• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel trajectory planning strategy for aircraft emergency landing using Gauss pseudospectral method

    2014-12-06 08:48:54ShaohuaMENGJinwuXIANGZhangpingLUOYiruRENNanjianZHUANG
    Control Theory and Technology 2014年4期
    關(guān)鍵詞:世界大戰(zhàn)里程碑法案

    Shaohua MENG,Jinwu XIANG,Zhangping LUO?,Yiru REN,Nanjian ZHUANG

    1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China;

    2.College of Mechanical and Vehicle Engineering,Hunan University,Changsha Hunan 410082,China;

    3.College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China

    A novel trajectory planning strategy for aircraft emergency landing using Gauss pseudospectral method

    Shaohua MENG1,Jinwu XIANG1,Zhangping LUO1?,Yiru REN2,Nanjian ZHUANG3

    1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China;

    2.College of Mechanical and Vehicle Engineering,Hunan University,Changsha Hunan 410082,China;

    3.College of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China

    To improve the survivability during an emergency situation,an algorithm for aircraft forced landing trajectory planning is proposed.The method integrates damaged aircraft modelling and trajectory planning into an optimal control framework.In order to deal with the complex aircraft flight dynamics,a solving strategy based on Gauss pseudospetral method(GPM)is presented.A 3-DOF nonlinear mass-point model taking into account the wind is developed to approximate the aircraft flight dynamics after loss of thrust.The solution minimizes the forced landing duration,with respect to the constraints that translate the changed dynamics,flight envelope limitation and operational safety requirements.The GPM is used to convert the trajectory planning problem to a nonlinear programming problem(NLP),which is solved by sequential quadratic programming algorithm.Simulation results show that the proposed algorithm can generate the minimum-time forced landing trajectory in event of engine-out with high efficiency and precision.

    Aircraft;Forced landing;Trajectory planning;Gauss pseudospectral method;Nonlinear programming

    DOI10.1007/s11768-014-3162-7

    1 Introduction

    With the development of aviation technologies,airplanes are playing an increasing role in transportation.There are millions of passengers travelling by aircraft everyday around the world.Aircraft safety has been a significant concern of researchers and manufacturers.Extensive research has been done to improve aircraft avionics and mechanical systems to reduce the possibility of failures.Nevertheless,the number of accidents is still considerable due to the enormous amount of air traffic flow.

    Generally,there are many factors that result in an emergency forced landing,such as mechanic failures,fuel mismanagement,bad weather,bird strike and so on.Once the emergency situations occur,it is crucial for the emergency management system to rapidly select alandingsite,andgenerateafeasibletrajectoryforpilots to safely land the aircraft.Correct postfailure flight plans can prevent a serious failure from evolving into a fatal accident.There are several cases that the pilots safely landed the airplanes after failure occurrences benefited from their rich experience and unmatched skills[1].Unfortunately,it is not replicable for other normal pilots.Therefore,most of the accidents lead to a crash and kill nearly all the passengers.Therefore,trajectory planning becomes one of the fundamental issues of flight safety in emergency situations.

    The objective of this research is to develop a strategy to generate a feasible and safe landing trajectory under emergency conditions.The emergency trajectory must address multiple conflicting objectives including minimizing the landing time,meeting safety operational requirements,bounding the degraded flight envelope,and ensuring smooth enough to be tracked.Many approaches have been presented for aircraft trajectory planning,but few of them aim to investigate the forced landing problem,especially in the case resulting from structural damage.Meuleau et al.[2]presented an emergency landing planner for damaged aircraft,in which probabilistic roadmap was constructed by augmenting the edge set of a 2D visibility graph in vertical dimension.Then a hybrid discrete/continuous version of A*was employed to search for paths of low risk in this roadmap.Atkins et al.[3]described an emergency flight-management architecture applied to trajectory planning for a forced landing in event of loss of thrust.The adaptive flight planner generated the reference trajectory depending on well-defined geometric segments in response to the degraded aircraft performance.Choi et al.[4]extended the traditional Dubins path solver to generate a landing trajectory in cases that aircraft could not maintain straight flight,such as wing damage or actuator failures.Eng[5]designed a 3D Dubins curves planning algorithm,which produced a powerless flight trajectory for unmanned aerial vehicles to a known desired landing site.Adler et al.[6]found a feasible trajectory in three dimensions based on primitive motion elements and graph theory.Three types of basic flight primitives were analyzed:straight flight,gliding flight and turning at a constant rate.Although all the above algorithms perform well,none of them involve the post-failure aircraft dynamics in the trajectory planning process.The flight performance envelope of the damaged aircraft has been changed comparing to the normal one.Therefore the planned trajectories are no guarantee of feasibility for the damaged aircraft.In addition,the algorithms largely ignore the aircraft dynamics,which results in non-optimal trajectories.

    Fundamentally,the optimal control theory is most suitable framework to solve trajectory planning problems.It not only takes into account the complex dynamics,but also provides an optimal solution with a given criterion.Much of the literature on aircraft trajectory generation has focused on terrain following and fuel saving[7–9].Brinkman et al.[10]optimized the turn-back flight of aircraft after engine failure.However,rapidly solving optimal control problems for aircraft is still a challenging task[11].Recently,the pseudospectral method has become increasingly popular.Specially,Gauss pseudospectral method(GPM)is considered as a powerful direct computational method for complex nonlinear systems[12].Since the state and control variables are parametrized by a basis of global orthogonal polynomials,the GPM can obtain an improved accuracy with a faster convergent speed.Therefore,the GPM is used to solve the forced landing trajectory planning problem in this paper.

    In this paper,the forced landing with loss of thrust is formulated in an optimal control framework that involves the degraded aircraft dynamics and minimizes the landing duration.Then the GPM is selected to convert the trajectory planning problem into a nonlinear programming problem(NLP)which can be solved by sequential quadratic programming(SQP)algorithm.The proposed strategy synthesizes degraded aircraft flight performance characterizing and trajectory planning.Thus the solution is flyable and optimal for the damaged aircraft.

    2 Problem formulation

    Once there is an emergency situation occurring on board,the pilot or autopilot is required to perform a forced landing immediately.Unlike rotorcrafts,the landingsiteoftheairplaneisextremelylimitedandthecandidate sites include highways,waters and nearby airports.Therefore,the mission of emergency trajectory planning is to safely land the aircraft on a fixed site as fast as possible.The planned trajectory must ensure that all parameters lie within the performance envelope limits of the aircraft,which are determined by aerodynamics,propulsion,and structural characteristics of the aircraft.This section describes the problem as a nonlinear optimal control problem,where the solution minimizes the landing duration subjected to constraints that result from the flight envelope limitations of the aircraft and all the necessary safety and operational requirements.

    2.1 Aircraft dynamic model

    A generic fixed-wing aircraft model is considered in the current study,as shown in Fig.1.Dynamics of the aircraftaredescribedbydifferentialequationsofapointmass model,which is accurate enough to simulate trajectories.A flat,nonrotating Earth is assumed.The landing flight is considered as fully coordinated flight(no side forces and zero slideslip angle).

    Fig.1 Aircraft model in three-dimensional space.

    The kinematic equations of the aircraft are given by[13]

    where V is the aircraft velocity relative to the wind,γis flight path angle,ψis heading angle,(Wx,Wy,Wz)are components of the wind velocity,and(x,y,z)are the aircraft position in inertial coordinates.

    The dynamical equations of the aircraft are given as follows:where m is the aircraft mass;T is the aircraft thrust;g is the gravitational acceleration;α is the angle of attack;μ is the bank angle;and(WV,Wγ,Wψ)are wind components along velocity,heading and flight-path directions.

    The aerodynamic forces(drag D and lift L)are defined in terms of dynamic pressure,reference wing area S and dimensionless aerodynamic coefficient CLand CD:

    where ρ is the air density that varies with the altitude z,which can be approximated as

    Here,ρ0is the air density at the sea level,and zrefis the reference altitude.Lift and drag coefficients CLand CDcan be computed as follows:

    where CL0,CD0and K are constants determined by the aerodynamic properties of the aircraft.

    The components of wind speed described along velocity,heading and flight-path directions are given as follows:

    With no loss of generality,it is assumed that only the horizontal wind component Wxis present,which is a function of the aircraft altitude z[14]:

    It should be pointed out that the aircraft in reality is controlledbythedeflectionofelevators,rudder,ailerons and throttle.In the case of studying trajectory planning problems,the vehicle is approximated by a point mass,and only the translation motion is considering.The attitude is quickly controlled by the autopilots to maintain the aircraft on moment equilibrium.Therefore,we assume that the aircraft can be directly controlled by the angle of attack and the bank angle.Thus,the state vector is x(t)=[x y z V γψ]T,and the control vector is u(t)=[T α μ]T.

    Note that,the presented model is applicable to the nominal aircraft.For the loss of thrust situation,aircraft dynamics are unchanged except that the thrust is zero.Here we ignore the additional drag generated by a shut down engine.Modelling of damaged aircraft for scenarios such as structural damage or actuator failures can be found in[15,16].

    2.2 Optimal control problem formulation

    When the loss-of-thrust situations occur on board,which can be resulted from engine failure,fuel depletion,or other unforeseen factors,the most important task for the trajectory planner is to guarantee the safety of the passengers.A reasonable option is to land the aircraft at a nearby airport as soon as possible.Therefore,the forced landing is viewed as a minimum-time trajectory planning problem.Furthermore,to successfully track the planned trajectory later,extreme maneuvers are not preferred for the damaged aircraft.There is an additional term in the cost function that considering the operational rates.Therefore,the emergency trajectory planning problem can be described as a constrained optimal control problem.

    Determine the state x(t),and the control input u(t),that minimize the cost function

    subjecting to the dynamic constraint:

    boundary constraints:

    20世紀(jì)以后,雖然經(jīng)歷了兩次世界大戰(zhàn),但法國(guó)的成人教育持續(xù)發(fā)展。1971年頒布的德洛爾法案(LoiDelorsjuillet,1971)是法國(guó)成人教育的一個(gè)里程碑。該法案將職業(yè)教育和成人教育納入永久教育的范圍。該法案規(guī)定:接受成人教育是勞動(dòng)者的權(quán)利,所有勞動(dòng)者都應(yīng)均等地享有成人教育的機(jī)會(huì)。其目的是使勞動(dòng)者適應(yīng)技術(shù)和工作條件的變化,保證他們對(duì)經(jīng)濟(jì)、文化和社會(huì)發(fā)展的貢獻(xiàn)[3]。

    and path constraints:

    where w1and w2are weight factors,˙α and˙μ are rates of angle of attack and bank angle,respectively.Equation(11)refers to the dynamic equation of the aircraft,equations(12)are the initial and final conditions,and equations(13)denote the state and control constraints,which translate the flight envelope limitations of the aircraft and all necessary safety requirements.

    3 Optimal trajectory planning using GPM

    3.1 Gauss pseudospectral discretization of trajectory planning problem

    The GPM employs a finite basis of global interpolating polynomialstoapproximatethestateandcontrolataset of Legendre-Gauss(LG)points,and then the nonlinear optimal control problem can be converted to nonlinear programming problem,which can be solved by sequential quadratic programming algorithm.The transformation process is shown as follows[17].

    Since the trajectory optimization problem is formulated over the time interval[t0,tf],and the LG points lie in the interval[?1,1],the following transformation is performed to express the problem in τ ∈ [?1,1].

    Let κ ={τ1,...,τN}be the set of N LG points,and set κ0={τ0,τ1,...,τN,τf}as discretization nodes which include the N LG points,the initial point τ0= ?1 and the final point τf=1.Then the aircraft state and control can be approximated by the following polynomials of degree of N+1 and N,respectively.

    where Liand?Liare the bases of Lagrange polynomials:

    The time derivative of the aircraft state can be approximated as the derivative of the interpolating polynomial.Evaluating the result at the kth collocation point τk,so that

    The dynamic constraint(11)is transcribed into algebraic constraints via the differential approximation matrix as

    Note that the dynamic constraint is collocated only at the LG points but not at the boundary points.Additional variables in the discretization are defined as follows:x(τ0)=X(?1)and x(τf),where x(τf)is defined in terms of X(τ0),X(τk)and U(τk)via the Gauss quadrature.

    Here,ωkare the Gauss weights.

    The boundary constraints(12)are expressed at the boundary points as

    The path constraints(13)are evaluated at the LG points as

    Finally,the continuous optimal control problem is converted into a discrete NLP problem,which can be described as follows:

    where y is the decision vector consisted of the aircraft state X(τi)(i=0,...,N),control U(τi)(i=1,...,N),and the final time tf.Here,the NLP problem can be solved by the well-developed software packages(e.g.SNOPT[18],IPOPT[19]).

    3.2 Computational consideration

    The trajectory planning problem has been transformed to a NLP problem using the GPM.Generally,a lot of collocation points are required for a highly accurate solution.However,the dimension of the decision vector dramatically expands with the increase of the collocation points.If the number of LG points is N,then the dimension of the decision vector will be M=9N+1.It would yield a large-scale NLP problem,leading to difficultyofdeterminingtheinitialvalueoftheNLPvariables.Moreover,it is time-consuming to solve a large-scale NLP problem.A reasonable initial guess can lead to a faster convergent speed.In this paper,we propose a multistage iterative optimization strategy:

    Step 1 Employ a small number of discretization nodes and an initial guess interpolated between the initial and final conditions to solve the NLP problem,and then obtain a coarse solution.

    Step 2 Interpolate the coarse solution with an increasing number of discretization nodes,and then take the result as the new initial guess to solve the NLP problem again.Repeat this step,until finishing the iterations.

    According to the above procedure,equations(25)would be solved efficiently.

    4 Numerical results

    The trajectory planning strategy for forced landing is demonstrated for a generic transport aircraft.Example taken from[20]is recomputed.The model is DC9-30 commercial aircraft,whose parameters are shown in Table 1.Considering the flight envelope limitations of the aircraft and all the necessary safety and operation requirements,the following constraints of the state and control variables need to be satisfied during the whole path.

    It is well known that an initial guess is essential to NLP solvers because the iteration process is heavily dependent on the initial guess.A bad initial guess may result in inaccurate solution,or even no convergent solution.Therefore it is important to provide a reasonable initial guess for civil aircraft trajectory optimization.As stat-ed in[20],civil aircraft usually cruises at an altitude of about 10km,where the air density is only about 30%of the value at the sea level.Dramatically changing air density during the landing process makes the solution difficult to converge.In this paper,the solution of the landing problem with constant air density is used as an initial guess for solving the real air density problem.

    Table 1 Parameters of generic transport aircraft.

    The landing maneuver is treated as a minimum-time optimalcontrolproblemwithfixedboundaryconditions.Inthisstudy,theaircraftstartslandingflightatanaltitude z=10km,cruise speed V=240m/s,and flight path angle γ=0°,and need to land a nearby airport using only the angle of attack α and the bank angle μ as control inputs.The positions of the airport is at(120,?30,0)km,with the runway direction ψ=30°.The initial and final conditions for states and controls can be found in Table 2.During the landing flight,the altitude of the aircraft cannot be minus,hence additional constraint is imposed on the state variable z≥0.Here we ignore the size of the aircraft,which is very small comparing with the descending altitude.

    In this simulation,we perform two iterations for optimization,in which,the numbers of discretization nodes are Nstep1=8 and Nstep2=40,respectively.The results are presented in Figs.2–10.

    Table 2 Boundary conditions for states and controls.

    Fig.2showsthelandingtrajectorywithnominalthrust in three dimensional space.Fig.3–4 are the projections of the trajectories with and without thrust in horizontal and vertical planes.It can be seen that the trajectory profilesarealmostidenticalinbothcases.Thewholetrajectories of the landing flight can be divided into three phases.In the first phase,the aircraft turns slightly right and increases the airspeed to travel along the path as fast as possible.In the meantime,the thrust gradually decreases to zero in the 100%thrust scenario and the flight path angle and heading angle also decrease.In the second phase,the aircraft performs a stable descent in a minus angle of attack with a high airspeed,which can reach the upper boundary in present of thrust.The angle of attack gradually decreases all along the first two phases.In the final phase,the aircraft basically makes a level turn flight to get aligned with the runway and decreases its airspeed to the desired value before touchdown,which should occur gently in a plus angle of attack.Fig.10 shows that it does not use too much thrust to keep the airspeed in the second phase.The minimum timeofthelandingflightis534.5s,whichissmallerthan the gliding time 548.5s.The total runtime of the simulation is about 15s,which is much less than the flight time.Therefore,it can be viewed as fast for realtime implementation.

    Fig.2 3D minimum time landing trajectory with thrust.

    Fig.3 Horizontal trajectory profile.

    Fig.4 Vertical trajectory profile.

    Fig.5 Airspeed profile.

    Fig.6 Flight path angle profile.

    Fig.7 Heading angle profile.

    Fig.8 Angle of attack profile.

    Fig.9 Bank angle profile.

    Fig.10 Thrust profile.

    5 Conclusions

    Trajectoryplanningforagenerictransportaircraftduring the emergency situation of loss of thrust has been studied in this paper.Finding the minimum-time forced landing trajectory was stated as a nonlinear optimal control problem,which was transformed to a NLP problem using Gauss pseudospetral method and then solved by sequential quadratic programming algorithm.The results show that the planned 3D trajectories not only satisfy the damaged aircraft dynamics,path and boundary constraints successfully,but also are smooth and feasible.In addition,the GPM exhibits excellent features of a high convergence speed and solution precision,and is potential to be used for real-time trajectory generation.

    [1]R.Watts,P.Tsiotras,E.Johnson.Pilot feedback for an automated planning aid system in the cockpit.Proceedings of Digital Avionics Systems Conference.Orlando:IEEE,2009:1187–1199.

    [2]N.Meuleau,C.Plaunt,D.E.Smith,et al.An emergency landing planner for damaged aircraft.Proceedings of the 21st Innovative Applications of Artificial Intelligence Conference.Menlo Park:AAAI,2009:114–121.

    [3]M.E.Atkins,A.I.Portillo,J.M.Strube.Emergency flight planning applied to total loss of thrust.Journal of Aircraft,2006,43(4):1205–1216.

    [4]H.J.Choi,E.M.Atkins.An analytic trajectory planner for aircraft with sever damage or failures.AIAA Infotech@Aerospace Conference and Exhibit and AIAA Unmanned–Unlimited Conference and Exhibi.Seattle:AIAA,2009:2009–2018.

    [5]P.C.Eng.Path Planning,Guidance and Control for a UAV Forced Landing.Brisbane:Queensland University of Technology,2011.

    [6]A.Adler,A.Bar-Gill,N.Shimkin.Optimal flight paths for engineout emergency landing.Proceedings of the Chinese Control and Decision Conference.Taiyuan:IEEE,2012:2908–2915.

    [7]P.Williams.Aircraft trajectory planning for terrain following incorporating actuator constraints.Journal of Aircraft,2005,42(5):1358–1362.

    [8]Y.Zhao,P.Tsiotras.Analysis of energy-optimal aircraft landing operationtrajectory.JournalofGuidance,Control,andDynamics,2013,36(3):833–845.

    [9]M.Houacine,S.Khardi.Gauss pseudospectral method for less noise and fuel consumption from aircraft operations.Journal of Aircraft,2010,47(6):2152–2159.

    [10]K.Brinkman,H.G.Visser.Optimal turn-back manoeuvre after engine failure in a single-engine aircraft during climb-out.Journal of Aerospace Engineering,2007,221(1):17–27.

    [11]J.Betts.Survey of numerical methods for trajectory optimization.Journal of Guidance,Control,and Dynamics,1998,21(2):193–207.

    [12]G.Huntington,V.A.Rao.Optimal reconfiguration of spacecraft formations using the Guass pseudospectral method.Journal of Guidance,Control,and Dynamics,2008,31(3):689–698.

    [13]Z.Fang,W.Chen,S.Zhang.Flight Dynamics of Aerial Vehicles.Beijing:Beihang University Press,2005.

    [14]Y.Zhao.Optimal patterns of glider dynamic soaring.Optimal Control Applications and Methods,2004,25(2):67–89.

    [15]F.Fahroo,D.Doman.A direct method for approach and landing trajectory reshaping with failure effect estimation.AIAA Guidance,Navigation,andControlConference.Providence:AIAA,2004:200–209.

    [16]Y.Li,L.Yang,G.Shen.Safe trajectory optimization with control failure effects estimation.Journal of Beijing University Aeronautic and Astronautics,2012,38(12):1601–1605.

    [17]D.A.Benson,G.T.Huntington,T.P.Thorvaldsen,et al.Direct trajectory optimization and costate estimation via an orthogonal collocation method.Journal of Guidance,Control,and Dynamics,2006,29(6):1435–1440.

    [18]P.E.Gill,W.Murray,M.A.Saunders.SNOPT:an SQP algorithm for large-scale constrained optimization.SIAM Review,2005,47(1):99–131.

    [19]L.T.Biegler,V.M.Zavala.Large-scale nonlinear programming using IPOPT:an integrating framework for enterprise-wide dynamicoptimization.Computers&ChemicalEngineering,2009,33(3):575–582.

    [20]E.Bakolas,Y.Zhao,P.Tsiotras.Initialguessgenerationforaircraft landing trajectory optimization.AIAA Guidance,Navigation and Control Conference.Portland:AIAA,2011:2011–6689.

    16 October 2013;revised 9 August 2014;accepted 25 August 2014

    ?Corresponding author.

    E-mail:luozp@buaa.edu.cn.Tel.:+86-10-82338786;fax:+86-10-82338786.

    This work was supported by the National Key Basic Research Program of China(973 Program)(No.2011CB707002).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Shaohua MENG is a Ph.D.candidate at School of Aeronautic Science and Engineering,Beihang University,China.He received his B.E.degree from Beihang University in 2008.From 2012 to 2013,He was a visiting student in Politecnico di Milano,Italy.His researchinterestsincludeaircraftdynamics,trajectory optimization and aviation safety.E-mail:msh1206@ase.buaa.edu.cn.

    Jinwu XIANG received his B.E.and Ph.D.degrees from Nanjing University of Aeronautics and Astronautics in 1980 and 1993,respectively.He is currently a professor at School of Aeronautic Science and Engineering,Beihang University.His area of research includes aircraft flight mechanics,structural dynamics and aeroelasticity.E-mail:xiangjw@buaa.edu.cn.

    Zhangping LUO received his B.E.and Ph.D.degrees from Beihang University in 1991 and 2004,respectively.He is currently an associate professor at School of Aeronautic Science and Engineering,Beihang University.His research interests include structural dynamics,crashworthiness,aircraft trajectory optimization and aviation safety.E-mail:luozp@buaa.edu.cn.

    Yiru REN received his B.E.degree from Harbin Engineering University in 2006 and his Ph.D.degree from Beihang University in 2011.Currently,heisalectureratCollegeof MechanicalandVehicleEngineering,Hunan University,Changsha.His main research interests are crashworthiness and impact dynamics,structural dynamics,structural and multidisciplinary optimization.E-mail:renyiru@buaa.edu.cn.

    Nanjian ZHUANG received his B.E.and Ph.D.degrees from Beihang University in 2008 and 2014,respectively.He is currently a lecturer at College of Air Traffic Management,Civil Aviation University of China,Tianjing.His research interests include aircraft flight mechanics and aviation safety.E-mail:znj@ase.buaa.edu.cn.

    猜你喜歡
    世界大戰(zhàn)里程碑法案
    Industrial Revolution
    美國(guó)禁止詢(xún)問(wèn)犯罪記錄法案的立法與實(shí)踐
    特刊《里程碑時(shí)刻》帶來(lái)的啟示
    新聞傳播(2018年6期)2018-12-06 08:56:38
    百度、阿里、騰訊打響了內(nèi)容創(chuàng)業(yè)的第二次“世界大戰(zhàn)”?
    2016健康里程碑
    美參議院未能通過(guò)控槍法案
    人民周刊(2016年13期)2016-07-25 15:16:19
    里程碑時(shí)刻
    日本強(qiáng)推新安保法案說(shuō)明了什么
    現(xiàn)代科技創(chuàng)新的政治動(dòng)力與政治負(fù)贅
    我國(guó)大學(xué)英語(yǔ)教育的里程碑
    观看av在线不卡| 亚洲国产精品一区二区三区在线| 我的老师免费观看完整版| 美女主播在线视频| 青春草亚洲视频在线观看| 精品国产国语对白av| 欧美日韩亚洲高清精品| 亚洲欧美日韩东京热| 交换朋友夫妻互换小说| 久久久国产一区二区| 99久久综合免费| 男人狂女人下面高潮的视频| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 国产爽快片一区二区三区| 99热6这里只有精品| 麻豆精品久久久久久蜜桃| 亚洲成人一二三区av| 久久人人爽人人片av| 欧美成人午夜免费资源| 日日摸夜夜添夜夜爱| 亚洲精品aⅴ在线观看| 亚洲精品日韩av片在线观看| 曰老女人黄片| 国产精品一二三区在线看| 国产精品一区二区在线不卡| 丰满迷人的少妇在线观看| 国内精品宾馆在线| 日本黄色片子视频| 亚洲国产欧美日韩在线播放 | 日韩欧美一区视频在线观看 | 精品午夜福利在线看| 国产极品天堂在线| 精品国产乱码久久久久久小说| 日日撸夜夜添| 亚洲av福利一区| 久久99热这里只频精品6学生| 春色校园在线视频观看| 极品教师在线视频| 国产一级毛片在线| 久久这里有精品视频免费| 亚洲成人av在线免费| 2022亚洲国产成人精品| 亚洲国产av新网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲自偷自拍三级| 亚洲精品国产色婷婷电影| 日本av手机在线免费观看| 亚洲成人手机| av不卡在线播放| 亚洲精品成人av观看孕妇| 亚洲精品国产av蜜桃| 99热这里只有是精品50| 高清视频免费观看一区二区| 亚洲成色77777| 久久久久久久久久久久大奶| 免费观看a级毛片全部| 我的女老师完整版在线观看| 一级毛片久久久久久久久女| 麻豆精品久久久久久蜜桃| 亚洲精品一区蜜桃| 少妇被粗大的猛进出69影院 | 亚洲精品,欧美精品| 18禁裸乳无遮挡动漫免费视频| 国产一区亚洲一区在线观看| 激情五月婷婷亚洲| 国产av国产精品国产| 热99国产精品久久久久久7| 黄色视频在线播放观看不卡| 啦啦啦啦在线视频资源| 久久狼人影院| 在线观看免费日韩欧美大片 | 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产 精品1| 日韩欧美一区视频在线观看 | 亚洲美女搞黄在线观看| 久久久久久久久久人人人人人人| 亚洲内射少妇av| 国产成人aa在线观看| 人妻 亚洲 视频| 天天操日日干夜夜撸| 精品午夜福利在线看| 亚洲国产精品成人久久小说| 国产成人一区二区在线| 91aial.com中文字幕在线观看| 亚洲综合色惰| av国产精品久久久久影院| 91精品国产九色| 国产精品一区二区三区四区免费观看| 桃花免费在线播放| 国产精品熟女久久久久浪| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 卡戴珊不雅视频在线播放| av黄色大香蕉| 久久人妻熟女aⅴ| 又粗又硬又长又爽又黄的视频| 丝袜脚勾引网站| 另类亚洲欧美激情| 少妇被粗大猛烈的视频| 99久国产av精品国产电影| 成年女人在线观看亚洲视频| 日本av免费视频播放| 亚洲,一卡二卡三卡| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 777米奇影视久久| 最近2019中文字幕mv第一页| 黄色一级大片看看| 欧美精品国产亚洲| 免费在线观看成人毛片| 十八禁高潮呻吟视频 | 国产精品人妻久久久影院| 亚洲精品国产色婷婷电影| 午夜福利视频精品| 午夜激情福利司机影院| 日本欧美视频一区| 大香蕉久久网| 婷婷色麻豆天堂久久| 亚洲国产av新网站| 亚洲,一卡二卡三卡| 在线 av 中文字幕| 乱码一卡2卡4卡精品| 熟女av电影| 精品国产一区二区三区久久久樱花| 国产黄色免费在线视频| 精品久久久久久久久亚洲| 日韩中文字幕视频在线看片| 少妇裸体淫交视频免费看高清| 中文字幕av电影在线播放| 亚洲国产色片| 亚洲国产毛片av蜜桃av| 不卡视频在线观看欧美| 成人毛片a级毛片在线播放| 哪个播放器可以免费观看大片| 国产一区亚洲一区在线观看| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 日本av免费视频播放| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 免费在线观看成人毛片| 伦理电影大哥的女人| 菩萨蛮人人尽说江南好唐韦庄| 99久国产av精品国产电影| 国产av一区二区精品久久| 国产黄频视频在线观看| 日韩免费高清中文字幕av| 成年女人在线观看亚洲视频| 国产精品无大码| 91精品伊人久久大香线蕉| 国产色爽女视频免费观看| 在线观看av片永久免费下载| 午夜免费鲁丝| 国产色婷婷99| 最黄视频免费看| 最后的刺客免费高清国语| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕| 一本久久精品| 80岁老熟妇乱子伦牲交| 国产熟女午夜一区二区三区 | 亚洲精品一区蜜桃| 国产亚洲5aaaaa淫片| 久久6这里有精品| 丝袜喷水一区| 观看av在线不卡| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看 | 丝袜喷水一区| 国产熟女午夜一区二区三区 | 丝袜喷水一区| 国产精品福利在线免费观看| 一本一本综合久久| 亚洲无线观看免费| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美一区二区三区国产| 女性生殖器流出的白浆| 国产欧美另类精品又又久久亚洲欧美| 国产无遮挡羞羞视频在线观看| 国产高清不卡午夜福利| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 在线观看免费日韩欧美大片 | 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久久久按摩| 91在线精品国自产拍蜜月| 亚洲图色成人| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线 | 亚洲成色77777| 国产午夜精品久久久久久一区二区三区| 亚洲国产av新网站| 日日爽夜夜爽网站| 国产乱来视频区| 成人综合一区亚洲| 亚洲欧美精品自产自拍| 只有这里有精品99| 大码成人一级视频| 婷婷色综合www| 亚洲精品国产av蜜桃| 国产伦在线观看视频一区| a级毛片在线看网站| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 狠狠精品人妻久久久久久综合| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽av亚洲精品天堂| 老女人水多毛片| 精品人妻偷拍中文字幕| 日日爽夜夜爽网站| a级一级毛片免费在线观看| 成人黄色视频免费在线看| 美女cb高潮喷水在线观看| 尾随美女入室| 色吧在线观看| 午夜精品国产一区二区电影| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| av专区在线播放| 国产极品粉嫩免费观看在线 | 在线免费观看不下载黄p国产| 国产伦在线观看视频一区| 美女国产视频在线观看| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| √禁漫天堂资源中文www| 国产精品嫩草影院av在线观看| 三上悠亚av全集在线观看 | 免费久久久久久久精品成人欧美视频 | 午夜久久久在线观看| 国产精品久久久久成人av| 日日啪夜夜爽| 精品熟女少妇av免费看| 如日韩欧美国产精品一区二区三区 | 91精品伊人久久大香线蕉| 成人二区视频| 国产男女超爽视频在线观看| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 亚洲美女黄色视频免费看| 亚洲av免费高清在线观看| 少妇被粗大的猛进出69影院 | av福利片在线观看| 人人妻人人添人人爽欧美一区卜| 免费看不卡的av| 成人国产av品久久久| 纵有疾风起免费观看全集完整版| 十分钟在线观看高清视频www | 乱人伦中国视频| 老司机影院毛片| 国内揄拍国产精品人妻在线| 男男h啪啪无遮挡| 乱人伦中国视频| 看十八女毛片水多多多| 国产精品人妻久久久影院| 99九九线精品视频在线观看视频| 少妇人妻精品综合一区二区| 久久婷婷青草| 精品熟女少妇av免费看| 亚洲av福利一区| a 毛片基地| 亚洲人成网站在线观看播放| 最新的欧美精品一区二区| 搡老乐熟女国产| 亚洲av综合色区一区| 国产在线免费精品| 各种免费的搞黄视频| 最后的刺客免费高清国语| 高清毛片免费看| 欧美三级亚洲精品| 国产男人的电影天堂91| 一本一本综合久久| 两个人免费观看高清视频 | 久久久久网色| 一级爰片在线观看| 亚洲成人av在线免费| 久久久国产一区二区| 亚洲人与动物交配视频| av在线老鸭窝| 人妻夜夜爽99麻豆av| 国产成人91sexporn| 在现免费观看毛片| 成人综合一区亚洲| 日韩一本色道免费dvd| 国产日韩一区二区三区精品不卡 | 久久久久网色| 在线播放无遮挡| 精品一区二区免费观看| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区| 曰老女人黄片| 国产精品一区二区性色av| 91精品伊人久久大香线蕉| 熟女av电影| 国产国拍精品亚洲av在线观看| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久小说| 久久精品夜色国产| 一级,二级,三级黄色视频| 能在线免费看毛片的网站| 国产成人精品福利久久| 一级二级三级毛片免费看| 日韩欧美一区视频在线观看 | 欧美变态另类bdsm刘玥| 国产精品三级大全| 日韩电影二区| 亚洲av男天堂| 熟妇人妻不卡中文字幕| 国产欧美日韩综合在线一区二区 | 美女大奶头黄色视频| 我要看黄色一级片免费的| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | 国产男女内射视频| videos熟女内射| 亚洲美女视频黄频| 狠狠精品人妻久久久久久综合| 街头女战士在线观看网站| a 毛片基地| 国产免费福利视频在线观看| 日韩亚洲欧美综合| 国产有黄有色有爽视频| 亚洲精品国产av成人精品| 亚洲av二区三区四区| 高清不卡的av网站| 久久久久国产网址| 国产av国产精品国产| 99re6热这里在线精品视频| 日韩强制内射视频| av视频免费观看在线观看| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 午夜精品国产一区二区电影| 又大又黄又爽视频免费| 狠狠精品人妻久久久久久综合| 国产精品无大码| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 亚洲精品第二区| 日韩人妻高清精品专区| 久久久久国产精品人妻一区二区| av网站免费在线观看视频| 老司机亚洲免费影院| 精品酒店卫生间| 久久99热这里只频精品6学生| 亚洲精品一二三| 成人特级av手机在线观看| 日韩精品免费视频一区二区三区 | 午夜福利网站1000一区二区三区| 麻豆成人午夜福利视频| 国产永久视频网站| 最近2019中文字幕mv第一页| 男女边摸边吃奶| 黄色视频在线播放观看不卡| 男女边摸边吃奶| 国产美女午夜福利| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 久久国产乱子免费精品| 18禁动态无遮挡网站| 亚洲精品日韩av片在线观看| 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄| 欧美成人午夜免费资源| 色婷婷av一区二区三区视频| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 亚洲精品一区蜜桃| 日韩三级伦理在线观看| 日韩精品免费视频一区二区三区 | 男女啪啪激烈高潮av片| 亚洲欧美日韩另类电影网站| 国产极品天堂在线| 国产无遮挡羞羞视频在线观看| 欧美日韩在线观看h| 久久精品久久久久久久性| 一区二区三区精品91| a 毛片基地| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 纯流量卡能插随身wifi吗| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 狠狠精品人妻久久久久久综合| 亚洲真实伦在线观看| 99热全是精品| 日日啪夜夜撸| 国产精品伦人一区二区| 欧美日韩精品成人综合77777| 欧美日韩亚洲高清精品| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| av专区在线播放| 精品一区在线观看国产| 欧美老熟妇乱子伦牲交| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 一区二区三区免费毛片| 久久人妻熟女aⅴ| 男人和女人高潮做爰伦理| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 国产亚洲5aaaaa淫片| 妹子高潮喷水视频| 欧美bdsm另类| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www | 亚洲怡红院男人天堂| 高清毛片免费看| 美女国产视频在线观看| 日韩视频在线欧美| 国产亚洲最大av| 熟女av电影| 视频中文字幕在线观看| 性高湖久久久久久久久免费观看| 性色avwww在线观看| 制服丝袜香蕉在线| 午夜激情福利司机影院| 深夜a级毛片| 如何舔出高潮| 国产一区二区在线观看av| 国产高清三级在线| 久久久精品94久久精品| 午夜福利,免费看| 亚洲,一卡二卡三卡| h日本视频在线播放| 性色avwww在线观看| 亚洲国产精品一区二区三区在线| 六月丁香七月| 免费看不卡的av| 久久久国产一区二区| 伊人久久国产一区二区| 如日韩欧美国产精品一区二区三区 | 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 成年av动漫网址| 亚洲真实伦在线观看| 一本久久精品| 午夜福利,免费看| 在线观看三级黄色| 成年av动漫网址| 中文欧美无线码| 久久久久精品性色| 老司机影院毛片| 久久久久久久精品精品| 国产高清三级在线| 亚洲av成人精品一二三区| 韩国高清视频一区二区三区| 免费观看在线日韩| 国精品久久久久久国模美| 久热这里只有精品99| 久久久久久伊人网av| 国产精品无大码| 少妇人妻一区二区三区视频| 高清欧美精品videossex| 国产精品.久久久| 久久久久久久精品精品| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 亚洲成人一二三区av| freevideosex欧美| 成年人午夜在线观看视频| 欧美xxⅹ黑人| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99| 校园人妻丝袜中文字幕| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| av免费观看日本| 91精品国产九色| 深夜a级毛片| 亚洲成人一二三区av| 国产黄频视频在线观看| 99热6这里只有精品| 久久免费观看电影| 曰老女人黄片| 三级国产精品欧美在线观看| 人妻人人澡人人爽人人| 成人午夜精彩视频在线观看| 中国三级夫妇交换| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 九九爱精品视频在线观看| 欧美精品一区二区免费开放| 狂野欧美白嫩少妇大欣赏| 纵有疾风起免费观看全集完整版| 王馨瑶露胸无遮挡在线观看| 内射极品少妇av片p| 欧美日韩视频高清一区二区三区二| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 91成人精品电影| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久v下载方式| 国产熟女午夜一区二区三区 | 好男人视频免费观看在线| 亚洲成色77777| 91精品伊人久久大香线蕉| h日本视频在线播放| 中文字幕av电影在线播放| www.av在线官网国产| 久久精品久久精品一区二区三区| 久久久久久久久久成人| 午夜免费鲁丝| 欧美人与善性xxx| 嫩草影院新地址| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 麻豆成人av视频| 嫩草影院新地址| 性高湖久久久久久久久免费观看| 精品少妇内射三级| 人体艺术视频欧美日本| av不卡在线播放| 蜜臀久久99精品久久宅男| 国产在线一区二区三区精| 国国产精品蜜臀av免费| 亚洲成色77777| 51国产日韩欧美| 99热国产这里只有精品6| 日本欧美视频一区| 综合色丁香网| 大话2 男鬼变身卡| 国产精品嫩草影院av在线观看| 日本黄大片高清| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| av女优亚洲男人天堂| 我的老师免费观看完整版| 在线 av 中文字幕| 欧美日韩综合久久久久久| 成人无遮挡网站| 人体艺术视频欧美日本| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放| 五月玫瑰六月丁香| 国产欧美日韩精品一区二区| 夫妻午夜视频| 熟女av电影| 国产 一区精品| 18禁动态无遮挡网站| 日本wwww免费看| 又爽又黄a免费视频| 中国三级夫妇交换| 精品一品国产午夜福利视频| 丰满乱子伦码专区| 高清视频免费观看一区二区| 日本爱情动作片www.在线观看| 成人免费观看视频高清| 午夜老司机福利剧场| 国产有黄有色有爽视频| 在线 av 中文字幕| 亚洲av中文av极速乱| 热re99久久精品国产66热6| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久大av| 日本欧美视频一区| 亚洲内射少妇av| 午夜福利,免费看| 久久 成人 亚洲| 99视频精品全部免费 在线| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| 欧美bdsm另类| 久久99热6这里只有精品| 精华霜和精华液先用哪个| 免费黄频网站在线观看国产| 丰满乱子伦码专区| 五月开心婷婷网| 精品久久久精品久久久| 永久网站在线| 曰老女人黄片| 亚洲欧美精品专区久久| 亚洲人成网站在线播| 欧美精品国产亚洲| 亚洲,欧美,日韩| 亚洲婷婷狠狠爱综合网| 在线看a的网站| 国产日韩欧美视频二区| av免费观看日本| 国产亚洲av片在线观看秒播厂| 各种免费的搞黄视频| av视频免费观看在线观看| 成人18禁高潮啪啪吃奶动态图 | 最近2019中文字幕mv第一页| 国产精品无大码| 精品99又大又爽又粗少妇毛片| 中国三级夫妇交换| 在线观看免费视频网站a站| 精品一区在线观看国产| 岛国毛片在线播放| 美女cb高潮喷水在线观看| 亚洲av国产av综合av卡| 一级av片app| 亚洲一级一片aⅴ在线观看| av视频免费观看在线观看| 高清不卡的av网站| 精品熟女少妇av免费看| 最近2019中文字幕mv第一页| av免费观看日本| 国产日韩欧美在线精品| 丰满迷人的少妇在线观看| 久久女婷五月综合色啪小说| 国产成人aa在线观看|