• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    間甲基苯甲醚分子旋轉(zhuǎn)異構(gòu)體的質(zhì)量分辨閾值電離光譜

    2014-10-18 05:28:12曾圣淵曾文碧
    物理化學(xué)學(xué)報(bào) 2014年8期
    關(guān)鍵詞:新疆師范大學(xué)研究所原子

    秦 晨 曾圣淵 張 冰 曾文碧,*

    (1臺(tái)灣中央研究院原子與分子科學(xué)研究所,生物分子質(zhì)譜與光譜學(xué)實(shí)驗(yàn)室,臺(tái)北10617;2中國(guó)科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430071;3新疆師范大學(xué)物理與電子工程學(xué)院,新型發(fā)光材料與納米微結(jié)構(gòu)實(shí)驗(yàn)室,烏魯木齊 830054)

    1 Introduction

    Scientists have found that rotational isomers(rotamers)involve in some biological phenomena and processes.1,2Oikawa et al.3reported that some meta substituted anisoles and phenols have rotamers coexisting in chemical samples.Theoretical calculations predict that m-methylanisole has two stable structures,as shown in Fig.1.Both the methyl and methoxyl groups can donate electrons to the aromatic ring through the σ bond.In addition,the CH3group can interact with the π electrons of the ring through hyperconjugation and the OCH3group can share its lone-pair electrons in the oxygen atom with the ring.4These substituent-ring interactions will alter the electron density nearby the aromatic ring,leading to some changes in the molecular geometry and vibrations in the electronic state.m-Methylanisole is an important intermediate in organic synthesis and is mainly used as intermediate in the synthesis of dyestuffs and pharmaceuticals.This molecule has been studied by various spectroscopic methods.5-9Breen et al.5performed the excitation and dispersed laser-induced fluorescence(LIF)and resonance enhanced multiphoton ionization time-of-flight(REMPI TOF)mass spectroscopy experiments.They reported the origins of the S1←S0electronic transition of two rotamers and the energy barriers to the CH3torsion of m-methylanisole in the ground S0and electronically excited S1states.Ichimura,Suzuki,and their coworkers6,7recorded the excitation and dispersed LIF and hole-burning spectra.They also performed ab initio calculations to confirm the existence of the cis and trans rotamers of m-methylanisole.In addition to the investigations of the methyl torsion,they found three vibronic bands resulting from in-plane ring deformation vibrations in the S1state.Alvarez-Valtierra et al.8applied rotationally resolved fluorescence excitation spectroscopy and reported the rotational constants in the S0and S1states and the precise S1←S0electronic transition energies of the cis and trans rotamers of m-methylanisole.Concerning the ionic properties,Fujii et al.9applied pulsed field ionization zero kinetic(PFI-ZEKE)photoelectron spectroscopy to investigate the CH3torsion of o-,m-,and p-methylanisole in the D0state.To the best of our knowledge,the experimental data related to ring vibrations of the selected rotamers of m-methylanisole cation are still not available in the literature.Because many ring vibrations are active in most of benzene derivatives,their spectroscopic information is useful for molecular identification.

    Fig.1 Molecular structures of(a)cis-m-methylanisole and(b)trans-m-methylanisole

    In the present study,we apply the one-color and two-color resonant two-photon ionization(1C-and 2C-R2PI)and massanalyzed threshold ionization(MATI)techniques to investigate the molecular properties of m-methylanisole in the S1and cationic ground D0states.The MATI spectra of the selected rotamers were recorded by ionizing through a few intermediate vibronic states in the S1state to obtain more information about the active cation vibrations.Comparison of the experimental data of m-methylanisole with those of anisole,10toluene,11and their derivatives12-21allows one to learn the substitution effects of the methyl and methoxyl groups on the transition energy and molecular vibration.We have also performed the ab initio and density function theory(DFT)calculations to provide possible interpretation of our experimental findings.Because the present experiments involve twophoton excitation and ionization steps,these spectroscopic data are useful to gain knowledge about photochemical and photophysical processes with UV light sources.

    2 Experimental and computational methods

    2.1 Experimental method

    The experiments reported here were performed by using a laserbased TOF mass spectrometer,described in our previous publication.22Only a brief description is stated here.m-Methylanisole(99%purity)was purchased from Sigma-Aldrich Corporation and used without further purification.The sample was heated to about 50°C to acquire sufficient vapor pressure.The vapors were seeded into 0.2-0.3 MPa of helium and expanded into the vacuum through a pulsed valve with a 0.15 mm diameter orifice.The generated molecular beam was collimated by a skimmer located 15 mm downstream from the nozzle orifice.During the experiments,the gas expansion,laser-molecular beam interaction,and ion detection regions were maintained at pressures of about 1×10-3,1×10-5,and 1×10-6Pa,respectively.

    The photoionization efficiency(PIE)and MATI experiments are accomplished by applying two independent tunable UV lasers controlled by a delay/pulse generator(Stanford Research Systems DG535).The excitation source is a Nd:YAG pumped dye laser(Quanta-Ray PRO-190-10/Lambda-Physik,Scanmate UV with BBO-I crystal;Coumarin-540 dye).The generated visible radiation is frequency-doubled to produce UV radiation.The ionization UV laser(Lambda-Physik,Scanmate UV with BBO-III crystal;LDS-698 and DCM dyes)is pumped by a frequencydoubled Nd-YAG laser(Quanta-Ray LAB-150).A laser wavelength meter(Coherent,WaveMaster)was used to calibrate the wavelength of laser.Due to the systematic instrument errors,to obtain the true wavelength,the displayed wavelength of the excitation and ionization lasers needs to be added by 0.20 and 0.34 nm,respectively.The resulting values are nearly identical with those of the high resolution electronic spectroscopic experiments.8,23These two counter-propagating laser beams were focused and intersected perpendicularly with the molecular beam at 50 mm downstream from the nozzle orifice.

    The PIE experiment is done by scanning the ionization(probe)laser while fixing the excitation(pump)laser at a particular intermediate(e.g.S100)level of the selected molecular species.It detects non-energy-selected prompt ions and gives a PIE curve,yielding ionization energy(Ip)with an uncertainty of 10-20 cm-1.In contrast,the MATI experiment detects threshold ions formed during the pulsed field ionization(PFI)process and gives a sharp peak at the ionization limit.When the sum of two photon energies is very close to the ionization threshold,both the prompt ions and the high n Rydberg neutrals are produced simultaneously in the“field-free”laser-molecular beam interaction zone(region I of our TOF lens system).These two species move with same velocity as the molecular beam of about 1500 m·s-1,depending on the carrier gas and stagnation pressure in the pulsed nozzle.22A pulsed electric field of-1.0 V·cm-1(duration=10 μs)(-2.5 V at TOF plate U1;0 V at plate U2;distance of plate U1 and U2 is 2.5 cm)is switched on about 20 ns after the occurrence of the laser pulses to guide the prompt ions towards the opposite direction of the ion detector.Because the Rydberg neutrals are not affected by the electric field,they keep moving to enter the field ionization region.After a time delay of more than 8.0 μs,the Rydberg neutrals reach the field-ionization zone(region II of our TOF lens system).It follows that a pulsed field of 200 V·cm-1(duration=10 μs)(+2250 V at TOF plate U2;+2050 V at plate U3;0 V at plate U4;distance between any two of these three plates is 1 cm)is applied in region II to field-ionize the high n Rydberg neutrals and to accelerate the newly formed threshold ions toward the dualstacked microchannel plate(MCP)ion detector.As stated above,the first pulsed electric field of-1.0 V·cm-1is referred as the spoiling field which rejects the prompt ions and causes the measured value to be lower than the true adiabatic Ipdue to the Stark effect.24,25The energy lowering(in cm-1)due to the electrical field effect may be estimated by 4.0F1/2when a pulsed field F(in V·cm-1)is applied.Under our experimental conditions,F is-1 V·cm-1.This means that the measured value is lowered than the true Ipby 4 cm-1.26

    The signal from the MCP ion detector is accumulated and analyzed by a multichannel scaler(MCS,Stanford Research Systems,SR430).Each TOF mass spectrum at a particular laser wavelength is accumulated for 300 laser shots to avoid spurious signals due to shot-to-shot laser fluctuation and shown on the screen of the MCS.The MCS and a transient digitizer which monitors laser pulses are interfaced to a personal computer(PC).All TOF mass spectra are saved in the PC at a 0.020 nm(equivalent to 1.2 cm-1)interval over the entire scanning range of laser wavelength.Composite optical spectra of intensity versus wavelength are then constructed from the individual mass spectra.As the ion signal is proportional to the photon intensities of the excitation and ionization lasers in a two-color two-photon process,the obtained optical spectra are normalized to the laser power.

    2.2 Computational method

    We performed the ab initio and DFT calculations by using Gaussian 09 program package27to predict the optimized structures,total energies,vibrational frequencies,and other molecular properties of m-methylanisole in the S0,S1,and D0states.In the DFT calculations,both the Becke three-parameter functional with the Lee-Yang-Parr functional(B3LYP)and the PW91 functional(B3PW91)calculations with the 6-311++G(d,p)basis set can predict the electronic excitation and ionization energies with an uncertainty of no more than 5%.However,the latter gives a slightly better prediction on the vibrational frequencies in the S1and D0states.The configuration interaction singles(CIS),the timedependent(TD)B3PW91 calculations with the 6-311++G(d,p)basis set were applied to predict the vibrational frequencies of the S1state.When scaling factors of 0.93 and 0.98 were applied to correct the combined errors stemming from basis set incompleteness,the negligence of electron correlation and vibrational anharmonicity,the calculated vibrational frequencies match well with the measured values from the vibronic spectroscopic experiments.The vibrational frequencies of the D0state were calculated at the unrestricted Hartree-Fock(HF)and B3PW91 levels with the 6-311++G(d,p)basis set.When scaling factors of 0.92 and 0.98 for cis-m-methylanisole and 0.90 and 0.96 for trans-mmethylanisole were applied,the calculated values became very close to the measured frequencies.The adiabatic Ipwas deduced from the difference in the zero-point energy(ZPE)levels of the cation in the D0state and the corresponding neutral species in the S0state.

    3 Results

    3.1 1C-R2PI spectrum of m-methylanisole

    Fig.2 shows the 1C-R2PI spectrum of m-methylanisole over an energy range of 1600 cm-1,recorded by using the 1C-R2PI technique.The respective band origins of the S1←S0electronic excitation(E1)of the cis and trans rotamers appear at(36049±2)and(36117±2)cm-1,which are in excellent agreement with those reported previously.5-8In the present experimental conditions,the full width at half maximum(FWHM)of these bands is 5-7 cm-1.Therefore,the origin bands may contain the methyl internal rotational levels 0a1and 1e.

    Fig.2 1C-R2PI spectrum of m-methylanisole near the S1←S0electronic transition

    The observed vibronic bands along with the excitation photon energy,relative intensity,energy shift from the band origin,cal-culated vibrational frequency,and possible assignment are listed in Table 1.We use“τ”to designate the CH3torsion throughout this paper.The spectral assignment has been achieved by comparing the present data with those in the literature5-9,28and the predicted values from the CIS and TD-B3PW91 calculations with the 6-311++G(d,p)basis set.The numbering system of the normal vibrations follows that used by Varsanyi and Szoke29for benzene derivatives and is based on Wilson′s notations.30According to Varsanyi,28m-methylanisole is classified as an m-Di-“l(fā)ight”substituted benzene.These normal vibrations can be viewed by following the GaussView procedure of the Gaussian 09 program.27Previous studies5-9are mainly on the spectral bands related to the CH3torsion.Here,we focus on those resulting from the in-plane ring and substituent-sensitive vibrations.

    m-Methylanisole has 51 normal vibrations including 30 benzene-like,9 methyl,and 12 methoxyl modes.Only those active vibrations in the S1state with large Franck-Condon overlaps can be observed in the 1C-R2PI spectrum.Because the vibration frequency of each mode of multiply substituted benzene is related to substituent-ring and substituent-substituent interactions,each molecule has a unique set of spectral features.Therefore,a wellresolved spectrum can be used for molecular identification,although the spectral assignment is not trivial.The bands at 36193 and 36266 cm-1in Fig.2 corresponding to shifts by 144 and 149 cm-1on the high energy side of the band origins of the two respective rotamers result from the CH3torsion τ(2e)of cis-mmethylanisole and τ(3a1)of trans-m-methylanisole.This finding is consistent with that reported in the literature.6,9The assignment for the observed vibronic transitions related to the ring vibrations of the rotamers of m-methylanisole has been achieved by comparing the present experimental data with those of the corresponding rotamers m-fluoroanisole12and m-chloroanisole31as well as the calculated results.The vibronic transitions related to vibrations 6b1,11,7b1,121,and 131are found to have frequencies of 519,681,827,952,and 1178 cm-1for cis-m-methylanisole and 529,688,838,961,and 1215 cm-1for trans-m-methylanisole.Modes 6b,1,and 12 mainly involve in-plane ring deformation,whereas modes 7b and 13 designate ring C1―OCH3and ring C3―CH3stretching vibrations,respectively.In-plane ring deformation 6a of the cis rotamer appears at 437 cm-1with low intensity.It has been reported that mode 1 has frequency of 693 cm-1for both cisand trans-m-fluoroanisole12and 626 and 639 cm-1for cis-and trans-m-chloroanisole,31respectively.These data show that the frequency difference of each normal vibration of the two rotamers depends on the nature,vibrational pattern,and relative orientation of the substituents.

    3.2 Cation spectra of selected cis-and transm-methylanisole

    To investigate molecular properties of selected rotamers of mmethylanisole,we have performed the PIE and MATI experiments.When the sum of the photon energies of the pump and probe laser is close to the ionization limit,both the high n Rydberg neutrals and prompt ion are produced simultaneously in the“field free”laser-molecular beam interaction region(region I of our TOF lens system).22After a time delay of about 11.2 μs,the Rydberg molecules are field ionized along with the prompt ions and accelerated in region II of our TOF lens system.22This leads to an abrupt change of the total ion current near the ionization limit in a PIE spectrum.Fig.3 shows the PIE curves of cis-and trans-mmethylanisole,recorded by ionizing via their respective S100levels at 36049 and 36117 cm-1.The first rising step in the PIE of cis-mmethylanisole indicates that the Ipis(64859±10)cm-1.Two more steps clearly appear at 64957 and 65043 cm-1,which are higher than the first one by 98 and 184 cm-1,respectively.They corre-spond to the internal methyl rotations τ(2e)and τ(3a1)of the cism-methylanisole cation.Similarly,the Ipof trans-m-methylanisole is found to be(65110±10)cm-1.Two steps near 65199 and 65262 cm-1result from the CH3torsion τ(2e)and τ(3a1)of the trans-mmethylanisole cation with the respective frequencies of 89 and 152 cm-1.When we performed the MATI experiments which detect only the threshold ions,we observed sharp peaks corresponding to these abruptly rising steps,as seen in Figs.4 and 5.A similar observation of the out-of-plane ring deformation vibration of the benzimidazole32cation has been reported.

    Table 1 Observed bands in the 1C-R2PI spectrum of m-methylanisole in Fig.2

    Fig.3 PIE curves of(a)cis-m-methylanisole and(b)trans-mmethylanisole,recorded by ionizing via their respective S100 levels

    Fig.4 shows the MATI spectra of cis-m-methylanisole,recorded by ionizing via the 00(36049 cm-1),τ(2e)(00+144 cm-1),and 6b1(00+519 cm-1)levels in the S1state.Although some portions have low intensity,the signal-to-noise ratio of these spectra is reasonably good.Consideration of the uncertainty of the laser photon energy,the spectral width,and the Stark effect,the adiabatic Ipof cis-m-methylanisole is determined to be(64859±5)cm-1((8.0415±0.0006)eV),which is in good agreement with that measured by our PIE method and by the ZEKE experiments reported by Fujii and coworkers9.The observed MATI bands resulting from the cation vibrations and their possible assignments are listed in Table 2.As stated previously,the band origin may include the methyl internal rotational levels 0a1and 1e.When the S100state is used as the intermediate level,the pronounced bands at 98,180,248,and 307 cm-1correspond to the CH3torsion τ(2e),τ(3a1),τ(5e),and τ(6a1)of cis-m-methylanisole cation,as reported in the literature.9The weak bands at 648,733,798,and 857 cm-1are caused by the combinational motion of the in-plane ring deformation 6b1vibration and the CH3torsion τ(2e), τ(3a1), τ(5e),and τ(6a1),respectively.Another weak band at 951 cm-1results from the inplane ring deformation 121vibration.When the S1τ(2e)state is used as the intermediate level,the pronounced bands at 249,338,and 416 cm-1correspond to the CH3torsion τ(5e),τ(7e),and τ(8e).This assignment fulfills the selection rule of e?e transition.The weak bands at 803 and 958 cm-1correspond to the combinational motion 6b1τ(5e)and the in-plane ring deformation 121vibration.When the MATI spectrum is recorded by ionizing via the vibronic S16b1state which may contain CH3torsion with the a and e symmetry,the weak bands at 180 and 250 cm-1are assigned to the CH3torsion of τ(3a1)and τ(5e).9The distinct bands at 648,733,796,and 857 cm-1correspond to the combinational motion of vibration 6b1and the CH3torsion of τ(2e),τ(3a1),τ(5e),and τ(6a1).The weak bands at 549 and 1280 cm-1result from vibrations 6b1and 131,respectively.

    Fig.4 MATI spectra of cis-m-methylanisole,recorded by ionizing via the(a)S100,(b)S1τ(2e),and(c)S16b1 intermediate states

    Table 2 Observed bands(cm-1)in the MATI spectra of cis-mmethylanisole in Fig.4a

    Fig.5 MATI spectra of trans-m-methylanisole,recorded by ionizing via the(a)S100,(b)S1τ(3a1),and(c)S16b1 intermediate states

    Fig.5 shows the MATI spectra of trans-m-methylanisole,recorded by ionizing via the 00(36117 cm-1),τ(3a1)(00+149 cm-1),and 6b1(00+529 cm-1)levels in the S1state.The adiabatic Ipis determined to be(65110±5)cm-1((8.0726±0.0006)eV)which is also in excellent agreement with that measured by our PIE method and by the ZEKE experiments.9The observed MATI bands and their possible assignments are listed in Table 3.As seen in Fig.5(a),when the S100state is used as the intermediate state,the lowfrequency bands at 89,152,and 268 cm-1result from the CH3torsion τ(2e),τ(3a1),and τ(6a1)of the trans-m-methylanisole cation,as reported previously.9The weak bands at 600 and 709 cm-1correspond to the combinational motions 151τ(3a1)and 6b1τ(3a1),respectively.Another weak band at 860 cm-1is tentatively assigned to the substituent-sensitive ring C1―OCH3stretching vibration 7b1.It is interesting to note that when the S1τ(3a1)is used as the intermediate level,many weak MATI bands related to inplane ring fundamental vibrations of the cation are observed,as seen in Fig.5(b).The bands at 446,555,959,1085,and 1160 cm-1are related to vibrations 151,6b1,121,18a1,and 9b1,respectively.The band at 708 cm-1corresponds to the combinational motion6b1τ(3a1).When the MATI spectrum is recorded by ionizing via the S16b1vibronic level,distinct bands at 712 and 823 cm-1correspond to the combinational motions 6b1τ(3a1)and 6b1τ(6a1)of the trans-m-methylanisole cation,respectively.The weak bands at 600 and 1269 cm-1result from the combinational motion 151τ(3a1)and the substituent-sensitive ring C3―CH3stretching vibration 131,respectively.

    Table 3 Observed bands(cm-1)in the MATI spectra of trans-mmethylanisole in Fig.5 a

    4 Discussion

    4.1 Optimized structures of m-methylanisole in the S0,S1,and D0states

    Our theoretical calculations predict that in the S0,S1,and D0states m-methylanisole has stable cis and trans configurations(Fig.1)as in the cases of m-fluoroanisole12and m-chloroanisole31.Fig.4(a)and Fig.5(a)show a very weak 0+band of the MATI spectrum recorded by ionizing via the S100intermediate levels of cis-and trans-m-methylanisole.This observation is distinctly different from that of m-fluoroanisole and m-chloroanisole.Previous studies show that molecular geometry and some in-plane vibrations in the D0state resemble those in the S1state for both rotamers of m-fluoroanisole12and m-chloroanisole.31In contrast,the present results may indicate that the geometry of the cis and trans rotamers of m-methylanisole changes drastically upon the D0←S1transition.Here,we present the results from the theoretical calculations to support the experimental findings which imply that interaction of the CH3substituent with the aromatic ring is quite different from that of either F or Cl atom.

    Table 4 lists the optimized structural parameters of cis-and trans-m-methylanisole in the S0,S1,and D0states,predicted by the restricted B3PW91,TD-B3PW91,and unrestricted B3PW91 calculations with the 6-311++G(d,p)basis set.It is clear that the substituent-ring interaction causes the aromatic ring to distort from a regular hexagon.It follows that the bond lengths and bond angles of cis-and trans-m-methylanisole change upon electronic transition.As shown in Table 4,the S1←S0excitation leads to an expansion of the aromatic ring for both rotamers.Here,we use the cis rotamer as an example for discussion.The electronic excitation causes the lengths of the C1―C2,C2―C3,C3―C4,C4―C5,C5―C6,and C6―C1 bonds of cis-m-methylanisole(see Fig.1)to increase from 0.1393,0.1401,0.1391,0.1396,0.1383,and 0.1399 nm to 0.1420,0.1427,0.1420,0.1411,0.1419,and 0.1418 nm,respectively.It is noted that the C1―OCH3and C3―CH3bonds slightly shrink from 0.1361 to 0.1345 nm and 0.1505 to 0.1488 nm,respectively.The shortening of these two substituent related bonds indicates that the interaction of the CH3and OCH3groups with the aromatic ring becomes slightly enhances upon S1←S0transition.The change of bond angles ∠C6C1C2,∠C2C3C4,and ∠C3C4C5 from 120.0o,119.1o,120.2oto 123.2o,118.3o,and 123.2oalso implies that the substituent-ring interaction varies upon the electronic transition.

    The D0←S1transition involves removing one electron from cism-methylanisole in the S1state.The data in Table 4 showed that the lengths of the C2―C3,C5―C6,and C1―OCH3bonds decrease substantially from 0.1427,0.1419,and 0.1345 nm to 0.1376,0.1372,and 0.1304 nm,respectively.This implies that the D0←S1transition leads to double bond characters in the C2―C3,C5―C6,and C1―OCH3bonds.In consideration of the structure in Fig.1,the ring part of cis-m-methylanisole in the cationic D0state is similar to that of quinone.4These results show that the D0←S1transition leads to a significant change in molecular geometry.The predicted structural change of trans-m-methylanisole uponthe S1←S0and D0←S1transitions is similar to that of cis-mmethylanisole,as shown in Table 4.The B3PW91/6-311++G(d,p)calculations predict that the aromatic ring of both rotamers of mmethylanisole expands upon the S1←S0electronic excitation.Furthermore,the ring part changes significantly from a distorted hexagon to a quinone-like structure in the D0←S1transition.These calculated results support the experimental findings of the very weak 0+bands in the MATI spectra of cis-and trans-m-methylanisole,as seen in Fig.4(a)and Fig.5(a).

    Table 4 Bond lengths and angles of cis-and trans-mmethylanisole in the S0,S1and D0states,predicted by the restricted B3PW91,TD-B3PW91,and unrestricted B3PW91 methods with the 6-311++G(d,p)basis set,respectively

    4.2 Configuration and substitution effects on the E1and I p

    The respective E1of cis-and trans-m-methylanisole are measured to be 36049 and 36117 cm-1.The CIS/6-311++G(d,p)calculations predict these values to be 45173 and 45335 cm-1.Moreover,the TD-B3LYP and TD-B3PW91 methods with the same basis set give 37341 and 37717 cm-1for the cis rotamer,and 37371 and 37796 cm-1for the trans rotamer,respectively.These results show that the CIS,TD-B3LYP,and TD-B3PW91 methods overestimate the E1by about 25%,3.5%,and 4.6%,respectively.The adiabatic Ipof the cis and trans rotamers are determined to be 64859 and 65110 cm-1,respectively.9The HF/6-311++G(d,p)calculations predict these values to be 52968 and 53278 cm-1,which are less than the measured values by about 18%.The B3LYP and B3PW91 methods with the same basis set give 63089 and 63263 cm-1for the cis rotamer,and 63415 and 63601 cm-1for the trans rotamer.These results show that the B3LYP and B3PW91 calculated values are less than the measured ones by about 2.7%and 2.4%,respectively.Evidently,these calculations show that the DFT method is better than the HF method in predicting the E1and Ipof both rotamers.In addition,all of these calculations predict that the cis rotamer has a slightly smaller E1and Ipthan the trans rotamer of m-methylanisole.Similar findings have been reported for m-fluoroanisole12and m-chloroanisole.31

    The experimental and calculated results show that the cis is more stable than the trans rotamer in the upper(S1and D0)states than the lower(S0)state.This indicates that the through-space(or roaming)interaction between the CH3and OCH3groups of the cis rotamer is stronger than that of the trans rotamer in the upper state.The difference in the E1and Ipof the two rotamers of mmethylanisole results from different degrees of interaction between the two substituents in various energy states.Similar findings have been reported for m-cresol,3,20m-fluoroanisole,3,12mchloroanisole,31m-fluorophenol,3,33m-chlorophenol,3m-methoxyaniline,15m-aminophenol,34,353,4-difluoroanisole,36and 3,4-difluorophenol.37

    Our restricted B3PW91/6-311++G(d,p)calculations predict that in the S0state the ZPE level of cis-m-methylanisole is higher than that of trans-m-methylanisole by 38 cm-1.With the measured values stated previously,the ZPE level in the S1state of the cis rotamer is calculated to be lower than that of the trans rotamer by 106 cm-1,as shown in Fig.6.Similarly,the adiabatic Ipof the cis and trans rotamers of m-methylanisole are determined to be 64859 and 65110 cm-1by our MATI experiments,respectively.The ZPE level in the cationic D0state of the cis rotamer is then deduced to be lower than that of the trans rotamer by 289 cm-1.These experimental data and calculated results imply that the throughspace interaction between the CH3and OCH3substituents at the meta position of the cis rotamer is stronger than that of the trans rotamer of m-methylanisole.Therefore,the strength of the throughspace substituent-substituent interaction of m-methylanisole in the electronic state follows the order:S0

    It is known that a substituent can interact with an aromatic ring by inductive effect through the σ bond and by the resonant(or mesomeric)effect through the π bond.4The inductive effect,which is related to the electronegativity of the substituent,reflects the ability of donating or accepting electrons from the substituent to the ring.The resonant effect depends on the extent of π orbital overlap of the substituent with the ring.In addition,the hydrogen atoms of an alkyl group can interact with an aromatic group by hyperconjugation.The collective effect of the above mentioned factors can cause a slight change in the nearby electron density of the aromatic ring,leading to a lowering of the ZPE level of the electronic state.If the degree of the lowering of the ZPE level of the upper state is greater than that of the lower one,it gives smaller transition energy.Oppositely,it yields a slightly larger transition energy.26

    Fig.6 Energy level diagram of the cis and trans rotamers of mmethylanisole in the S0,S1,and D0states

    Table 5 lists the measured E1and Ipof anisole and its derivative,on the basis of the LIF,REMPI,ZEKE,and MATI experiments.10,14,15The excitation energy of the D0←S1transition(E2)are also shown in Table 5.These anisole derivatives have a second substituent of CH3,NH2,and OCH3at the meta position with respect to the OCH3group.Previous studies10,14,15show that both m-methylanisole and m-methylaniline have two rotamers,whereas m-dimethoxybenzene has three rotamers involved in the two-photon excitation and ionization processes.As shown in Table 5,the E1and Ipof mmethylanisole,m-methoxyaniline,and m-dimethoxybenzene are less than those of anisole.The observed smaller transition energy of the anisole derivatives indicates that the interaction of the CH3,NH2,and OCH3groups and the aromatic ring is stronger in the upper(i.e.S1or D0)state than that in the lower(i.e.S0)state.Table 6 lists the measured E1and Ipof toluene11and its derivatives.16-19It is evident that substitution of the CH3,NH2,and OCH3groups leads to a smaller E1and Ip.These data support the previous statement that the substituent-ring interaction of these anisole and toluene derivatives is stronger in the upper electronically excited S1(or cationic D0)state than that in the lower ground S0state.

    4.3 Frequencies of observed active vibrations in the S1and D0states

    Figs.2,4,and 5 show that some fundamental in-plane ring and substituent-sensitive vibrations are active in addition to the CH3torsion for both the cis and trans rotamers of m-methylanisole in the S1and D0states.As listed in Table 7,frequencies of modes 6b1,11,7b1,121,and 131are measured to be 519,681,827,952,and 1178 cm-1for cis-m-methylanisole and 529,688,838,961,and 1215 cm-1for trans-m-methylanisole in the S1state.The vibrational frequencies of these modes of the cis rotamer are slightly less than those of the trans rotamer.Furthermore,frequencies of vibrations 6b1,121,and 131are measured to be 549,951,and 1280 cm-1for cis-m-methylanisole and 555,959,and 1269 cm-1for trans-m-methylanisole in the D0state.This indicates that frequencyis slightly different for each mode of the two rotamers.In consideration of the molecular geometry changes upon the D0←S1transition,we propose that the nature,relative orientation of the CH3and OCH3substituents,molecular geometry,and vibrational pattern can influence the frequency of normal modes.

    Table 5 Measured transition energies(cm-1)of anisole and its derivatives

    Table 6 Measured transition energies(cm-1)of toluene and its derivatives

    Table 7 Measured frequencies(cm-1)of active vibrations of m-methylanisole in the S1and D0states

    4.4 Energy barrier of the cis-trans isomerization of mmethylanisole

    Fig.7 One-dimensional potential energy surfaces for the rotation of the C―OCH3bond of m-methylanisole in the(a)D0,(b)S1,and(c)S0states

    As discussed previously,the cis and trans rotamers of mmethylanisole involve in two-photon excitation and ionization processes.We have performed the restricted B3PW91,TDB3PW91,and unrestricted B3PW91 calculations with the 6-311++G(d,p)basis set to investigate the cis-trans isomerization of mmethylanisole in the S0,S1,and D0states,respectively.It was achieved by scanning the one-dimensional potential energy surface on the rotation of the C1―OCH3.As illustrated in Fig.7(c),in the S0state,the trans rotamer has the lowest total electronic energy,whereas the cis configuration lies in an energy level higher by 31 cm-1.In addition,an intermediate species with the orthogonal form(with the C1―O―CH3angle of 90°)has energy higher than that of the trans con?guration by 1136 cm-1.This result predicts that the trans form is the most stable configuration and the energy barrier of the cis-trans isomerization is in the range of 1105-1136 cm-1.Similarly,the most stable structure of mmethylanisole in the S1and D0states also has the trans configuration,as shown in Fig.7(b)and 7(a).However,the isomerization barriers are greatly enhanced to 3011-3038 cm-1and 4828-5118 cm-1in the S1and D0states,respectively.The increase of isomerization barriers is due to the fact that the interaction between the OCH3group and the ring is stronger in the upper(S1or D0)state than that in the lower S0state.As listed in Table 4,these DFT calculations predict the C1―OCH3bond lengths to be 0.1361,0.1345,and 0.1304 nm for cis-m-methylanisole and 0.1361,0.1344,and 0.1302 nm for trans-m-methylanisole in the S0,S1,and D0states,respectively.A shorter length implies a stronger chemical bond.Therefore,the isomerization energy barrier to the C1―OCH3rotation follows the order:S0

    5 Conclusions

    We have applied the 1C-R2PI,2C-R2PI,and MATI techniques to record the 1C-R2PI,PIE,and cation spectra of m-methylanisole.The E1of the cis and trans rotamers are determined to be 36049 and 36117 cm-1,whereas the adiabatic Ipare 64859 and 65110 cm-1,respectively.Our restricted B3PW91/6-311++G(d,p)calculations predict that in the S0state the ZPE level of cis-mmethylanisole is higher than that of trans-m-methylanisole by 38 cm-1.With the measured E1and Ip,the ZPE levels of the cis rotamer in the S1and D0states are calculated to be lower than those of the trans rotamer by 106 and 289 cm-1,respectively.These imply that the through-space(or“roaming”)interaction between the CH3and OCH3substituents of m-methylanisole in the electronic state follows the order:S0

    Analysis of the 1C-R2PI and cation spectra show that several in-plane ring and substituent-sensitive vibrations are active in addition to the CH3torsion for both the cis and trans rotamers of m-methylanisole in the S1and D0states.However,the frequency difference of each vibration may depend on the nature,vibrational pattern,relative orientation,and the extent of the substituents participated in the normal vibration.

    (1)Dian,B.C.;Longarte,A.;Winter,P.R.;Zwier,T.S.J.Chem.Phys.2004,120,133.doi:10.1063/1.1626540

    (2)Pan,C.P.;Barkley,M.D.Biophys.J.2004,86,3828.doi:10.1529/biophysj.103.038901

    (3)Oikawa,A.;Abe,H.;Mikami,N.;Ito,M.Chem.Phys.Lett.1985,116,50.doi:10.1016/0009-2614(85)80123-8

    (4)McMurry,J.Organic Chemistry,7th ed.;Brooke/Cole Publishing Company:Belmont,California,2007.

    (5)Breen,P.J.;Bernstein,E.R.;Secor,H.V.;Seeman,J.I.J.Am.Chem.Soc.1989,111,1958.doi:10.1021/ja00188a002

    (6)Ichimura,T.;Suzuki,T.J.Photochem.Photobiol.C:Photochem.Rev.2000,1,79.doi:10.1016/S1389-5567(00)00006-X

    (7)Kojima,H.;Miyake,K.;Sakeda,K.;Suzuki,T.;Ichimura,T.;Tanaka,N.;Negishi,D.;Takayanagi,M.;Hanazaki,I.J.Mol.Struct.2003,655,185.doi:10.1016/S0022-2860(03)00258-8

    (8)Alvarez-Valtierra,L.;Yi,J.T.;Pratt,D.W.J.Phys.Chem.B 2006,110,19914.doi:10.1021/jp062050h

    (9)Kinoshita,S.;Kojima,H.;Suzuki,T.;Ichimura,T.;Yoshida,K.;Sakai,M.;Fujii,M.Phys.Chem.Chem.Phys.2001,3,4889.doi:10.1039/b105719g

    (10)Pradhan,M.;Li,C.;Lin,J.L.;Tzeng,W.B.Chem.Phys.Lett.2005,407,100.doi:10.1016/j.cplett.2005.03.068

    (11)Lu,K.T.;Eiden,G.C.;Weisshaar,J.C.J.Phys.Chem.1992,96,9742.doi:10.1021/j100203a032

    (12)Shiung,K.S.;Yu,D.;Huang,H.C.;Tzeng,W.B.J.Mol.Spectrosc.2012,274,43.doi:10.1016/j.jms.2012.04.004

    (13)Ullrich,S.;Geppert,W.D.;Dessent,C.E.H.;Müller-Dethlefs,K.J.Phys.Chem.A 2000,104,11864.

    (14)Yang,S.C.;Huang,S.W.;Tzeng,W.B.J.Phys.Chem.A 2010,114,11144.doi:10.1021/jp1026652

    (15)Lin,J.L.;Huang,C.J.;Lin,C.H.;Tzeng,W.B.J.Mol.Spectrosc.2007,244,1.doi:10.1016/j.jms.2007.05.001

    (16)Zhang,S.;Tang,B.F.;Wang,Y.M.;Zhang,B.Chem.Phys.Lett.2004,397,495.doi:10.1016/j.cplett.2004.09.025

    (17)Held,A.;Selzle,H.L.;Schlag,E.W.J.Phys.Chem.A 1998,102,9625.

    (18)Lin,J.L.;Lin,K.C.;Tzeng,W.B.J.Phys.Chem.A 2002,106,6462.doi:10.1021/jp0204713

    (19)Okuyama,K.;Mikami,N.;Ito,M.Laser Chem.1987,7,197.doi:10.1155/LC.7.197

    (20)Huang,J.;Huang,K.;Liu,S.;Luo,Q.;Tzeng,W.B.J.Photochem.Photobiol.A:Chem.2007,188,252.doi:10.1016/j.jphotochem.2006.12.016

    (21)Huang,J.;Lin,J.L.;Tzeng,W.B.Spectrochim.Acta A 2007,67,989.doi:10.1016/j.saa.2006.09.018

    (22)Tzeng,W.B.;Lin,J.L.J.Phys.Chem.A 1999,103,8612.

    (23)Sinclair,W.E.;Pratt,D.W.J.Chem.Phys.1996,105,7942.doi:10.1063/1.472710

    (25)Schlag,E.W.ZEKE Spectroscopy;Cambridge University Press:Cambridge,1998;pp 40-41.

    (26)Zhang,B.;Li,C.;Su,H.;Lin,J.L.;Tzeng,W.B.Chem.Phys.Lett.2004,390,65.doi:10.1016/j.cplett.2004.04.013

    (27)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision A.02;Gaussian Inc.:Wallingford,CT,2009.

    (28)Varsanyi,G.Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives;Wiley:New York,1974;pp 185,201.

    (29)Varsanyi G.;Szoke,S.Vibrational Spectra of Benzene Derivatives;Academic Press:New York,London,1969.

    (30)Wilson,E.B.Phys.Rev.1934,45,706.doi:10.1103/PhysRev.45.706

    (31)Huang,H.C.;Shiung,K.S.;Jin,B.Y.;Tzeng,W.B.Chem.Phys.2013,425,114.doi:10.1016/j.chemphys.2013.08.013

    (32)Lin,J.L.;Li,Y.C.;Tzeng,W.B.Chem.Phys.2007,334,189.doi:10.1016/j.chemphys.2007.03.002

    (33)Yosida,K.;Suzuki,K.;Ishiuchi,S.;Sakai,M.;Fujii,M.;Dessent,C.E.H.;Müller-Dethlefs,K.Phys.Chem.Chem.Phys.2002,4,2534.doi:10.1039/b201107g

    (34)Shinozaki,M.;Sakai,M.;Yamaguchi,S.;Fujioka,T.;Fujii,M.Phys.Chem.Chem.Phys.2003,5,5044.doi:10.1039/b309461h

    (35)Xie,Y.;Su,H.;Tzeng,W.B.Chem.Phys.Lett.2004,394,182.doi:10.1016/j.cplett.2004.07.005

    (36)Xu,Y.;Tzeng,S.Y.;Tzeng,W.B.Spectrochim.Acta A 2013,102,365.doi:10.1016/j.saa.2012.10.020

    (37)Tsai,C.Y.;Tzeng,W.B.J.Photochem.Photobiol.A 2013,270,53.doi:10.1016/j.jphotochem.2013.07.014

    猜你喜歡
    新疆師范大學(xué)研究所原子
    睡眠研究所·Arch
    原子究竟有多?。?/a>
    原子可以結(jié)合嗎?
    帶你認(rèn)識(shí)原子
    睡眠研究所民宿
    未來(lái)研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    呂蓓佳作品
    屈慧作品
    心力衰竭研究所簡(jiǎn)介
    新疆師范大學(xué)美術(shù)學(xué)院研究生作品選
    美術(shù)界(2013年6期)2013-04-29 13:52:30
    女同久久另类99精品国产91| 999精品在线视频| 亚洲男人的天堂狠狠| 99久久精品国产亚洲精品| 欧美成狂野欧美在线观看| 欧美zozozo另类| 久久中文字幕一级| 亚洲av成人av| 日韩欧美一区二区三区在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 1024手机看黄色片| 九九热线精品视视频播放| 亚洲自拍偷在线| 日本五十路高清| 又黄又爽又免费观看的视频| or卡值多少钱| 欧美午夜高清在线| 久久精品国产亚洲av香蕉五月| 久久精品人妻少妇| 午夜福利高清视频| av福利片在线观看| 亚洲色图av天堂| 国产亚洲精品av在线| 日韩欧美国产在线观看| 久久久久国产一级毛片高清牌| 无人区码免费观看不卡| 日韩av在线大香蕉| 亚洲18禁久久av| 亚洲精品456在线播放app | 不卡一级毛片| 国产亚洲精品av在线| 窝窝影院91人妻| 欧美高清成人免费视频www| 十八禁人妻一区二区| 一个人免费在线观看电影 | 色av中文字幕| 久久草成人影院| 亚洲成a人片在线一区二区| x7x7x7水蜜桃| 99久久国产精品久久久| 久久久久性生活片| 99精品久久久久人妻精品| 一本一本综合久久| 国产成人影院久久av| 亚洲av熟女| 母亲3免费完整高清在线观看| 亚洲欧美日韩高清专用| 欧美乱妇无乱码| 亚洲午夜精品一区,二区,三区| 成人一区二区视频在线观看| 国产精品久久电影中文字幕| 国产综合懂色| 美女被艹到高潮喷水动态| 亚洲天堂国产精品一区在线| 久久久久久久久免费视频了| 夜夜躁狠狠躁天天躁| 丰满人妻熟妇乱又伦精品不卡| 两人在一起打扑克的视频| 黑人欧美特级aaaaaa片| 欧美zozozo另类| 啪啪无遮挡十八禁网站| 久久九九热精品免费| tocl精华| 麻豆国产av国片精品| 男人的好看免费观看在线视频| 亚洲五月婷婷丁香| 在线观看免费午夜福利视频| 无人区码免费观看不卡| 成人鲁丝片一二三区免费| 亚洲精品456在线播放app | 99riav亚洲国产免费| 亚洲一区二区三区色噜噜| 天天一区二区日本电影三级| 无限看片的www在线观看| 9191精品国产免费久久| 怎么达到女性高潮| 免费观看精品视频网站| 国产精品电影一区二区三区| 国产成+人综合+亚洲专区| 国产精品一区二区精品视频观看| 国产极品精品免费视频能看的| 国产亚洲av高清不卡| 欧美日韩精品网址| 色综合婷婷激情| 麻豆一二三区av精品| 特级一级黄色大片| 国产极品精品免费视频能看的| 丁香欧美五月| 久久中文看片网| 国产成年人精品一区二区| 久久久久久久久久黄片| 色噜噜av男人的天堂激情| av国产免费在线观看| 精品国产美女av久久久久小说| 一a级毛片在线观看| 久久久成人免费电影| 人人妻人人看人人澡| 真人一进一出gif抽搐免费| 中文字幕精品亚洲无线码一区| 熟女人妻精品中文字幕| 亚洲人成伊人成综合网2020| 亚洲欧美一区二区三区黑人| 亚洲精华国产精华精| 日本一二三区视频观看| 亚洲性夜色夜夜综合| 村上凉子中文字幕在线| www日本黄色视频网| 丁香欧美五月| 午夜免费观看网址| 国产亚洲欧美在线一区二区| 亚洲九九香蕉| 国产一区二区激情短视频| 国产免费av片在线观看野外av| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 天天添夜夜摸| 成人午夜高清在线视频| 美女cb高潮喷水在线观看 | 麻豆一二三区av精品| 欧美不卡视频在线免费观看| 成年女人看的毛片在线观看| 亚洲国产精品sss在线观看| 色综合亚洲欧美另类图片| 哪里可以看免费的av片| a级毛片a级免费在线| 在线观看午夜福利视频| 国产麻豆成人av免费视频| 法律面前人人平等表现在哪些方面| 国内久久婷婷六月综合欲色啪| 亚洲在线观看片| 一本综合久久免费| 麻豆成人av在线观看| 每晚都被弄得嗷嗷叫到高潮| 少妇丰满av| 在线免费观看的www视频| 久久久久久久久久黄片| 在线观看美女被高潮喷水网站 | www.熟女人妻精品国产| 日本一本二区三区精品| 又黄又粗又硬又大视频| 亚洲人成网站在线播放欧美日韩| 欧美日本亚洲视频在线播放| 亚洲av免费在线观看| 亚洲九九香蕉| 嫁个100分男人电影在线观看| 欧美色欧美亚洲另类二区| 美女扒开内裤让男人捅视频| 国产又黄又爽又无遮挡在线| 少妇的逼水好多| 国产乱人伦免费视频| 最好的美女福利视频网| 老汉色av国产亚洲站长工具| 亚洲av第一区精品v没综合| 国产欧美日韩一区二区精品| 精品日产1卡2卡| 少妇的逼水好多| 精品一区二区三区av网在线观看| 国产v大片淫在线免费观看| 毛片女人毛片| 狠狠狠狠99中文字幕| 国产1区2区3区精品| 欧美日韩综合久久久久久 | 免费在线观看视频国产中文字幕亚洲| 国产真实乱freesex| 给我免费播放毛片高清在线观看| 久久久水蜜桃国产精品网| 一进一出好大好爽视频| 亚洲片人在线观看| 在线永久观看黄色视频| 哪里可以看免费的av片| 国产亚洲欧美在线一区二区| 国产成人福利小说| 一二三四社区在线视频社区8| 嫩草影院入口| 99久国产av精品| 不卡av一区二区三区| 一a级毛片在线观看| 欧美黑人巨大hd| 老司机福利观看| netflix在线观看网站| 亚洲精品在线观看二区| 国产精品日韩av在线免费观看| 好男人在线观看高清免费视频| 看免费av毛片| 999久久久精品免费观看国产| av国产免费在线观看| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 色尼玛亚洲综合影院| 午夜成年电影在线免费观看| 99热只有精品国产| 美女免费视频网站| 国产av不卡久久| 国产成人精品无人区| 亚洲欧美激情综合另类| 亚洲一区高清亚洲精品| 国产精品久久久久久亚洲av鲁大| 少妇丰满av| 国产精品自产拍在线观看55亚洲| 在线观看午夜福利视频| 桃色一区二区三区在线观看| 观看免费一级毛片| 国内精品一区二区在线观看| 伊人久久大香线蕉亚洲五| av欧美777| 极品教师在线免费播放| 一级作爱视频免费观看| 欧美成人免费av一区二区三区| 国产欧美日韩精品一区二区| 亚洲精品一卡2卡三卡4卡5卡| 神马国产精品三级电影在线观看| 国产精品久久久久久精品电影| 国产三级黄色录像| 18禁裸乳无遮挡免费网站照片| 国产成人av教育| 久久人妻av系列| 亚洲国产日韩欧美精品在线观看 | 亚洲男人的天堂狠狠| 亚洲中文日韩欧美视频| 99视频精品全部免费 在线 | 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 最新中文字幕久久久久 | 精品一区二区三区四区五区乱码| 首页视频小说图片口味搜索| 两个人看的免费小视频| 别揉我奶头~嗯~啊~动态视频| 性色avwww在线观看| 狠狠狠狠99中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 日韩三级视频一区二区三区| 亚洲av免费在线观看| 宅男免费午夜| 美女黄网站色视频| 97超视频在线观看视频| 一进一出好大好爽视频| 宅男免费午夜| 97超视频在线观看视频| 久久中文看片网| 国产午夜精品久久久久久| 哪里可以看免费的av片| 69av精品久久久久久| 五月玫瑰六月丁香| a级毛片a级免费在线| 久久精品国产99精品国产亚洲性色| 欧美日韩精品网址| 国产精品,欧美在线| 亚洲美女黄片视频| 日本 欧美在线| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 91久久精品国产一区二区成人 | 欧美一区二区精品小视频在线| 亚洲国产精品999在线| 亚洲精品美女久久av网站| 很黄的视频免费| 在线十欧美十亚洲十日本专区| 欧美日韩综合久久久久久 | 最好的美女福利视频网| 欧美日韩乱码在线| 国产成人啪精品午夜网站| 在线a可以看的网站| 长腿黑丝高跟| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 美女午夜性视频免费| 禁无遮挡网站| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 一进一出好大好爽视频| 欧美日韩一级在线毛片| 亚洲一区高清亚洲精品| 波多野结衣巨乳人妻| avwww免费| 好男人在线观看高清免费视频| 亚洲成av人片在线播放无| 啦啦啦免费观看视频1| 久久久久九九精品影院| 免费观看精品视频网站| 在线观看免费午夜福利视频| 18禁裸乳无遮挡免费网站照片| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| 国产伦一二天堂av在线观看| 午夜a级毛片| 精品免费久久久久久久清纯| 免费观看人在逋| АⅤ资源中文在线天堂| 精品熟女少妇八av免费久了| 日本成人三级电影网站| 黄色女人牲交| 欧美成人一区二区免费高清观看 | 亚洲午夜精品一区,二区,三区| 国产主播在线观看一区二区| a级毛片在线看网站| 国产高清videossex| 夜夜看夜夜爽夜夜摸| 麻豆国产97在线/欧美| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 欧美日本亚洲视频在线播放| 欧美激情在线99| 熟女少妇亚洲综合色aaa.| av福利片在线观看| 久久久成人免费电影| 一本一本综合久久| 人人妻人人看人人澡| av国产免费在线观看| 岛国在线免费视频观看| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 他把我摸到了高潮在线观看| 日日干狠狠操夜夜爽| 色av中文字幕| 三级男女做爰猛烈吃奶摸视频| 99精品欧美一区二区三区四区| 又大又爽又粗| 国产综合懂色| 亚洲成人久久性| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区四区五区乱码| 久久久久免费精品人妻一区二区| 美女大奶头视频| 国产精品久久久久久人妻精品电影| 在线播放国产精品三级| 午夜福利高清视频| 国产精品精品国产色婷婷| 色av中文字幕| 午夜两性在线视频| 国产高清视频在线观看网站| 精品一区二区三区视频在线 | 亚洲一区二区三区不卡视频| 美女大奶头视频| 一边摸一边抽搐一进一小说| 黑人欧美特级aaaaaa片| 欧美+亚洲+日韩+国产| 18禁美女被吸乳视频| 一本精品99久久精品77| 国产午夜福利久久久久久| 精品久久久久久久毛片微露脸| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 黄片小视频在线播放| 成人av在线播放网站| 脱女人内裤的视频| 久久久久亚洲av毛片大全| 亚洲精品中文字幕一二三四区| 高清在线国产一区| 免费无遮挡裸体视频| 在线免费观看的www视频| 欧美日韩福利视频一区二区| 国产午夜精品论理片| 男人舔女人下体高潮全视频| 俺也久久电影网| 国产成人精品久久二区二区免费| 色在线成人网| 亚洲精华国产精华精| 亚洲avbb在线观看| 一个人看视频在线观看www免费 | 亚洲精品在线观看二区| 成在线人永久免费视频| 一进一出抽搐动态| 夜夜躁狠狠躁天天躁| 97碰自拍视频| 亚洲国产精品成人综合色| 国产高清videossex| 国产精品久久久久久久电影 | 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 午夜视频精品福利| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 国产激情偷乱视频一区二区| 女人高潮潮喷娇喘18禁视频| 一区二区三区高清视频在线| 亚洲九九香蕉| 国产精品电影一区二区三区| 欧美av亚洲av综合av国产av| 午夜福利在线观看吧| 天堂网av新在线| 亚洲中文字幕日韩| 亚洲午夜精品一区,二区,三区| 丁香欧美五月| 高清毛片免费观看视频网站| 国产亚洲av高清不卡| 婷婷丁香在线五月| 国产一级毛片七仙女欲春2| 天堂动漫精品| 国产v大片淫在线免费观看| 国产99白浆流出| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 一级毛片女人18水好多| 亚洲欧美日韩东京热| 亚洲18禁久久av| 亚洲精品456在线播放app | av黄色大香蕉| 成人国产一区最新在线观看| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久| 精品人妻1区二区| 午夜福利视频1000在线观看| 久久精品亚洲精品国产色婷小说| 丰满的人妻完整版| 免费在线观看亚洲国产| 日本成人三级电影网站| 亚洲性夜色夜夜综合| 亚洲天堂国产精品一区在线| 亚洲自拍偷在线| 1024手机看黄色片| 婷婷亚洲欧美| 90打野战视频偷拍视频| 色尼玛亚洲综合影院| 国产野战对白在线观看| 嫁个100分男人电影在线观看| 婷婷六月久久综合丁香| 禁无遮挡网站| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 国产成人啪精品午夜网站| www.自偷自拍.com| 在线观看一区二区三区| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 国产精品,欧美在线| 狂野欧美激情性xxxx| 国产爱豆传媒在线观看| cao死你这个sao货| 午夜日韩欧美国产| 欧美黑人欧美精品刺激| 成人三级做爰电影| 日韩欧美国产一区二区入口| 十八禁人妻一区二区| 国产毛片a区久久久久| 90打野战视频偷拍视频| xxx96com| 99久久精品热视频| 一级作爱视频免费观看| h日本视频在线播放| 99在线人妻在线中文字幕| 久久人妻av系列| 18禁黄网站禁片免费观看直播| 久久久国产成人免费| 在线观看66精品国产| 亚洲av电影在线进入| 最新美女视频免费是黄的| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产 | 网址你懂的国产日韩在线| 久久香蕉国产精品| 丰满的人妻完整版| 午夜福利18| 99在线视频只有这里精品首页| 国内精品一区二区在线观看| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 成人av一区二区三区在线看| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看| 精品久久久久久久末码| 欧美乱色亚洲激情| 哪里可以看免费的av片| av黄色大香蕉| 九九久久精品国产亚洲av麻豆 | 特级一级黄色大片| 淫秽高清视频在线观看| 欧美最黄视频在线播放免费| 在线免费观看的www视频| 日本在线视频免费播放| 成人三级黄色视频| 精品一区二区三区四区五区乱码| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 一二三四在线观看免费中文在| 国产三级黄色录像| 天堂网av新在线| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲美女黄片视频| 在线免费观看不下载黄p国产 | 婷婷六月久久综合丁香| 精品午夜福利视频在线观看一区| 波多野结衣高清无吗| 1024手机看黄色片| 中文亚洲av片在线观看爽| 性色av乱码一区二区三区2| 国产av麻豆久久久久久久| 十八禁网站免费在线| 日本一本二区三区精品| 日本 av在线| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 最新在线观看一区二区三区| 国产精品影院久久| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 久久久色成人| 一区二区三区高清视频在线| 一级作爱视频免费观看| 久久久久久人人人人人| 欧美午夜高清在线| 青草久久国产| av天堂中文字幕网| 亚洲欧美一区二区三区黑人| 激情在线观看视频在线高清| 欧美在线一区亚洲| www.精华液| 亚洲国产欧美网| 亚洲无线在线观看| 波多野结衣巨乳人妻| 国产三级黄色录像| 亚洲 欧美一区二区三区| 国产免费av片在线观看野外av| 美女扒开内裤让男人捅视频| 日本 av在线| 日本在线视频免费播放| 久久久成人免费电影| 国产人伦9x9x在线观看| 久久这里只有精品中国| 在线播放国产精品三级| 日本 av在线| 日韩欧美国产在线观看| 精品国产美女av久久久久小说| 国产久久久一区二区三区| 国产乱人视频| x7x7x7水蜜桃| 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| 老司机午夜十八禁免费视频| 午夜视频精品福利| 亚洲成av人片免费观看| 一区二区三区高清视频在线| 精品一区二区三区视频在线 | 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 小蜜桃在线观看免费完整版高清| 最近视频中文字幕2019在线8| 一本综合久久免费| 亚洲欧美一区二区三区黑人| 国产精品乱码一区二三区的特点| а√天堂www在线а√下载| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 免费av不卡在线播放| 久久久久国内视频| 国产精品亚洲一级av第二区| 好男人在线观看高清免费视频| 午夜成年电影在线免费观看| 又黄又粗又硬又大视频| 久久中文字幕人妻熟女| 日韩国内少妇激情av| 免费人成视频x8x8入口观看| 一个人看的www免费观看视频| 精品久久久久久久末码| 精品国产亚洲在线| 亚洲成a人片在线一区二区| 91av网一区二区| 精品久久久久久成人av| 国产精品久久久人人做人人爽| 真实男女啪啪啪动态图| 长腿黑丝高跟| 国产成人精品久久二区二区免费| 免费看美女性在线毛片视频| 手机成人av网站| 亚洲黑人精品在线| 欧美日韩综合久久久久久 | 亚洲aⅴ乱码一区二区在线播放| 日本熟妇午夜| 91久久精品国产一区二区成人 | 中文字幕av在线有码专区| 最近视频中文字幕2019在线8| 搞女人的毛片| 岛国在线免费视频观看| 日本熟妇午夜| 成人无遮挡网站| 1000部很黄的大片| aaaaa片日本免费| 日韩欧美精品v在线| 日本三级黄在线观看| 欧美午夜高清在线| 脱女人内裤的视频| 久久久精品欧美日韩精品| 757午夜福利合集在线观看| 性色avwww在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产成人一区二区三区免费视频网站| 黄色 视频免费看| x7x7x7水蜜桃| 国产真人三级小视频在线观看| 黄色丝袜av网址大全| 黄片小视频在线播放| 亚洲av中文字字幕乱码综合| or卡值多少钱| 亚洲欧美日韩东京热| 日韩高清综合在线| 午夜视频精品福利| 性欧美人与动物交配| 国产高清激情床上av| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 亚洲欧美日韩东京热|