• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust state estimation for uncertain linear systems with deterministic input signals

    2014-12-06 08:48:51HuaboLIUTongZHOU
    Control Theory and Technology 2014年4期

    Huabo LIU,Tong ZHOU

    1.Department of Automation,Tsinghua University,Beijing 100084,China;

    2.College of Automation Engineering,Qingdao University,Qingdao Shandong 266071,China;

    3.Tsinghua National Laboratory for Information Science and Technology(TNList),Tsinghua University,Beijing 100084,China

    Robust state estimation for uncertain linear systems with deterministic input signals

    Huabo LIU1,2?,Tong ZHOU1,3

    1.Department of Automation,Tsinghua University,Beijing 100084,China;

    2.College of Automation Engineering,Qingdao University,Qingdao Shandong 266071,China;

    3.Tsinghua National Laboratory for Information Science and Technology(TNList),Tsinghua University,Beijing 100084,China

    In this paper,we investigate state estimations of a dynamical system in which not only process and measurement noise,but alsoparameteruncertaintiesanddeterministicinputsignalsareinvolved.Thesensitivitypenalizationbasedrobuststateestimation is extended to uncertain linear systems with deterministic input signals and parametric uncertainties which may nonlinearly affect a state-space plant model.The form of the derived robust estimator is similar to that of the well-known Kalman filter with a comparable computational complexity.Under a few weak assumptions,it is proved that though the derived state estimator is biased,the bound of estimation errors is finite and the covariance matrix of estimation errors is bounded.Numerical simulations show that the obtained robust filter has relatively nice estimation performances.

    Robust estimation;Deterministic input;Regularized least-squares

    DOI10.1007/s11768-014-4072-4

    1 Introduction

    State estimation plays an important role in signal processing and control system design.It is known that the Kalman filter is the optimal estimator under the criterion of mean-squares and widely applied in numerous fields such as target tracking,global positioning systems,hydrological modelling,atmospheric observations,timeseries analyses in systems biology and econometrics,automated drug delivery,and so on[1–3].As modelling errors are generally unavoidable,robust state estimators such as H2/H∞filtering,set-valued estimation,and guaranteed-cost designs,which do not vary appreciably when actual plant parameters deviate from their nominal ones in a reasonable way,have been developed,see[1,4–8]and the references therein.Particularlyworth mentioning is that a regularized least-squares(RLS)based framework is suggested in[1]for robust filter designs,whose attractive characteristic is that the filter shares the same form of the well known Kalman filterwithcorrectedparameters.However,inthisframework the plant parameters are required to depend linearly on an uncertainty block,which may be a restrictive condition.Theotherpossiblelimitationisthattherobust estimator needs to optimize a cost function at every estimation step,whose unique minimum has no analytic expression.

    There is another paradigm in robust filter designs which is based on sensitivity penalization of estimation errors to parameter variations.In[9],it is employed for single-input single-output systems in the frequency domain with transfer function representation and spectral factorization.In[2,10],it is adopted for multiinput multi-output time varying dynamical systems under state-space framework and the plant parameters are affected by modelling errors in a relatively arbitrary way.BasedontherelationshipbetweenKalmanfilterandregularized least-squares,as well as sensitivity penalization on estimation errors to parameter variations,an analytic expression of the robust state estimator has been derived[2,10].The estimator can be recursively implementedandhasacomparablecomputationalcomplexity with the widely applied Kalman filter.

    The works aforementioned normally assume that the system is driven only by noise processes without deterministic input signals.It is true that the existence of a known deterministic input does not affect the estimation errors if the signal process does not involve parameter uncertainties,on the contrary it is not valid because the superposition principle is no longer established for the existence of parameter uncertainties[11].On this occasion,it is of significance to take robust state estimation with deterministic input signals into account and analyze the asymptotic properties of the derived estimator.The H∞filtering approach[7]was extended to provide a guaranteed H∞bound for estimation errors in the presence of both parameter uncertainties and known input signals for continuous time varying uncertain systems[12]and discrete time varying uncertain systems[11],respectively.In[13]a robust H∞state estimator is investigated for a class of uncertain discrete time piecewise affine systems with partitioned state space based on which the filter implementation may not be synchronized with state trajectory transitions.

    In this paper we generalize the robust state estimator sensitivity penalization based[2,10]to cope with the cases where deterministic input signals are considered.An analytic expression has been derived for the robust estimator,which can be recursively implemented and hasasimilarformandacomparablecomputationalcomplexity with the Kalman filter.In[2,14]it is proved that under some assumptions,as well as conditions like detectability and stabilizability,the robust state estimator sensitivity penalization based is asymptotically unbiased whentherearenodeterministicinputsignalsinprocess.Our main contribution lies in the fact that the estimation errors are proved to be bounded and have a bounded covariance matrix though the robust state filter is biased owing to the existence of modelling errors when there exist deterministic input signals.Some numerical simulationsshowthatthisrobustestimatorhasrelativelynice estimation performances and can be widely applied.

    The rest of this paper is organized as follows.In Section 2,a state-space plant model is given and the robust state estimator sensitivity penalization based is derived.Some important properties such as convergence and boundednessarediscussedinSection3.Numericalsimulation results are reported in Section 4.Finally,Section 5 concludes this paper.Two appendices are included to give a derivation of the recursive estimation procedure and a proof of the theoretical result.

    Notation Given a column vector x and a positivedefinite matrix W,‖x‖2and ‖x‖2Ware defined to denote the Euclidean norm and its weighted version,namely,xTx and xTWx,respectively.

    2 Plant dynamics description and robust state estimator design

    Consider the following uncertain linear system,

    where x is the state,w is the process noise,u is a deterministic input signal,y is the measurement,and v is the measurement noise.x0,wiand viare uncorrelated random vectors with E(x0)=0,E(wi)=0,E(vi)=0 and E((col(x0,wi,vi))(*)T)=in whichknown positive definite matrices and δijrepresents the Kronecker delta function.Moreover,εidenotes parametric modelling errors at the ith sampled instant which is composed of L real valued scalar uncertainties,k=1,...,L.It is assumed that the L uncertainties are independent of each other and all the entries of matrices Ai(εi),B1i(εi),B2i(εi)and Ci(εi)are differentiable functions of εi.

    Compared system(1)with the one in[2,10],the known deterministic input is considered in this paper.It is obvious that system(1)collapses to the one in[2,10]when there is no deterministic input,therefore,system(1)can be regarded as a generalization of the one in[2,10].

    From[1,3],we know that the Kalman filter admits a deterministic interpretation as the solution to a regularized least-squares problem,as follows:

    wherex?i|lstands for the optimal estimator of xibased on measurementsand Pi|lthe corresponding estimation errors covariance matrix.The cost function of the regularized least-squares problem is the regularized squares residual norm.The interpretation means that given an initial estimateone seeks to meliorate it by incorporating the additional information provided by the new measurement yi+1and deterministic input

    We improve the cost function of the regularized least-squares problem considering the estimation performances appreciable deterioration because of model uncertainties which are generally unavoidable.For notational simplicity,define matrices respectively as follows:

    Then the cost function can be rewritten as+‖Hi(0,0)αi? βi(0and an analytic solution to this regularized least-squares problem can be obtained.In our improvement,denoteCi+1(εi+1)[Ai(εi)B2i(εi)]αias ei(εi,εi+1)which is generally called innovation process,the new cost function of the RLS at every instant is suggested to be(3)to reduce the sensitivity of estimation performances to modelling errors.

    From the cost function we can conclude that the deviations of the innovation process from yi+1?reflect contributionsofmodellingerrorstopredictionerrorsbasedon yi+1,and the design parameter γitakes account in both theimportanceofnominalestimationperformancesand that of estimation performance degradation due to modelling errors.Generally,the design parameter γihas an empirical value[2,10]and can be adjusted according to the relative magnitude of modelling errors in practical application.The bigger the amplitude of modelling errors is,the smaller the parameter is.This means that the estimation performance degradation owing to modelling errors plays a more important role.It is consistent with physical intuitions.When there are no modelling errors and γi=1,the state estimator through minimizing the cost function(3)collapses to the standard Kalman filter.

    Define matrices Si,T1iand T2irespectively as follows:

    where

    Then,we can obtain

    According to the above analysis we can provide the following recursive procedure to compute the estimate of the plant state when there exist a deterministic input signal and parameter uncertainties.The derivative details are provided in Appendix A.Denote λi=(1?γi)/γi.

    1)Initialization.Designate P0|0and?x0|0as

    respectively,in which

    2)Parameter modification.Define matrices?T2i,?Ai(0),?B1i(0),?B2i(0),?Pi|iand?Qirespectively as follows:

    3)State estimate updating.Calculate?xi+1|i+1and Pi+1|i+1respectively as

    Based on the above explanation,the form of the estimation procedure is consistent with the time and measurement update form of the robust estimator derived in[1]and has a similar form with the one in[2,10]increasedbysometermsrelativetothedeterministicinput ui.When ui=0,the derived state estimation procedure collapses to the robust filter in[2,10],which means that it is a generalization of the one in[2,10].

    3 Some properties of the estimator

    In this section,some important asymptotic properties of the derived state estimator are investigated.Suppose εi,kis normalized in magnitude to be contractive and the set E is composed of these modelling errors.That is,E={ε||εi,k|≤ 1,k=1,...,L}.Moreover,we adopt two assumptions for the asymptotic behaviours analysis of the robust state estimator.

    A1)Ai(0),B1i(0),B2i(0),Ci(0),Ri,Qi,Si,T1i,T2iand γiare time invariant.

    A2)The uncertain linear system of(1)is exponentially stable in the sense of Lyapunov.Moreover,matrices Ai(0),B1i(0),B2i(0),Ci(0),Ri,Qiand Π0are bounded for i> 0 and εi∈ E.

    Equation(5)can be rewritten as follows:

    where

    This expression is similar to equation(6)in[14]and the difference is that"the input"of(6)is yi+1instead of[ui;yi+1],thereforeTheorem1in[14]canbegeneralized directly to system(5)as follows when the convergence of system(1)is considered.

    Theorem 1 Assume that condition A1)is satisfied,is detectableis stabi-Pi|i?1converges exponentially to a unique positive semidefinite matrix P,while Apiconverges to a constant stable matrix Ap.Here,

    We know that the convergence of Pi|i?1is equivalent to that of Pi|ifrom the relation between Pi|i?1and Pi|i.Therefore,the derived robust state estimator converges to a time-invariant stable system when the conditions of Theorem 1 are satisfied.

    We then consider the boundedness and biasness of estimation errors for this robust state filter.For simple denotations,defineˉxi,?ˉxi|iand?ˉxi|irespectively asˉxi=[I+Ωi(0)]xi,?ˉxi|i=[I+Ωi(0)]?xi|iand ?ˉxi|i=ˉxi?

    ?ˉxi|i,

    where Ωi(εi)=It is obvious thatThen from equation(5)we can directly prove that

    From equation(6),we have with the whiteness of wiand vi,as well as the assumption of unrelated wiand vi,that

    we can conclude that

    where N1is a finite positive constant.It means that the summation of series in the last term of equation(7)is finite.The fact that Ai(εi)and B1i(εi)are bounded leads to thatare bounded,which implies that there exists a finite positive constant N2≥0 suchTherefore,the estimation errors of the robust filter are bounded.When there are no deterministic input signals,that is,ui=0,we can obtainwhich means that the robust state estimator sensitivity penalization based is asymptotically unbiased.It is consistent with the result derived in[2,14].

    Based on the relations in(6)and the stability of matrix Ai(εi),as well as the aforementioned derivation,we achieve a condition for the boundedness of estimation errors of the robust filter as follows.Its proof is deferred to Appendix B.

    4 Numerical simulations

    In this section,we compare the performances of the derived state estimator with those of the Kalman filter based on actual parameters and nominal parameters by some examples.In these simulations,it is assumed that modelling errors are time-invariant,and every uncertainty parameter is contractive,that is,it belongs to the interval[?1,1].Furthermore,1000 time-domain inputoutput data pairs are generated for plant state estimation,in which all the initial states are set to zero,while disturbances wiand viare produced according to normal distributions.The deterministic input signal uiis fixed or produced according to normal distributions.

    Thisexampleisimprovedfromtheonein[1]and[10],in which it is assumed that,

    In the first set of simulations the modelling error ε is fixed to be?0.8508 and the input signal uiis also fixed,ui=[1.0;0.1].Fig.1 shows the variations of estimation error variances with respect to time samples and the filter design parameter γ.When the design parameter γ takes the empirical value which is approximately 0.8,the difference between the performances of the Kalman filter with actual parameter values and the robust state estimator derived in this paper is only 1dB and nearly 10dB performance improvement is obtained compared with the Kalman filter based on nominal parameter values.The same conclusion can be drawn from Fig.2.

    Fig.2 shows that at the sampled instants i=500 and i=1000,if γ takes any value between 0.0000 and 1.0000,the performance of the derived robust filter is better than that of the Kalman filter based on nominal parameter values and the optimal γ is approximately 0.8300.

    In Fig.3,the input signal uiis fixed to be[1.0;0.1]and the modelling error εis produced randomly and independently in each simulation according to a normal distribution with truncations.The mean and the standard variance of the normal distribution are set respectively to 0.0000 and 1.0000.In case that a generated εhas a magnitude greater than 1,it will be got rid of and reproduced until an εwith magnitude not greater than 1 is obtained.From Fig.4,we can see that there exists a large interval of γ which leads to a robust estimator with better performance than the Kalman filter based on nominal parameters at the sampled instants i=500 and i=1000.

    Fig.1 Estimation error variance with fixed γs.

    Fig.2 Estimation error variance at fixed instants.

    Fig.3 Estimation error variance with fixed γs.

    Fig.4 Estimation error variance at fixed instants.

    The deterministic input signal uiin Fig.5 is produced randomly and independently according to a normal distribution with truncations and the modelling error εis produced randomly and independently in each simulation according to a normal distribution with truncations.The mean and the standard variance of the normal distribution εare set respectively to 0.0000 and 1.0000.

    Fig.5 Estimation error variance with fixed γs.

    Fig.6 Estimation error variance at fixed instants.

    From Figs.1–6,it is obvious that the robust state estimatorbasedonthesensitivitypenalizationofestimation errors to modelling uncertainties can bring about significant robustness improvements in plant state estimator designs.The optimal design parameter γ may lead to the robust estimator with performances close to those of the Kalman filter based on actual plant parameter values.Moreover,there are quite a lot of selections for the parameter γ for that the performances of the robust state estimator are continuous functions of the design parameter.These properties are attractive in actual filter designs and next we aim to find the optimal filter design parameter.

    5 Conclusions

    This paper investigates a robust state estimator based on modelling errors sensitivity penalization for uncertain linear systems subject to deterministic input signals and norm-bounded parametric uncertainties.The derived state estimator is biased owing to the existence of modelling errors in the input matrix,but the covariance matrix of estimation errors is proved to be bounded.The simulation examples show that this approach significantly improved the estimator’s robustness to model uncertainties compared with the designs only based on nominal systems.

    It also remains challenging to give an estimate for the interval of desirable penalizing factor γ,as well as an estimate for the size of tolerable modelling errors.

    [1]A.H.Sayed.A framework for state-space estimation with uncertain models.IEEE Transactions on Automatic Control,2001,46(7):998–1013.

    [2]T.Zhou.Sensitivity penalization based robust state estimation for uncertain linear systems.IEEE Transactions on Automatic Control,2010,55(4):1018–1024.

    [3]T.Kailath,A.H.Sayed,B.Hassibi.Linear Estimation.Upper Saddle River:Prentice Hall,2000.

    [4] C.J.Martin,M.Mintz.Robust filtering and prediction for linear systems with uncertain dynamics:a game-theoretic approach.IEEE Transactions on Automatic Control,1983,28(6):888–896.

    [5]A.Garulli,A.Vicino,G.Zappa.Conditional central algorithms for worst case set-membership identificaion and filtering.IEEE Transactions on Automatic Control,2000,45(1):14–23.

    [6] C.E.de Souza,U.Shaked.Robust H2filtering for uncertain systems with measurable inputs.IEEE Transactions on Signal Processing,1999,47(8):2286–2292.

    [7] L.Xie,C.E.de Souza,M.Fu.H∞estimation for discretetime linear uncertain systems.International Journal of Robust Nonlinear Control,1991,1(2):111–123.

    [8]P.Bolzern,P.Colaneri,G.De Nicolao.Guaranteed-cost predictionofdiscrete-timesystems:thefiniteandinfinite-horizon case.IFAC Symposium on Robust Control Design.Budapest:Pergamon,1997:471–476.

    [9] P.Neveux,E.Blanco,G.Thomas.Robust filtering for linear time invariant continuous systems.IEEE Transactions on Signal Processing,2007,55(10):4752–4757.

    [10]T.Zhou.Robuststateestimationusingerrorsensitivitypenalizing.Proceedings of the 47th IEEE Conference on Decision and Control.Cancun:IEEE,2008:2563–2568.

    [11]Y.S.Hung,F.Yang.Robust H∞filtering for discrete time-varying uncertainsystemswithaknowndeterministicinput.International Journal of Control,2002,75(15):1159–1169.

    [12]C.E.de Souza,U.Shaked,M.Fu.Robust H∞filtering for continuous time varying uncertain systems with deterministic input signals.IEEE Transactions on Signal Processing,1995,43(3):709–719.

    [13]J.Qiu,G.Feng,H.Gao.Nonsynchronized state estimation of uncertain discrete-time piecewise affine systems.Journal of Control Theory and Applications,2010,8(3):286–292.

    [14]T.Zhou,H.Liang.On asymptotic behaviors of a sensitivity penalization based robust state estimator.Systems&Control Letters,2011,60(3):174–180.

    Appendix A Derivation of the estimation procedure

    To estimate the initial state x0,the cost function J(α0)is set as follows,in which e0(ε0)=y0? C0(ε0)x0.

    We obtain the following estimate of the initial state

    instituting(a1)to(4),and multiplyingthe left sides of(4),we can obtain that

    Therefore,

    Moreover,

    Therefore,

    Appendix B Proof of Theorem 2

    Based on this relation,a direct application of mathematical inductions shows that

    Then,from the boundedness of B1i(εi),B2i(εi),Ci(εi),Qiand Ri,as well as the boundedness of estimation errors for the derived estimator,we have that N3is a finite positive number and,

    That is,the covariance matrix of estimation errors is always upper bounded.

    28 May 2014;revised 28 October 2014;accepted 28 October 2014

    ?Corresponding author.

    E-mail:liu-hb10@mails.tsinghua.edu.cn,liuhuabo1979@qdu.edu.cn.

    This work was supported in part by the 973 Program(Nos.2009CB320602,2012CB316504),in part by the National Natural Science Foundation of China(Nos.61174122,61021063,60721003,60625305),and in part by the Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20110002110045).

    ?2014 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Huabo LIU received his B.Sc.and M.Sc.degrees in Engineering from Chongqing University,China,in 2001 and 2005,respectively.He is a Ph.D.candidate at the Department of Automation,Tsinghua University,and also a lecture at the college of Automation Engineering,Qingdao University,China.His research interest covers robust performance analysis and robust state estimation of multidimensional distributed systems.E-mail:liuhb10@mails.tsinghua.edu.cn,liuhuabo1979@qdu.edu.cn.

    Tong ZHOU is currently a professor in the Department of Automation,Tsinghua University.He received his B.Sc.and M.Sc.degrees from University of Electronic Science and Technology of China in 1984 and 1989,respectively,and his Ph.D.degree from Osaka University,Osaka,Japan in 1994.His research interest covers robust control,system identification,signal processing,hybrid systems,communication systems,and their applications to real-world problems.E-mail:tzhou@mail.tsinghua.edu.cn.

    亚洲avbb在线观看| 一个人免费在线观看电影| 免费电影在线观看免费观看| 色噜噜av男人的天堂激情| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品亚洲一区二区| 亚洲av免费在线观看| 一夜夜www| 日韩有码中文字幕| 色综合婷婷激情| 欧美日韩黄片免| 他把我摸到了高潮在线观看| 天天躁日日操中文字幕| 婷婷丁香在线五月| 看黄色毛片网站| av在线蜜桃| 丰满人妻一区二区三区视频av | 欧美中文日本在线观看视频| 内射极品少妇av片p| 日本五十路高清| 久久久久久久午夜电影| 久久久久性生活片| 亚洲一区二区三区不卡视频| 欧美在线黄色| 国产精品三级大全| 成人午夜高清在线视频| 免费搜索国产男女视频| 最近最新中文字幕大全免费视频| 18美女黄网站色大片免费观看| 亚洲第一欧美日韩一区二区三区| 99久久九九国产精品国产免费| 亚洲自拍偷在线| 噜噜噜噜噜久久久久久91| 亚洲成人久久爱视频| 一级毛片女人18水好多| 日本免费一区二区三区高清不卡| 亚洲av日韩精品久久久久久密| 国产淫片久久久久久久久 | 一级毛片高清免费大全| 欧美+亚洲+日韩+国产| 国产蜜桃级精品一区二区三区| 久久精品影院6| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| 欧美性感艳星| 色av中文字幕| 国产精品亚洲一级av第二区| 国产欧美日韩精品亚洲av| 亚洲成av人片免费观看| 看片在线看免费视频| 国产一区二区三区视频了| 中文字幕人妻丝袜一区二区| bbb黄色大片| 看片在线看免费视频| 大型黄色视频在线免费观看| 国产av不卡久久| 欧美色视频一区免费| 亚洲在线自拍视频| 久久久久久人人人人人| 叶爱在线成人免费视频播放| xxxwww97欧美| 日本熟妇午夜| 精华霜和精华液先用哪个| 亚洲av第一区精品v没综合| 老司机午夜福利在线观看视频| 搞女人的毛片| 国产免费av片在线观看野外av| 亚洲五月天丁香| 黄色丝袜av网址大全| 欧美日韩综合久久久久久 | 在线天堂最新版资源| 一进一出好大好爽视频| 久99久视频精品免费| a级一级毛片免费在线观看| ponron亚洲| 国产亚洲欧美在线一区二区| 免费看日本二区| 久久久久国产精品人妻aⅴ院| 18禁黄网站禁片免费观看直播| 两个人视频免费观看高清| 一卡2卡三卡四卡精品乱码亚洲| 欧美激情久久久久久爽电影| 日本 av在线| 亚洲精品影视一区二区三区av| 99久久成人亚洲精品观看| 熟女电影av网| 亚洲无线在线观看| 日本撒尿小便嘘嘘汇集6| 中文资源天堂在线| 国产精品久久久人人做人人爽| 一区二区三区免费毛片| 国产欧美日韩精品一区二区| 97人妻精品一区二区三区麻豆| 99国产精品一区二区蜜桃av| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 久久久久久大精品| 熟女少妇亚洲综合色aaa.| 免费无遮挡裸体视频| 国产91精品成人一区二区三区| 99精品欧美一区二区三区四区| 男人和女人高潮做爰伦理| 免费在线观看日本一区| 日韩欧美精品v在线| 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| 一进一出抽搐gif免费好疼| 亚洲国产欧美人成| 欧美成人免费av一区二区三区| 在线十欧美十亚洲十日本专区| 久久精品国产自在天天线| 免费人成视频x8x8入口观看| 国产综合懂色| 国产高清视频在线播放一区| 欧美zozozo另类| 国产av一区在线观看免费| 中文亚洲av片在线观看爽| 五月玫瑰六月丁香| 久久久国产成人精品二区| 成人国产综合亚洲| 好男人电影高清在线观看| 啦啦啦免费观看视频1| 国产一区二区在线av高清观看| 午夜福利视频1000在线观看| 午夜福利成人在线免费观看| 无限看片的www在线观看| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 岛国在线免费视频观看| 日本一二三区视频观看| 久久九九热精品免费| bbb黄色大片| netflix在线观看网站| 一级a爱片免费观看的视频| 男女视频在线观看网站免费| 国产探花在线观看一区二区| 少妇人妻一区二区三区视频| 一本久久中文字幕| 午夜视频国产福利| 日本 av在线| 亚洲成av人片免费观看| 亚洲无线观看免费| 亚洲av美国av| 嫁个100分男人电影在线观看| 欧美成人免费av一区二区三区| 日日夜夜操网爽| 国产av在哪里看| 丝袜美腿在线中文| 日日夜夜操网爽| 在线视频色国产色| 真人一进一出gif抽搐免费| 成人精品一区二区免费| 国产高清激情床上av| 欧美乱妇无乱码| 91在线观看av| 国产精品,欧美在线| 可以在线观看的亚洲视频| 国产精品亚洲美女久久久| 亚洲美女视频黄频| 99热6这里只有精品| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 成人欧美大片| 精品国产超薄肉色丝袜足j| 色综合亚洲欧美另类图片| 1024手机看黄色片| 国产免费男女视频| АⅤ资源中文在线天堂| 最新在线观看一区二区三区| 波野结衣二区三区在线 | 91麻豆av在线| 国内少妇人妻偷人精品xxx网站| 嫩草影院精品99| www国产在线视频色| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| 日韩av在线大香蕉| a级一级毛片免费在线观看| 日韩 欧美 亚洲 中文字幕| 国产亚洲av嫩草精品影院| 亚洲中文日韩欧美视频| 国产伦精品一区二区三区视频9 | 小说图片视频综合网站| 亚洲精品国产精品久久久不卡| 欧美中文日本在线观看视频| 亚洲精品在线美女| 欧美zozozo另类| 国产探花在线观看一区二区| 草草在线视频免费看| 精品一区二区三区视频在线 | 99riav亚洲国产免费| 99精品在免费线老司机午夜| 九九久久精品国产亚洲av麻豆| 在线观看日韩欧美| 日本成人三级电影网站| or卡值多少钱| 夜夜躁狠狠躁天天躁| 亚洲美女黄片视频| 1024手机看黄色片| 免费av不卡在线播放| 久久久国产精品麻豆| 亚洲久久久久久中文字幕| 麻豆久久精品国产亚洲av| 一夜夜www| 啦啦啦观看免费观看视频高清| 欧美又色又爽又黄视频| 嫩草影院精品99| 欧美丝袜亚洲另类 | 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 成人18禁在线播放| 99国产精品一区二区三区| 97碰自拍视频| 五月玫瑰六月丁香| 亚洲成av人片免费观看| 亚洲国产精品久久男人天堂| 国产黄片美女视频| 少妇人妻一区二区三区视频| 国产黄色小视频在线观看| 制服人妻中文乱码| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 精品乱码久久久久久99久播| 久久精品国产99精品国产亚洲性色| 亚洲 欧美 日韩 在线 免费| 欧美黑人巨大hd| 18+在线观看网站| 国产精品久久久人人做人人爽| 久久久久性生活片| 国产精品综合久久久久久久免费| 午夜老司机福利剧场| 一级毛片高清免费大全| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 老司机午夜福利在线观看视频| 精品国产超薄肉色丝袜足j| 日本a在线网址| 欧美性猛交╳xxx乱大交人| 国产一区二区三区在线臀色熟女| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 欧美激情在线99| 少妇的逼水好多| 欧美午夜高清在线| 99久国产av精品| 欧美一区二区精品小视频在线| 欧美成人a在线观看| 欧美日本视频| 国产一区二区在线av高清观看| 亚洲不卡免费看| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 精品一区二区三区人妻视频| 男人的好看免费观看在线视频| 国产免费男女视频| 亚洲内射少妇av| 内地一区二区视频在线| 男人舔奶头视频| 亚洲国产精品成人综合色| 国产激情偷乱视频一区二区| 99精品欧美一区二区三区四区| 精品99又大又爽又粗少妇毛片 | 国产老妇女一区| 搡老妇女老女人老熟妇| 香蕉久久夜色| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 最新中文字幕久久久久| 欧美色欧美亚洲另类二区| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 一二三四社区在线视频社区8| 亚洲久久久久久中文字幕| 国产av在哪里看| 精品一区二区三区视频在线 | 狂野欧美白嫩少妇大欣赏| 午夜两性在线视频| 精品久久久久久久末码| 白带黄色成豆腐渣| 欧美激情在线99| 香蕉久久夜色| 99国产综合亚洲精品| 成人一区二区视频在线观看| 国产av不卡久久| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| 久久精品国产99精品国产亚洲性色| 嫩草影视91久久| 午夜精品在线福利| 国产午夜福利久久久久久| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| a级一级毛片免费在线观看| 亚洲av免费在线观看| 亚洲不卡免费看| 18禁黄网站禁片免费观看直播| 免费在线观看成人毛片| 在线a可以看的网站| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲av一区麻豆| 日本熟妇午夜| 岛国视频午夜一区免费看| 国产精品99久久99久久久不卡| 亚洲国产日韩欧美精品在线观看 | 亚洲av熟女| 亚洲五月婷婷丁香| 亚洲av一区综合| 亚洲中文字幕一区二区三区有码在线看| 看免费av毛片| 精品一区二区三区av网在线观看| 首页视频小说图片口味搜索| 很黄的视频免费| aaaaa片日本免费| 国产97色在线日韩免费| 成熟少妇高潮喷水视频| 午夜福利成人在线免费观看| 色综合欧美亚洲国产小说| 我的老师免费观看完整版| 国产午夜精品论理片| 一个人看视频在线观看www免费 | 日韩欧美精品v在线| 高清日韩中文字幕在线| 精品乱码久久久久久99久播| 久久精品国产清高在天天线| 99精品欧美一区二区三区四区| 国产av不卡久久| 宅男免费午夜| 欧美黄色片欧美黄色片| 久久久久久久午夜电影| 男女之事视频高清在线观看| 免费观看人在逋| 成人无遮挡网站| 亚洲精品久久国产高清桃花| 18禁黄网站禁片午夜丰满| 欧美中文日本在线观看视频| 午夜久久久久精精品| 精品国内亚洲2022精品成人| 又黄又粗又硬又大视频| 国产精品99久久99久久久不卡| 国产一区二区三区视频了| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 久久亚洲真实| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区av网在线观看| 亚洲中文日韩欧美视频| 又黄又爽又免费观看的视频| 亚洲一区二区三区色噜噜| 亚洲乱码一区二区免费版| 亚洲精品日韩av片在线观看 | 久久亚洲精品不卡| 免费高清视频大片| 成人午夜高清在线视频| 成年人黄色毛片网站| 美女高潮的动态| 久久人妻av系列| 欧美高清成人免费视频www| 免费无遮挡裸体视频| 又粗又爽又猛毛片免费看| 久久这里只有精品中国| 88av欧美| 天美传媒精品一区二区| 禁无遮挡网站| 欧美成人免费av一区二区三区| 最新美女视频免费是黄的| 国产伦一二天堂av在线观看| 老司机在亚洲福利影院| 精品人妻偷拍中文字幕| 高清日韩中文字幕在线| 国模一区二区三区四区视频| bbb黄色大片| 欧美另类亚洲清纯唯美| 一级毛片高清免费大全| 国产精品98久久久久久宅男小说| 欧美日本亚洲视频在线播放| 中文字幕人妻丝袜一区二区| 91在线精品国自产拍蜜月 | 国产午夜精品论理片| 熟女电影av网| 午夜影院日韩av| 少妇的逼好多水| 老鸭窝网址在线观看| bbb黄色大片| 精品久久久久久久久久久久久| 成人永久免费在线观看视频| 午夜福利高清视频| 国产私拍福利视频在线观看| 国产黄色小视频在线观看| 18禁黄网站禁片午夜丰满| 午夜精品一区二区三区免费看| 国产毛片a区久久久久| 夜夜看夜夜爽夜夜摸| 久久人人精品亚洲av| 国产亚洲欧美在线一区二区| 最近最新免费中文字幕在线| 一级黄片播放器| 日日夜夜操网爽| 国产精品乱码一区二三区的特点| 日本免费一区二区三区高清不卡| 美女高潮喷水抽搐中文字幕| 国模一区二区三区四区视频| 最新在线观看一区二区三区| 观看免费一级毛片| 亚洲精品一卡2卡三卡4卡5卡| 五月玫瑰六月丁香| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 琪琪午夜伦伦电影理论片6080| 亚洲精品456在线播放app | 久9热在线精品视频| 岛国在线观看网站| 哪里可以看免费的av片| 国产成人欧美在线观看| 欧美日韩精品网址| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 国产高潮美女av| 欧美黑人巨大hd| 搡老熟女国产l中国老女人| 久久久久久久久大av| 国内精品久久久久久久电影| 婷婷精品国产亚洲av| 亚洲无线在线观看| 亚洲天堂国产精品一区在线| 成人国产一区最新在线观看| 天天躁日日操中文字幕| 亚洲欧美日韩高清在线视频| 村上凉子中文字幕在线| 日韩av在线大香蕉| 午夜日韩欧美国产| 中文字幕人成人乱码亚洲影| 亚洲成a人片在线一区二区| 少妇的逼水好多| avwww免费| 99热6这里只有精品| 国产精品香港三级国产av潘金莲| 嫩草影视91久久| 久久久久国内视频| 亚洲一区二区三区不卡视频| 亚洲国产欧洲综合997久久,| 狂野欧美激情性xxxx| 大型黄色视频在线免费观看| 男人的好看免费观看在线视频| 香蕉久久夜色| 亚洲熟妇中文字幕五十中出| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 18美女黄网站色大片免费观看| 国产熟女xx| 亚洲内射少妇av| 成人18禁在线播放| 国产野战对白在线观看| 毛片女人毛片| 老司机在亚洲福利影院| 欧美性猛交╳xxx乱大交人| 免费在线观看日本一区| 啦啦啦免费观看视频1| 99久久精品国产亚洲精品| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 内射极品少妇av片p| 久久香蕉国产精品| 最近最新中文字幕大全电影3| 男女午夜视频在线观看| 亚洲av免费高清在线观看| h日本视频在线播放| 国产伦人伦偷精品视频| 亚洲中文日韩欧美视频| 国产精品一及| 国产69精品久久久久777片| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品| 久久久久久久亚洲中文字幕 | 国产男靠女视频免费网站| 亚洲最大成人手机在线| 免费无遮挡裸体视频| av视频在线观看入口| 欧美日本视频| 女生性感内裤真人,穿戴方法视频| 久久久久久久亚洲中文字幕 | 99在线人妻在线中文字幕| 高清在线国产一区| 国产成人系列免费观看| 97超级碰碰碰精品色视频在线观看| 午夜福利在线观看免费完整高清在 | 日韩欧美精品免费久久 | 男女下面进入的视频免费午夜| 免费av毛片视频| 亚洲av日韩精品久久久久久密| 午夜亚洲福利在线播放| 69人妻影院| 久久亚洲真实| 亚洲欧美日韩高清专用| 成年免费大片在线观看| 高清在线国产一区| 久久精品国产亚洲av香蕉五月| 高清在线国产一区| 精品久久久久久,| 午夜激情欧美在线| 亚洲成人久久性| 性色avwww在线观看| 日本成人三级电影网站| 狠狠狠狠99中文字幕| 中文资源天堂在线| 久久精品综合一区二区三区| 日本一本二区三区精品| 3wmmmm亚洲av在线观看| 一级黄片播放器| 国产精品久久久久久亚洲av鲁大| 久久九九热精品免费| 久久精品91蜜桃| 亚洲五月婷婷丁香| 国产精品久久久久久久电影 | 香蕉久久夜色| 叶爱在线成人免费视频播放| 午夜免费男女啪啪视频观看 | 欧美在线一区亚洲| 无限看片的www在线观看| 久久精品综合一区二区三区| 日日夜夜操网爽| 中文字幕人妻丝袜一区二区| 一级毛片女人18水好多| 日韩欧美三级三区| 熟女少妇亚洲综合色aaa.| 亚洲片人在线观看| 99久国产av精品| 国产午夜精品久久久久久一区二区三区 | 国产三级在线视频| 成年免费大片在线观看| 日本与韩国留学比较| 久久久久性生活片| 久久久久亚洲av毛片大全| 国产日本99.免费观看| 最好的美女福利视频网| 夜夜夜夜夜久久久久| 此物有八面人人有两片| 亚洲人成伊人成综合网2020| 在线观看av片永久免费下载| 日韩欧美精品免费久久 | 精品不卡国产一区二区三区| 欧美在线一区亚洲| 欧美日韩精品网址| 亚洲五月天丁香| 亚洲国产精品合色在线| 母亲3免费完整高清在线观看| 三级男女做爰猛烈吃奶摸视频| 午夜老司机福利剧场| 在线观看免费视频日本深夜| 久久久久九九精品影院| 国产极品精品免费视频能看的| 美女cb高潮喷水在线观看| 999久久久精品免费观看国产| 男插女下体视频免费在线播放| 熟女电影av网| 美女cb高潮喷水在线观看| 日本 欧美在线| 日韩高清综合在线| 亚洲成人久久性| 中文字幕精品亚洲无线码一区| 村上凉子中文字幕在线| 精品日产1卡2卡| 美女黄网站色视频| 啦啦啦观看免费观看视频高清| 琪琪午夜伦伦电影理论片6080| 在线观看舔阴道视频| 日韩欧美免费精品| 天天一区二区日本电影三级| 久久6这里有精品| 国产老妇女一区| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 无人区码免费观看不卡| 无遮挡黄片免费观看| 人妻久久中文字幕网| 丰满的人妻完整版| 久久国产精品人妻蜜桃| 长腿黑丝高跟| 国产av麻豆久久久久久久| 哪里可以看免费的av片| 国产亚洲精品综合一区在线观看| 亚洲av第一区精品v没综合| 免费av不卡在线播放| 黄片大片在线免费观看| 身体一侧抽搐| 在线免费观看不下载黄p国产 | 精品99又大又爽又粗少妇毛片 | 国产亚洲精品综合一区在线观看| av在线天堂中文字幕| 欧美绝顶高潮抽搐喷水| 91久久精品国产一区二区成人 | 高清日韩中文字幕在线| 国产成人a区在线观看| 长腿黑丝高跟| 搡老熟女国产l中国老女人| а√天堂www在线а√下载| 在线a可以看的网站| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类 | 日日夜夜操网爽|