• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks

    2014-12-06 08:48:47ThangLongMAIYaonanWANG
    Control Theory and Technology 2014年4期

    Thang-Long MAI,Yaonan WANG

    1.College of Electrical and Information Engineering,Hunan University,Changsha Hunan 410082,China;

    2.Faculty of Electronics Engineering,Industrial University of Hochiminh City,Hochiminh City,Vietnam

    Adaptive-backstepping force/motion control for mobile-manipulator robot based on fuzzy CMAC neural networks

    Thang-Long MAI1,2?,Yaonan WANG1

    1.College of Electrical and Information Engineering,Hunan University,Changsha Hunan 410082,China;

    2.Faculty of Electronics Engineering,Industrial University of Hochiminh City,Hochiminh City,Vietnam

    Inthispaper,anadaptivebacksteppingfuzzycerebellar-model-articulation-controlneural-networkscontrol(ABFCNC)system for motion/force control of the mobile-manipulator robot(MMR)is proposed.By applying the ABFCNC in the tracking-position controller,the unknown dynamics and parameter variation problems of the MMR control system are relaxed.In addition,an adaptive robust compensator is proposed to eliminate uncertainties that consist of approximation errors,uncertain disturbances.Based on the tracking position-ABFCNC design,an adaptive robust control strategy is also developed for the nonholonomicconstraint force of the MMR.The design of adaptive-online learning algorithms is obtained by using the Lyapunov stability theorem.Therefore,the proposed method proves that it not only can guarantee the stability and robustness but also the tracking performances of the MMR control system.The effectiveness and robustness of the proposed control system are verified by comparative simulation results.

    Backstepping control;Fuzzy CMAC(cerebellar model articulation controller)neural networks;Adaptive robust control;Mobile-manipulator robot

    DOI10.1007/s11768-014-3181-4

    1 Introduction

    The applications of the mobile-manipulator robot(MMR)could be found in construction,mining,and planetarysciences.TheMMRconsistsofarmsandamobile platform with kinematic and dynamic constraints,which make it a highly coupled dynamic nonlinear system.Therefore,the traditional model-based feedback control methods[1–3]are not easy to apply in the MMR control system.However,the control of the MMR,withuncertainties,is necessary in many practical applications,and the adaptive control schemes have exhibited good properties as an attempt to cope with this problem[4–7].

    In the recent years,the adaptive model-free controllers-based fuzzy/neural networks(NNs)have also been appliedtodealwiththeuncertaindynamicsoftheMMR.The NNs,with the self-learning characteristic,good approximationcapability[8,9],aretheusefultechniquefor robotic control systems[10–13].Lin and Goldenberg[9]proposed an adaptive NNs controller to identify online the dynamics and eliminate disturbances of the MMR control system.However,the parameters of the Gaussian function in this scheme were chosen a priori and kept fixed[10,11].The authors in[13]have developed a modular fuzzy navigation method in changing and dynamic unstructured environments.In this method[13],an integration of robust controller and modified Elman NNs is to deal with uncertainties.However,this method[13]still contained the drawbacks of previous methods in requiring the knowledge of the bounded parameters.

    Recently,cerebellar model articulation controller(CMAC)has been developed rapidly.It is an autoassociative memory feedforward NNs with overlapping receptive fields[14].The CMAC has already demonstrated favorable features,such as fast learning,good generalization capability and simplicity of computation[15,16],when compared with the NNs.In the controllers-based Fuzzy CMAC(FCMAC)[17–19],the control performance can be enhanced by programming the appropriate membership-function rather than modifying the partition size to increase the computation burden.

    In the past decade,the backstepping control system(BCS)has been widely exploited in a variety of applications in robotic control systems[20–23].The main advantageoftheBCSisrepresentedbykeepingtherobustness properties with respect to the uncertainties[20].For the MMR control,the authors in[21]proposed the backstepping technique and the filtered-error method to construct the nonlinear tracking control laws for the MMR.Although the laws of this method were obtained by the Lyapunov theory to guarantee the stability of the controlled system,but the un-modeled dynamics and external disturbances were not considered.The intelligent techniques,such as the fuzzy and NNs,have been proven to be a good candidate for enhancing the ability and overcoming the defects of the recursive backstepping design methodology[22,23].

    In this study,a novel fuzzy CMAC NNs(FCNs)is proposed,which incorporates the highlighted properties of thefuzzytechnique,andtheCMAC.TheTakagi-Sugeno-Kang(TSK)[24,25]technique is incorporated with the CMAC structure,and this TSK-FCNs structure is different from the previous FCMAC structure[17–19].In the proposed TSK-FCNs structure,the rule-base contains the CMAC structure with layers and blocks,and it is a generalization of the conventional fuzzy system.Thus,the CMAC in the proposed FCNs structure is related to a fuzzy rule-base.With this feature,the proposed TSKFCNs can solve the constant output-weights problem of the FCMAC structures[17–19].

    The purpose of this study is to design an intelligent control system by inheriting the advantage of the conventional BCS to achieve the high-position tracking for the MMR control system.Therefore,in the proposed method,the FCNs are applied in the tracking-position ABFCNC-system to deal with unknown highly coupled dynamics of the MMR control system.Here,this approachisalsotoimprovetheflexibilityandcontrolspeed of the previous controllers-based NNs[10–13]for the MMR in the presence of various operating conditions.In addition,an adaptive-robust compensator is also proposed to solve the aforementioned drawbacks of the previous methods[10–13],such as the inevitable approximation errors,disturbances and the requirement for prior knowledge of the controlled system.Besides the position controller,the constraint-force control is also considered by an adaptive robust law.The onlinelearning algorithms of the controller-parameters are obtained by the Lyapunov theorem such that the stability of the controlled system is guaranteed.

    Therestofthepaperisorganizedasfollows.Section2 describes the properties of the MMR,the backstepping controller and the structure of the FCNs.In Section 3,the adaptive control algorithm is presented.The comparative simulation results for MMR are described in Section 4.Finally,conclusion is drawn in Section 5.

    2 Preliminaries

    2.1 System description

    The dynamics of MMR system can be considered as the dynamics of an n-degree of freedom manipulators mounted on a mobile platform that can be expressed as a Lagrange function of the following form[5,6]:

    and m-kinematic constraints are described by

    where q,˙q,¨q∈Rn×1are the joint position vector,velocity vector and acceleration vector,respectively.M(q)∈Rn×nis the inertia matrix.C(q,˙q)˙q∈Rn×1expresses the vector of centripetal and coriolis torques.G(q) ∈ Rn×1is the gravity vector. τd∈ Rn×1is unknown disturbances.τ ∈ Rr×1is the torque input vector.r=n ? m,B(q)∈ Rn×ris the input transformation matrix.f=A(q)Tγ,A(q)∈ Rm×nis the full rank matrix.γ ∈ Rm×1isthevectorLagrangianmultiplier,n,m,r∈ N.For convenience,a mobile 3-DOF manipulators robot,as shown in Fig.1,is applied to verify dynamics properties that are given in Section 4.

    Fig.1 The 3-DOF mobile manipulator robot model.

    In our study,we assume that the MMR is subject to nonholonomic constraints.Thus,the dynamics of the MMR(1)can be expressed in the following forms[5,6]:

    From the above analysis,(2)can be expressed as

    where ZT(qn)Z(qn)is also a full-rank matrix.From(4)and(5),there exists a vector ρ and its derivation˙ρ satisfies

    Following(8),the dynamics of the MMR system(1)can be rewritten as the following form[5,6]:

    The nonholonomic-force multiplier γncan be obtained by(9)

    where Υ =(AM?1AT)?1AM?1.

    Property 1 M is a uniformly bounded and continuous[5].

    Property 2 Mξis a positive definite symmetricmatrix,Mξis uniformly bounded:mξ1‖x‖2≤ xTMξx ≤mξ2‖x‖2,?x ∈ R(n?m)×1,where mξ1and mξ2denote the minimum and maximum eigenvalues of Mξ,respectively[5].

    Property 3Skew-symmetric matrix[5]:Sξ≡˙Mξ?2Cξ,where Sξ(ξ,ξ)is a skew-symmetric matrix.

    2.2 Backstepping controller

    A conventional backstepping control system for the motion of the MMR is developed to assist and provide an essential background for the design of the proposed controller to be introduced in the next section.Given a desired position trajectory=We will designabacksteppingcontrollersothat=tracksThe(t)is assumed to be bounded and uniformly continuous.It also has bounded and uniformly continuous derivatives up to the second orders.

    In this study,a decoupling-control scheme is introduced to control the generalized position and the constraint force,separately.Thus,the control input u is considered in the following form[5]:

    where two terms on the right side of equation(11)are the backstepping control inputs for the torque and the nonholonomic-constraint force.The detailed structure of the position-backstepping controller is described step-by-step as follows:

    Step 1 Define a tracking error vector eξ1(t)as

    and its derivative as

    where Kξ1is the positive constant matrix.The first Lyapunov function is chosen as the following form:

    Define the following vector:

    Then the derivative of Vξ1(t)can be represented as

    Step 2 The derivative of eξ2can be expressed as

    where¨ξcan be viewed as the second virtual controlinput.By using(12)–(14),(16)and(18),then,(9)can be rewritten as follows:

    Define the second Lyapunov function as the following form:

    Then,the derivative of Vξ2(t)can be represented as

    By using(19),then,(21)can be expressed as

    where yc=Mξ˙rξ1+Cξrξ1+Gξ.

    Step 3 If the dynamics of the MMR are exactly known,then the position-backstepping controller can be designed in the following form:

    where Kξ2is a positive constant matrix.By substituting(23)into(22),we can obtain the following inequality:

    As can be seen from(23),˙Vξ2(t)≤0.Therefore,the stability of the position-backstepping controller system can be guaranteed[26].Unfortunately,this positionbackstepping controller requires the detailed dynamics of the MMR that cannot be exactly obtained.Thus,the FCNs will be proposed in the next section to deal with this drawback.

    2.3 The structure of FCNs

    The proposed FCNs’strategy is to combine the TSK-fuzzysystem with andCMAC.Fig.2showsthe structure of the proposed FCNs,which is explained as follows.

    Fig.2 Architecture of the FCNs.

    with j=1,...,nl,k=1,...,nb,i=1,...,ni,r=1,...,nr,o=1,...,no,ni,nl,nb,nr,no∈N.niis the number of inputs(input dimension),nlis the number of layers for each input,nbis the number of blocks for each layer,nois the number of outputs,nris the number of fuzzy rules and nr=nlnb.xiis the fuzzy input ith,is the fuzzy membership function for the ith input,jth layer,kth block,wojkis the TSK-type outputweight for oth TSK fuzzy output.is the adjustable factor of consequence part of fuzzy rules.This dynamic TSK-FCNs model is composed of the input,membership,rule-field,TSK-weights memory,and fuzzy-output spaces.The detail of the spaces is introduced as follows:

    1)Input space.For given input signals X =where niis the number of input signals.X can be quantized into discrete regions and moved to the next space by the neurons.These regions are the elements/neurons and(resolution)is represented as the number of elements.

    2)Membership space.In this space,some elements can be accumulated as a block,which is the Gaussian membershipfunction,iscalculated by the following formula:

    where dijkis the variance parameter,and cijkis the mean parameter.

    3)Rule-field space(receptive field).Areas formed by blocks.Each block is presented as a rule-field.However,we use the AND operator to calculate outputs of this space

    Operation of the product?can be referred to fuzzy inference mechanism and it is used to determine the firing strength.However,the multi-dimensional receptive field functions can be expressed in a vector form:

    4)TSK space(TSK-weight memory).TSK layer describes the linear-combination functions in the consequent part of the fuzzy system.Moreover,the fuzzyweight memory can be described as

    where oojk=[wo11···wo1nb···wonl1···wonlnb]T,o=1,...,no,no∈ N,oojk∈ Rnlnb×1.Moreover,following the definition of theTSK-fuzzy rule,wojkisdetermined as

    where X=x1+x2+...+xni.

    5)Output space.Each node in this layer expresses the output linguistic variable and it is computed as the summation of the activated weight with the rule-field space

    In addition,it can be denoted as

    where d,c,P are the translation parameter vector,dilation parameter vector,and weight matrix,respectively.However,their vector forms are denoted as follows:

    In this paper,we have no knowledge of the dynamic robotic system.Therefore,the proposed FCNs are applied to deal with unknown/uncertain dynamics of the mobile-manipulator robot.Based on the universal approximation error analysis,there exists an optimal FCNs structure with its optimal parameter such that[9]

    where P*,d*,c*are the optimal unknown parameters of the P,d,c,respectively,and Δ(x(t))is the approximation error vector.

    Assumption 1 The norms of optimal weights are bounded ‖P*‖≤ bP,‖d*‖≤ bd,‖c*‖≤ bc,where bP,bd,bcare the positive real values.

    Assumption 2 Error of approximation process and disturbances of the robotic system are bounded:‖Δ‖≤bΔ,‖τod‖≤ τbo,where bΔ,τboare the positive real values.

    3 Adaptive control algorithm

    Follow the aforementioned analysis of the positiontrackingBCS,wefirstproposetheposition-trackingcontroller that combines the BCS and the FCNs.Then,the adaptive-robust controller for the constraint force will be developed.Fig.3 describes the structure of the proposed control system.The detailed procedure of our design is presented as follows.

    Fig.3 Diagram blocks of the control system.

    3.1 Position tracking control design

    The ideal BSC law in(23)depends on the unknown dynamics(1).Thus,the term ycwill be approximated by the proposed FCNs.The part τξdis the uncertain disturbances that may contain unstructured parts of the robot model.In addition,the approximation of FCNs will always generate the inevitable approximation errors.Therefore,a robust compensator will be proposed in order to estimate and compensate for τξdand approximation errors.An actual ABFCNC-torque control-law is proposed as

    where?udris the robust term that is used to eliminate the approximation errors,unknown disturbances,unstructured parts of the robot model,the part?ycis the FCNs approximation function of the unknown function yc(22).According to(34),it can be represented as

    By applying the position control law(35)to the dynamics of MMR(19),the closed-loop control system can be expressed as follows:

    where the approximation error?ycis defined as

    We can find that the closed-loop dynamic controlled system(38)from?ycto eξ2is a state-strict passive system[9].The passivity is an important feature,which may guarantee the boundedness of the control system signals.In general,a hybrid-NNs controller cannot guarantee to be passive if we do not give an appropriate updating law for parameters of the networks.To achieve this,the linearization technique is applied to transform the nonlinear output of the FCNs function into a partially linear form[8]so that the Lyapunov theorem extension can be applied.Hence,we will take the expansion of?r in a Taylor series to obtain

    where Θ is the vector of higher-order terms in the Taylor series expansion,assume that I,K are bounded by the positive constants,

    From(38)and(40),some simple steps of transform follow,and,we can obtain

    whereΓ=XP*T(?r+IT?d+KT?c)?X?PT(ITd*+KTc*)+Δ+τξd.

    By substituting(41)into(37),the closed-loop dynamics system can be rewritten as

    Following Assumptions 1 and 2,the characteristic of the Gaussian function and(41),then,we can obtain the following inequality:

    where β*T=[β1β2β3β4],σT=[1‖?d‖‖?c‖‖?P‖],α is the positive constant,β1,β2,β3,β4are the positive constants,and they are uncertain bounds ofrespectively.

    In order to guarantee the stability of system(42),the robust term?udrmust eliminate the part Γ.Therefore,the robust term?udris used to estimate the uncertain bound β*Tσ,which is proposed as

    where brand δ are the positive constants,?β is an estimated value of β*.

    Based on the above analysis,the adaptive-learning algorithms of the FCNs controller and the robust term are proposed as follows:

    where KP,Kd,Kcand Kβare the positive constant diagonal matrices.

    3.2 Constraint force control design

    Given a desired nonholonomic constraint force fndor equivalently,a desired multiplier γd.We will design a constraint-force controller so that f tracks fndor equivalently,γ tracks γnd.The desired multiplier γd(t)is assumed to be bounded and uniformly continuous.We define the tracking error vectors eγ1(t)as

    From the definition(47)and(10),we can get

    where eγ2= γnd?Kγeγ1,Kγeγ1is the linear proportional derivative type compensator.However,the update-rule for?η is proposed as

    where Kηis the positive constant.

    3.3 Stability analysis

    Theorem 1 By considering the MMR control system(9),(10),all the Assumptions hold.If the ABFCNC-laws for the tracking-position are(35)and(45),the control law for the constraint force is(49),and the adaptive online learning algorithms for the FCNs and the robust term are designed as(46),and the adaptive robust algorithm for the constraint-force control is designed as(50),then,

    1)The parameters of the FCNs and the approximation errors are bounded,and the ABFCNC-state errors eξ1(t),eξ2(t)converge to zero.

    2)eγ1(t)and the control inputs are bounded for t≥ 0.The stability of the ABFCNC-system is guaranteed.

    Proof 1)Define the Lyapunov function candidate as

    By substituting(42)into(52),one can obtain

    If the update laws of the ABFCNC system are chosen as(46),then(53)can be rewritten as

    By substituting(45)into(55),it can be concluded that

    Accordingto(56),sinceV(eξ1(t),eξ2(t),?P,?d,?c,?β)≤0and ˙V(eξ1(t),eξ2(t),?P,?d,?c,?β)is a negative semi-definite function,that is,

    It implies that if eξ1(t),eξ2(t)? are bounded at the initial moment t≥ 0,they will remain bounded for t≥ 0.Therefore,eξ1(t),eξ2(t)are bounded for t≥0.Let function Ω(t)≡and integrate the function Ω(t)with respect to time

    Since V(eξ1(0),eξ2(0),?P,?d,?c,?β)is a bounded function and V(eξ1(t),eξ2(t),?P,?d,?c,?β)is a non-increasing and bounded function,the following resultcan be concluded:

    2)By substituting(49)and(50)into(48),we yields

    Remark 1 In accordance with the above analyses and the designing of the proposed controllers,the requirement for the bounded uncertainties in our control system is relaxed.The adaptive robust term(45)is used to estimate the bounds of uncertainties,which include the approximation errors,optimal parameter vectors,the parts of Taylor series,and the disturbances of the controlled system.The assumptions for the bounds of parameters are only used to analyze the stability of the control system,and they disappear in our designed controllers.

    4 Simulation results

    To verify the effectiveness of the proposed method,we consider the 3–DOF mobile manipulator model in[6],as shown in Fig.1.Some parameters of the dynamics of this MMR model are modified as

    In order to exhibit the superior control performance and effectiveness of the proposed scheme,theproportional-integral-differentialcontrol(PIDC),and the NNs in[9]were examined in the meanwhile.ThePIDC law can be expressed as τ =+portional,integral and differential gain matrices,respec-tively,and they are designed by a compromise between the superiority of control performance and the magnitude of control effort,and they are given as Kpc=diag{90,95,40,40,40},Kic=diag{0.8,0.7,0.4,0.3,0.4},Kdc=diag{1320,1020,850,750,600}.The detailed parameters of the proposed controllers are given as

    For recording the respective control performances,the mean square error(MSE)of the position-tracking response is define as MSE=where T is the total sampling instants.Based on this definition,the normalized MSE(NMSE)value of the positiontracking response by using a per-unit value with 1 rad is used to examine the control performance.The desired joint positions and nonholonomic-force control of the 3-DOF-mobile-manipulators are defined as ξd=[4t 4.5t sin(2πt/7) π/2 0.5sin(2πt/6)]rad,γd=20.

    To investigate the effectiveness and robustness of the proposed scheme,two simulation cases including the parameter variations and disturbances are considered:

    The simulated comparisons(the tracking-positions and the tracking-errors)of the PIDC,NNs[10],and ABFCNC schemes are depicted in Fig.4(a)–(c),and(h)–(k)(forCase1)andFig.5(a)–(c),and(h)–(k)(forCase2).Thesimulated-comparisonNMSEvaluesofeachmethod are presented in Tables 1 and 2.In Cases 1 and 2,we can achieve a good tracking-position with the ABFCNC,PIDC,and NNs methods.However,the tracking errors of the proposed ABFCNC strategy converge faster than that of the NNs,and PIDC methods.In addition,we can see in the NMSE measures,the proposed ABFCNC strategy has position tracking improvements than that of the PIDC and NNs schemes.Fig.4(d)–(f)(for Case 1)and Fig.5(d)–(f)(for Case 2)represent the torque-control inputs of the ABFCNC,NNs,and the PIDC methods.In Case 1,the performance of the control-torque inputs of all the methods are good.In Case 2,while the proposed ABFCNC and the NNs strategies can show good torque input performances at the parameter variation conditions(higher-frequency disturbances,changing load on links),then PIDC torque input performance has occurred chattering phenomena.In the simulation of the PIDC scheme,the PID parameters are chosen according to the Ziegler-Nichols tuning rules that based on the step response of robot-control system.However,the MMR-control system is the complex model,so,the selection of the PIDC parameters is not easy.The performance of the PIDC,shown in the simulation results,are the best in terms of handling the heuristic process,but the chattering phenomena still exists when the frequency of the external disturbances increases or the load of the robot system is changed suddenly.In the NNs[10]simulation,some control parameters,such as RBF function parameters that help achieving highaccuracy are not easy to determine.These drawbacks cause the adaptation of the controllers-based NNs,or the PIDCs are lower than in the proposed method.In the proposed method simulation,the parameters of the proposed controller are chosen through some trials.The rise-time of the steady-state-error can be reduced by increasing Kξ1,Kξ2,Kγ.However,the fast rise-time and small steady-state-error will increase the control input.The learning parameters α,KP,Kd,Kc,Kη,Kβare chosen based on the response of the tuning objects and the accuracy of the approximation process.The selection of these parameters relates to the convergence rate of the state error.High learning rates may cause the ABFCNC system produces unstable output although the convergence speed becomes faster.

    Fig.4 Simulation results with Case 1.(a)Link 1,(b)Link 3,(c)mobile base,(d)ABFCNC,(e)NNs,(f)PIDC,(h)Link 1,(i)Link 3,(j)θL,and(k)θR.

    Fig.5 Simulation results with Case 2.(a)Link 1,(b)Link 3,(c)mobile base,(d)ABFCNC,(e)NNs,(f)PIDC,(h)Link 1,(i)Link 3,(j)θL,and(k)θR.

    The simulated comparisons with the constraint-force of all the methods are represented in Fig.4(g),and Fig.5(g).The constraint-force designing of the NNs controller is similarto ABFCNC controller.However,the constraint-force designing of PIDC scheme is different,and the PIDC for the constraint-force is considered.In Case1,theperformanceofconstraint-forceoftheABFC-NC and NNs methods is good,but the simulation result of the PIDC is poor in the steady state.In Case 2,while the proposed method can show good constraint-force performance at the parameter variation conditions,and then,the simulation results of the NNs and PIDC are not good,and undesired response appears when time increases.Here,the robust characteristic of the proposed controller can be set with regard to the parameter variation and external disturbances.The simulated results of the robust term,FCNs outputs and estimation parametersoftheproposedcontrolsystem(withrespecttoCases 1 and 2)are depicted in Fig.4(l)–(n)and Fig.5(l)–(n).These simulation results are good,and they have proved the correctness of the proposed method including the boundedness of the control system parameters.Based on the comparison simulations,the proposed ABFCNC method is more suitable to be implemented to control the mobile-manipulator robot under the occurrence of parameter variation and external disturbances.

    Table 1 NMSE comparisons of ABFCNC,NNs and PIDC schemes with Case 1(unit:×104rad).

    Table 2 NMSE-comparisons of ABFCNC,NNs and PIDC schemes with Case 2(unit:×104rad).

    5 Conclusions

    In this paper,we presented a novel ABFCNC strategy for motion/force of the MMR.The FCNs have been applied in the tracking-position ABFCNC system to approximate the dynamics of the robotic control system.The proposed control system has guaranteed the requirement for high accuracy of the position-tracking errors and nonholonomic constraint force under variation conditions.In the ABFCNC system,the information about constrained/assumption conditions or dynamics,and uncertainties of robotic system control is not required.In addition,all adaptive online learning laws in the proposed control system are obtained in the sense of Lyapunov stability theorem so that the stability of the closed-loop control system can be guaranteed whether or not the appearance of uncertainties According to the comparison results of the simulation process,besides the stability and robustness features,the performance of the ABFCNC system has been improved.The proposed method can be applied as a good alternative in the existing MMR control system.

    [1]Y.Yamamoto,X.Yun.Effectofdynamicinteraction on coordinated control of mobile manipulators.IEEE Transactions on Robotics and Automation,1996,12(5):816–824.

    [2]K.Watanabe,K.Sato,K.Izumi,et al.Analysis and control for an omnidirectional mobile manipulator.Journal of Intelligent and Robot Systems,2000,27(1/2):3–20.

    [3]F.Inoue,T.Murakami,K.Ohnishi.A motion control of mobile manipulator with external force.IEEE/ASME Transactions on Mechatronics,2002,6(2):137–142.

    [4]W.Dong.On trajectory and force tracking control of constrained mobile manipulators with uncertainty.Automatica,2001,38(9):1475–1484.

    [5]Z.Li,S.S.Ge,A.Ming.Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators.IEEE Transactions on Systems,Man,and Cybernetics–Part B:Cybernetics,2007,37(3):607–616.

    [6]Z.Li,S.S.Ge,M.Adams,et al.Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators.Automatica,2008,44(3):776–784.

    [7]Z.Li,Y.Yang,J.Li.Adaptive motion/force control of mobile under actuated manipulators with dynamics uncertainties by dynamic coupling and output feedback.IEEE Transactions on Control Systems Technology,2010,18(5):1068–1079.

    [8]F.L.Lewis,S.Jagannathan,A.Yesildirek.Neural Network Control ofRobotManipulatorsandNonlinearSystem.Philadelphia:Taylor&Francis,1999.

    [9]F.L.Lewis,A.Yesildirek,K.Liu.Multilayerneural-net robot controller with guaranteed tracking performance.IEEE Transactions on Neural Networks,1996,7(2):388–399.

    [10]S.Lin,A.A.Goldenberg.Neural-network control of mobile manipulators.IEEETransactionsonNeuralNetworks,2001,12(5):1121–1133.

    [11]C.Lee,T.Eom,J.Lee.Neuro-adaptive control of mobile manipulators base on compensation of approximation error.IET Electronics Letters,2002,38(16):935–936.

    [12]D.Xu,D.Zhao,J.Yi,et al.Trajectory tracking control of omnidirectional wheeled mobile manipulators:robust neural network-based sliding mode approach.IEEE Transactions on Systems,Man,and Cybernetics–Part B:Cybernetics,2009,39(3):1653–1658.

    [13]J.B.Mbede,P.Ele,C.M.M.Abia,et al.Intelligent mobile manipulator navigation using adaptive neuro-fuzzy systems.Information sciences,2005,171(4):447–474.

    [14]J.S.Albus.A new approach to manipulator control:the cerebellar model articulation controller(CMAC).Journal of Dynamic Systems,Measurement,and Control,1975,97(3):220–227.

    [15]Y.H.Kim,F.L.Lewis.Optimal design of CMAC neural-network controller for robot manipulators.IEEE Transactions on Systems,Man,and Cybernetics–Part C:Applications and Reviews,2000,30(1):22–31.

    [16]C.Lin,Y.Peng.Adaptive CMAC-based supervisory control for uncertain nonlinear systems.IEEE Transactions on Systems,Man,and Cybernetics–Part B:Cybernetics,2004,34(2):1248–1260.

    [17]S.Su,Z.J.Lee,Y.Wang.Robust and fast learning for fuzzy cerebellar model articulation controllers.IEEE Transactions on Systems,Man,and Cybernetics–Part B:Cybernetics,2006,36(1):203–208.

    [18]W.Yu,F.O.Rodriguez,M.A.M.Armendariz.Hierarchical fuzzy CMAC for nonlinear systems modeling.IEEE Transactions on Fuzzy Systems,2008,16(5):1302–1314.

    [19]C.Lin,H.Li.A novel adaptive wavelet fuzzy cerebellar model articulation control system design for voice coil motors.IEEE Transactions on Industrial Electronics,2012,59(4):2024–2033.

    [20]M.Krstic,I.Kanellakopoulos,P.V.Kokotovic.Nonlinear and Adaptive Control Design.New York:Wiley,1995.

    [21]C.C.Tsai,M.Cheng,S.Lin.Dynamic modeling and tracking controlofanonholonomicwheeledmobilemanipulatorwithdual arms.Journal of Intelligent and Robotic Systems,2006,47(4):317–340.

    [22]F.Hong,S.S.Ge,C.Pang,et al.Robust adaptive neuro-fuzzy control of uncertain nonholonomic system.Journal of Control Theory and Applications,2010,8(2):125–138.

    [23]S.Tong,Y.Li.Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones.IEEE Transactions on Fuzzy Systems,2012,20(1):168–180.

    [24]S.Chen,W.Ho,J.Chou.Robust controllability of T-S fuzzymodel-based control systems using sliding-mode technology.IEEE Transactions on Fuzzy Systems,2009,17(6):1324–1335.

    [25]Z.Xi,G.Feng,T.Hesketh.Piecewise sliding-mode control for T-S fuzzy system.IEEE Transactions on Fuzzy Systems,2011,19(4):707–716.

    [26]J.J.E.Slotine,W.Li.Applied Nonlinear Control.Englewood Cliffs:Prentice-Hall,1991.

    Thang-Long MAI received the B.Sc.and M.Sc.degrees from Department of Automatic Control,Faculty of Electrical and Electronics,Viet Nam National University,Ho Chi Minh City University of Technology.He received the Ph.D.degree at College of Electrical and Information,Hunan University,China.His current research interests include robotic control,learning control and intelligent control.E-mail:mailongtk@gmail.com.

    Yaonan WANG received the B.Sc.degree in Computer Engineering from East China Science and Technology University(ECSTU),Fuzhou,China,in1981,andtheM.Sc.and Ph.D.degrees in Electrical Engineering from Hunan University,Changsha,China,in 1989 and 1995,respectively.From 1995 to 1997,he was a postdoctoral research fellow with the National University of Defense Technology.From 1981 to 1994,he worked with ECSTU.From 1998 to 2000,he was a senior Humboldt fellow in Germany,and from 2001 to 2004,he was a visiting professor with the University of Bremen,Bremen,Germany.He has been a professor at Hunan University since 1995.His research interests are intelligent control and information processing,robot control,image processing,and industrial process contro.E-mail:yaonan@hnu.cn.

    Journal title change

    We would like to inform you that the title of‘Journal of Control Theory and Applications’is changed to ‘Control Theory and Technology’.The change will be effective from the beginning of 2014.

    We welcome your submissions for the journal with new title(http://controls.papercept.net).

    2 May 2014;revised 14 November 2014;accepted 17 November 2014

    ?Corresponding author.

    E-mail:mailongtk@gmail.com.Tel.:+84 902 698 315.

    This work was supported by the National Natural Science Foundation of China(Nos.6117075,60835004)and the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA111004,2012AA112312).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    久久国产精品大桥未久av| av福利片在线| 高清在线国产一区| 欧美日韩精品网址| 精品国产美女av久久久久小说| 午夜福利在线免费观看网站| 亚洲人成电影免费在线| 人人妻人人添人人爽欧美一区卜| 下体分泌物呈黄色| 午夜福利一区二区在线看| 极品教师在线免费播放| 成人国语在线视频| 欧美乱色亚洲激情| 搡老岳熟女国产| 国产一区二区激情短视频| 在线观看免费日韩欧美大片| 日韩欧美在线二视频 | 99国产综合亚洲精品| 亚洲综合色网址| 黑人猛操日本美女一级片| 欧美日韩瑟瑟在线播放| avwww免费| 亚洲av电影在线进入| av福利片在线| 咕卡用的链子| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 日韩有码中文字幕| 一区二区三区国产精品乱码| av天堂在线播放| 美女高潮到喷水免费观看| 波多野结衣一区麻豆| 欧美大码av| 变态另类成人亚洲欧美熟女 | 成人特级黄色片久久久久久久| avwww免费| 大型av网站在线播放| 91麻豆av在线| 久热爱精品视频在线9| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 美女扒开内裤让男人捅视频| 下体分泌物呈黄色| 黄片小视频在线播放| 国产黄色免费在线视频| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 久久中文看片网| 日韩大码丰满熟妇| 人妻丰满熟妇av一区二区三区 | 亚洲av熟女| 亚洲成国产人片在线观看| 韩国av一区二区三区四区| 日本五十路高清| 免费高清在线观看日韩| 一级片'在线观看视频| 高清欧美精品videossex| 91成人精品电影| 亚洲av电影在线进入| x7x7x7水蜜桃| 亚洲一区中文字幕在线| 在线永久观看黄色视频| 亚洲av欧美aⅴ国产| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 久久精品aⅴ一区二区三区四区| 夜夜爽天天搞| 欧美国产精品一级二级三级| 久久久久久免费高清国产稀缺| 人妻一区二区av| 桃红色精品国产亚洲av| 精品少妇久久久久久888优播| 999久久久精品免费观看国产| 深夜精品福利| 国产麻豆69| 国产成人精品久久二区二区免费| videos熟女内射| 性色av乱码一区二区三区2| 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 久热这里只有精品99| 天天操日日干夜夜撸| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| 波多野结衣av一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| 亚洲成人手机| 亚洲精品国产区一区二| 五月开心婷婷网| 美女 人体艺术 gogo| 在线观看舔阴道视频| 欧美av亚洲av综合av国产av| 精品免费久久久久久久清纯 | 十八禁网站免费在线| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 老熟女久久久| 国产精品久久久久久人妻精品电影| 国产男女内射视频| 不卡一级毛片| 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 成年版毛片免费区| 国产91精品成人一区二区三区| 国产精品偷伦视频观看了| 50天的宝宝边吃奶边哭怎么回事| 老熟女久久久| 中亚洲国语对白在线视频| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 男女床上黄色一级片免费看| 99热网站在线观看| 一二三四在线观看免费中文在| 亚洲精品一二三| 欧美日韩视频精品一区| 美女福利国产在线| 成年动漫av网址| 视频在线观看一区二区三区| 国产在线精品亚洲第一网站| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 在线播放国产精品三级| 老熟女久久久| 18在线观看网站| 一级毛片女人18水好多| 免费少妇av软件| 亚洲黑人精品在线| 一级毛片女人18水好多| 美女午夜性视频免费| 免费看十八禁软件| 在线观看舔阴道视频| 日韩 欧美 亚洲 中文字幕| 又大又爽又粗| 搡老熟女国产l中国老女人| 国产成人系列免费观看| 男人操女人黄网站| a级毛片黄视频| 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一av免费看| 如日韩欧美国产精品一区二区三区| 精品高清国产在线一区| 巨乳人妻的诱惑在线观看| 亚洲精品自拍成人| 精品国产国语对白av| 精品一区二区三卡| 国产精华一区二区三区| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕| 无人区码免费观看不卡| 免费日韩欧美在线观看| 亚洲av成人av| 91麻豆av在线| 午夜免费成人在线视频| 一级片免费观看大全| 黄色a级毛片大全视频| 亚洲精品在线观看二区| a在线观看视频网站| 91精品国产国语对白视频| 搡老岳熟女国产| a在线观看视频网站| 一级毛片高清免费大全| av视频免费观看在线观看| 亚洲一区二区三区欧美精品| 99久久99久久久精品蜜桃| 免费少妇av软件| 亚洲五月婷婷丁香| 一本大道久久a久久精品| 80岁老熟妇乱子伦牲交| 午夜老司机福利片| 国产亚洲av高清不卡| 亚洲中文av在线| 久久久国产成人精品二区 | 日本欧美视频一区| 中文字幕人妻熟女乱码| 在线观看66精品国产| 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 在线观看免费视频日本深夜| 啦啦啦免费观看视频1| 少妇被粗大的猛进出69影院| 黄片播放在线免费| 亚洲情色 制服丝袜| 国产成+人综合+亚洲专区| 国产野战对白在线观看| 女人久久www免费人成看片| 男人操女人黄网站| 最近最新中文字幕大全电影3 | 国产亚洲欧美在线一区二区| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品久久电影中文字幕 | 伊人久久大香线蕉亚洲五| 久久久久久免费高清国产稀缺| 精品国产美女av久久久久小说| 最近最新中文字幕大全免费视频| 成人三级做爰电影| 在线十欧美十亚洲十日本专区| 新久久久久国产一级毛片| 久久精品国产清高在天天线| 老汉色av国产亚洲站长工具| 18在线观看网站| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕欧美一区二区| 国产一区在线观看成人免费| 啦啦啦免费观看视频1| 亚洲精品美女久久av网站| 99热只有精品国产| 在线观看免费日韩欧美大片| 黑人猛操日本美女一级片| 日韩免费高清中文字幕av| av天堂在线播放| 欧美日韩乱码在线| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 国产精品永久免费网站| 亚洲三区欧美一区| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 最新在线观看一区二区三区| 丰满迷人的少妇在线观看| 亚洲午夜理论影院| 国产精品亚洲av一区麻豆| 国产精品免费视频内射| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 丰满饥渴人妻一区二区三| 狠狠婷婷综合久久久久久88av| 亚洲情色 制服丝袜| 亚洲国产精品sss在线观看 | 中文字幕人妻熟女乱码| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 免费在线观看日本一区| 午夜免费观看网址| 女人被狂操c到高潮| 亚洲三区欧美一区| a级毛片在线看网站| 亚洲av成人一区二区三| 亚洲熟妇熟女久久| 久久热在线av| 在线永久观看黄色视频| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 成年人黄色毛片网站| 国产免费男女视频| 久久久国产精品麻豆| 久久午夜综合久久蜜桃| av欧美777| 精品国产一区二区久久| 亚洲精品中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕 | 如日韩欧美国产精品一区二区三区| 色婷婷久久久亚洲欧美| 亚洲性夜色夜夜综合| 成人18禁高潮啪啪吃奶动态图| 午夜影院日韩av| 两性夫妻黄色片| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 波多野结衣av一区二区av| 国产精品美女特级片免费视频播放器 | 国产不卡一卡二| 视频区图区小说| 一边摸一边做爽爽视频免费| 51午夜福利影视在线观看| 国产成人免费无遮挡视频| 国产91精品成人一区二区三区| 可以免费在线观看a视频的电影网站| 欧美日韩黄片免| 交换朋友夫妻互换小说| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月 | 国产精品国产av在线观看| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 女性被躁到高潮视频| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产美女av久久久久小说| aaaaa片日本免费| 丝袜在线中文字幕| 国产精华一区二区三区| 欧美成人午夜精品| 国产黄色免费在线视频| 国产精品免费视频内射| av网站免费在线观看视频| av电影中文网址| 国产一区二区激情短视频| 久久人妻av系列| av在线播放免费不卡| 国产亚洲欧美98| 亚洲专区中文字幕在线| 欧美乱妇无乱码| 少妇 在线观看| 亚洲国产精品一区二区三区在线| 又黄又粗又硬又大视频| 中文字幕人妻丝袜制服| 亚洲专区字幕在线| 精品国产乱码久久久久久男人| 免费一级毛片在线播放高清视频 | 一级a爱片免费观看的视频| 日韩有码中文字幕| 国产欧美日韩一区二区三区在线| 黄片大片在线免费观看| 国产视频一区二区在线看| а√天堂www在线а√下载 | 黄片大片在线免费观看| 国产亚洲精品久久久久久毛片 | 悠悠久久av| 国产黄色免费在线视频| 手机成人av网站| 精品国产乱码久久久久久男人| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出 | 亚洲精品成人av观看孕妇| 国产亚洲精品久久久久5区| 9191精品国产免费久久| 亚洲性夜色夜夜综合| 一级毛片高清免费大全| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 国产不卡av网站在线观看| 精品无人区乱码1区二区| 中文字幕制服av| 香蕉国产在线看| 欧美乱码精品一区二区三区| av天堂久久9| 国产精品香港三级国产av潘金莲| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久国产精品视频| 国产精品成人在线| 国产精品久久久久久精品古装| 久久天躁狠狠躁夜夜2o2o| 曰老女人黄片| 中亚洲国语对白在线视频| 亚洲va日本ⅴa欧美va伊人久久| 成人亚洲精品一区在线观看| 热re99久久国产66热| 久久香蕉国产精品| 男男h啪啪无遮挡| 国产三级黄色录像| 99国产精品99久久久久| 国产免费现黄频在线看| 多毛熟女@视频| 天天躁夜夜躁狠狠躁躁| 久久这里只有精品19| 女同久久另类99精品国产91| 免费观看人在逋| 看黄色毛片网站| 久久久国产精品麻豆| 在线观看免费高清a一片| 国产欧美日韩精品亚洲av| 久久热在线av| 亚洲久久久国产精品| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 亚洲男人天堂网一区| 中文字幕最新亚洲高清| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 色94色欧美一区二区| 亚洲中文日韩欧美视频| 国产免费现黄频在线看| 国产成人精品久久二区二区免费| 亚洲九九香蕉| 无限看片的www在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品乱码一区二三区的特点 | 亚洲精品美女久久av网站| 一级毛片女人18水好多| 视频区欧美日本亚洲| 在线观看免费高清a一片| 久久久久久久午夜电影 | www.自偷自拍.com| 夜夜夜夜夜久久久久| 十八禁高潮呻吟视频| 操美女的视频在线观看| tube8黄色片| 大码成人一级视频| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 一区二区日韩欧美中文字幕| 丰满迷人的少妇在线观看| 高清视频免费观看一区二区| 黄片播放在线免费| 岛国毛片在线播放| 欧美日韩国产mv在线观看视频| 99国产综合亚洲精品| 一本大道久久a久久精品| 日本a在线网址| 色老头精品视频在线观看| 一级片免费观看大全| 亚洲五月色婷婷综合| 大香蕉久久成人网| 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 国产真人三级小视频在线观看| 国产成人啪精品午夜网站| 日韩欧美一区二区三区在线观看 | 日韩 欧美 亚洲 中文字幕| 午夜久久久在线观看| 国产主播在线观看一区二区| 欧美大码av| 亚洲久久久国产精品| 国产精品电影一区二区三区 | 曰老女人黄片| 一区二区三区精品91| 久久婷婷成人综合色麻豆| 欧美日韩福利视频一区二区| 婷婷精品国产亚洲av在线 | 精品国产美女av久久久久小说| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 亚洲午夜理论影院| 99国产精品一区二区蜜桃av | 18禁黄网站禁片午夜丰满| 日本五十路高清| 精品久久蜜臀av无| 一进一出好大好爽视频| 亚洲欧美日韩高清在线视频| 精品久久久久久久毛片微露脸| 国产在视频线精品| 99国产精品一区二区蜜桃av | 黄色片一级片一级黄色片| 国产在线一区二区三区精| 国产成人欧美在线观看 | 精品少妇久久久久久888优播| 日韩熟女老妇一区二区性免费视频| 国产99白浆流出| 久久香蕉激情| 91成人精品电影| 熟女少妇亚洲综合色aaa.| 午夜免费观看网址| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 99精品欧美一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 黄片小视频在线播放| 啦啦啦在线免费观看视频4| 天天添夜夜摸| 国产乱人伦免费视频| 黄片大片在线免费观看| 日韩制服丝袜自拍偷拍| 精品久久蜜臀av无| 国产精品免费一区二区三区在线 | 国产不卡av网站在线观看| xxxhd国产人妻xxx| 俄罗斯特黄特色一大片| 曰老女人黄片| 如日韩欧美国产精品一区二区三区| 亚洲全国av大片| 国产成人欧美在线观看 | 啦啦啦视频在线资源免费观看| 日韩视频一区二区在线观看| 老司机在亚洲福利影院| 欧美色视频一区免费| 一进一出抽搐gif免费好疼 | 热99国产精品久久久久久7| 亚洲国产欧美一区二区综合| 飞空精品影院首页| 亚洲免费av在线视频| av在线播放免费不卡| 丰满迷人的少妇在线观看| 视频区欧美日本亚洲| 热99国产精品久久久久久7| 丝袜人妻中文字幕| 久久人人97超碰香蕉20202| 亚洲免费av在线视频| 国产av一区二区精品久久| 91老司机精品| 久久国产精品大桥未久av| 欧美不卡视频在线免费观看 | 最近最新中文字幕大全电影3 | 欧美大码av| 成人免费观看视频高清| 美女国产高潮福利片在线看| 成人黄色视频免费在线看| 国产日韩欧美亚洲二区| 国产精品永久免费网站| 亚洲中文av在线| 欧美精品啪啪一区二区三区| 欧美精品一区二区免费开放| 男女午夜视频在线观看| 久久ye,这里只有精品| 日韩熟女老妇一区二区性免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 嫁个100分男人电影在线观看| 久久久久久久国产电影| 国产亚洲欧美精品永久| 天堂√8在线中文| 好看av亚洲va欧美ⅴa在| 一级,二级,三级黄色视频| ponron亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人天堂网一区| 在线观看舔阴道视频| 中亚洲国语对白在线视频| 久久久久久人人人人人| 成熟少妇高潮喷水视频| 捣出白浆h1v1| 757午夜福利合集在线观看| 成年人黄色毛片网站| 91成人精品电影| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 757午夜福利合集在线观看| 午夜精品在线福利| 国产精品久久久av美女十八| 黄色a级毛片大全视频| 精品国产乱码久久久久久男人| 国产精品亚洲一级av第二区| 99久久精品国产亚洲精品| 久久亚洲精品不卡| 一级毛片精品| 欧美在线一区亚洲| 少妇粗大呻吟视频| 欧美另类亚洲清纯唯美| 国产三级黄色录像| 水蜜桃什么品种好| 国产欧美日韩综合在线一区二区| 日韩精品免费视频一区二区三区| 日日爽夜夜爽网站| 69av精品久久久久久| 美女视频免费永久观看网站| 老司机午夜福利在线观看视频| 日本精品一区二区三区蜜桃| 国产精品久久久久成人av| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 最新美女视频免费是黄的| 99国产综合亚洲精品| 建设人人有责人人尽责人人享有的| 两人在一起打扑克的视频| 亚洲成人国产一区在线观看| 国产在视频线精品| 制服诱惑二区| 午夜福利欧美成人| 看片在线看免费视频| cao死你这个sao货| 三上悠亚av全集在线观看| 亚洲国产中文字幕在线视频| 久久精品人人爽人人爽视色| 黄色成人免费大全| 99热网站在线观看| 亚洲男人天堂网一区| 两性午夜刺激爽爽歪歪视频在线观看 | 后天国语完整版免费观看| 精品久久久久久,| 我的亚洲天堂| 亚洲aⅴ乱码一区二区在线播放 | 99在线人妻在线中文字幕 | 欧美色视频一区免费| 日韩 欧美 亚洲 中文字幕| 国精品久久久久久国模美| 69av精品久久久久久| 久久人人97超碰香蕉20202| 黄色丝袜av网址大全| 国产精品av久久久久免费| 999久久久精品免费观看国产| 亚洲第一欧美日韩一区二区三区| 日本精品一区二区三区蜜桃| 欧美日韩瑟瑟在线播放| 女警被强在线播放| 国产不卡av网站在线观看| 一本综合久久免费| 成人手机av| 国产精品久久久av美女十八| 窝窝影院91人妻| 电影成人av| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区免费欧美| 狠狠狠狠99中文字幕| 12—13女人毛片做爰片一| 夫妻午夜视频| 叶爱在线成人免费视频播放| 欧美亚洲日本最大视频资源| 国产成人啪精品午夜网站| 黑丝袜美女国产一区| 午夜两性在线视频| 99久久综合精品五月天人人| 日韩熟女老妇一区二区性免费视频| 在线观看免费视频日本深夜| 久久久久视频综合| 美女高潮到喷水免费观看| 在线观看免费视频日本深夜| 中文字幕色久视频| 女人久久www免费人成看片| 国产精品亚洲一级av第二区| 成年女人毛片免费观看观看9 | av天堂久久9| 51午夜福利影视在线观看| 18禁观看日本| 亚洲精品国产色婷婷电影| 欧美日韩亚洲综合一区二区三区_| 老汉色∧v一级毛片| 免费av中文字幕在线| 日韩欧美免费精品| 老司机靠b影院| 色尼玛亚洲综合影院| 少妇裸体淫交视频免费看高清 | 韩国精品一区二区三区| 成人18禁高潮啪啪吃奶动态图|