• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On linear observers and application to fault detection in synchronous generators

    2014-12-06 08:48:42JanErikSTELLETTobiasROGG
    Control Theory and Technology 2014年4期

    Jan Erik STELLET,Tobias ROGG

    1.Karlsruhe Institute of Technology,76131 Karlsruhe,Germany;

    2.Swiss Federal Institute of Technology,8092,Zurich,Switzerland

    On linear observers and application to fault detection in synchronous generators

    Jan Erik STELLET1?,Tobias ROGG2

    1.Karlsruhe Institute of Technology,76131 Karlsruhe,Germany;

    2.Swiss Federal Institute of Technology,8092,Zurich,Switzerland

    Thisworkintroducesanobserverstructureandhighlightsitsdistinctadvantagesinfaultdetectionandisolation.Itsapplication to the issue of shorted turns detection in synchronous generators is demonstrated.For the theoretical foundation,the convergence and design of Luenberger-type observers for disturbed linear time-invariant(LTI)single-input single-output(SISO)systems are reviewed with a particular focus on input and output disturbances.As an additional result,a simple observer design for stationary output disturbances that avoids a system order extension,as in classical results,is proposed.

    Synchronous generators;Field winding;Fault detection;Unknown input observer(UIO);Disturbance observer;Residual generation

    DOI10.1007/s11768-014-3036-z

    1 Introduction

    Initially introduced in 1964 by Luenberger[1],state observers for linear time invariant systems form an integral part of state space control.The following advances termed reduced order observers(ROOs)[2]consider the separation of the state space into a measurable and an immeasurable subspace.Designing observers with minimal or partially reduced order has been studied[3].

    Special emphasis is put on fault-tolerant observers.Considerable work has been devoted to the design of unknown input observers(UIOs)[4–9]which converge despite the presence of disturbances in the system equation[10].Bymodellingsensorerrorsinanextended systemstate[11],bothuncertaintiesinsystemandmeasurement equation can be represented as unknown input signals.

    More recent approaches include adaptive control techniques for observer design[12]but are limited to constant or slowly time-varying disturbances.High-gain observers[13]can be used to reduce the influence of disturbances to an arbitrarily small level.However,this approachsuffersfromtheamplificationofmeasurement andprocessnoise.Byemployinganextendeddescriptor system,this limitation can be alleviated[14].Moreover,dynamic observers[15]are suitable for fault-tolerantobservation without increasing the dimension of system equations[16].Equivalent-input-disturbance estimators focus on the effect of a disturbance on a control system input rather than on the disturbed states[17].

    In this work,several relations between Luenbergertype observers in the presence of disturbances are studiedfromatheoreticalpointofview.Thiscontributionexplicitly details the general results obtained in[4,6]concerning the relationship between unknown input and ROOs in the SISO case.Furthermore,conditions and simplified observer design methods for systems with disturbances in input and measurement are analysed.

    Increasing attention is paid to the application of state observers in model based fault detection and isolation(FDI)[18–21].The basic idea is to utilise the guaranteed convergence of an observer in the fault-free case to detect deviations in the system plant[22].Henceforth,the output estimation error(residual)is monitored.Recently,the simple yet comprehensive notion of total measurable fault information residual(ToMFIR)has been studied[23].

    A key challenge is that the output residual usually also depends on quantities other than the fault’s magnitude itself.This effect has to be compensated for in threshold-based detection schemes,which poses an additional problem if uncertain or time-varying parameters are involved.In previous results[24]gain-dependent scaling has been investigated for a Luenberger observer design which will be extended in this work to other observer types.

    Moreover,a detailed analysis is presented for shorted turns detection in field windings of synchronous generators.Failures of the winding insulation are frequent,difficult to detect[25]and can lead to severe generator damage[26].Theyhaverecentlybeenstudiedin[27]for a machine with constant frequency.Here,special emphasis is put on variable frequency generators as used in wind turbines[28,29]or naval and aircraft systems[30–32].

    This work is organised as follows:Section 2 constitutes definitions,background and furthermore derives an explicit formula for a ROO for SISO systems.In Section 3,observer convergence and design in disturbed systems is analysed.Additionally,the close relationship between the ROO and the UIO is highlighted.In Section 4,threshold-based fault detection is studied in general and for the application of shorted-turns detection in synchronous generators.All findings are summarised in Section 5.

    2 Background and def i nitions

    2.1 Full-state Luenberger state space observer

    A linear system is fully characterised by A ∈ Rn×n,b∈Rnand c∈Rnin its state space representation with the state vector x(t)∈Rn,the input u(t)∈R and the output y(t)∈R:

    Only observable systems with regular observability matrix QBare considered in this work.The well-known identity observer as proposed by Luenberger[1]is given as

    The dynamics of the full-state observer in(2)are determined by the matrix NL:=A?lLc.The observer gain lLcan be obtained using Ackermann’s formula[33]

    with f0,...,fn?1being the coefficients of the desired characteristic polynomial.With endenoting the nth canonical unit vector,s1is defined as the last column of the inverted observability matrix:

    2.2ROO

    Many practical systems possess states that are metrologicallyaccessibleanddonotneedtobeestimated.The idea of a ROO as opposed to the full-state observer is to derive an estimate in the immeasurable state subspace only[2].

    For SISO systems(1),consider the special case where the output y(t)would be identical to a particular state xi(t).In this case,the measurable subspace is orthogonal to the immeasurable part r(t)∈ Rn?1.It stands to reason to reorder and split up(1a)to obtain

    Considering the last row of(5)as a measurement equation for the system determined by the first n?1 equations,an identity observer for r(t)can be derived according to(2).This yields the ROO formula[2]:

    The observer’s dynamic is given by the eigenvalues of(A11?fA21).Therefore,the gain vector f can be chosen bypoleplacementforthisexpression.Bysupplementing ?r(t)with the measurement y(t),the complete estimate ?x(t)is obtained.

    In general,the measurable subspace is not strictly orthogonal to the immeasurable subspace.However,any observable SISO system(1)can be transformed to its observable canonical form using the transformation

    where T is given with s1from(4)as[33]:

    In the transformed system,only the nth element zn(t)of the transformed state vector spans the one-dimensional measurable subspace.Therefore,orthogonality to the immeasurable subspace is achieved.

    2.3 ROO explicit form

    This section details a constructive derivation of an nth order observer formula different to the full-state observer(2).Considering a transformation(7)of system(1)to canonical form,the ROO formula(6)is applied.The main result is an explicit form of the reduced state space observer which will give further insight when compared to other observer types.

    Lemma 1(ROO explicit form)A state observer for a system(1)that is derived on the basis of(6)is given by

    with

    and with the initial value ρ(0)chosen in order to satisfy:

    ProofSee Appendix A.

    With system(1a)and by differentiating(9b),the observer error can be set forth:

    Obviously,the observer error converges to zero if lRis chosen in order to constitute a stable system matrix.The coefficients f0,...,fn?2of its characteristic polynomial are found in(10d).The nth eigenvalue of the system matrix NRequals zero:

    Theresultingobserverformula(9)constitutesanequivalencetothegeneral ROO(6).Upon this,newtheoretical insight will be established in the following sections.

    3 Observers for systems with disturbances

    Next,disturbances on the ideal system(1)are taken into consideration.Commonly experienced causes for such deviations are parameter uncertainties,sensor errors or unmodelled system behaviour.Here,a disturbed system is modelled as

    with A ∈Rn×n,b∈Rn,c∈Rn,the state vector x(t)∈Rn,the known input u(t)∈R and the output y(t)∈R.There are two undesired disturbances in the shape of an unknown input v(t)∈R and an additive w(t)∈R output disturbance.

    Note that there is a difference between the deterministic but unknown disturbances assumed in this work and disturbances in the form of stochastic processes.In the latter case,the popular Kalman filter[34]yields optimal state estimates under the assumption of white Gaussian noise.

    In the following section,necessary conditions for the design of an nth order disturbance observer will be studied.After showing that it is not feasible to achieve resilience to both input and output disturbances of arbitrary nature,observer design for the two cases will be studied.

    3.1 Conditions for disturbance observer design

    In order to address disturbances v(t)in the system equation(14a),UIOs have been developed.Here,necessary conditions for the design of a UIO will be reviewedinthepresenceofadditionaloutputdisturbances w(t)in measurement equation(14b).

    Theorem 1(Disturbance observer distinction) Convergence of a linear Luenberger-type observer of the form

    for a system disturbed according to(14)is restricted to the case of either v(t)≠0 or w(t)≠ 0.

    Proof Starting from the observer structure(15)where?x(t)∈Rnis the state estimate,ρ(t)∈Rn.N∈Rn×n,l∈ Rn,g ∈ Rnand h ∈ Rnare matrices to be determined.The state estimation error for system(14)is

    With P:=(In?lc)and the following conditions

    (16)is simplified to become

    In order for the observer error e(t)to decay it is required that N constitutes a stable system dynamic with eigenvalues in the left half-plane.A necessary condition is thus that N is regular.The proof is completed within the following two lemmata where it is shown that it is not possible to find a regular N which yields independence of(19)against unknown inputs v(t)and arbitrary output disturbances w(t)at the same time.

    Lemma 2(UIO)A UIO requires P to be singular.This requires an additive matrix to give a regular system matrix N:

    ProofMaking(19)independent of the unknown input v(t)requires:

    For d≠0,this holds true if and only if P is singular.

    Lemma 3(Output disturbance observer(ODO))Observer convergence in spite of an output disturbance requires P to be regular.

    ProofIndependence of w(t)in(19)would require

    which in turn determines N according to(18)to

    With A assumed to be regular,regularity of N requires that P is regular.

    Note that this gives only a necessary condition,as the disturbance’s derivative˙w(t)was not considered.Obviously,there is no simple means for freeing(19)of an arbitrary disturbance at all times.In[7,35]the special case of w(t)being a linear combination of v(t)is considered.However,in the relevant stationary case with ˙w(t)=0,anecessaryandsufficientconditionisprovided by(23).

    3.2 UIO design

    Considering the disturbed system(14)with v(t)≠0 and w(t)=0 an approach to design a UIO will be studied.Compared with the derivation of the explicit ROO formula(9),a novel simple scheme is identified at the cost of only a minor restriction on the observer’s initial value selection.Given the requirement(21),a way to choose N is presented in[5]and will be briefly reviewed for the SISO case.An alternative design method by a projection operator approach is presented in[36].

    It is required that(cd)?1exists.Then,(21)determines

    and therefore,

    Postmultiplying(18)by d gives hU:

    Considering the choice of lUand hU(18)becomes

    The general solution for NUin(27)is given by[5]

    The approach pursued in(17),(18)and(21)is entirely different to the formulation of the ROO for an undisturbed system in Section 2.3.However,the result in(28)is identical to NRin(10a)except for the additive term βc.

    Corollary 1(Equivalence to ROO) Any UIO is a special case of the derived explicit ROO structure where f is not a free parameter but determined by d which characterises the unknown input.

    Proof Equation(24)gives

    NotethattheUIOonlyconvergesif f constitutesastable polynomial(13).Additionally,β which determines the nth eigenvalue needs to be chosen accordingly to ensure convergence.As the observer eigenvalues can only be partially assigned,the system is not fully observable.This becomes obvious when calculating QBfrom(PA,c)[8].

    An interesting consequence of this result is that despite the complex procedure to determine NUfor the UIO in(28),a simple form is obtained if a relatively mild constraint on the initial value ρ(0)is imposed.

    Corollary 2(UIO Simplification) If the initial value is restricted in order for

    to hold,the system matrix(28)is reduced to NU=PA.

    Proof The proof is given by the constructive derivation of the ROO in Section 2.3.Here,condition(11)is imposed in order to achieve the state extension.

    3.3 Output disturbance observer design

    For completeness,observer design in the presence of additive output disturbances is studied.

    Consider system(14)with v(t)=0 and w(t)≠0.As has been pointed out,making the state estimation error(19)independent of w(t)requires additional knowledge on the disturbance.One approach assumes a model of the disturbance’s dynamics and extends the system state[11].The enhanced system state contains w(t)as a combination of k additional states xw(t)which are represented by a linear dynamic:

    Observer design for the enhanced system state can be performed using a full-state observer(3)of order n+k.

    If however,no information on the disturbance is given except that it exhibits stable dynamics,the extended system can be reduced to include only the stationary state of the disturbance:

    Note that another way to represent arbitrary output disturbances is to enhance the above system with an unknown input signal in the(n+1)th component.However,[5]established that in this case,observer design is restricted to systems with stable A and is therefore not practical.

    Lemma 4(System matrix and observability)Assuming that the undisturbed system(1)is observable,the extended system(32)is observable if and only if A is regular.

    Proof See Appendix B.

    Studying observer design for this system of order n+1 using the reduced order formula from Section 2.3 will be presented next.

    Theorem 2(Stationary output disturbance observer(SODO))Let system(14)with non-singular A,v(t)=0 and w(t)≠0 be given.Then,the following generalisation of(9)constitutes an nth order state observer for the system with stationary output disturbance:

    with

    ProofSee Appendix C.

    The observer structure(33),hereafter referred to as SODO,is identical to the ROO with the only difference being a generalised gain vector lG.Hence,the error dynamics(12)applyaswell.Notethatthereisnocondition on the initial value ρ(0).

    Next,the calculation of the observer gain is explored and related to the pole placement for a full-state Luenberger observer.

    Lemma 5(Observer gain) The observer gain lGcan be calculated with s1from(4)and the coefficients of the desired characteristic polynomial f0,...,fn?1as

    Here,lLdenotes the gain vector of a full-state Luenberger observer(3)with the same poles.

    Proof First,lRfrom(10d)iscalculatedforthe(n+1)-dimensional system(32).Only the first n entries are considered which yields

    Here,sGdenotes the first n components of s=where s is defined as in(4)but for the extended system(32).Premultiplying the definition of s with QBgives

    The first of these n+1 linear equations determines s2.Comparing the following n equations with the definition of s1for the undisturbed system in(4)gives that sG=.Inserting this relation in(36)gives the result(35).

    Furthermore,the eigenvalues of NGachieved byare identical to the eigenvalues of the system matrix NLof a full-state Luenberger observer with gain lL:

    Matrix NLis similar to NGwith similarity transformation A.Thus,their eigenvalues are the same.

    When compared to a full-state observer design,the reduced order of the observer(33)might give improvements in terms of computational requirements.Another advantage arises in fault diagnosis applications and will be explored in Section 4.

    Ontheotherhand,adrawbacksharedbyallobservers in the form of(15)is the immediate dependence on the measurement y(t).In contrast,a Luenberger observer type(2)acts as a low-pass filter on the measurement signal which is beneficial in the presence of measurement noise.

    3.4 Summary of main results

    In the first part of this section,conditions for observer convergence in the presence of unknown inputs as well as output disturbances are analysed.It is found that independence against both disturbances cannot be achieved with a single observer of order n.

    Secondly,design of a UIO is reviewed.It is found that the UIO is a special case of the ROO.From this result,a simplification to the UIO system matrix is proposed which gives an easier path towards finding an observer at the cost of only a minor restriction on how the initial observer state is to be chosen.

    Completing the study,the third section details observer design in the presence of output disturbances.As a generalisation of the explicit ROO formula from Section 2.3,the SODO is presented.

    4 Observers for fault diagnosis

    4.1 Methodology

    A state observer incorporates a model of a physical system to estimate state variables.Deviations in the physicalsystem thatarenotreflected inthemodelresult in a residual error in the state estimates.This residual can therefore be used as an indicator of defects and aging[37,38].

    Given a system(1a),faults are modelled as

    TheerrorcausedbychangesinAandbcanbecombined to form an unknown input∈(t):= δAx(t)+ δbu(t):

    The ToMFIR[23]is

    which converges to zero in the case of no faults.Of particular interest is the stationary limit(hereinafter called ToMFIR)that is caused by faults with stationary end value:

    The ToMFIR of a full-state Luenberger observer(2)depends on the observer gain lL:

    Largegainscreateasmallresidual,whilegainsthatplace the eigenvalues of the observer near zero create a high residual value for the same fault.As a remedy,[24]proposes a multiplicative compensation.

    The additional correction is avoided for observer designs which generate residuals that are independent of the gain:

    Corollary 3(SODO)A SODO(33)can be used to produce ToMFIR values that are gain-independent:

    Proof The residual for an observer design(15)is

    Giventhattheproposedobserverdesign(33)fulfils(17),(18),(22)and(23),the residual is reduced to(44).

    4.2 Application to shorted turns detection

    Next,the application of threshold based fault detection in synchronous machines is studied.In[27]a Luenberger observer is employed for diagnosis of shorted turns in the field windings.Here,these results are extended using a SODO(33)for residual generation.Besides the independence on the observer gain that has been discovered in the previous section,emphasis is putontheresidual’sdependenceonsystemparameters,especially the electrical frequency.

    A model of a synchronous machine is given by[27]

    The system state is given by stator direct and quadrature currents Id(t)and Iq(t).Direct and quadrature voltages Ud(t)and Uq(t)as well as exciter current If(t)form the system input.

    ThepresenceofafieldwindingfaultreducestheeffectivenumberofturnstoˉNfandthuscreatestheunknown input signal:

    The synchronous generator is defined by parameters which are explained in Table 1.

    Table 1 Parameter description and values used in simulation example.

    A full-state Luenberger observer(2)can be employed to calculate residuals under the assumption that both system states Id(t),Iq(t)are measurable.As has been shown in[27],the stationary residual(43)is

    with λ2as the second observer eigenvalue and the constant stator-side referred exciter current I′f=2IfNf/3Ns[40].

    In order to achieve independence of quantities other than the number of windings in(48),[27]proposes to set:

    However,this in turn limits the detection speed of the observer to a fixed value.Moreover,the compensation(49)requiressettingλ2proportionaltoωrwhichmayre-sult in increased noise sensitivity in high frequency machines.Additional difficulties arise in variable frequency applications[28–32].

    On the other hand,when using a SODO,the residual(44)is independent of the eigenvalue locations:

    Note that A in(46)is always regular,guaranteeing the existence of the observer.

    Results of a simulation example visualise the advantage of having additional degrees of freedom in the observer design.Fig.1 shows that varying λ2in relation to the constant value(49)produces improved detection time.

    Fig.1 Detection time for a threshold of 80%employing a SODO(33)compared to a conventional Luenberger observer(LBO)(2)for a simulation of one faulted turn with the machine in[39].Having a residual independent of the eigenvalues,the SODO can be designed with an arbitrary λ2.This enables it to detect the fault in only a fraction of the time that the Luenberger observer would have needed.

    Another significant advantage is that the first component r∞,1in(50)allows for drastic simplification for typical configurations,leading to the following corollary.

    Corollary 4(SODO residual simplification) For typical synchronous generators[41,42]it holds that:

    Then,the first component of residual(50)is simplified to

    This residual directly gives the per cent of the field windings that have short circuited multiplied by the transformed stator current and Lm/Ld,a factor that is usually close to 1.It is therefore an ideal fault indicator,as minimal dependency on uncertain or varying parameters is achieved.

    5 Conclusions

    This contribution constructs a unique observer structure for fault detection and isolation.This is achieved by developing a distinct explicit form of a ROO and establishing theoretical relations with other observer types.Second,design of linear observers for systems with stationary output disturbances is considered.In contrast to classical results,an extension of the system order is avoided while maintaining a particularly simple design procedure.

    Based on this,recent results in the application of model based fault detection are extended.Compared to a Luenberger identity observer,it is found that gaindependent scaling of the residual is avoided with the novel design.

    Exemplifying the general result,further application specific advantages are found for shorted turns detection in synchronous generators.Here,recently obtained results are extended and an improved fault detection scheme is studied.The residual expressions of the proposedobserverdesignstandoutnotonlybytheabsence of undesired scaling,but exhibit further advantages in the form of minimal parameter dependence due to a simplification applicable to most generators in use today.

    [1] D.G.Luenberger.Observing the state of a linear system.IEEE Transactions on Military Electronics,1964,8(2):74–80.

    [2] D.Luenberger.An introduction to observers.IEEE Transactions on Automatic Control,1971,16(6):596–602.

    [3] S.Balemi.Partial-order reduction of observers for linear systems.Proceedings of the 17th IFAC World Congress.Seoul,Korea:Elsevier,2008:7723–7728.

    [4]R.J.Miller,R.Mukundan.On designing reduced-order observers for linear time-invariant systems subject to unknown inputs.International Journal of Control,1982,35(1):183–188.

    [5]F.Yang,R.Wilde.Observers for linear systems with unknown inputs.IEEE Transactions on Automatic Control,1988,33(7):677–681.

    [6]M.Hou,P.Muller.Design of observers for linear systems with unknown inputs.IEEE Transactions on Automatic Control,1992,37(6):871–875.

    [7]M.Hou,P.C.Muller.Disturbance decoupled observer design:a unified viewpoint.IEEE Transactions on Automatic Control,1994,39(6):1338–1341.

    [8]M.Darouach,M.Zasadzinski,S.Xu.Full-order observers for linear systems with unknown inputs.IEEE Transactions on Automatic Control,1994,39(3):606–609.

    [9]M.Lungu,R.Lungu.Full-order observer design for linear systems with unknown inputs.International Journal of Control,2012,85(10):1602–1615.

    [10]A.Samantaray,B.Bouamama.Model-based Process Supervision:A Bond Graph Approach.Series:Advances in Industrial Control.Berlin:Springer-Verlag,2008.

    [11]J.Park,G.Rizzoni,W.B.Ribbens.Ontherepresentationofsensor faults in fault detection filters.Automatica,1994,30(11):1793–1795.

    [12]H.Wang,S.Daley.Actuatorfaultdiagnosis:anadaptiveobserverbased technique.IEEE Transactions on Automatic Control,1996,41(7):1073–1078.

    [13]H.Hammouri,M.Kinnaert,E.H.El Yaagoubi.Observer-based approach to fault detection and isolation for nonlinear systems.IEEE Transactions on Automatic Control,1999,44(10):1879–1884.

    [14]Z.Gao,T.Breikin,H.Wang.High-gain estimator and faulttolerant design with application to a gas turbine dynamic system.IEEE Transactions on Control Systems Technology,2007,15(4):740–753.

    [15]J.K.Park,D.R.Shin,T.M.Chung.Dynamic observers for linear time-invariant systems.Automatica,2002,38(6):1083–1087.

    [16]A.Wahrburg,J.Adamy.Robust fault isolation using dynamically extended observers.IEEE International Symposium on Intelligent Control.Dubrovnik,Croatia:IEEE,2012:1201–1206.

    [17]M.Wu,K.Lou,F.Xiao,et al.Design of equivalent-inputdisturbance estimator using a generalized state observer.Journal of Control Theory and Applications,2013,11(1):74–79.

    [18]K.Emami,B.Nener,V.Sreeram,et al.A fault detection technique for dynamical systems.Proceedings of the 8th IEEE International Conference on Industrial and Information Systems.Peradeniya,Sri Lanka:IEEE,2013:201–206.

    [19]I.Hwang,S.Kim,Y.Kim,et al.A survey of fault detection,isolation,and reconfiguration methods.IEEE Transactions on Control Systems Technology,2010,18(3):636–653.

    [20]T.Sellami,H.Berriri,S.Jelassi,etal.Slidingmodeobserver-based fault-detection of inter-turn short-circuit in induction motor.Proceedings of the 14th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering.Sousse,Tunisia:IEEE,2013:524–529.

    [21]S.Shao,P.Wheeler,J.Clare,et al.Fault detection for modular multilevel converters based on sliding mode observer.IEEE Transactions on Power Electronics,2013,28(11):4867–4872.

    [22]K.Zhang,B.Jiang,P.Shi,Observer-based Fault Estimation and Accomodation for Dynamic Systems.Series:Lecture Notes in Control and Information Sciences.Berlin:Springer-Verlag,2012.

    [23]W.Chen,F.N.Chowdhury,A.Djuric,etal.Robustfaultdetection of turbofan engines subject to adaptive controllers via a total measurable fault information residual(ToMFIR)technique.ISA Transactions,2014,53(5):1383–1388.

    [24]F.Chowdhury,W.Chen.A modified approach to observerbased fault detection.Proceedings of the 22nd IEEE International Symposium on Intelligent Control.Singapore:IEEE,2007:539–543.

    [25]R.Fiser,D.Makuc,H.Lavric,et al.Modeling,analysis and detection of rotor field winding faults in synchronous generators.Proceedings of the XIX International Conference on ElectricalMachines.Rome,Italy:IEEE,2010: DOI 10.1109/ICELMACH.2010.5608042.

    [26]C.Gaona,F.Blazquez,P.Frias,et al.A novel rotor groundfault-detection technique for synchronous machines with static excitation.IEEE Transactions on Energy Conversion,2010,25(4):965–973.

    [27]T.Batzel.Observer-based monitoring of synchronous generator winding health.IEEE/PESPowerSystemsConference and Exposition.Atlanta:IEEE,2006:1150–1155.

    [28]A.Yazdani,R.Iravani.A neutral-point clamped converter system for direct-drive variable-speed wind power unit.IEEE Transactions on Energy Conversion,2006,21(2):596–607.

    [29]K.Malekian,A.Shirvani,U.Schmidt,et al.Detailed modeling of wind power plants incorporating variable-speed synchronous generator.IEEE Electrical Power&Energy Conference.Montreal:IEEE,2009:DOI 10.1109/EPEC.2009.5420926.

    [30]A.Eid,H.El-Kishky,M.Abdel-Salam,et al.On power quality of variable-speed constant-frequency aircraft electric power systems.IEEE Transactions on Power Delivery,2010,25(1):55–65.

    [31]I.Moir,A.Seabridge,Design and Development of Aircraft Systems.Chichester:John Wiley&Sons,2012.

    [32]V.Biagini,P.Zanchetta,M.Odavic,et al.Control and modulation ofamultilevelactivefilteringsolutionforvariable-speedconstantfrequency more-electric aircraft grids.IEEE Transactions on Industrial Informatics,2013,9(2):600–608.

    [33]J.Ackermann.Sampled-data Control Systems.Berlin:Springer-Verlag,1985.

    [34]R.E.Kalman.A new approach to linear filtering and prediction problems.TransactionsoftheASME–JournalofBasicEngineering,1960,82:35–45.

    [35]M.Darouach.Complements to full order observer design for linear systems with unknown inputs.Applied Mathematics Letters,2009,22(7):1107–1111.

    [36]S.Hui,S.Zak.Low-order unknown input observers.in ProceedingsoftheAmericanControlConference.NewYork:IEEE,2005:4192–4197.

    [37]R.J.Patton,P.M.Frank,R.N.Clarke(eds.).Fault Diagnosis in Dynamic Systems:Theory and Application.Upper Saddle River:Prentice-Hall,1989.

    [38]J.J.Gertler.Fault Detection and Diagnosis in Engineering Systems.1st ed.Boca Raton:CRC Press,1998.

    [39]T.Wu,T.Camarano,J.Zumberge,et al.Electromagnetic Design of Aircraft Synchronous Generator with High Power Density.Nashville:American Institute of Aeronautics and Astronautics,2012.

    [40]T.Lipo.Analysis of Synchronous Machines.2nd ed.Boca Raton:CRC Press,2012.

    [41]M.Eremia,M.Shahidehpour(eds.).HandbookofElectricalPower SystemDynamics:Modeling,Stability,andControl.ser.IEEEPress SeriesonPowerEngineering.Hoboken:JohnWiley&Sons,2013.

    [42]J.Machowski,J.Bialek,J.Bumby.Power System Dynamics and Stability.Hoboken:John Wiley&Sons,1997.

    Appendix

    Appendix A Proof of Lemma 1

    First,a ROO for the transformed system is constructed.After artificially expanding the system order to n,it is possible to combine?r(t)and y(t).Finally,the system is transformed into original coordinates.

    Given that system(1)is transformed to canonical coordinates using(7),the system equations are given by

    Here,a0,...,an?1are the coefficients of the characteristic polynomial.These equations can be partitioned according to the scheme in(5).With the resulting sub-matrices and a gain vector f∈Rn?1,the ROO estimating?z(t)reads:

    In order to facilitate the retransformation?x(t)=T?z(t),the observer state in canonical coordinates η(t)will be added by a zero component to increase its order to n:

    Next,it is assumed that the value ρ*(0)is chosen in the form of(a3).The ROO dynamic equation(a2a)is expanded to the order of n maintaining the last row of every matrix and vector to equal zero.Applying some matrix manipulations yields

    with

    Note that there is a degree of freedom given by the choice of ?β as the last column of N*Ris only related to the nth element of ρ*(t)which equals zero.

    The resulting observer(a4)estimates the state vector in observable canonical form.To obtain the desired original state space vector the system has to undergo the transformation ?x(t)=T?z(t).While ρ*(t)denotes the vector in canonical form,ρ(t)represents the original states:

    Next,the initial value condition(a3)and the actual observer(a4)are retransformed.

    A.1 Mathematical relationships

    First,helpful mathematical relationships are introduced.Premultiplying the definition of s1in(4)with QBgives

    Furthermore,the theorem of Cayley-Hamilton states that every A fulfils the characteristic equation:

    Combining(a7)with(a8)yields

    Moreover,(a8)directly shows that:

    It is readily verified with(a7)and(a9)that the product QBT has the form:

    Then,relevant entries of the inverse of D are obtained as

    A.2 Transformation of

    First,(a6b)is considered.When multiplied with the transformation matrix T,the second summand becomes

    A.3 Transformation of

    Transformation of(a5a)is performed employing(a9),(a11)and(a12):

    As?β can be chosen arbitrarily,it is set to eliminate the second term and simplify(a13)to

    A.4 Transformation of

    Second,expression(a5b)is manipulated using(a12):

    A.5 Transformation of

    The third summand in(a6a)is calculated from expression(a5c)by considering(a7),(a10)and(a12):

    A.6 Transformation of initial value condition

    Equation(a3)sets a constraint on the choice of the initial value ρ*(0).Because the ROO allows for an arbitrary initial value of the(n ? 1)-dimensional η(t),the effective restriction can be expressed as

    This yields an equivalent constraint on ρ(0):

    Setting ρ(0)=0 or ρ(0)= αlRwith α ∈ R trivially fulfils the requirement.

    The underlying reason is that the transformation T?1ρ(t)=ρ*(t)cannot be fulfilled with regular T?1and an arbitrary ρ(t) ∈ Rn.Choosing ρ(0)in accordance with(a18)and observing that the last row of N*Requals zero,it holds true for?t that ρ(t)lies in the measurable subspace of Rnwhere this restriction does not apply.

    Appendix B Proof of Lemma 4

    The observability matrix of the system in(32)has the following form and its regularity is required for the system to be fully observable:

    Since the original system is assumed to be observable,QBis non-singular.Therefore,the regularity of A determines the observability of the extended system.However,if A posses an eigenvalue at zero and is thus singular,the first coefficient of its characteristic polynomial is a0=0.In this case,the theorem of Caley Hamilton(a8)gives that the last row of QBis linearly dependent on rows 2 until n.Therefore,the system is definitely not observable if A is singular.

    Appendix C Proof of Theorem 2

    To obtain an observer of order n the explicit form of the ROO(9)is used.In the resulting dynamic equation the first n stateestimates,namelyx(t),canbeseparatedfromthe(n+1)th component w(t).

    In order to derive the observer,the(n+1)-dimensional observer gain is separated into two components lR=[lGl2]Twith lG∈Rn,l2∈R.The ROO(9)applied to system(32)then reads:

    Unlike the ROO,there is no condition on the initial value ρx(0)because for an arbitrary ρx(0)there exists a ρw(0)so that the state in(a19a)lies in the n-dimensional measurable subspace.

    7 March 2013;revised 10 September 2014;accepted 11 October 2014

    ?Corresponding author.

    E-mail:jan.stellet@student.kit.edu.

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Jan Erik STELLET received the B.Sc.and M.Sc.degrees in Electrical Engineering and Information Technology from the Karlsruhe Institute of Technology in 2010 and 2012,respectively.He is currently a Ph.D.student at the Karlsruhe Institute of Technology.E-mail:jan.stellet@student.kit.edu.

    Tobias ROGG received the B.Sc.and M.Sc.degrees in Electrical Engineering and Information Technology from the Karlsruhe Institute of Technology in 2011 and 2014,respectively.He is currently a Ph.D.student at the Swiss Federal Institute of Technology in Zurich.E-mail:roggt@hpe.ee.ethz.ch.

    国产精品一区二区在线观看99| 男女无遮挡免费网站观看| 国产 精品1| 最近手机中文字幕大全| 26uuu在线亚洲综合色| 日韩制服骚丝袜av| 亚洲伊人久久精品综合| 国产精品福利在线免费观看| 人妻制服诱惑在线中文字幕| 免费看光身美女| .国产精品久久| 男女免费视频国产| 少妇人妻久久综合中文| 色视频在线一区二区三区| 国模一区二区三区四区视频| 内地一区二区视频在线| 91精品一卡2卡3卡4卡| .国产精品久久| 国产在线免费精品| 80岁老熟妇乱子伦牲交| 久热这里只有精品99| 联通29元200g的流量卡| 日韩欧美精品免费久久| 亚洲成人av在线免费| 女的被弄到高潮叫床怎么办| 国模一区二区三区四区视频| 男女边吃奶边做爰视频| 亚洲av成人精品一二三区| 午夜福利在线观看免费完整高清在| 最近中文字幕2019免费版| 亚洲第一区二区三区不卡| 男女边摸边吃奶| 欧美日韩在线观看h| 精品国产三级普通话版| 777米奇影视久久| 搡老乐熟女国产| 国产av国产精品国产| 少妇熟女欧美另类| 男女无遮挡免费网站观看| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 国内精品宾馆在线| 国产大屁股一区二区在线视频| 国产精品.久久久| av免费观看日本| 99九九线精品视频在线观看视频| 久热久热在线精品观看| 一个人看的www免费观看视频| 欧美亚洲 丝袜 人妻 在线| 免费久久久久久久精品成人欧美视频 | 日韩成人伦理影院| 久久99蜜桃精品久久| 成人影院久久| 啦啦啦啦在线视频资源| 十八禁网站网址无遮挡 | 成人影院久久| 妹子高潮喷水视频| 国产成人一区二区在线| 久久国产乱子免费精品| 一二三四中文在线观看免费高清| 久久久久久久国产电影| h日本视频在线播放| 亚洲精品,欧美精品| 亚洲熟女精品中文字幕| 久久99热这里只有精品18| 欧美国产精品一级二级三级 | 在线观看三级黄色| 男女边吃奶边做爰视频| 亚洲aⅴ乱码一区二区在线播放| 大香蕉97超碰在线| 亚洲婷婷狠狠爱综合网| 熟女人妻精品中文字幕| 99热6这里只有精品| 18禁动态无遮挡网站| 免费黄网站久久成人精品| av线在线观看网站| 精品久久久噜噜| 国产欧美日韩精品一区二区| 亚洲无线观看免费| 国产男女超爽视频在线观看| 汤姆久久久久久久影院中文字幕| 天美传媒精品一区二区| 成年av动漫网址| 精品酒店卫生间| 精品久久久久久久久亚洲| 国产黄片视频在线免费观看| 亚洲不卡免费看| 三级经典国产精品| 五月玫瑰六月丁香| 亚洲四区av| 丝袜脚勾引网站| av线在线观看网站| 大片免费播放器 马上看| 卡戴珊不雅视频在线播放| 一级黄片播放器| 六月丁香七月| 韩国高清视频一区二区三区| 乱码一卡2卡4卡精品| 国产伦在线观看视频一区| 日本-黄色视频高清免费观看| 男女下面进入的视频免费午夜| 国产精品一区二区性色av| 大话2 男鬼变身卡| 91午夜精品亚洲一区二区三区| av播播在线观看一区| 免费观看a级毛片全部| 亚洲第一区二区三区不卡| 交换朋友夫妻互换小说| 肉色欧美久久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 一边亲一边摸免费视频| 免费久久久久久久精品成人欧美视频 | 国产在线视频一区二区| 国产伦理片在线播放av一区| 中文字幕人妻熟人妻熟丝袜美| 青春草国产在线视频| 中文字幕精品免费在线观看视频 | 久久国产精品大桥未久av | 99热全是精品| 日韩强制内射视频| 亚洲内射少妇av| 久久99热这里只有精品18| 亚洲一级一片aⅴ在线观看| 亚洲aⅴ乱码一区二区在线播放| 熟女人妻精品中文字幕| 99热这里只有是精品50| 永久网站在线| 精华霜和精华液先用哪个| 人人妻人人添人人爽欧美一区卜 | 国产免费又黄又爽又色| 国产在线免费精品| 欧美精品人与动牲交sv欧美| 视频区图区小说| 丰满迷人的少妇在线观看| 国语对白做爰xxxⅹ性视频网站| 狂野欧美激情性bbbbbb| 又爽又黄a免费视频| 麻豆成人av视频| 我的老师免费观看完整版| 亚洲怡红院男人天堂| 超碰av人人做人人爽久久| 一本一本综合久久| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| 肉色欧美久久久久久久蜜桃| 最黄视频免费看| 激情五月婷婷亚洲| 免费观看的影片在线观看| 熟妇人妻不卡中文字幕| av黄色大香蕉| 亚洲欧美日韩东京热| 汤姆久久久久久久影院中文字幕| 久久精品国产自在天天线| 国产精品免费大片| 久久 成人 亚洲| 亚洲人与动物交配视频| 亚洲精品一区蜜桃| 日韩一区二区视频免费看| 国产黄片美女视频| 欧美xxⅹ黑人| 久热这里只有精品99| 黄色一级大片看看| 亚洲精品日韩av片在线观看| 深夜a级毛片| 精品国产露脸久久av麻豆| 久久精品国产亚洲av天美| 2021少妇久久久久久久久久久| 有码 亚洲区| 亚洲国产av新网站| 蜜臀久久99精品久久宅男| 久久久久久久久久人人人人人人| 熟女av电影| 老女人水多毛片| 中文字幕制服av| 美女高潮的动态| 18禁裸乳无遮挡免费网站照片| 在线播放无遮挡| 色5月婷婷丁香| 亚洲,欧美,日韩| 亚洲成色77777| 边亲边吃奶的免费视频| 国产高潮美女av| 亚洲精品视频女| 亚洲精品,欧美精品| 国产午夜精品久久久久久一区二区三区| 亚洲av国产av综合av卡| 国产精品福利在线免费观看| 黄片无遮挡物在线观看| 各种免费的搞黄视频| 亚洲精品国产av成人精品| 一个人免费看片子| 精品国产一区二区三区久久久樱花 | 日本vs欧美在线观看视频 | 乱码一卡2卡4卡精品| 大又大粗又爽又黄少妇毛片口| 国产av码专区亚洲av| 五月伊人婷婷丁香| 青青草视频在线视频观看| 三级国产精品片| 欧美+日韩+精品| 免费观看a级毛片全部| 国产精品女同一区二区软件| 免费看av在线观看网站| 人人妻人人看人人澡| 午夜日本视频在线| 一区二区三区精品91| 国产av国产精品国产| 国产成人免费观看mmmm| 久久人人爽av亚洲精品天堂 | 大香蕉久久网| 国产精品福利在线免费观看| 日韩强制内射视频| 久久人人爽人人片av| 国产成人a∨麻豆精品| 国语对白做爰xxxⅹ性视频网站| 欧美日韩亚洲高清精品| 国产精品.久久久| 亚洲欧洲国产日韩| av卡一久久| 国产精品蜜桃在线观看| 久久久欧美国产精品| 秋霞在线观看毛片| 国产精品国产av在线观看| 日本黄大片高清| 亚洲国产精品专区欧美| av在线播放精品| 99热6这里只有精品| 青春草视频在线免费观看| 日本免费在线观看一区| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影| 国产乱来视频区| 欧美日韩亚洲高清精品| 免费人成在线观看视频色| 欧美日韩一区二区视频在线观看视频在线| 最新中文字幕久久久久| 国国产精品蜜臀av免费| av不卡在线播放| 国产91av在线免费观看| 欧美变态另类bdsm刘玥| 欧美日韩一区二区视频在线观看视频在线| 国内揄拍国产精品人妻在线| 日本爱情动作片www.在线观看| 性色av一级| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 免费观看无遮挡的男女| 秋霞在线观看毛片| 国产午夜精品一二区理论片| 欧美日韩一区二区视频在线观看视频在线| 精品久久久久久电影网| 国内精品宾馆在线| 久久婷婷青草| 欧美精品一区二区免费开放| 日本一二三区视频观看| 内射极品少妇av片p| 各种免费的搞黄视频| 国产精品久久久久久久久免| 亚洲精品日韩在线中文字幕| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 国产淫片久久久久久久久| 精品酒店卫生间| 精品久久国产蜜桃| tube8黄色片| 欧美精品一区二区免费开放| 国产黄色视频一区二区在线观看| 亚洲第一区二区三区不卡| 免费观看无遮挡的男女| 久久av网站| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 国产精品久久久久成人av| 亚洲性久久影院| 国产一区亚洲一区在线观看| 精品人妻一区二区三区麻豆| 久久国产乱子免费精品| 在线免费观看不下载黄p国产| 亚洲最大成人中文| 亚洲精品国产色婷婷电影| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 大香蕉97超碰在线| 亚洲成人av在线免费| 一级毛片久久久久久久久女| 午夜视频国产福利| 日韩中文字幕视频在线看片 | 亚洲av国产av综合av卡| 国产片特级美女逼逼视频| 女性生殖器流出的白浆| 男女国产视频网站| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| 两个人的视频大全免费| av不卡在线播放| 女性生殖器流出的白浆| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 国产一区亚洲一区在线观看| 丝袜喷水一区| 亚洲怡红院男人天堂| 免费看日本二区| 91久久精品电影网| 国产精品嫩草影院av在线观看| 网址你懂的国产日韩在线| 国产精品一区二区在线不卡| 另类亚洲欧美激情| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 亚洲av日韩在线播放| 亚洲,一卡二卡三卡| 在线播放无遮挡| 国产成人精品婷婷| 99热这里只有是精品50| 日本vs欧美在线观看视频 | 高清视频免费观看一区二区| 18禁在线播放成人免费| kizo精华| 亚洲国产精品一区三区| 联通29元200g的流量卡| 欧美精品国产亚洲| 涩涩av久久男人的天堂| 久久99热这里只有精品18| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| 亚洲av免费高清在线观看| 欧美区成人在线视频| 日日摸夜夜添夜夜爱| 91精品一卡2卡3卡4卡| 免费久久久久久久精品成人欧美视频 | 久久精品熟女亚洲av麻豆精品| 美女国产视频在线观看| 纯流量卡能插随身wifi吗| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 交换朋友夫妻互换小说| 国产 精品1| av天堂中文字幕网| 欧美成人a在线观看| 国产一区二区三区综合在线观看 | 日本黄色日本黄色录像| 欧美性感艳星| 在线精品无人区一区二区三 | 九草在线视频观看| 校园人妻丝袜中文字幕| 久久久久国产网址| 国产av国产精品国产| 国产成人一区二区在线| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 校园人妻丝袜中文字幕| 国产毛片在线视频| 观看美女的网站| 国产精品国产av在线观看| 有码 亚洲区| 午夜免费观看性视频| 自拍欧美九色日韩亚洲蝌蚪91 | 天堂中文最新版在线下载| 精品久久久久久久末码| 国产精品久久久久久久电影| 插阴视频在线观看视频| 不卡视频在线观看欧美| 久久综合国产亚洲精品| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久| h视频一区二区三区| 麻豆国产97在线/欧美| 精品一区二区三卡| 高清av免费在线| 久久婷婷青草| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 一区二区av电影网| av黄色大香蕉| 日韩大片免费观看网站| 日本欧美视频一区| 精品久久久久久久久av| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 欧美高清成人免费视频www| 激情 狠狠 欧美| 欧美高清成人免费视频www| 中国国产av一级| 人人妻人人看人人澡| 在线观看国产h片| 久久毛片免费看一区二区三区| 国产精品欧美亚洲77777| 亚洲av中文字字幕乱码综合| 舔av片在线| 亚洲国产精品999| 亚洲av电影在线观看一区二区三区| 亚洲精品一二三| 我要看日韩黄色一级片| 国产一区二区三区综合在线观看 | 熟女电影av网| 久久久色成人| 国产女主播在线喷水免费视频网站| 亚洲四区av| 三级国产精品欧美在线观看| 国内精品宾馆在线| 亚洲精品乱码久久久久久按摩| 精品人妻熟女av久视频| 只有这里有精品99| 亚洲成人一二三区av| 欧美亚洲 丝袜 人妻 在线| 国产中年淑女户外野战色| 国产极品天堂在线| 极品教师在线视频| 国产伦精品一区二区三区视频9| av在线app专区| av免费在线看不卡| 精品视频人人做人人爽| 国产精品欧美亚洲77777| 久久亚洲国产成人精品v| 成人漫画全彩无遮挡| 日韩,欧美,国产一区二区三区| 嫩草影院新地址| 五月开心婷婷网| 国产精品久久久久久av不卡| 99精国产麻豆久久婷婷| 简卡轻食公司| 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 亚洲怡红院男人天堂| 中文字幕人妻熟人妻熟丝袜美| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三卡| 国产视频首页在线观看| 九草在线视频观看| videossex国产| 天堂中文最新版在线下载| av女优亚洲男人天堂| 国产成人精品久久久久久| 性色avwww在线观看| 国产成人freesex在线| 国产精品人妻久久久久久| 日本av免费视频播放| 女性被躁到高潮视频| 老熟女久久久| 国产熟女欧美一区二区| 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 亚洲成人av在线免费| 亚洲成色77777| 亚洲欧美清纯卡通| 91精品伊人久久大香线蕉| 久久av网站| 国产欧美日韩精品一区二区| 一区二区三区四区激情视频| 国产伦精品一区二区三区视频9| 亚洲国产精品成人久久小说| 乱系列少妇在线播放| 黄色欧美视频在线观看| 国产成人午夜福利电影在线观看| 免费看光身美女| 久久人妻熟女aⅴ| 欧美bdsm另类| 好男人视频免费观看在线| 精品亚洲乱码少妇综合久久| av天堂中文字幕网| 91久久精品电影网| av免费在线看不卡| 国产精品欧美亚洲77777| 青青草视频在线视频观看| 五月天丁香电影| 极品教师在线视频| av天堂中文字幕网| 久久久久人妻精品一区果冻| 日本一二三区视频观看| 婷婷色av中文字幕| 一个人看的www免费观看视频| 高清午夜精品一区二区三区| 精品人妻偷拍中文字幕| 男人舔奶头视频| av在线蜜桃| 久久精品人妻少妇| 国产黄频视频在线观看| 男女边摸边吃奶| 亚洲精品久久久久久婷婷小说| 国产精品国产三级国产av玫瑰| 国产高清国产精品国产三级 | 一个人看视频在线观看www免费| 天堂8中文在线网| 久久精品国产亚洲av涩爱| 久久国产亚洲av麻豆专区| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放| 一个人看的www免费观看视频| 一本久久精品| 男的添女的下面高潮视频| 51国产日韩欧美| 欧美日韩在线观看h| 国产v大片淫在线免费观看| 九九久久精品国产亚洲av麻豆| 极品少妇高潮喷水抽搐| 国产男女内射视频| 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 亚洲经典国产精华液单| 我要看黄色一级片免费的| 午夜福利网站1000一区二区三区| 欧美xxxx性猛交bbbb| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 亚洲一级一片aⅴ在线观看| 夜夜爽夜夜爽视频| 一级二级三级毛片免费看| 精品少妇黑人巨大在线播放| 大片免费播放器 马上看| 国产在线一区二区三区精| 三级经典国产精品| 十分钟在线观看高清视频www | 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 国产精品爽爽va在线观看网站| 国产精品欧美亚洲77777| 久久精品久久久久久噜噜老黄| 精品一区在线观看国产| 国产人妻一区二区三区在| 国产伦精品一区二区三区四那| 亚洲成人av在线免费| 亚洲精品自拍成人| 国产精品国产三级国产av玫瑰| 一级a做视频免费观看| 偷拍熟女少妇极品色| 日韩制服骚丝袜av| 波野结衣二区三区在线| 99久久精品一区二区三区| 国产成人精品一,二区| 午夜精品国产一区二区电影| 国产精品久久久久久久久免| av播播在线观看一区| 亚洲精品第二区| 男女啪啪激烈高潮av片| 久久久久精品性色| 久久热精品热| 久久久久精品性色| 男女边摸边吃奶| 51国产日韩欧美| freevideosex欧美| 最近2019中文字幕mv第一页| 男女边摸边吃奶| 久久精品夜色国产| 只有这里有精品99| 国产深夜福利视频在线观看| 少妇人妻 视频| 直男gayav资源| 亚洲国产av新网站| a级一级毛片免费在线观看| 人人妻人人添人人爽欧美一区卜 | 久久久久久伊人网av| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 在线看a的网站| 干丝袜人妻中文字幕| 爱豆传媒免费全集在线观看| 久久久久久久久久成人| 亚洲av免费高清在线观看| av在线观看视频网站免费| 最近最新中文字幕大全电影3| 啦啦啦在线观看免费高清www| 亚洲无线观看免费| 日本一二三区视频观看| 日本午夜av视频| 亚洲国产毛片av蜜桃av| 久久97久久精品| 你懂的网址亚洲精品在线观看| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 人人妻人人看人人澡| av卡一久久| 成年美女黄网站色视频大全免费 | 国产黄色视频一区二区在线观看| 亚洲欧洲国产日韩| 另类亚洲欧美激情| 久久国产亚洲av麻豆专区| 久久精品人妻少妇| 观看免费一级毛片| 深爱激情五月婷婷| 国产av码专区亚洲av| 午夜激情福利司机影院| 美女国产视频在线观看| 亚洲精品一二三| 久久国内精品自在自线图片| 三级国产精品欧美在线观看| 在现免费观看毛片| 一个人看的www免费观看视频| 免费高清在线观看视频在线观看| 一本一本综合久久| 国产熟女欧美一区二区| av不卡在线播放| 欧美日韩综合久久久久久| 人人妻人人添人人爽欧美一区卜 | 国产在线免费精品| 青青草视频在线视频观看| 18+在线观看网站| 欧美少妇被猛烈插入视频| 国产成人a区在线观看| 日韩不卡一区二区三区视频在线| 国产一级毛片在线| 最新中文字幕久久久久| 在线亚洲精品国产二区图片欧美 |