• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust sliding mode control of general time-varying delay stochastic systems with structural uncertainties

    2014-12-06 08:48:45ShengGuoWANGLibinBAIMingzhiCHEN
    Control Theory and Technology 2014年4期

    Sheng-Guo WANG,Libin BAI,Mingzhi CHEN

    1.Department of Engineering Technology and Department of Software and Information Systems(Graduate Faculty),University of North Carolina at Charlotte(UNC Charlotte),NC 28223-0001,U.S.A.

    2.Department of Software and Information Systems,UNC Charlotte,NC 28223-0001,U.S.A.

    3.College of Mathematics and Computer Science,Fuzhou University,Fuzhou Fujian 350108,China

    Robust sliding mode control of general time-varying delay stochastic systems with structural uncertainties

    Sheng-Guo WANG1?,Libin BAI2,Mingzhi CHEN3

    1.Department of Engineering Technology and Department of Software and Information Systems(Graduate Faculty),University of North Carolina at Charlotte(UNC Charlotte),NC 28223-0001,U.S.A.

    2.Department of Software and Information Systems,UNC Charlotte,NC 28223-0001,U.S.A.

    3.College of Mathematics and Computer Science,Fuzhou University,Fuzhou Fujian 350108,China

    This paper presents a new robust sliding mode control(SMC)method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise(Wiener process).The key features of the proposed method are to apply singular value decomposition(SVD)to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method.It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality(LMI)forms.The system states are able to reach the SMC switching surface as guaranteed in probability 1.Furthermore,it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD.The paper is mainly to provide all strict theoretical proofs for the method and results.

    Robust control;Time-varying delay systems;Stochastic systems;Lyapunov methods;Sliding mode control;Time-varying systems

    DOI10.1007/s11768-014-4055-5

    1 Introduction

    Time-delay systems broadly exist in a lot of practical processes and remote systems as well as their networks and control systems[1–10],e.g.,remote control systems[1],unmanned aircraft[3],industrial control systems[4–6],multivariable systems with time-delay[7],Markovian jump time-delay systems[8],and networked control systems[9].Among that,[10]discussed special issues on time-delay systems,and[1]systematicallyaddressed application of time-delay systems in 2007.Because all dynamic systems usually have uncertainties in face of changing environment and disturbances,therefore the research on robust control of time-delay systemshasbeenahotresearchareafordecades[7–10].

    Furthermore,many practical systems are stochastic process,especially on circuits,networks,and remote systems,where both variables and processes randomly and dynamically change with the time,including stochastic noises(white and/or colour).Thus,robust controlonstochasticprocesshasbecomeanactiveresearch area,e.g.,using Kalman filtering for stochastic systems with consecutive packet losses and measurement time delays[11],output feedback for stochastic time-delay nonlinear systems[12],a robust stochastic control for hypersonicaircraft[13],robustcontrolofuncertainnonlinear systems with state delays[14],and robust stochastic stabilization with H∞control in the stochastic neutral time-delay systems[15].Recently,Shi,Luan and Liu discussed stochastic incomplete measurement and mixed random delays for discrete-time systems filtering problem[16].

    To deal with uncertainties and nonlinearity,sliding mode control(SMC)[17]has been frequently used in uncertain systems[18–23].In SMC,the system structure switches based on the system state vector in order to force the system trajectory toward and/or to stay in a predefined subspace.Because of its excellent performance in face of external disturbances and parametric deviations,the SMC[17]has been widely adopted in many areas,especially in robust control of uncertain systems and electric drives,e.g.,robust stabilization by SMC for uncertain linear input-delay systems with nonlinear parametric perturbations[18],robust SMC for time-delay systems with mismatched structural uncertainties[19],and PD sliding mode observer for fault-tolerant control[20].Furthermore,Niu et al.[21]well proposed a very general uncertain stochastic system model with time-varying delay and used SMC to ensure the robust stochastic stability via LMI approach.In[22],an LMI approach was developed to guaranteed cost control of linear time-delay systems.Also,a delaydependent robust H∞control of uncertain linear state delayed systems was discussed in[23].Recently,Wu et al.studied dissipativity-based SMC of continuoustime switched/jumped stochastic systems[24].All these show the SMC as a heat research area.The research progresshasbeenmadeforrobuststochastictime-delay systems control via the SMC in the literature[1–24].

    However,all above-mentioned results on the robustly stochastic stability are sufficient conditions.Some complex systems may not satisfy those sufficient conditions for robustly stochastically stability.Therefore,how to further reduce the conservatism is still a challenging problem,especially for general popular models in view of their practice.

    This paper is to address this problem.The main contributions of this paper include

    1)proposingless-conservativemethodforgeneraluncertain stochastic systems with time-varying delay and structural uncertainties by introducing the SVD on the structural matrices of uncertainties for uncertain timedelay systems as a first time in the literature;

    2)deriving new robust stochastic stability condition for uncertain stochastic time-varying delay systems;and

    3)developing and showing the less conservative robust control via the SMC for uncertain stochastic timevarying delay systems based on the above new features.

    It is noticed that the structural uncertainties can be defined more physically and naturally as ΔA(t)=where|ai(t)|≤ 1,matrices Airepresent the structural characteristics,and time-varying parameters ai(t)represent their corresponding uncertain variations.It is usually more practical and easier to describe the structural uncertainties in this form than the EF(t)H form[21–24,28],although those two kinds of descriptions may have some relationship.However,the former is much flexible and practical.In the proposed method,we firstly apply singular value decomposition(SVD)to convert the structural uncertainties matrices,and introduce flexible adjustable parameters as Wang and Shieh did for the uncertain systems without Brownian motion(e.g.,[26]).

    The partial results of this paper were presented recently at the IEEE CDC 2012[29],i.e.,Theorems 1 and 2 without any theoretical proofs in[29].However,here we have significantly extended the materials by:i)presenting strict theoretical proofs for all theorems in[29];ii)rewriting the introduction and adding more references;iii)adding a new theorem for comparison of uncertaintystructuretreatmentswithandwithouttheSVD;and iv)adding new simulation for different stochastic seeds;as well as v)adding new remarks and removing the simulation and comparison which have been presented in[29];i.e.,just adding new important parts and shorting some existed parts to[29].These make this paper solid and easy to be gripped and applicable to the control systems area and related areas for various readers.

    Therestofthepaperisorganizedasfollows.Section2 provides the problem formulation.The main Section 3 presents the SVD method for system structural uncertaintiesinSection3.1,theslidingmodecontrollerdesign in Section 3.2,the robust stability in Section 3.3,and the switching surface reachability analysis in Section 3.4.A new theorem of the general comparison is presented in Section 4.The example with new stochastic seeds is in Section 5.Finally,Section 6 concludes the paper.

    2 Problem formulation

    In this section,we present the problem formulation of general uncertain stochastic systems that we are treating.It is a kind of general stochastic systems with timevarying delay and structural uncertainties established on the probability space(Ω,F,P)as described in[21]with the It?o form as

    where x(t)∈Rnis the system state vector;u(t)∈Rmis the control input;w(t)is a one-dimensional Brownian motion with E{dw(t)}=0 and E{[dw(t)]2}=dt;matrices A ∈ Rn×n,Ad∈ Rn×n,C ∈ Rm×n,Cd∈ Rm×nand D ∈ Rn×mareknownconstantmatrices;matrixBisafull column rank matrix;matrices ΔA(t) ∈ Rn×n,ΔAd(t) ∈Rn×n,ΔC(t) ∈ Rm×nand ΔCd(t) ∈ Rm×nare unknown time-varying uncertain matrices;f(x(t),t)∈Rmrepresents unknown state-dependent uncertain nonlinear function vector;and τ(t)is the time-varying delay.

    Without loss of generality,the following three assumptions hold for system(1):

    The above-mentioned structural uncertainties of system(1)are represented in practical and flexible forms as follows:

    where Ai,Adj,Ch,and Cdsare constant matrices representing the uncertainty structures;ai(t),ad,s(t),ch(t)and cd,s(t)are time-varying uncertain parameters.Without lossofgenerality,theabsolutevaluesofthetime-varying uncertain parameters are bounded by 1.

    The goal is to design a controller with SMC to robustly stabilize the uncertain time-delay stochastic system(1).The stability of stochastic systems is defined below,where Definition 1 can be found in[30],but we modify it by ‖x(t)‖to replace|x(t)|.Operator‖·‖denotes ‖·‖2.

    De fi nition 1 The nominal system of the uncertain system(1)with u(t)=0 is said to be mean-square stable ifforanyε> 0thereisaδ(ε)> 0suchthatE[‖x(t)‖2]< ε for all t>0 whenE[‖?(t)‖] < δ(ε).If,in addition,=0 for all initial conditions,then the nominal time-delay stochastic system is said to be mean-square asymptotically stable.

    De fi nition 2 The uncertain stochastic system in(1)is said to be robustly stochastically stable if the system is mean-square asymptotically stable for all admissible uncertainties.

    Two Lemmas are used in the proof of main results.

    Lemma 1[31] Given a symmetric matrix T=where its sub-matrices have respective appropriate dimensions,andthen the following two properties are equivalent:

    Lemma 2[17] Let P1and P2be matrices with approximate dimensions,and P3be a symmetric matrix satisfying(ε I? P3) > 0 and ε> 0.Then,the following inequality exists:

    3 Stability analysis for uncertain stochastic systems

    This section presents new less-conservative control methods for system(1).

    3.1 Eff i cient structural uncertainties decomposition

    We apply the SVD method to the structural uncertainties in(3)–(6)as in[32].Then,it leads to

    where

    Remark 1 The uncertainty treatment in(10)–(13)is more flexible and less conservative than the normal treatment.

    3.2 Sliding mode controller design

    As the first step of the SMC design,its switching surface function is defined as the following form for timedelay systems:

    where s(t)=[s1(t)···sm(t)]T∈ Rm;x(t)is the system state vector;G is chosen to make GB as non-singular as specified in(15)below;and K is the control feedback matrix to be determined.

    The following stochastic integral equation is derived

    by substituting dx(t)in(1a)into(14)

    The Brownian motion part of(15)can be eliminated by choosing GD=BTXD=0.Then,we have

    MatrixG ischosentobethefollowingformtoguarantee the non-singularity of GB as

    Once the system state vector reaches to the switching surface s(t)=0,the system will enter the sliding mode with˙s(t)=0.Hence,by calculating u(t)from˙s(t)=0.the equivalent control law ueq(t)is

    Substituting u(t)in system(1)by ueq(t)in(18),we have the system dynamic equation

    where

    In view of(18),we select the control in(20)for the sliding mode controller as follows:

    where ρ(t)is the switching gain,us(t)is the switching control part,that is also able to overcome the system uncertainties in sliding mode control,and sgn(·)is the sign function.

    Due to ueqc(t)≠u(mài)eq(t)for the uncertain system(unnominal system),the states cannot retain on the switching surface.However,us(t)can force the state vector toward s(t)=0.Therefore,the total control input(20)can hold the states within a certain range around the switching surface.

    Remark 2 Without loss of generality,we assume that x(t? τ(t))is known by the controller,either for the case of known time delay τ(t)as a time trigger signal,or for the case of unknown time delay but as an event trigger signal.The latter means that the value of τ(t)may not need to be exactly known,while the value x(t?τ(t))is known or received.

    Remark 3 In(14),the condition of GB=BTXB nonsigular needs matrix B to be a full-column rank matrix.It is because X is a non-singular matrix.The condition GD=BTXD=0 implies that D is not a full rank matrix.In practical applications,we may release this constraint by choosing the trace of GD to be a much small value.

    TheSMCdesignneedstoachievetwogoals:i)thesystem states trajectory should globally reach the switching surfaces s(t)=0,i.e.,s(t)˙s(t)<0,and ii)the system dynamics(19)on the switching surface is robustly stochastically stable.We address these two goals in the following sections.

    3.3 Robust sliding mode control via LMI approach

    Based on the above SVD for uncertainty structures in Section 3.1,we derive the following stability theorems.Theorem 1 was presented in[29]without the proof.

    Theorem 1 System(1)–(2)with control(18)and ˙τ(t)≤h<1 is robustly stochastically stable,if there exist positive definite matrices X and Q,and positive adjustable scalars ∈1i,∈2j,∈3,∈4i,∈5j(i=1,...,lAand j=1,...,lAd)satisfying

    where matrix M1is a symmetric matrix with symbol“*”as its symmetric part for simplicity,

    and JC,RC(t),UC,Jcd,RCd(t),UCdare in(10)–(13).

    Denote

    For any ε1i> 0,i=1,...,lAand ε2j> 0,j=1,...,lAd,the following matrix inequalities(29)–(30)hold in view of(3)–(13)and(17),in addition to[21]:

    In(24),let Π3> 0.By selecting a suitable ε3> 0,we have the following inequality from Lemma 2:

    Substituting(29)–(31)intoLV(x(t),t)andapplyingLemma 1,we have

    where

    Since?X <0,by applying Lemma 1 again,inequality Σ<0(33)is equivalent to

    where

    The uncertain part of matrix M2satisfies

    Therefore,we have inequality(36)from(34)–(35):

    where

    Then,LMI M3<0,is equivalent to M1<0,by Lemma 1.It completes the proof.

    3.4 Controller and reachability analysis

    Here we design the controller to globally drive the systemstates trajectory totheswitchingsurface in probability 1 as Theorem 2(in[29]without proof).

    Theorem 2 The reachability in probability 1 to the switchingsurfaces(t)=0forthestatesofsystem(1)–(2)can be guaranteed by controller(20)with ρ(t)as

    because of‖s(t)‖1≥ ‖s(t)‖.By substituting ρ(t)in(37)into(38),we have˙Vs≤?λ‖s(t)‖<0 if s(t)≠0,because λ > 0.Thus,the control in(20)–(22)with ρ(t)in(37)guarantees the system states toward the switching surface s(t)=0 in probability 1.

    Theorem 2 states that the state vector of system(1)–(2)will globally be driven to the pre-determined switching surface s(t)=0 by the control in(20)–(22)and(37)in probability 1.

    In this paper,to reduce the chatter,we choose another form of λ as

    where c1and c2are positive constants.As the state vectorisclosetos(t)=0,λmayalsobereducedin(39),and not as constant,that leads to small chatter amplitudes.

    4 Comparison

    In the above sections,we have described the structural uncertainties in a practical and flexible form,and introduced the SVD,a group of adjustable parameters for uncertainties,and Theorem 1 to easily find the available matrix X by the LMI for the controller design.

    It should be noticed that the description of structural uncertainties in(3)–(6)or(10)–(13)(e.g.,ΔA(t)=may seem to have relation with the EF(t)H form as commonly used in H∞control[21–23,28,30,33].However,as shown in[25,27]they are not equivalent because the common EFH form binds different structural uncertainties,e.g.,ΔA,ΔAd,ΔB and/or so on,that lead to conservatism and large size matrices.Furthermore,their matrices E and H are not from the SVD.Thus,the proposed treatment makes difference and leads to less conservative results.

    To show the advantage of the method,we compare the methods with and without this SVD treatment by a theoretical analysis as follows.To avoid the confliction of variable names,the variable names for the methods without the SVD treatment are marked with"~"on the head.

    Theorem 3 Consider the system in(1)and the normal structural uncertainties as described as in EF(t)H format as

    Then,we may have

    The method without SVD in(40)–(41)may be observed as a special case of the proposed method with the SVD treatment in our Theorem 1 as

    Proof The proof is to substitute scalars ε1i,ε2j,ε3,ε4i,ε5j(i=1,...,lAand j=1,...,lAd)with?ε1,?ε2,?ε3,and?ε4in(44)into(23)of Theorem 1.Then,it is reduced to the case exactly as the one without the SVD treatment on each uncertain structure in(3)–(6).It shows that the treatment without the SVD as in(40)–(41)is a special case of the method in Theorem 1 with“the SVD treatment”by a restriction as in(44).

    Remark4 Theorem3clearlyshowsthatthemethod without the SVD treatment has restrictions on the adjustableparametersformatricesΔAandΔAd.However,our new method treats them by various adjustable parameters:i)ε1i,i=1,...,lA,instead of one?ε1,ii)ε2j,j=1,...,lAdinstead of one?ε2,and iii)ε4i,i=1,...,lA,and ε5j,j=1,...,lAd,instead of one?ε4.Even for a very special situation,e.g.,lA=1 and lAd=1,the proposed method is still more flexible in view of ε4and ε5for ΔA and ΔAd,respectively,to replace one?ε4for both ΔA and ΔAd.

    Remark 5 When the considered system is without the Brownian motion but with the time-varying delay,the method presented here is still valid and flexible with less conservatism.

    5 Example

    In this section,we present an example to show the proposed method.The considered system is in(1)with

    as in[29].However,in order to further show our new results,this section mainly contains new figures with random seeds 1 and 2 that are not published in[29].Matrices JA,JAd,JC,JCd,UA,UAd,UCand UCdare calculated by the SVD method as in(10)–(13).Theorem 1 can find solution of X and Q for stability by “mincx”solver in MATLAB[34].We also choosethe chatter of control signal u(t)is significantly reduced.

    In simulation,we take the initial value Δx(t)=[0.6 0.2 ?1]T,t∈ [?1,0],and the simulation time as[0,3]seconds.The simulation results are shown in the following figures.Three different Brownian motions of w(t)are randomly generated by random seeds 1,2 and 3.Fig.1 is the system state trajectory with various w(t)in random seeds 1,2,3.Figs.2 and 3 show s(t)and u(t)in random seed 1,respectively.Figs.4 and 5 show s(t)and u(t)in random seed 2.It clearly shows that the system does well converge to stable states with good performance by the proposed SMC via SVD treatment on the uncertainties.

    Fig.1 Trajectory x(t)with various w(t)in random seeds 1,2,3[29].

    Fig.2 s(t)with a flexible λ and a w(t)in random seed 1.

    Fig.3 u(t)with a flexible λ and a w(t)in random seed 1.

    Fig.4 s(t)with a flexible λ and a w(t)in random seed 2.

    Fig.5 u(t)with a flexible λ and a w(t)in random seed 2.

    6 Conclusions

    In this paper,a flexible robust SMC method with the SVD treatment on the structured uncertainties is developed for general uncertain stochastic systems with time-varying delay and structural uncertainties.It is theoretically proved that the conservatism is reduced.The proposed robust control can globally drive the state trajectories toward the preselected switching surface in probability 1.The example validates the theoretical results.It is noticed that the discussed problem in this paper is with the derivative of the time-varying delay τ(t)not larger than one as common in the literature.However,it is interesting to develop the new results for the cases with τ′(t)> 1.We have had it as in[35]which is submitted separately.

    Acknowledgements

    TheauthorswouldliketothankProf.JamesLamatthe University of Hong Kong and Prof.Daniel Ho at the City University of Hong Kong for their helpful discussion.

    [1]J.Chiasson,J.J.Loisean.Application of Time Delay Systems.1st ed.London:Springer,2007.

    [2]P.F.Hokayem,M.W.Spong.Bilateralteleoperation:anhistorical survey.Automatica,2006,42(12):2035–2057.

    [3]A.D.Zeitlin,M.P.McLaughlin.Safety of cooperative collision avoidance for unmanned aircraft.Proceedings of the 25th Digital Avionics Systems Conference.Piscataway:IEEE,2006:868–874.

    [4]J.Kaloust,C.Ham,J.Siehling.Nonlinear robust control design for levitation and propulsion of a maglev system.IEE Proceedings-Control Theory and Applications,2004,151(4):460–464.

    [5]R.Brooks.A robust layered control system for a mobile robot.IEEE Journal of Robotics and Automation,1986,2(1):14–23.

    [6]T.Umeno,Y.Hori.Robust speed control of DC servomotors using modern two degrees-of-freedom controller design.IEEE Transactions on Industrial Electronics,1991,38(5):363–368.

    [7]P.Shi,G.Liu,D.Rees,et al.Active disturbance rejection control for uncertain multivariable systems with time-delay.IET Control Theory&Applications,2007,1(1):75–81.

    [8]B.Du,J.Lam,Y.Zou,et al.Stability and stabilization for Markovian jump time-delay systems with partially unknown transition rates.IEEE Transactions on Circuits and Systems–I:Regular Papers,2013,60(2):341–351.

    [9]M.Y.Chow,Y.Tipsuwan.Network-based control systems:a tutorial.Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society.Piscataway:IEEE,2001:1593–1602.

    [10]E.Fridman,U.Shaked.Special issue on time-delay systems.International Journal of Robust and Nonlinear Control,2003,13(9):791–792.

    [11]Y.Liu,B.Xu,B.Shi.Kalman filtering for stochastic systems with consecutive packet losses and measurement time delays.Control Theory&Applications,2013,30(7):898–908.

    [12]Y.Fu,Z.Tian,S.Shi.Output feedback stabilization for stochastic time-delay nonlinear systems.Control Theory&Applications,2003,20(5):749–752.

    [13]Q.Wang,R.F.Stengel.Robust nonlinear control of a hypersonic aircraft.JournalofGuidance,Control,andDynamics,2000,23(4):577–585.

    [14]A.Kuperman,Q.C.Zhong.Robust control of uncertain nonlinear systems with state delays based on an uncertainty and disturbance estimator.International Journal of Robust and Nonlinear Control,2011,21(1):79–92.

    [15]S.Xu,P.Shi,Y.Chu.Robust stochastic stabilization and H∞control of uncertain neutral stochastic time-delay systems.Journal of Mathematical Analysis and Applications,2006,314(1):1–16.

    [16]P.Shi,X.Luan,F.Liu.H∞filtering for discrete-time systems with stochastic incomplete measurement and mixed delays.IEEE Transactions on Industrial Electronics,2012,59(6):2732–2739.

    [17]V.I.Utkin.Slidingmodecontroldesign principlesand applications to electric drives.IEEE Transactions on Industrial Electronics,1993,40(1):23–36.

    [18]Y.H.Roh,J.H.Oh.Robust stabilization of uncertain inputdelay systems by sliding mode control with delay compensation.Automatica,1999,35(11):1861–1865.

    [19]Y.Xia,Y.Jia.Robust sliding-mode control for uncertain timedelay systems:an LMI approach.IEEE Transactions on Automatic Control,2003,48(6):1086–1091.

    [20]M.Liu,P.Shi,L.Zhang,et al.Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique.IEEE Transactions on Circuits and Systems–I,2011,58(11):2755–2764.

    [21]Y.Niu,D.Ho,J.Lam.Robust integral sliding mode control for uncertain stochastic systems with time-varying delay.Automatica,2005,41(5):873–880.

    [22]L.Yu,J.Chu.AnLMIapproachtoguaranteedcostcontroloflinear uncertain time-delay systems.Automatica,1999,35(6):1155–1159.

    [23]C.E.de Souze,X.Li.Delay-dependent robust H∞control of uncertain linear state-delayed systems.Automatica,1999,35(7):1313–1321.

    [24]L.Wu,X.Su,P.Shi.Sliding mode control with bounded L2gain performance of Markovian jump singular time-delay systems.Automatica,2012,48(8):1929–1933.

    [25]S.Wang,H.Y.Yeh,P.Roschke.Robust control for structural systems with parametric and unstructured uncertainties.Journal of Vibration and Control,2001,7(5):753–772.

    [26]S.Wang,L.S.Shieh,J.W.Sunkel.Robustoptimalpole-placement in a vertical strip and disturbance rejection.Proceedings of the 32nd IEEE Conference on Decision and Control.San Antonio:IEEE,1993:1134–1139.

    [27]S.Wang,S.Lin,L.S.Shieh,et al.Observer based controller for robust pole clustering in a vertical strip and disturbance rejection in structured uncertain systems.International Journal of Robust and Nonlinear Control,1998,8(12):1073–1084.

    [28]K.Zhou,P.P.Khargonekar,J.Stousrup,etal.Robust performance of systems with structured uncertainties in state space.Automatica,1995,31(2):249–255.

    [29]S.Wang,L.Bai.Flexible robust sliding mode control for uncertain stochastic systems with time-varying delay and structural uncertainties.Proceedings of the 51st IEEE Annual Conference on Decision and Control.New York:IEEE,2012:1536–1541.

    [30]S.Xu,T.Chen.Robust H∞control for uncertain stochastic systems with state delay.IEEE Transactions on Automatic Control,2002,47(12):2089–2094.

    [31]I.Schur.¨Uber Potenzreihen,die im Innern des Einheitskreises beschr¨anktsind.Journalf¨urdiereineundangewandte Mathematik,1917,1917(147):205–232.

    [32]S.Wang.Robust active control for uncertain structural systems with acceleration sensors.Journal of Structural Control,2003,10(1):59–76.

    [33]L.Xie,M.Fu,C.E.de Souza.H∞control and quadratic stabilization of systems with parameter uncertainty via output feedback.IEEE Transactions on Automatica Control,1992,37(8):1253–1256.

    [34]P.Gahinet,A.Nemirovski,A.J.Laub,et al.LMI Control Toolbox.1995:http://www.mathworks.de/help/releases/R13sp2/pdf_doc/lmi/lmi.pdf.

    [35]S.Wang.New Lyapunov-type Functional for General Stochastic Systems with Time-varying Delay.Technical note.Charlotte:UNC Charlotte,2013.

    Sheng-Guo WANG received the B.Sc.and M.Sc.in Electrical Engineering from University of Science and Technology of China in 1967 and 1981,respectively,and the Ph.D.in Electrical&Computer Engineering from University of Houston in 1994.He is a professor at University of North Carolina at Charlotte.He has published more than 100 papers in journals and conferences,and been the PI for numerous research projects since 1974.His research work has been supported by NSF,NCDOT,Tellabs,HP,Agilent,NASA,ARO,British Council,and China Railway.He is a frequent reviewer for more than 30 international journals and more than 10 international conferences.He has served as a program committee member(IPC)for more than 20 times,e.g.,2000 ACC;2000 SPIE;2005 BISBC;2006 SICE-ICCAS;2007 CBGI;2007–2009,2011 ISC;2009 IEEE ISIC;2010 IEEE CCA;2012 ICEE;2007,2008,2010–2014 IEEE ICCAS,an invited session organizer for 2000 ACC,and more than 10 times as Session Chair/Co-chair for international conferences,e.g.,IEEE CDC,WCICA,ACC and IFAC-WC.He has also served as an associate editor for JDSMC,JCTT,and IEEE MSC,etc.His current research interests include systems,control,circuits,modeling,robust control,GIS,big data,communications,computer networks,mathematical and numerical analysis,algorithms,applications.

    Prof.WangisarecipientofChinaNationalScienceConferencePrize 1978 and many other academic awards,including the Best Session Paper Presentation Award of 2001 ACC,the inventor award for UNC Charlotte Invention 2001,an Outstanding Faculty Award at Prairie View A&M University 1997,Sigma Xi Research Excellence Award(UH Chapter)1994,British Council Scholarship 1989.His membership includes IEEE,ASME,ASEE,Sigma Xi,and Tau Beta Pi.E-mail:swang@uncc.edu.

    2 May 2014;revised 14 November 2014;accepted 17 November 2014

    ?Corresponding author.

    E-mail:swang@uncc.edu.Tel.:+1-(704)687-5063;fax:+1-(704)687-7803.

    This work was partially supported by the National Science Foundation Grants(Nos.0940662,1115564)of Prof.S.-G.Wang.

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Mingzhi CHEN received the B.Sc.degree in Computer Networks from Fuzhou University,Fuzhou,China in 2003,M.Sc.degree in Computer Software and Theory,and Ph.D.degree in Communication and Information Systems from Fuzhou University,Fuzhou,China in 2005 and 2010,respectively.He had been working at the University of North Carolina at Charlotte,U.S.A.as a postdoctoral fellow from August 2012 to September 2013.Currently,he is working at Fuzhou University as an associate professor.His current research interests include intelligent information processing and information security.E-mail:mchen@fzu.edu.cn.

    另类精品久久| 男人爽女人下面视频在线观看| 亚洲色图综合在线观看| av在线播放精品| 毛片一级片免费看久久久久| 色哟哟·www| 男女高潮啪啪啪动态图| 久久国内精品自在自线图片| 精品人妻一区二区三区麻豆| 成人免费观看视频高清| 亚洲国产av影院在线观看| 青春草亚洲视频在线观看| 亚洲精品日本国产第一区| 日韩制服丝袜自拍偷拍| 久久精品人人爽人人爽视色| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 26uuu在线亚洲综合色| 9色porny在线观看| 欧美3d第一页| 日韩,欧美,国产一区二区三区| 18在线观看网站| 国产精品欧美亚洲77777| 免费日韩欧美在线观看| 丝袜喷水一区| 亚洲欧美一区二区三区黑人 | 亚洲av.av天堂| 久久青草综合色| 热re99久久精品国产66热6| 午夜免费男女啪啪视频观看| 超色免费av| 男女边吃奶边做爰视频| 三级国产精品片| 一区二区日韩欧美中文字幕 | 黄片播放在线免费| 香蕉精品网在线| 亚洲在久久综合| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 男人爽女人下面视频在线观看| av在线老鸭窝| 午夜福利网站1000一区二区三区| 国国产精品蜜臀av免费| 99热全是精品| 国产伦理片在线播放av一区| 国产成人精品在线电影| 又大又黄又爽视频免费| 一级毛片黄色毛片免费观看视频| 18禁在线无遮挡免费观看视频| 亚洲欧美清纯卡通| 欧美 日韩 精品 国产| 久久这里有精品视频免费| av.在线天堂| 成人手机av| 国产极品天堂在线| 日本av免费视频播放| 国产黄频视频在线观看| 久久99蜜桃精品久久| 大香蕉久久成人网| 免费观看在线日韩| 久久99一区二区三区| 久久99蜜桃精品久久| 色婷婷av一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 国产精品久久久av美女十八| av免费在线看不卡| 精品第一国产精品| av国产精品久久久久影院| 精品卡一卡二卡四卡免费| 日韩免费高清中文字幕av| 我要看黄色一级片免费的| 精品熟女少妇av免费看| 一区二区三区四区激情视频| 黄色一级大片看看| 秋霞伦理黄片| 国产成人精品一,二区| 中文字幕亚洲精品专区| 午夜精品国产一区二区电影| 97在线人人人人妻| 少妇精品久久久久久久| 另类亚洲欧美激情| 80岁老熟妇乱子伦牲交| 欧美日韩精品成人综合77777| 久久久欧美国产精品| 国产精品久久久久久久久免| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 亚洲成人av在线免费| 五月伊人婷婷丁香| 欧美另类一区| 咕卡用的链子| 精品少妇久久久久久888优播| 一二三四在线观看免费中文在 | 亚洲欧美中文字幕日韩二区| 精品久久久久久电影网| 日韩大片免费观看网站| 日本爱情动作片www.在线观看| 在线观看免费高清a一片| 一区二区三区乱码不卡18| 亚洲国产精品一区三区| 在线观看国产h片| 亚洲,一卡二卡三卡| av不卡在线播放| 国产乱来视频区| 久久久a久久爽久久v久久| 亚洲久久久国产精品| 制服丝袜香蕉在线| 26uuu在线亚洲综合色| 男女边吃奶边做爰视频| 亚洲精品av麻豆狂野| 97人妻天天添夜夜摸| 亚洲国产欧美日韩在线播放| 涩涩av久久男人的天堂| 不卡视频在线观看欧美| 亚洲精品aⅴ在线观看| 男女边吃奶边做爰视频| 亚洲精品国产av蜜桃| 久久精品人人爽人人爽视色| 五月玫瑰六月丁香| 久久精品久久久久久久性| 国产在线免费精品| 色吧在线观看| 一级黄片播放器| 尾随美女入室| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 国产高清三级在线| 超色免费av| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 九九在线视频观看精品| 国产一区亚洲一区在线观看| 国产成人aa在线观看| a级片在线免费高清观看视频| 两性夫妻黄色片 | 在线亚洲精品国产二区图片欧美| 国产精品一区二区在线观看99| 一级毛片 在线播放| 99久久精品国产国产毛片| 精品一区二区三卡| 亚洲精品日韩在线中文字幕| av一本久久久久| 午夜福利影视在线免费观看| 日韩在线高清观看一区二区三区| 91国产中文字幕| 亚洲色图综合在线观看| 国产免费又黄又爽又色| 制服诱惑二区| www日本在线高清视频| 激情视频va一区二区三区| 黄色一级大片看看| 爱豆传媒免费全集在线观看| 免费日韩欧美在线观看| 免费看不卡的av| 国产熟女午夜一区二区三区| 咕卡用的链子| 久久久久久久久久成人| 亚洲成国产人片在线观看| 国产在视频线精品| 国产伦理片在线播放av一区| 久久精品久久久久久噜噜老黄| 国产男人的电影天堂91| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| a级毛色黄片| h视频一区二区三区| 一级爰片在线观看| 日韩熟女老妇一区二区性免费视频| av免费观看日本| 精品久久国产蜜桃| 日本欧美国产在线视频| 欧美成人午夜免费资源| 亚洲成av片中文字幕在线观看 | 午夜91福利影院| 香蕉精品网在线| 18禁国产床啪视频网站| 永久免费av网站大全| 女人精品久久久久毛片| 午夜福利视频精品| 亚洲av综合色区一区| 少妇被粗大的猛进出69影院 | www.色视频.com| 免费观看性生交大片5| 少妇 在线观看| 精品一品国产午夜福利视频| 人人妻人人澡人人看| 男人爽女人下面视频在线观看| 国产精品不卡视频一区二区| 最近最新中文字幕免费大全7| 午夜激情av网站| 日日啪夜夜爽| 曰老女人黄片| 久久影院123| 日本午夜av视频| 制服人妻中文乱码| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 啦啦啦视频在线资源免费观看| 午夜精品国产一区二区电影| 成年人免费黄色播放视频| 黄片无遮挡物在线观看| 国产视频首页在线观看| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 亚洲av欧美aⅴ国产| 97在线视频观看| 丝袜脚勾引网站| 十八禁网站网址无遮挡| 有码 亚洲区| 黄色 视频免费看| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 中文字幕精品免费在线观看视频 | www.熟女人妻精品国产 | 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 亚洲av国产av综合av卡| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| av片东京热男人的天堂| 美女视频免费永久观看网站| a级毛片在线看网站| 在线观看免费高清a一片| 赤兔流量卡办理| 国产成人91sexporn| 亚洲精品日本国产第一区| 捣出白浆h1v1| √禁漫天堂资源中文www| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 男男h啪啪无遮挡| 国产成人午夜福利电影在线观看| 精品久久蜜臀av无| av线在线观看网站| 欧美日韩视频精品一区| 欧美xxxx性猛交bbbb| 99精国产麻豆久久婷婷| 久久 成人 亚洲| h视频一区二区三区| 日韩制服骚丝袜av| 国产一级毛片在线| 亚洲精品视频女| 99九九在线精品视频| 亚洲性久久影院| 少妇的丰满在线观看| 欧美3d第一页| 18在线观看网站| 日韩欧美精品免费久久| 黄色配什么色好看| 两个人看的免费小视频| 久久毛片免费看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 母亲3免费完整高清在线观看 | 国产精品久久久久久精品电影小说| 成人免费观看视频高清| 人人妻人人添人人爽欧美一区卜| 午夜视频国产福利| av又黄又爽大尺度在线免费看| 18禁观看日本| 丝袜人妻中文字幕| 大香蕉97超碰在线| 亚洲久久久国产精品| 国产男女内射视频| 伊人久久国产一区二区| 国产国语露脸激情在线看| 亚洲欧美一区二区三区国产| 99国产精品免费福利视频| 久久久久久伊人网av| 丝袜在线中文字幕| 国产一区二区三区av在线| 免费观看性生交大片5| 在线观看一区二区三区激情| 日本wwww免费看| 三级国产精品片| 99国产综合亚洲精品| 亚洲精品国产色婷婷电影| 一级黄片播放器| 看十八女毛片水多多多| 少妇的丰满在线观看| 国产精品99久久99久久久不卡 | 一区二区三区精品91| 中文字幕精品免费在线观看视频 | 人人澡人人妻人| 秋霞在线观看毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 永久免费av网站大全| 97在线视频观看| 中文字幕制服av| 女性生殖器流出的白浆| 日日撸夜夜添| 精品少妇内射三级| 久久久久久久国产电影| 欧美日本中文国产一区发布| 我的女老师完整版在线观看| 最近2019中文字幕mv第一页| 色5月婷婷丁香| 最新中文字幕久久久久| 久久久精品94久久精品| 国产精品久久久久久精品古装| 成人免费观看视频高清| xxx大片免费视频| 建设人人有责人人尽责人人享有的| 色5月婷婷丁香| 中国三级夫妇交换| 久久久精品区二区三区| 美女脱内裤让男人舔精品视频| 亚洲综合色网址| 国产老妇伦熟女老妇高清| 午夜福利乱码中文字幕| 日韩av在线免费看完整版不卡| 亚洲 欧美一区二区三区| 亚洲丝袜综合中文字幕| 又大又黄又爽视频免费| 久久久久人妻精品一区果冻| 国产成人欧美| 免费高清在线观看日韩| 久久久精品94久久精品| 成年人午夜在线观看视频| 少妇精品久久久久久久| 国产精品偷伦视频观看了| 99九九在线精品视频| 国产精品人妻久久久久久| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频| 成人国语在线视频| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放| 一本色道久久久久久精品综合| 青春草国产在线视频| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区三区在线| 九九在线视频观看精品| 成人漫画全彩无遮挡| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看 | 女人精品久久久久毛片| 国产日韩欧美视频二区| 你懂的网址亚洲精品在线观看| 亚洲av电影在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲国产精品一区二区三区在线| 日韩中文字幕视频在线看片| 国产亚洲一区二区精品| 精品酒店卫生间| 五月玫瑰六月丁香| 水蜜桃什么品种好| 中文字幕制服av| 久久女婷五月综合色啪小说| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区www在线观看| 久久久久国产网址| 一级毛片 在线播放| 亚洲av综合色区一区| 老司机影院毛片| 青青草视频在线视频观看| 一级爰片在线观看| 波多野结衣一区麻豆| 亚洲精品日本国产第一区| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 97人妻天天添夜夜摸| 色94色欧美一区二区| 大片电影免费在线观看免费| 国产日韩欧美视频二区| www.av在线官网国产| 99热网站在线观看| 欧美丝袜亚洲另类| 亚洲av电影在线进入| 丰满乱子伦码专区| 自线自在国产av| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 黄色配什么色好看| 亚洲欧洲日产国产| 久久精品国产亚洲av天美| 国产精品国产三级专区第一集| 曰老女人黄片| 精品国产露脸久久av麻豆| 久久99热这里只频精品6学生| 成年女人在线观看亚洲视频| 波多野结衣一区麻豆| 欧美精品亚洲一区二区| 久久久久久久久久成人| 一边亲一边摸免费视频| 日日啪夜夜爽| 国产有黄有色有爽视频| 精品国产露脸久久av麻豆| 91精品国产国语对白视频| a级片在线免费高清观看视频| 桃花免费在线播放| 久久久精品区二区三区| 纵有疾风起免费观看全集完整版| 丰满少妇做爰视频| 伦精品一区二区三区| 男女国产视频网站| 国产免费又黄又爽又色| 免费在线观看黄色视频的| 亚洲精品成人av观看孕妇| 狠狠婷婷综合久久久久久88av| 亚洲情色 制服丝袜| 伊人久久国产一区二区| 如日韩欧美国产精品一区二区三区| 亚洲欧美中文字幕日韩二区| 国产一区二区三区综合在线观看 | 高清毛片免费看| 久久久亚洲精品成人影院| 婷婷色综合www| 九草在线视频观看| 制服人妻中文乱码| 久久精品熟女亚洲av麻豆精品| 看非洲黑人一级黄片| 亚洲五月色婷婷综合| 欧美xxⅹ黑人| 美女内射精品一级片tv| 捣出白浆h1v1| 青春草亚洲视频在线观看| tube8黄色片| 免费播放大片免费观看视频在线观看| a级毛色黄片| 伊人亚洲综合成人网| 一级毛片我不卡| 黄色一级大片看看| 精品第一国产精品| 赤兔流量卡办理| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 满18在线观看网站| 侵犯人妻中文字幕一二三四区| 两性夫妻黄色片 | 女人久久www免费人成看片| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 日韩一区二区三区影片| 国产一区二区三区av在线| 纯流量卡能插随身wifi吗| 99热网站在线观看| tube8黄色片| 2018国产大陆天天弄谢| a级片在线免费高清观看视频| 啦啦啦中文免费视频观看日本| 91精品三级在线观看| 看免费av毛片| 免费av不卡在线播放| 一本久久精品| 肉色欧美久久久久久久蜜桃| 国产成人aa在线观看| 一区二区三区精品91| 免费看av在线观看网站| 最黄视频免费看| 午夜精品国产一区二区电影| 国产欧美另类精品又又久久亚洲欧美| 两个人免费观看高清视频| 综合色丁香网| 久久久久精品人妻al黑| 亚洲国产最新在线播放| 永久网站在线| 国产黄色视频一区二区在线观看| 只有这里有精品99| 美女xxoo啪啪120秒动态图| 国产又色又爽无遮挡免| 在线观看国产h片| 日本黄色日本黄色录像| 人妻人人澡人人爽人人| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| 精品国产露脸久久av麻豆| 九色成人免费人妻av| 最近最新中文字幕免费大全7| 十八禁高潮呻吟视频| 亚洲精品乱码久久久久久按摩| 咕卡用的链子| 黄色一级大片看看| av天堂久久9| 久久国产精品男人的天堂亚洲 | 欧美日韩av久久| 国产福利在线免费观看视频| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 午夜免费鲁丝| 精品人妻熟女毛片av久久网站| 狂野欧美激情性xxxx在线观看| 国产av一区二区精品久久| 多毛熟女@视频| 日本wwww免费看| 午夜精品国产一区二区电影| 最黄视频免费看| 久久久久久久大尺度免费视频| 大香蕉久久成人网| 黄网站色视频无遮挡免费观看| 免费人妻精品一区二区三区视频| 少妇 在线观看| 亚洲精品自拍成人| 少妇熟女欧美另类| 日韩av不卡免费在线播放| 黄色视频在线播放观看不卡| 国产精品 国内视频| 老司机亚洲免费影院| av.在线天堂| 各种免费的搞黄视频| 亚洲精品久久午夜乱码| 在线观看免费视频网站a站| 欧美日韩精品成人综合77777| 国产亚洲一区二区精品| 亚洲欧美一区二区三区黑人 | 少妇的逼好多水| 中文字幕制服av| 99香蕉大伊视频| 超碰97精品在线观看| 中文天堂在线官网| 午夜福利影视在线免费观看| 女性生殖器流出的白浆| 黑人欧美特级aaaaaa片| 国产av一区二区精品久久| 国产男女内射视频| 久久婷婷青草| 日韩av免费高清视频| 精品视频人人做人人爽| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 亚洲国产av影院在线观看| 高清毛片免费看| 亚洲欧美成人综合另类久久久| 久久久久久人人人人人| 我的女老师完整版在线观看| 国产午夜精品一二区理论片| 综合色丁香网| 日本-黄色视频高清免费观看| 熟女人妻精品中文字幕| 亚洲美女黄色视频免费看| 少妇精品久久久久久久| 夫妻午夜视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产av国产精品国产| 在线天堂最新版资源| 一二三四在线观看免费中文在 | 国产精品国产三级国产专区5o| www.色视频.com| 国产精品不卡视频一区二区| 午夜91福利影院| 只有这里有精品99| 国产精品麻豆人妻色哟哟久久| 中国国产av一级| 你懂的网址亚洲精品在线观看| 欧美丝袜亚洲另类| 亚洲av福利一区| 国产成人一区二区在线| 9191精品国产免费久久| av在线观看视频网站免费| 韩国精品一区二区三区 | 国产白丝娇喘喷水9色精品| 日韩 亚洲 欧美在线| 欧美日韩精品成人综合77777| 在线观看一区二区三区激情| 9色porny在线观看| 狠狠婷婷综合久久久久久88av| 99热全是精品| 桃花免费在线播放| 日韩在线高清观看一区二区三区| 丰满少妇做爰视频| 国产成人精品无人区| 欧美日韩亚洲高清精品| 久久久久视频综合| 亚洲精品一二三| 18禁在线无遮挡免费观看视频| 母亲3免费完整高清在线观看 | 日韩视频在线欧美| 青春草亚洲视频在线观看| 99视频精品全部免费 在线| 97精品久久久久久久久久精品| 最新中文字幕久久久久| 免费人成在线观看视频色| 啦啦啦视频在线资源免费观看| 免费女性裸体啪啪无遮挡网站| 建设人人有责人人尽责人人享有的| 成人国产麻豆网| 少妇被粗大的猛进出69影院 | h视频一区二区三区| 91精品伊人久久大香线蕉| 亚洲精品自拍成人| 高清在线视频一区二区三区| 国产亚洲最大av| 夫妻性生交免费视频一级片| 三级国产精品片| 亚洲精品乱久久久久久| 免费在线观看完整版高清| 国语对白做爰xxxⅹ性视频网站| av播播在线观看一区| av在线老鸭窝| 成人漫画全彩无遮挡| 免费观看av网站的网址| 国产日韩欧美视频二区| 亚洲综合色惰| 亚洲,欧美,日韩| 2021少妇久久久久久久久久久| 亚洲美女黄色视频免费看| 日韩视频在线欧美| 午夜福利视频精品| 日本与韩国留学比较| 巨乳人妻的诱惑在线观看| 热re99久久国产66热| 国产精品国产三级专区第一集| 久久久久久久亚洲中文字幕| 久久热在线av| 国产福利在线免费观看视频| 国产精品蜜桃在线观看|