• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于測量亞硝酸的長光程吸收光譜儀的研制

    2014-10-18 05:28:12侯思齊王煒罡佟勝睿裴克梅葛茂發(fā)
    物理化學(xué)學(xué)報 2014年8期
    關(guān)鍵詞:分子實驗室

    陳 林 侯思齊 王煒罡 佟勝睿 裴克梅 葛茂發(fā),*

    (1中國科學(xué)院化學(xué)研究所,分子動態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國家重點實驗室,北京分子科學(xué)國家實驗室,北京 100190;2浙江理工大學(xué)化學(xué)系,杭州 310018)

    1 Introduction

    Nitrous acid(HONO)is an important trace gas in tropospheric photochemistry,which plays a significant role in polluted urban atmosphere.1-3Furthermore,it is an important source of the primary oxidant in the atmosphere:the OH radical.

    The diurnally averaged contributions to the OH budget of this reaction is up to 34%.1,2,4-9As one of the key species in photochemical cycles,OH radical can react with organic matters in a series of light oxidation process,which can lead to the formation of ozone,acetyl nitrate ester peroxide(PAN),10and a large number of secondary pollutants and enhance the capacity of atmospheric oxidation.

    However,due to the lack of measurements of HONO and its sources and sinks at higher altitudes above Earth′s surface,the overall effect of the proposed HONO sources and the mechanism of HONO formation in the troposphere remain widely unknown.11HONO can be emitted directly by motor vehicles.2Moreover,the gas phase reaction(Reaction 2)is an important source in forming HONO,5and this reaction plays a role mainly during daytime when OH and NO concentrations are high.The most generally accepted heterogeneous reaction source mechanisms mainly include heterogeneous hydrolysis of NO2on different humid surfaces,12and the reduction of NO2on soot particles and surfaces containing organic substrates.The heterogeneous reaction of NO2can occur on many different surfaces including mineral dust,soot,and building surfaces.5-8On the other hand,Su et al.13illustrated that the soil nitrite,which is formed by the biological nitrification and denitrification processes,can be a prominent HONO source.Unfortunately,direct emissions,gas phase formation as well as the heterogeneous reactions mentioned above cannot explain the enhancement of HONO during daytime.Therefore,it is extremely urgent to explore the daytime HONO source mechanism,and more comprehensive field and laboratory studies need to be performed,including direct HONO measurements.To develop fast and advanced instruments with high sensitivity and interference-free is the key task due to the very low daytime HONO concentration.14-16

    Several approaches were developed for HONO monitoring in the atmosphere.Differential optical absorption spectroscopy(DOAS)17,18is the most established spectroscopy method.Besides DOAS,the Fourier transform infrared(FTIR)spectroscopy,19the tuneable diode laser spectroscopy,20the incoherent broadband cavity enhanced absorption spectroscopy,21the cavity ring down spectroscopy,22,23and the laser induced fluorescence(LIF)24are also used in HONO measurement.Wet-chemical methods are based on the detection of the nitrite ion after adsorption of HONO onto a solid surface(dry denuder)or water/aqueous solution,for example different types of wetted diffusion denuders that couple with ion chromatography systems,25-27HPLC-technique,28and fluorescence29,30stripping coil and ion chromatography,16and GAC(gas and aerosol collector with ion chromatography(IC))technique,31etc.One of the most successful wet-chemical method techniques is the long path absorption photometer(LOPAP)instrument,13,32-35which uses sulphanilamide in HCl to trap HONO in a short stripping coil.The external sampling module by excluding any inlet tubing can effectively minimize the sampling artifacts,and the interferences are removed by a two-channel instrument concept.

    Typical HONO concentrations of Beijing were about 0.03×10-9to 1×10-9mol·mol-1in daytime.36-38Unexpected high daytime HONO levels(3.6×10-9mol·mol-1)were also reported at Beijing by Wu et al.,39While a maximum of 1.2×10-8mol·mol-1was also observed in Guangzhou40-43and 7×10-9mol·mol-1was measured in Shanghai,44which implied a strong unknown daytime HONO source.In this work a home-made LOPAP which uses wet chemical sampling and photometric detection to measure HONO was developed.It was designed to be a cheap,sensitive,compact,and continuously working equipment.In this paper,the principle of the home-made LOPAP is presented,moreover,quantification of probable interferences and field measurement are performed to demonstrate the application and problem of the instrument.

    2 Experimental

    2.1 LOPAP instrument

    In this work,HONO is measured by a home-made LOPAP instrument,which is similar to recently developed instrument for the detection of HONO.The home-made LOPAP instrument consists of three modules,external sampling module,derivation module,and detection module.The setup of the instrument is shown in Fig.1.

    2.1.1 External sampling module

    HONO is sampled in a temperature controlled(293 K)doublewall stripping coil by chemical reaction in the stripping solution.The solution R1 contains 0.06 mol·L-1sulfanilamide(98%,Alfa Aesar)in 1 mol·L-1HCl(36%-38%,Alfa Aesar).32,35HONO is almost completely sampled in R1,because of the rapid chemical conversion of HONO into a diazonium salt at low pH values(Reactions 3 and 4).The sampling unit is placed directly in the atmosphere,which avoids the formation of HONO in sampling processes by using sampling lines.

    Fig.1 Schematic setup of the LOPAP instrument

    2.1.2 Derivation module

    The solution is pumped by a peristaltic pump into the derivation unit,in which a 0.8 mmol·L-1N-(1-naphthyl)ethylenediaminedihydrochloride(96%,Alfa Aesar)(R2)is injected with the peristaltic pump to form the final azo dye during an appropriate residence time in a mixing volume(Reaction 5).

    2.1.3 Detection module

    The azo dye solution was pumped into an absorption cell made in Teflon tubing and then detected with a mini-spectrometer by using a diode array detector(Ocean Optics,SD2000).The absorption spectra were stored on a computer for later data analysis.

    As shown in Fig.1,two stripping coils in series were used in the LOPAP instrument.The first coil(channel 1)took out almost all the HONO by a very fast selective chemical reaction with a small amount of interfering species.The second coil(channel 2)took out only interfering species which have low solubility in the very acidic condition(pH=0)without HONO.By subtracting the calibrated signal of the second channel from the calibrated signal in the first channel a better measure of the true HONO concentration was obtained,which was more accurate than using the signal of the first channel only.This setup minimized the occurrence of possible unknown interferences as observed for a wet effluent diffusion denuder.

    2.2 Field measurement

    The field measurement was performed from 29 August to 4 September 2013 at Institute of Chemistry,Chinese Academy of Sciences(ICCAS,39°59′22.68″N,116°19′21.58″E),which is located at Hai Dian District of Beijing,near the North Fourth Ring Road with condensed population and transportation.The LOPAP instrument was installed in the third floor of the ICCAS lab building No.2,and the external sampling module was fixed at the platform outside.

    The calibration of the instrument was performed every three days to correct small zero drifts,regular automatic zero measurement of 20 min was corrected every 12 h.Along with the HONO concentration,NO2was measured by NOxanalyzer(42i,Thermo,USA)and relative humidity(RH)was measured by using a humidity probe.

    3 Results and discussion

    3.1 Calibration

    It was observed that the logarithm of the ratio of two intensities taken at different wavelengths in the same spectrum(Irefand Iabs)became a liner measure of the concentration c according to Lambert-Beers Law:

    where,Iabswas the intensity taken at the maximum absorption at 550 nm and Irefwas the intensity taken at the point where no azo dye absorption at 650 nm with an absorption path length of approximately 250 and 50 cm.l was the absorption path length,and kλdenoted the absorption coefficient of the azo dye which is 5×104L·mol-1·cm-1at 544 nm.C is constant.

    The calibration of the channels was performed with a series of standard nitrite solution in R1 at known amounts diluted by the original 1000 mg·L-1solution,while running under zero air.An example of the calibration of the two channels of the LOPAP instrument with different length optical cells is shown in Fig.2.The controlled gas flow rate during this calibration was 1 L·min-1.The corresponding liquid flow rates of R1 were 0.5 mL·min-1each in the two channels.In the case of these measurements,the calibration of the absorption in the two channels,as shown in Fig.2,can be described by the linear dependencies:

    Fig.2 Example of a calibration of the prototype LOPAP instrument with a liquid nitrite

    The obtained linear relation of the home-made LOPAP is good.In general,at least one calibration should be performed when changing either the channel of the peristaltic pump or solutions of R1 or R2.

    3.2 Measurement parameter

    With an optical path length of 250 cm,gas flow rate 1 L·min-1,liquid flow rate 0.5 mL·min-1,the instrument had a detection limit of 9×10-12mol·mol-1for a response time(the time of the instrument rising to 90%of the full signal)of 5 min.Here,the detection limit was defined as the mixing ratio calculated from three times the standard deviation of the intercept of the calibration curve.The sensitivity of the instrument was limited by gas flow rate and path length.Increasing gas flow rate will lead to HONO collection efficiency decreasing,and increasing path length will lead to intensity reductions.The response time depended on the volume of the absorption tubing and the liquid flow rate.

    Table 1 summaries the measurement range,the detection limit,the response time,the precision,and accuracy of the LOPAP instrument.The detection limits were defined as the mixing ratios calculated from three times the standard deviation of the blank signals.32The relative overall uncertainties for each channel were calculated from the sum of the uncertainties of the gas flow rate,the liquid flow rate,and the uncertainty of the slope of the calibration fit.32

    3.3 Interference

    Particularly wet chemical instruments usually suffer from in-terferences,which make the quantification and correction of the interferences paramount important.Since the instrument was designed with two channels,interferences and all of the HONO were absorbed in channel 1,while only interferences were absorbed in channel 2.Therefore,the differences of the two channels were considered as the interference-free HONO under the assumption of a small uptake of these interferences were taken in the coils.

    Table 1 Summary of parameters of the HONO-LOPAP instrument

    In this part,interfering compounds were measured without HONO existing,and the interferences were given as the interference signal after the subtraction of channel 2 from channel 1 divided by the concentration of the interfering compounds(=100%×interference signal(subtraction)/ccompound).32,34All values given in this part correspond to a gas flow rate of 1.0 L·min-1and a liquid flow rate of 0.5 mL·min-1in R1.

    It is known that additional HONO was formed on the walls of the polyfluoroalkoxy(PFA)-tube before the gas inlet caused by heterogeneous reactions.In these cases,careful attention was drawn on removing the additional HONO(but not the species themselves)from the gas flow and keeping all tubes as short as possible.In these experiments,a NOxanalyzer(42i,Thermo,USA),O3analyzer(49i,Thermo,USA),and SO2-H2S analyzer(450i,Thermo,USA)were used.

    3.3.1 NO interference

    The pure NO interference was measured with a concentration of 3×10-7mol·mol-1diluted from a calibration gas mixture containing 1.5×10-5mol·mol-1in zero air.No significant interference signal was detected.

    3.3.2 NO2interference

    The NO2interference was measured with a concentration range from 1.25×10-7to 3×10-7mol·mol-1.The interference signal was about 5×10-12mol·mol-1.The interference after the subtraction of channel 2 from channel 1 was only 0.02%.

    3.3.3 O3interference

    The ozone interference was tested with pure ozone source of 2×10-7mol·mol-1,which was generated by zero air with a UV light.There was no significant interference signal detected in each channel,which means that the concentration of the ozone interference is below the detection limit.

    3.3.4 O3+NO2interference

    2×10-7mol·mol-1ozone in combination with 2×10-7mol·mol-1nitrogen dioxide was found to increase the NO2interference per channel.After the subtraction of channel 2 from channel 1,the interference was found to be similar to the pure NO2interference.

    3.3.5 O3+HONO interference

    The HONO source was generated by the reaction between sodium nitrite and excess dilute sulfuric acid in a coil.The 2×10-7mol·mol-1O3had hardly any influence on the HONO signal.

    3.3.6 NO2+SO2interference

    In the liquid phase,the reaction between NO2and SO2is an important interference in wet chemical methods.24Since the reaction between NO2and SO2mainly occurs on the wet surface,the interference of them can be minished by reducing pipe length.1×10-7mol·mol-1SO2in combination with 1×10-7mol·mol-1NO2were found no NO2interference signal changes per channel.After the subtraction of channel 2 from channel 1,the interference was found to be similar to the pure NO2interference.

    Table 2 summarises interferences of the LOPAP instrument,and it was found that there were interference signals only when NO2existed and the value was 0.02%.

    3.4 Field measurements

    As we have seen from Fig.3,the concentration of HONO varied from 0.36×10-9mol·mol-1to 2.90×10-9mol·mol-1,which is similar to the range of concentration measured in Beijing.The concentrations of NO2were in the range of 1×10-8to 7×10-8mol·mol-1.The concentration of HONO had a clear diurnal variation.The maximum concentration of HONO appeared at 4:00 AM,after sunrise HONO concentration typically decreased due to thephotolysis of HONO.Moreover,there was a slight growth around 7:00 to 9:00 AM,which could be associated with the motor vehicle emissions.The main components of motor vehicle direct emission were NOx(NO and NO2)with HONO accounted for 1%of the NOx,and NO2could convert to HONO through the heterogenous reaction on wet surfaces,which will be explained in detail in below.The minimum concentration of HONO appeared after 14:00 to 17:00 PM,while the solar radiation intensity during that time was at high level.The relationship between HONO concentration and solar radiation intensity can be illustrated by Fig.4,when the solar radiation intensity was high,the concentration of HONO was at low level,while at night the situation was opposite.During the daytime,HONO was easily photolyzed under direct sunlight,thus the concentration was low;but during the night,without sunlight,HONO consumption was very slow,the HONO can accumulate until the next day before sunrise and reach maximum concentration.As the decreasing of the solar radiation intensity from 17:00 PM,HONO concentration increased again,which was contributed by traffic emission.

    Table 2 Interferences of the LOPAP instrument obtained from laboratory measurements with typical operational conditions using a gas flow rate of 1.0 L·min-1 and a liquid flow rate of 0.5 mL·min-1

    Fig.3 Time series of HONO with NO2

    Fig.4 Temporal variations of HONO and NO2with the solar radiation

    In addition,the ratio of HONO/NOxcan reflect the contribution of HONO concentration from the burning of fossil fuels and motor vehicle exhaust emissions.45Fig.4 shows that the variation trend between HONO concentration and the concentration ratio of HONO/NOxhas some differences,for example,the ratio of HONO/NOxdecreased while the HONO concentration was still at high level at 3:00 AM,and even during the daytime the variation trend was not fitting well.It implies that there were other sources of HONO besides direct emission,especially at night.Moreover,the ratio of HONO/NOxincreased during the traffic peak.

    The ratio between HONO concentration from direct emission and total HONO concentration at night can be calculated by the formula below:46

    where,HONOemis the concentration from burning of fossil fuels and motor vehicle exhaust emissions,the coefficient 0.0035 is from traffic tunnel field observation by Kirchstetter.46From the data of the night on September 3,the mean value of r at night was 10.6%with the maximum value 18.4%at 18:00 PM,which was consistent with the traffic peak.

    As an important precursor of HONO,NO2can influence the generation of HONO.By analyzing the correlation between NO2and HONO at daytime and night,we found that the correlation coefficient(R2)between NO2and HONO was 0.00246 from 6:00 AM to 18:00 PM and 0.203 from 18:00 to 24:00 PM.However,these values were smaller than 0.429 obtained by Li et al.42measured at Pearl River Delta(PRD),which demonstrates that the HONO source from heterogenous reaction of NO2was smaller.HONO/NO2is used to evaluate the HONO source from heterogenous reaction of NO2,which is little affected by transmission and convection in theory,except when the value of HONO concentration is high.From Fig.4,the ratio of HONO/NO2was varied from 0 to 8%,which was in accordance with 2%-10%obtained by other field measurements.47-50The ratio of HONO/NO2also had a clear diurnal variation,which was much smaller in daytime than that at night.It can be explained that the heterogenous reaction of NO2mainly occurred at night,which makes heterogenous reaction of NO2an important night source of HONO.In Gutzwiller et al.′s study,51the ratio of HONO/NO2in the atmosphere is usually 4%,and in their opinion this ratio could be explained by neither direct emission nor heterogenous reaction of NO2,in other words there must be other sources of HONO which contributed more than sources mentioned above.For example,photolysis reactions on the surface of the wet soot,photolysis of HNO3to generate HONO and NOx,might help to explain the unknown sources.48,49

    4 Conclusions

    Ahome-made long path absorption photometer(LOPAP)which uses wet chemical sampling and photometric detection to measure nitrous acid(HONO)has been developed and test.This instrument overcomes the known problems with current HONO measurement techniques and is a cheap,sensitive,compact,and continuously working HONO monitor for not only laboratory but also field studies.

    The instrument includes two channels in external sampling module.By subtracting the signal of second channel from the first channel the occurrence of possible unknown interferences can be minimized.The instrument has a detection limit of 9×10-12mol·mol-1and an accuracy of 10%at 5 min response time,with a good linear relation.In addition,the probable interferences from NO,NO2,O3,NO2+O3,NO2+SO2,O3+HONO were tested.It was found that there was interference signal only when NO2existed and the value was 0.02%.With the instrument,six days′field observations were performed in Institute of Chemistry,Chinese Academy of Sciences,Beijing,from 29 August to 4 September,2013.The diurnal variation of concentration of HONO and the correlation between HONO concentration and solar radiation intensity,concentrations of NOxand NO2were obtained.Results from the ratio of HONO/NO2indicated unknown sources except heterogenous reaction of NO2.Furthermore,the LOPAP device can be transformed to detect other trace gases such as NO252and O353as well.

    (1)Harris,G.W.;Carter,W.P.L.;Winer,A.M.;Pitts,J.N.;Platt,U.;Perner,D.Environ.Sci.Technol.1982,16,414.doi:10.1021/es00101a009

    (2)Calvert,J.G.;Yarwood,G.;Dunker,A.M.Res.Chem.Intermed.1994,20,463.doi:10.1163/156856794X00423

    (3)Zhu,C.Z.;Zhang,R.X.;Fang,H.J.;Zhao,Q.X.;Hou,H.Q.Acta Phys.-Chim.Sin.2005,21,367.[朱承駐,張仁熙,房豪杰,趙慶祥,侯惠奇.物理化學(xué)學(xué)報,2005,21,367.]doi:10.3866/PKU.WHXB20050405

    (4)Harrison,R.M.;Peak,J.D.;Collins,G.M.J.Geophys.Res.1996,101,14429.doi:10.1029/96JD00341

    (5)Alicke,B.;Geyer,A.;Hofzumahaus,A.;Holland,F.;Konrad,S.;Patz,H.W.;Schafer,J.;Stutz,J.;Volz-Thomas,A.;Platt,U.J.Geophys.Res.2003,108,PHO 3-1

    (6)Zhou,X.L.;Civerolo,K.;Dai,H.P.;Huang,G.;Schwab,J.;Demerjian,K.J.Geophys.Res.2002,107,ACH 13-1.

    (7)Aumont,B.;Chervier,F.;Laval,S.Atmos.Environ.2003,37,487.doi:10.1016/S1352-2310(02)00920-2

    (8)Acker,K.;Moller,D.;Auel,R.;Wieprecht,W.;Kalass,D.Atmos.Res.2005,74,507.doi:10.1016/j.atmosres.2004.04.009

    (9)Kleffmann,J.;Gavriloaiei,T.;Hofzumahaus,A.;Holland,F.;Koppmann,R.;Rupp,L.;Schlosser,E.;Siese,M.;Wahner,A.Geophys.Res.Lett.2005,32.doi:10.1029/2005GL022524.

    (10)Kleffmann,J.ChemPhysChem 2007,8,1137.

    (11)Li,X.;Rohrer,F.;Hofzumahaus,A.;Brauers,T.;Haseler,R.;Bohn,B.;Broch,S.;Fuchs,H.;Gomm,S.;Holland,F.;Jager,J.;Kaiser,J.;Keutsch,F.,N.;Lohse,I.;Lu,K.D.;Tillmann,R.;Wegener,R.;Wolfe,G.M.;Mentel,T.F.;Kiendler-Scharr,A.;Wahner,A.Science 2014,344,292.doi:10.1126/science.1248999

    (12)Finlayson-Pitts,B.J.;Wingen,L.M.;Sumner,A.L.;Syomin,D.;Ramazan,K.A.Phys.Chem.Chem.Phys.2003,5,223.doi:10.1039/b208564j

    (13)Su,H.;Cheng,Y.;Oswald,R.;Behrendt,T.;Trebs,I.;Meixner,F.X.;Andreae,M.O.;Cheng,P.;Zhang,Y.;Poeschl,U.Science 2011,333,1616.doi:10.1126/science.1207687

    (14)Spataro,F.;Ianniello,A.;Esposito,G.;Allegrini,I.;Zhu,T.;Hu,M.Sci.Total.Environ.2013,447,210.doi:10.1016/j.scitotenv.2012.12.065

    (15)Li,L.;Zhang,H.;Ye,G.A.J.Radioanal.Nucl.Chem.2013,295,325.doi:10.1007/s10967-012-1833-8

    (16)Cheng,P.;Cheng,Y.;Lu,K.;Su,H.;Yang,Q.;Zou,Y.;Zhao,Y.;Dong,H.;Zeng,L.;Zhang,Y.J.Environ.Sci-China 2013,25,895.doi:10.1016/S1001-0742(12)60251-4

    (17)Platt,U.;Perner,D.;Patz,H.W.J.Geophys.Res.1979,84,6329.doi:10.1029/JC084iC10p06329

    (18)Kurtenbach,R.;Becker,K.H.;Gomes,J.A.G.;Kleffmann,J.;Lorzer,J.C.;Spittler,M.;Wiesen,P.;Ackermann,R.;Geyer,A.;Platt,U.Atmos.Environ.2001,35,3385.doi:10.1016/S1352-2310(01)00138-8

    (19)Ndour,M.;D′Anna,B.;George,C.;Ka,O.;Balkanski,Y.;Kleffmann,J.;Stemmler,K.;Ammann,M.Geophys.Res.Lett.2008,35,L05812.doi:10.1029/2007GL032006

    (20)Schiller,C.L.;Locquiao,S.;Johnson,T.J.;Harris,G.W.J.Atmos.Chem.2001,40,275.doi:10.1023/A:1012264601306

    (21)Gherman,T.;Venables,D.S.;Vaughan,S.;Orphal,J.;Ruth,A.A.Environ.Sci.Technol.2008,42,890.doi:10.1021/es0716913

    (22)Wang,L.M.;Zhang,J.S.Environ.Sci.Technol.2000,34,4221.doi:10.1021/es0011055

    (23)Zhang,J.S.;Wang,L.M.Abstr.Am.Chem.Soc.2000,219,U276.

    (24)Liao,W.;Hecobian,A.;Mastromarino,J.;Tan,D.Atmos.Environ.2006,40,17.doi:10.1016/j.atmosenv.2005.07.001

    (25)Simon,P.K.;Dasgupta,P.K.Environ.Sci.Technol.1995,29,1534.doi:10.1021/es00006a015

    (26)Spindler,G.;Hesper,J.;Bruggemann,E.;Dubois,R.;Muller,T.;Herrmann,H.Atmos.Environ.2003,37,2643.doi:10.1016/S1352-2310(03)00209-7

    (27)Acker,K.;Febo,A.;Trick,S.;Perrino,C.;Bruno,P.;Wiesen,P.;Moller,D.;Wieprecht,W.;Auel,R.;Giusto,M.;Geyer,A.;Platt,U.;Allegrini,I.Atmos.Environ.2006,40,3123.doi:10.1016/j.atmosenv.2006.01.028

    (28)Beine,H.;Colussi,A.J.;Amoroso,A.;Esposito,G.;Montagnoli,M.;Hoffmann,M.R.Environmental Research Letters 2008,3,045005.doi:10.1088/1748-9326/3/4/045005

    (29)Huang,G.;Zhou,X.L.;Deng,G.H.;Qiao,H.C.;Civerolo,K.Atmos.Environ.2002,36,2225.doi:10.1016/S1352-2310(02)00170-X

    (30)Takenaka,N.;Terada,H.;Oro,Y.;Hiroi,M.;Yoshikawa,H.;Okitsu,K.;Bandow,H.Analyst 2004,129,1130.doi:10.1039/b407726a

    (31)Dong,H.B.;Zeng,L.M.;Hu,M.;Wu,Y.S.;Zhang,Y.H.;Slanina,J.;Zheng,M.;Wang,Z.F.;Jansen,R.Atmos.Chem.Phys.2012,12,10519.doi:10.5194/acp-12-10519-2012

    (32)Heland,J.;Kleffmann,J.;Kurtenbach,R.;Wiesen,P.Environ.Sci.Technol.2001,35,3207.doi:10.1021/es000303t

    (33)Villena,G.;Kleffmann,J.;Kurtenbach,R.;Wiesen,P.;Lissi,E.;Rubio,M.A.;Croxatto,G.;Rappenglueck,B.Atmos.Environ.2011,45,3867.doi:10.1016/j.atmosenv.2011.01.073

    (34)Kleffmann,J.;Heland,J.;Kurtenbach,R.;Lorzer,J.;Wiesen,P.Environ.Sci.Pollut.Res.2002,48.

    (35)Kleffmann,J.;Lorzer,J.C.;Wiesen,P.;Kern,C.;Trick,S.;Volkamer,R.;Rodenas,M.;Wirtz,K.Atmos.Environ.2006,40,3640.doi:10.1016/j.atmosenv.2006.03.027

    (36)An,J.;Zhang,W.;Qu,Y.Atmos.Environ.2009,43,3454.doi:10.1016/j.atmosenv.2009.04.052

    (37)Hendrick,F.;Muller,J.F.;Clemer,K.;Wang,P.;De Maziere,M.;Fayt,C.;Gielen,C.;Hermans,C.;Ma,J.Z.;Pinardi,G.;Stavrakou,T.;Vlemmix,T.;Van Roozendael,M.Atmos.Chem.Phys.2014,14,765.doi:10.5194/acp-14-765-2014

    (39)Wu,Z.;Hu,M.;Shao,K.;Slanina,J.Chemosphere 2009,76,1028.doi:10.1016/j.chemosphere.2009.04.066

    (40)Qin,M.;Xie,P.;Su,H.;Gu,J.;Peng,F.;Li,S.;Zeng,L.;Liu,J.;Liu,W.;Zhang,Y.Atmos.Environ.2009,43,5731.doi:10.1016/j.atmosenv.2009.08.017

    (41)Hao,N.;Zhou,B.;Chen,D.;Chen,L.M.J.Environ.Sci-China 2006,18,910.doi:10.1016/S1001-0742(06)60013-2

    (42)Li,X.;Brauers,T.;Haeseler,R.;Bohn,B.;Fuchs,H.;Hofzumahaus,A.;Holland,F.;Lou,S.;Lu,K.D.;Rohrer,F.;Hu,M.;Zeng,L.M.;Zhang,Y.H.;Garland,R.M.;Su,H.;Nowak,A.;Wiedensohler,A.;Takegawa,N.;Shao,M.;Wahner,A.Atmos.Chem.Phys.2012,12,1497.doi:10.5194/acp-12-1497-2012

    (43)Su,H.;Cheng,Y.F.;Cheng,P.;Zhang,Y.H.;Dong,S.;Zeng,L.M.;Wang,X.;Slanina,J.;Shao,M.;Wiedensohler,A.Atmos.Environ.2008,42,6219.doi:10.1016/j.atmosenv.2008.04.006

    (44)Zhang,Y.H.;Su,H.;Zhong,L.J.;Cheng,Y.F.;Zeng,L.M.;Wang,X.S.;Xiang,Y.R.;Wang,J.L.;Gao,D.F.;Shao,M.;Fan,S.J.;Liu,S.C.Atmos.Environ.2008,42,6203.doi:10.1016/j.atmosenv.2008.05.002

    (45)Kleffmann,J.;Kurtenbach,R.;Lorzer,J.;Wiesen,P.;Kalthoff,N.;Vogel,B.;Vogel,H.Atmos.Environ.2003,37,2949.doi:10.1016/S1352-2310(03)00242-5

    (46)Kirchstetter,T.W.;Harley,R.A.Environ.Sci.Technol.1996,30,2843.doi:10.1021/es960135y

    (47)Stutz,J.;Alicke,B.;Ackermann,R.;Geyer,A.;Wang,S.H.;White,A.B.;Williams,E.J.;Spicer,C.W.;Fast,J.D.J.Geophys.Res.2004,109,D03307.doi:10.1029/2003JD004135

    (48)Febo,A.;Perrino,C.;Allegrini,I.Atmos.Environ.1996,30,3599.doi:10.1016/1352-2310(96)00069-6

    (49)Alicke,B.;Platt,U.;Stutz,J.J.Geophys.Res.2002,107,D22.doi:10.1029/2000JD000075

    (50)Zhou,X.;Huang,G.;Civerolo,K.;Roychowdhury,U.;Demerjian,K.L.J.Geophys.Res.2007,112,D08311.doi:10.1029/2006JD007256

    (51)Gutzwiller,L.;Arens,F.;Baltensperger,U.;Gaggeler,H.W.;Ammann,M.Environ.Sci.Technol.2002,36,677.doi:10.1021/es015673b

    (52)Villena,G.;Bejan,I.;Kurtenbach,R.;Wiesen,P.;Kleffmann,J.Atmos.Meas.Technol.2011,4,1663.doi:10.5194/amt-4-1663-2011

    (53)Peters,S.;Bejan,I.;Kurtenbach,R.;Liedtke,S.;Villena,G.;Wiesen,P.;Kleffmann,J.Atmos.Environ.2013,67,112.doi:10.1016/j.atmosenv.2012.10.058

    猜你喜歡
    分子實驗室
    《分子催化》征稿啟事
    分子催化(2022年1期)2022-11-02 07:12:28
    分子的擴(kuò)散
    電競實驗室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實驗室
    電子競技(2020年2期)2020-04-14 04:40:38
    分子中鍵角的大小比較
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實驗室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實驗室
    電子競技(2019年19期)2019-01-16 05:36:09
    “精日”分子到底是什么?
    新民周刊(2018年8期)2018-03-02 15:45:54
    精品久久蜜臀av无| 久久亚洲真实| 五月伊人婷婷丁香| 日本成人三级电影网站| 淫妇啪啪啪对白视频| 国产精品 国内视频| netflix在线观看网站| 久久久久久久精品吃奶| 好看av亚洲va欧美ⅴa在| 欧美日韩亚洲国产一区二区在线观看| 亚洲av成人不卡在线观看播放网| 成人18禁在线播放| 给我免费播放毛片高清在线观看| 国产一区二区三区在线臀色熟女| 五月伊人婷婷丁香| 波多野结衣高清无吗| 岛国在线观看网站| 天堂av国产一区二区熟女人妻 | 亚洲精品国产精品久久久不卡| 搞女人的毛片| 欧美乱妇无乱码| 黄色视频,在线免费观看| 国产精品久久久人人做人人爽| 久久久久久免费高清国产稀缺| 日日爽夜夜爽网站| 成人亚洲精品av一区二区| 操出白浆在线播放| 日本 欧美在线| 黄色视频,在线免费观看| 国产私拍福利视频在线观看| 亚洲美女黄片视频| 成人av一区二区三区在线看| 精品福利观看| 欧美日韩国产亚洲二区| 国产亚洲精品一区二区www| 欧美乱码精品一区二区三区| www.精华液| 中文字幕人妻丝袜一区二区| 成人三级黄色视频| 日韩欧美国产在线观看| 久久久国产成人免费| 18禁裸乳无遮挡免费网站照片| av欧美777| 久久久国产欧美日韩av| 国产精品综合久久久久久久免费| 国产伦在线观看视频一区| xxx96com| 色综合欧美亚洲国产小说| av片东京热男人的天堂| 美女 人体艺术 gogo| 狂野欧美白嫩少妇大欣赏| 后天国语完整版免费观看| 黄片大片在线免费观看| 人成视频在线观看免费观看| 最近视频中文字幕2019在线8| av在线播放免费不卡| 国产男靠女视频免费网站| 精品电影一区二区在线| 国产午夜福利久久久久久| 欧美 亚洲 国产 日韩一| 久久精品国产综合久久久| 怎么达到女性高潮| 国产片内射在线| xxx96com| 亚洲在线自拍视频| 精品第一国产精品| 制服人妻中文乱码| 黄色丝袜av网址大全| 99热这里只有精品一区 | 美女免费视频网站| 亚洲真实伦在线观看| 亚洲全国av大片| 日本黄大片高清| 女同久久另类99精品国产91| 国语自产精品视频在线第100页| 日韩欧美在线乱码| 免费一级毛片在线播放高清视频| svipshipincom国产片| 亚洲男人的天堂狠狠| 精品欧美一区二区三区在线| 国产欧美日韩一区二区精品| 好男人在线观看高清免费视频| 欧美zozozo另类| 18禁美女被吸乳视频| 我要搜黄色片| 欧美性猛交黑人性爽| 变态另类丝袜制服| 五月玫瑰六月丁香| 亚洲精品久久成人aⅴ小说| 神马国产精品三级电影在线观看 | 宅男免费午夜| 成人三级黄色视频| 成人三级黄色视频| 天天躁夜夜躁狠狠躁躁| 老汉色∧v一级毛片| 一二三四在线观看免费中文在| 亚洲自偷自拍图片 自拍| 欧美最黄视频在线播放免费| 国产在线精品亚洲第一网站| 一本精品99久久精品77| 中出人妻视频一区二区| 久久这里只有精品19| 国产欧美日韩一区二区精品| 欧美成人一区二区免费高清观看 | 日本 av在线| 亚洲国产看品久久| 久久国产乱子伦精品免费另类| 身体一侧抽搐| 一区二区三区激情视频| 欧美日韩精品网址| 日本成人三级电影网站| 日韩精品中文字幕看吧| 欧美乱码精品一区二区三区| 看片在线看免费视频| 免费在线观看日本一区| 久久伊人香网站| 99久久综合精品五月天人人| 欧美丝袜亚洲另类 | 亚洲av成人精品一区久久| 成人三级做爰电影| 99久久综合精品五月天人人| 国产av一区在线观看免费| 美女扒开内裤让男人捅视频| 又爽又黄无遮挡网站| 中出人妻视频一区二区| 一级作爱视频免费观看| 在线观看免费日韩欧美大片| 最近最新免费中文字幕在线| 免费搜索国产男女视频| 欧美在线一区亚洲| 久久亚洲真实| 日韩高清综合在线| 给我免费播放毛片高清在线观看| 黄频高清免费视频| 亚洲av电影在线进入| 亚洲精品美女久久av网站| 亚洲精品色激情综合| 丰满人妻一区二区三区视频av | 巨乳人妻的诱惑在线观看| 午夜影院日韩av| 两个人的视频大全免费| 神马国产精品三级电影在线观看 | 丝袜美腿诱惑在线| 两个人视频免费观看高清| 日本免费a在线| 搡老妇女老女人老熟妇| 色播亚洲综合网| 男女视频在线观看网站免费 | 一卡2卡三卡四卡精品乱码亚洲| 欧美中文日本在线观看视频| 国产精品久久电影中文字幕| 精品久久久久久久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 国产激情久久老熟女| 一本精品99久久精品77| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久久久久久| 亚洲avbb在线观看| 亚洲欧洲精品一区二区精品久久久| 中出人妻视频一区二区| 成人亚洲精品av一区二区| 欧美另类亚洲清纯唯美| 九色国产91popny在线| 精品国内亚洲2022精品成人| 亚洲av中文字字幕乱码综合| 久久精品亚洲精品国产色婷小说| 搡老熟女国产l中国老女人| 搞女人的毛片| 动漫黄色视频在线观看| 男人舔奶头视频| 亚洲乱码一区二区免费版| 亚洲自拍偷在线| 亚洲自拍偷在线| 国产一区二区在线观看日韩 | 99久久精品热视频| 免费在线观看完整版高清| 亚洲,欧美精品.| 欧美性猛交╳xxx乱大交人| av在线天堂中文字幕| 久久久久久久精品吃奶| av超薄肉色丝袜交足视频| 这个男人来自地球电影免费观看| 久久天躁狠狠躁夜夜2o2o| 两性夫妻黄色片| 制服诱惑二区| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐动态| 桃色一区二区三区在线观看| 狂野欧美激情性xxxx| 亚洲男人的天堂狠狠| 久久人妻av系列| 久久热在线av| 亚洲午夜理论影院| 又紧又爽又黄一区二区| 97碰自拍视频| 18禁黄网站禁片免费观看直播| 国产精品av视频在线免费观看| 少妇人妻一区二区三区视频| 色噜噜av男人的天堂激情| 变态另类丝袜制服| 亚洲av第一区精品v没综合| 麻豆av在线久日| 后天国语完整版免费观看| 欧美丝袜亚洲另类 | 亚洲色图av天堂| 黑人巨大精品欧美一区二区mp4| 欧美日本视频| 757午夜福利合集在线观看| 精品福利观看| 一进一出抽搐gif免费好疼| 午夜福利18| 深夜精品福利| 午夜福利免费观看在线| 少妇裸体淫交视频免费看高清 | 大型av网站在线播放| 99久久国产精品久久久| 久久久精品国产亚洲av高清涩受| 亚洲人成电影免费在线| 国产激情欧美一区二区| 久久国产精品人妻蜜桃| 啦啦啦观看免费观看视频高清| 午夜精品一区二区三区免费看| 国产精品电影一区二区三区| 一级毛片女人18水好多| 天堂av国产一区二区熟女人妻 | 国产亚洲精品av在线| 精品高清国产在线一区| 亚洲专区国产一区二区| 精品电影一区二区在线| 搡老岳熟女国产| 久久精品aⅴ一区二区三区四区| 日本 av在线| 女生性感内裤真人,穿戴方法视频| 日韩三级视频一区二区三区| 极品教师在线免费播放| 成人午夜高清在线视频| 中亚洲国语对白在线视频| 麻豆国产av国片精品| 法律面前人人平等表现在哪些方面| www.精华液| 成人精品一区二区免费| 在线十欧美十亚洲十日本专区| 日韩精品中文字幕看吧| 亚洲欧美精品综合一区二区三区| 动漫黄色视频在线观看| 最好的美女福利视频网| 精品国产美女av久久久久小说| 丰满人妻一区二区三区视频av | 日韩三级视频一区二区三区| 精品国产乱码久久久久久男人| 欧美成人性av电影在线观看| 丝袜人妻中文字幕| 麻豆成人午夜福利视频| 女人被狂操c到高潮| 91国产中文字幕| 国产av在哪里看| 婷婷六月久久综合丁香| 久久精品影院6| 久久久精品欧美日韩精品| 亚洲黑人精品在线| 亚洲色图 男人天堂 中文字幕| 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 欧美一级毛片孕妇| 亚洲欧美日韩高清在线视频| 无限看片的www在线观看| 精品福利观看| 欧美又色又爽又黄视频| 丰满的人妻完整版| 香蕉丝袜av| 国产麻豆成人av免费视频| 国产成人av激情在线播放| 久久久久国产精品人妻aⅴ院| 亚洲国产高清在线一区二区三| 亚洲精品在线观看二区| 亚洲av成人av| 免费搜索国产男女视频| 国产视频内射| 黄色毛片三级朝国网站| 中文亚洲av片在线观看爽| 欧美黑人精品巨大| 久久中文字幕人妻熟女| 99精品久久久久人妻精品| 夜夜躁狠狠躁天天躁| 午夜激情av网站| 一区二区三区高清视频在线| 欧美+亚洲+日韩+国产| 99热6这里只有精品| 国产精品电影一区二区三区| 又黄又爽又免费观看的视频| 亚洲男人天堂网一区| 一进一出好大好爽视频| 精品免费久久久久久久清纯| 国产日本99.免费观看| 一级毛片女人18水好多| 亚洲精品一卡2卡三卡4卡5卡| 动漫黄色视频在线观看| 亚洲片人在线观看| 亚洲七黄色美女视频| av片东京热男人的天堂| 看黄色毛片网站| 国产探花在线观看一区二区| 婷婷亚洲欧美| 精品久久久久久,| 嫩草影院精品99| 香蕉国产在线看| 国产aⅴ精品一区二区三区波| 久久久久免费精品人妻一区二区| 黄色 视频免费看| 丰满人妻一区二区三区视频av | 很黄的视频免费| 脱女人内裤的视频| 女生性感内裤真人,穿戴方法视频| 亚洲熟妇熟女久久| 1024香蕉在线观看| 黄色片一级片一级黄色片| 日本一区二区免费在线视频| 91老司机精品| 久久香蕉精品热| 亚洲成人国产一区在线观看| www.自偷自拍.com| 高清毛片免费观看视频网站| 国产伦一二天堂av在线观看| 天天一区二区日本电影三级| 91字幕亚洲| 变态另类丝袜制服| 国产成人av教育| 久久久久久久久中文| 国产精品影院久久| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区| 亚洲成av人片在线播放无| 亚洲国产精品sss在线观看| 亚洲欧美一区二区三区黑人| 熟女少妇亚洲综合色aaa.| 在线a可以看的网站| 久久精品国产清高在天天线| 日本一二三区视频观看| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 美女高潮喷水抽搐中文字幕| 好男人在线观看高清免费视频| 人妻久久中文字幕网| 欧美不卡视频在线免费观看 | 俄罗斯特黄特色一大片| 国产97色在线日韩免费| 午夜日韩欧美国产| 日韩欧美国产一区二区入口| 亚洲九九香蕉| 午夜福利成人在线免费观看| 白带黄色成豆腐渣| 久久精品国产清高在天天线| 后天国语完整版免费观看| 啦啦啦韩国在线观看视频| 国产爱豆传媒在线观看 | 黑人欧美特级aaaaaa片| 亚洲精品中文字幕在线视频| 亚洲,欧美精品.| 91老司机精品| 最近最新中文字幕大全免费视频| 欧美午夜高清在线| 久久性视频一级片| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久久久毛片| www.999成人在线观看| 亚洲一码二码三码区别大吗| 午夜福利成人在线免费观看| 国产精品99久久99久久久不卡| 99re在线观看精品视频| 免费看十八禁软件| 脱女人内裤的视频| 嫩草影视91久久| 听说在线观看完整版免费高清| 国产熟女午夜一区二区三区| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 一夜夜www| www.自偷自拍.com| 亚洲成人中文字幕在线播放| 成人午夜高清在线视频| 午夜成年电影在线免费观看| 日本成人三级电影网站| 久久精品影院6| 欧美人与性动交α欧美精品济南到| 制服诱惑二区| 国产激情欧美一区二区| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 很黄的视频免费| 日日夜夜操网爽| 久久精品人妻少妇| 听说在线观看完整版免费高清| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 婷婷精品国产亚洲av在线| 性色av乱码一区二区三区2| 国产激情久久老熟女| av福利片在线观看| 美女黄网站色视频| 成年人黄色毛片网站| netflix在线观看网站| 日韩精品免费视频一区二区三区| 国产高清有码在线观看视频 | 日本三级黄在线观看| 亚洲熟女毛片儿| av有码第一页| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 日韩欧美一区二区三区在线观看| 两个人看的免费小视频| 在线观看免费视频日本深夜| 黄色视频不卡| 中出人妻视频一区二区| 国产亚洲精品久久久久久毛片| 一二三四社区在线视频社区8| 久久香蕉激情| 国产成+人综合+亚洲专区| avwww免费| 久久九九热精品免费| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 青草久久国产| 久久精品国产综合久久久| 天天躁狠狠躁夜夜躁狠狠躁| 免费看十八禁软件| 99久久99久久久精品蜜桃| 国内揄拍国产精品人妻在线| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 色尼玛亚洲综合影院| 欧美日韩精品网址| 国产主播在线观看一区二区| 久9热在线精品视频| 亚洲专区字幕在线| 岛国视频午夜一区免费看| 亚洲免费av在线视频| 曰老女人黄片| 99久久国产精品久久久| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| e午夜精品久久久久久久| 全区人妻精品视频| 制服丝袜大香蕉在线| 亚洲在线自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 最近在线观看免费完整版| 欧美国产日韩亚洲一区| 日韩欧美在线乱码| 国内揄拍国产精品人妻在线| 可以在线观看的亚洲视频| 激情在线观看视频在线高清| 90打野战视频偷拍视频| 老司机靠b影院| 黄色视频不卡| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 中亚洲国语对白在线视频| 色综合婷婷激情| 国产高清激情床上av| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| av欧美777| 午夜激情福利司机影院| 中文字幕人妻丝袜一区二区| 久久久久性生活片| 久久精品91蜜桃| 欧美成人性av电影在线观看| 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 国产黄色小视频在线观看| 久久久久精品国产欧美久久久| 亚洲专区国产一区二区| 欧美性猛交黑人性爽| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 日韩大码丰满熟妇| 女人爽到高潮嗷嗷叫在线视频| 亚洲精华国产精华精| 免费在线观看日本一区| 草草在线视频免费看| 亚洲欧美激情综合另类| 一级黄色大片毛片| 91av网站免费观看| 亚洲精品av麻豆狂野| 97碰自拍视频| 一本久久中文字幕| 国产午夜精品论理片| 少妇裸体淫交视频免费看高清 | 禁无遮挡网站| 亚洲自偷自拍图片 自拍| 美女黄网站色视频| 女人被狂操c到高潮| 成人特级黄色片久久久久久久| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 俺也久久电影网| 亚洲国产精品合色在线| 亚洲18禁久久av| 99久久综合精品五月天人人| 我的老师免费观看完整版| 亚洲国产欧美一区二区综合| 欧美日本视频| 国产欧美日韩精品亚洲av| 亚洲国产精品久久男人天堂| 国产三级在线视频| 国产精品美女特级片免费视频播放器 | 少妇的丰满在线观看| 亚洲国产高清在线一区二区三| 丝袜美腿诱惑在线| 可以在线观看毛片的网站| 日韩欧美一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 麻豆成人av在线观看| 欧美日韩乱码在线| 丁香六月欧美| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 国产精品影院久久| 午夜精品在线福利| 黑人巨大精品欧美一区二区mp4| 最近视频中文字幕2019在线8| 欧美国产日韩亚洲一区| 日韩成人在线观看一区二区三区| 久久精品成人免费网站| 在线观看舔阴道视频| 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 国产精品久久久人人做人人爽| 久久久精品国产亚洲av高清涩受| 国内精品一区二区在线观看| 久久久精品欧美日韩精品| 50天的宝宝边吃奶边哭怎么回事| 一级a爱片免费观看的视频| 久久久久性生活片| 国产爱豆传媒在线观看 | 成人精品一区二区免费| 天堂√8在线中文| 99热这里只有是精品50| 男女做爰动态图高潮gif福利片| 久久久久性生活片| 午夜福利高清视频| 久9热在线精品视频| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频 | 亚洲国产高清在线一区二区三| 99国产精品一区二区蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av熟女| 老司机深夜福利视频在线观看| 久久久久久大精品| 国产精品野战在线观看| 变态另类丝袜制服| 日日夜夜操网爽| 国产黄a三级三级三级人| 黄色a级毛片大全视频| 亚洲成人国产一区在线观看| 国产精品永久免费网站| 亚洲精品久久成人aⅴ小说| 久久精品国产99精品国产亚洲性色| 99久久久亚洲精品蜜臀av| 麻豆国产av国片精品| 久久香蕉精品热| 国产成人影院久久av| 久久香蕉精品热| 丝袜人妻中文字幕| 精品少妇一区二区三区视频日本电影| 性色av乱码一区二区三区2| 国产亚洲精品一区二区www| 亚洲性夜色夜夜综合| 91在线观看av| 最近视频中文字幕2019在线8| 啦啦啦韩国在线观看视频| 久久香蕉国产精品| 欧美最黄视频在线播放免费| 日韩三级视频一区二区三区| 99精品在免费线老司机午夜| 女生性感内裤真人,穿戴方法视频| 日本一本二区三区精品| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 亚洲18禁久久av| 日日夜夜操网爽| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | 欧美大码av| 黄片小视频在线播放| 亚洲在线自拍视频| 久久精品影院6| 国产探花在线观看一区二区| 亚洲精品国产精品久久久不卡| 看免费av毛片| 麻豆国产97在线/欧美 | 白带黄色成豆腐渣| 久久精品成人免费网站| 精品国产亚洲在线| 欧美色视频一区免费| 老司机靠b影院| 亚洲色图 男人天堂 中文字幕| 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 国产又黄又爽又无遮挡在线| 久久久久久亚洲精品国产蜜桃av| 又黄又粗又硬又大视频| 免费看美女性在线毛片视频| 91九色精品人成在线观看| 一夜夜www| av福利片在线观看| 禁无遮挡网站| 午夜视频精品福利| 日本撒尿小便嘘嘘汇集6| 精品久久久久久,| 蜜桃久久精品国产亚洲av|