久久| 亚洲欧美一区二区三区国产| 中文字幕免费在线视频6| 亚洲在久久综合| 午夜福利在线在线| 乱人视频在线观看| 精品无人区乱码1区二区| 久久人妻av系列| 国产精品久久久久久久电影| 日韩制服骚丝袜av| 一夜夜www| 少妇熟女欧美另类| 免费一级毛片在线播放高清视频| 男的添女的下面高潮视频| 色哟哟·www| 免费观看的影片在线观看| 国产v大片淫在线免费观看| 内射极品少妇av片p| 久久精品人妻少妇| av又黄又爽大尺度在线免费看 | 狂野欧美白嫩少妇大欣赏| 久久久久性生活片| 欧美极品一区二区三区四区| 久久精品熟女亚洲av麻豆精品 | 亚洲三级黄色毛片| 中文字幕av在线有码专区| 国产毛片a区久久久久| av免费观看日本| 亚洲自偷自拍三级| 岛国在线免费视频观看| 99热全是精品| 精品人妻一区二区三区麻豆| 久久久久久久久久成人| .国产精品久久| 国产一区二区三区av在线| av国产免费在线观看| 乱码一卡2卡4卡精品| 18+在线观看网站| 欧美最新免费一区二区三区| 欧美bdsm另类| 国产亚洲最大av| 一本一本综合久久| 一卡2卡三卡四卡精品乱码亚洲| 国产精品野战在线观看| 成人高潮视频无遮挡免费网站| 国产成人精品久久久久久| 亚洲自拍偷在线| 一个人看视频在线观看www免费| 少妇的逼水好多| 两性午夜刺激爽爽歪歪视频在线观看| 黄色配什么色好看| 日本午夜av视频| 久久人人爽人人爽人人片va| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久久久久久| 国产精品一区二区在线观看99 | 欧美日本亚洲视频在线播放| 大香蕉久久网| 亚洲av.av天堂| 最近最新中文字幕免费大全7| 国产亚洲91精品色在线| 精品一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 美女大奶头视频| 成人无遮挡网站| 成人美女网站在线观看视频| 精品熟女少妇av免费看| 亚洲欧洲国产日韩| 久久久久九九精品影院| av专区在线播放| 亚洲成人精品中文字幕电影| 日韩强制内射视频| 久久人人爽人人片av| 在线播放国产精品三级| 国产成人午夜福利电影在线观看| 夫妻性生交免费视频一级片| 亚洲av中文av极速乱| 一级毛片电影观看 | 超碰97精品在线观看| 亚洲丝袜综合中文字幕| 午夜福利网站1000一区二区三区| 免费av毛片视频| 日韩成人av中文字幕在线观看| 亚洲综合精品二区| 真实男女啪啪啪动态图| 久久久久久九九精品二区国产| 亚洲国产欧洲综合997久久,| 国产精品久久久久久av不卡| 国产亚洲一区二区精品| 久久精品国产亚洲av天美| 久久久久久久亚洲中文字幕| 一个人看的www免费观看视频| 国产av在哪里看| 综合色av麻豆| 久久精品夜色国产| 精品酒店卫生间| 国产伦精品一区二区三区视频9| 天美传媒精品一区二区| 麻豆精品久久久久久蜜桃| 别揉我奶头 嗯啊视频| 大话2 男鬼变身卡| 日韩人妻高清精品专区| 亚洲av免费在线观看| 最近手机中文字幕大全| 国产在线一区二区三区精 | 国产成年人精品一区二区| 嫩草影院入口| 精品久久久久久久久久久久久| 国产黄片美女视频| 男女下面进入的视频免费午夜| 精品欧美国产一区二区三| 日韩欧美国产在线观看| 精品国产露脸久久av麻豆 | 2021天堂中文幕一二区在线观| 久久这里只有精品中国| 少妇猛男粗大的猛烈进出视频 | 有码 亚洲区| 日韩 亚洲 欧美在线| 成人综合一区亚洲| 三级男女做爰猛烈吃奶摸视频| 国产真实伦视频高清在线观看| 一级毛片久久久久久久久女| 女的被弄到高潮叫床怎么办| 中文字幕久久专区| 天堂中文最新版在线下载 | 又爽又黄无遮挡网站| av.在线天堂| 国产精品久久久久久精品电影| 在线观看美女被高潮喷水网站| 99热这里只有是精品在线观看| kizo精华| 美女大奶头视频| 精品久久久久久久末码| 99久久人妻综合| 在线天堂最新版资源| 亚洲欧洲国产日韩| 免费观看的影片在线观看| 免费黄网站久久成人精品| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久久久免| h日本视频在线播放| 亚洲精品成人久久久久久| 久久久色成人| 日本免费在线观看一区| 女人十人毛片免费观看3o分钟| 啦啦啦观看免费观看视频高清| 五月伊人婷婷丁香| 国产亚洲91精品色在线| 久久人妻av系列| 日本色播在线视频| 啦啦啦啦在线视频资源| 亚洲真实伦在线观看| 99久久精品国产国产毛片| 99久久九九国产精品国产免费| 国产精品日韩av在线免费观看| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 久久久亚洲精品成人影院| 亚洲五月天丁香| 中国美白少妇内射xxxbb| 亚洲av福利一区| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 性色avwww在线观看| 黄色配什么色好看| 18禁在线播放成人免费| 欧美日本视频| 亚洲18禁久久av| 色尼玛亚洲综合影院| 汤姆久久久久久久影院中文字幕 | 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 亚洲在线自拍视频| 人人妻人人澡人人爽人人夜夜 | www.av在线官网国产| 美女黄网站色视频| 超碰av人人做人人爽久久| 99热全是精品| 99久久精品一区二区三区| 3wmmmm亚洲av在线观看| 国产精品久久久久久av不卡| 一个人看视频在线观看www免费| 色综合站精品国产| 亚洲丝袜综合中文字幕| 床上黄色一级片| 久久久久久久久久久丰满| 日本五十路高清| 一级毛片我不卡| 最近的中文字幕免费完整| 国产午夜精品论理片| 免费看a级黄色片| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 亚洲va在线va天堂va国产| 级片在线观看| 欧美精品一区二区大全| 丰满人妻一区二区三区视频av| 国产精品国产三级国产专区5o | 国产视频首页在线观看| 久久鲁丝午夜福利片| 亚洲最大成人手机在线| 啦啦啦韩国在线观看视频| 亚洲四区av| 亚洲国产欧美人成| 麻豆成人av视频| 久久久久久久久久成人| 波野结衣二区三区在线| 欧美日韩精品成人综合77777| 日韩三级伦理在线观看| 毛片一级片免费看久久久久| 黄色 视频免费看| 欧美人与善性xxx| 国产熟女午夜一区二区三区| 亚洲欧美日韩卡通动漫| 中文字幕免费在线视频6| 你懂的网址亚洲精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 日韩精品有码人妻一区| 日日摸夜夜添夜夜爱| 久久久久久久国产电影| 中文字幕另类日韩欧美亚洲嫩草| 中国三级夫妇交换| 老司机影院成人| 97超碰精品成人国产| 欧美人与性动交α欧美精品济南到 | 国产成人午夜福利电影在线观看| 国产av精品麻豆| 亚洲av男天堂| 一本久久精品| 晚上一个人看的免费电影| 成人免费观看视频高清| 精品国产一区二区久久| 欧美日韩国产mv在线观看视频| 精品亚洲成国产av| 精品国产露脸久久av麻豆| 久久ye,这里只有精品| 亚洲精品第二区| 午夜福利,免费看| 欧美人与性动交α欧美精品济南到 | 久久这里有精品视频免费| 两性夫妻黄色片 | 极品少妇高潮喷水抽搐| 欧美xxⅹ黑人| 一级毛片电影观看| 欧美成人午夜精品| 久久久久精品人妻al黑| 中文欧美无线码| 嫩草影院入口| 巨乳人妻的诱惑在线观看| 午夜日本视频在线| 免费观看性生交大片5| 久久精品国产亚洲av天美| 中文字幕另类日韩欧美亚洲嫩草| 伦理电影免费视频| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 国产男女内射视频| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看 | 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 成年女人在线观看亚洲视频| 观看av在线不卡| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 久久久久久伊人网av| 老司机亚洲免费影院| 精品人妻熟女毛片av久久网站| 午夜久久久在线观看| 久久人人97超碰香蕉20202| 免费观看av网站的网址| 亚洲av福利一区| 97在线人人人人妻| 欧美日韩成人在线一区二区| 春色校园在线视频观看| 午夜福利,免费看| 色吧在线观看| 亚洲欧美一区二区三区国产| videosex国产| 在线观看三级黄色| 一二三四在线观看免费中文在 | 精品久久久久久电影网| 在现免费观看毛片| 亚洲国产日韩一区二区| 亚洲av福利一区| 九九爱精品视频在线观看| 纵有疾风起免费观看全集完整版| 九色成人免费人妻av| 韩国av在线不卡| av有码第一页| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 国产成人欧美| 老司机影院毛片| 伦理电影免费视频| 久久精品国产鲁丝片午夜精品| 亚洲精品自拍成人| 黄色毛片三级朝国网站| 日韩一区二区视频免费看| 国产成人av激情在线播放| 亚洲图色成人| 18在线观看网站| 99九九在线精品视频| 蜜桃在线观看..| 国产成人免费观看mmmm| 少妇熟女欧美另类| 国产毛片在线视频| 1024视频免费在线观看| 啦啦啦视频在线资源免费观看| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| 欧美精品国产亚洲| 欧美日韩亚洲高清精品| 亚洲av日韩在线播放| 久久青草综合色| 国产色爽女视频免费观看| 欧美日韩视频精品一区| 国产精品久久久久成人av| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久久久免| 国产成人精品无人区| 在线观看免费高清a一片| 国产色婷婷99| 色婷婷av一区二区三区视频| 国产成人aa在线观看| 在线天堂最新版资源| 制服诱惑二区| 国产精品一区www在线观看| 精品国产露脸久久av麻豆| 国产1区2区3区精品| 人妻 亚洲 视频| 亚洲成国产人片在线观看| 亚洲国产欧美日韩在线播放| 插逼视频在线观看| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 久久99蜜桃精品久久| 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 亚洲 欧美一区二区三区| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 啦啦啦啦在线视频资源| 母亲3免费完整高清在线观看 | 高清毛片免费看| 亚洲,欧美精品.| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 日韩一区二区三区影片| 免费看不卡的av| 久久人人爽人人爽人人片va| 欧美成人午夜免费资源| 免费高清在线观看视频在线观看| 9热在线视频观看99| 日本免费在线观看一区| av在线播放精品| 国产成人一区二区在线| 久久ye,这里只有精品| 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| 香蕉国产在线看| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 春色校园在线视频观看| 国产高清不卡午夜福利| 亚洲高清免费不卡视频| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 99国产精品免费福利视频| 制服人妻中文乱码| 国产精品国产av在线观看| 精品午夜福利在线看| 97在线人人人人妻| 日韩制服骚丝袜av| 99热这里只有是精品在线观看| a级毛片在线看网站| 欧美 亚洲 国产 日韩一| 欧美日韩一区二区视频在线观看视频在线| 18禁在线无遮挡免费观看视频| www.av在线官网国产| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 国产精品免费大片| 国产精品麻豆人妻色哟哟久久| 久久久久精品久久久久真实原创| 欧美成人精品欧美一级黄| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 免费高清在线观看视频在线观看| 一边摸一边做爽爽视频免费| 午夜福利网站1000一区二区三区| 日本欧美国产在线视频| 你懂的网址亚洲精品在线观看| av电影中文网址| 成人亚洲欧美一区二区av| 久久午夜福利片| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 免费在线观看完整版高清| 中国国产av一级| 亚洲,欧美,日韩| 黄色怎么调成土黄色| 久久亚洲国产成人精品v| 国产精品三级大全| 国产又色又爽无遮挡免| 夫妻午夜视频| 国产av一区二区精品久久| 男女高潮啪啪啪动态图| 97超碰精品成人国产| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 欧美性感艳星| 久久久久久久久久成人| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 国产av国产精品国产| 国产精品人妻久久久久久| 人人澡人人妻人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品国产露脸久久av麻豆| av国产精品久久久久影院| 日韩熟女老妇一区二区性免费视频| 高清不卡的av网站| 大香蕉久久网| 国产av国产精品国产| 国产精品一区二区在线观看99| 91精品伊人久久大香线蕉| 国产白丝娇喘喷水9色精品| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 男的添女的下面高潮视频| a级毛片黄视频| 美女大奶头黄色视频| 日韩一区二区三区影片| 波多野结衣一区麻豆| 久久久久久人人人人人| 观看av在线不卡| 内地一区二区视频在线| 一级毛片 在线播放| 日韩精品免费视频一区二区三区 | 亚洲精品成人av观看孕妇| 国产极品天堂在线| 女性被躁到高潮视频| 欧美日本中文国产一区发布| 日本猛色少妇xxxxx猛交久久| 巨乳人妻的诱惑在线观看| 99热国产这里只有精品6| 亚洲五月色婷婷综合| 2022亚洲国产成人精品| 麻豆乱淫一区二区| 香蕉国产在线看| 九九爱精品视频在线观看| 七月丁香在线播放| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久av美女十八| 国产精品三级大全| 高清视频免费观看一区二区| 久久青草综合色| 久久国产精品大桥未久av| 2021少妇久久久久久久久久久| 午夜福利在线观看免费完整高清在| a 毛片基地| 街头女战士在线观看网站| 熟妇人妻不卡中文字幕| 少妇人妻 视频| 又黄又爽又刺激的免费视频.| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕免费大全7| 国产爽快片一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| 在线观看免费视频网站a站| 多毛熟女@视频| 日韩成人伦理影院| 久久国产亚洲av麻豆专区| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产色片| 成人手机av| 男人舔女人的私密视频| 亚洲国产av影院在线观看| 国产色爽女视频免费观看| 亚洲精品国产色婷婷电影| 亚洲国产日韩一区二区| 性色avwww在线观看| 亚洲精品aⅴ在线观看| 久久久精品区二区三区| 最新中文字幕久久久久| 巨乳人妻的诱惑在线观看| 在线观看国产h片| 五月开心婷婷网| 热99国产精品久久久久久7|