• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于測量亞硝酸的長光程吸收光譜儀的研制

    2014-10-18 05:28:12侯思齊王煒罡佟勝睿裴克梅葛茂發(fā)
    物理化學(xué)學(xué)報 2014年8期
    關(guān)鍵詞:分子實驗室

    陳 林 侯思齊 王煒罡 佟勝睿 裴克梅 葛茂發(fā),*

    (1中國科學(xué)院化學(xué)研究所,分子動態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國家重點實驗室,北京分子科學(xué)國家實驗室,北京 100190;2浙江理工大學(xué)化學(xué)系,杭州 310018)

    1 Introduction

    Nitrous acid(HONO)is an important trace gas in tropospheric photochemistry,which plays a significant role in polluted urban atmosphere.1-3Furthermore,it is an important source of the primary oxidant in the atmosphere:the OH radical.

    The diurnally averaged contributions to the OH budget of this reaction is up to 34%.1,2,4-9As one of the key species in photochemical cycles,OH radical can react with organic matters in a series of light oxidation process,which can lead to the formation of ozone,acetyl nitrate ester peroxide(PAN),10and a large number of secondary pollutants and enhance the capacity of atmospheric oxidation.

    However,due to the lack of measurements of HONO and its sources and sinks at higher altitudes above Earth′s surface,the overall effect of the proposed HONO sources and the mechanism of HONO formation in the troposphere remain widely unknown.11HONO can be emitted directly by motor vehicles.2Moreover,the gas phase reaction(Reaction 2)is an important source in forming HONO,5and this reaction plays a role mainly during daytime when OH and NO concentrations are high.The most generally accepted heterogeneous reaction source mechanisms mainly include heterogeneous hydrolysis of NO2on different humid surfaces,12and the reduction of NO2on soot particles and surfaces containing organic substrates.The heterogeneous reaction of NO2can occur on many different surfaces including mineral dust,soot,and building surfaces.5-8On the other hand,Su et al.13illustrated that the soil nitrite,which is formed by the biological nitrification and denitrification processes,can be a prominent HONO source.Unfortunately,direct emissions,gas phase formation as well as the heterogeneous reactions mentioned above cannot explain the enhancement of HONO during daytime.Therefore,it is extremely urgent to explore the daytime HONO source mechanism,and more comprehensive field and laboratory studies need to be performed,including direct HONO measurements.To develop fast and advanced instruments with high sensitivity and interference-free is the key task due to the very low daytime HONO concentration.14-16

    Several approaches were developed for HONO monitoring in the atmosphere.Differential optical absorption spectroscopy(DOAS)17,18is the most established spectroscopy method.Besides DOAS,the Fourier transform infrared(FTIR)spectroscopy,19the tuneable diode laser spectroscopy,20the incoherent broadband cavity enhanced absorption spectroscopy,21the cavity ring down spectroscopy,22,23and the laser induced fluorescence(LIF)24are also used in HONO measurement.Wet-chemical methods are based on the detection of the nitrite ion after adsorption of HONO onto a solid surface(dry denuder)or water/aqueous solution,for example different types of wetted diffusion denuders that couple with ion chromatography systems,25-27HPLC-technique,28and fluorescence29,30stripping coil and ion chromatography,16and GAC(gas and aerosol collector with ion chromatography(IC))technique,31etc.One of the most successful wet-chemical method techniques is the long path absorption photometer(LOPAP)instrument,13,32-35which uses sulphanilamide in HCl to trap HONO in a short stripping coil.The external sampling module by excluding any inlet tubing can effectively minimize the sampling artifacts,and the interferences are removed by a two-channel instrument concept.

    Typical HONO concentrations of Beijing were about 0.03×10-9to 1×10-9mol·mol-1in daytime.36-38Unexpected high daytime HONO levels(3.6×10-9mol·mol-1)were also reported at Beijing by Wu et al.,39While a maximum of 1.2×10-8mol·mol-1was also observed in Guangzhou40-43and 7×10-9mol·mol-1was measured in Shanghai,44which implied a strong unknown daytime HONO source.In this work a home-made LOPAP which uses wet chemical sampling and photometric detection to measure HONO was developed.It was designed to be a cheap,sensitive,compact,and continuously working equipment.In this paper,the principle of the home-made LOPAP is presented,moreover,quantification of probable interferences and field measurement are performed to demonstrate the application and problem of the instrument.

    2 Experimental

    2.1 LOPAP instrument

    In this work,HONO is measured by a home-made LOPAP instrument,which is similar to recently developed instrument for the detection of HONO.The home-made LOPAP instrument consists of three modules,external sampling module,derivation module,and detection module.The setup of the instrument is shown in Fig.1.

    2.1.1 External sampling module

    HONO is sampled in a temperature controlled(293 K)doublewall stripping coil by chemical reaction in the stripping solution.The solution R1 contains 0.06 mol·L-1sulfanilamide(98%,Alfa Aesar)in 1 mol·L-1HCl(36%-38%,Alfa Aesar).32,35HONO is almost completely sampled in R1,because of the rapid chemical conversion of HONO into a diazonium salt at low pH values(Reactions 3 and 4).The sampling unit is placed directly in the atmosphere,which avoids the formation of HONO in sampling processes by using sampling lines.

    Fig.1 Schematic setup of the LOPAP instrument

    2.1.2 Derivation module

    The solution is pumped by a peristaltic pump into the derivation unit,in which a 0.8 mmol·L-1N-(1-naphthyl)ethylenediaminedihydrochloride(96%,Alfa Aesar)(R2)is injected with the peristaltic pump to form the final azo dye during an appropriate residence time in a mixing volume(Reaction 5).

    2.1.3 Detection module

    The azo dye solution was pumped into an absorption cell made in Teflon tubing and then detected with a mini-spectrometer by using a diode array detector(Ocean Optics,SD2000).The absorption spectra were stored on a computer for later data analysis.

    As shown in Fig.1,two stripping coils in series were used in the LOPAP instrument.The first coil(channel 1)took out almost all the HONO by a very fast selective chemical reaction with a small amount of interfering species.The second coil(channel 2)took out only interfering species which have low solubility in the very acidic condition(pH=0)without HONO.By subtracting the calibrated signal of the second channel from the calibrated signal in the first channel a better measure of the true HONO concentration was obtained,which was more accurate than using the signal of the first channel only.This setup minimized the occurrence of possible unknown interferences as observed for a wet effluent diffusion denuder.

    2.2 Field measurement

    The field measurement was performed from 29 August to 4 September 2013 at Institute of Chemistry,Chinese Academy of Sciences(ICCAS,39°59′22.68″N,116°19′21.58″E),which is located at Hai Dian District of Beijing,near the North Fourth Ring Road with condensed population and transportation.The LOPAP instrument was installed in the third floor of the ICCAS lab building No.2,and the external sampling module was fixed at the platform outside.

    The calibration of the instrument was performed every three days to correct small zero drifts,regular automatic zero measurement of 20 min was corrected every 12 h.Along with the HONO concentration,NO2was measured by NOxanalyzer(42i,Thermo,USA)and relative humidity(RH)was measured by using a humidity probe.

    3 Results and discussion

    3.1 Calibration

    It was observed that the logarithm of the ratio of two intensities taken at different wavelengths in the same spectrum(Irefand Iabs)became a liner measure of the concentration c according to Lambert-Beers Law:

    where,Iabswas the intensity taken at the maximum absorption at 550 nm and Irefwas the intensity taken at the point where no azo dye absorption at 650 nm with an absorption path length of approximately 250 and 50 cm.l was the absorption path length,and kλdenoted the absorption coefficient of the azo dye which is 5×104L·mol-1·cm-1at 544 nm.C is constant.

    The calibration of the channels was performed with a series of standard nitrite solution in R1 at known amounts diluted by the original 1000 mg·L-1solution,while running under zero air.An example of the calibration of the two channels of the LOPAP instrument with different length optical cells is shown in Fig.2.The controlled gas flow rate during this calibration was 1 L·min-1.The corresponding liquid flow rates of R1 were 0.5 mL·min-1each in the two channels.In the case of these measurements,the calibration of the absorption in the two channels,as shown in Fig.2,can be described by the linear dependencies:

    Fig.2 Example of a calibration of the prototype LOPAP instrument with a liquid nitrite

    The obtained linear relation of the home-made LOPAP is good.In general,at least one calibration should be performed when changing either the channel of the peristaltic pump or solutions of R1 or R2.

    3.2 Measurement parameter

    With an optical path length of 250 cm,gas flow rate 1 L·min-1,liquid flow rate 0.5 mL·min-1,the instrument had a detection limit of 9×10-12mol·mol-1for a response time(the time of the instrument rising to 90%of the full signal)of 5 min.Here,the detection limit was defined as the mixing ratio calculated from three times the standard deviation of the intercept of the calibration curve.The sensitivity of the instrument was limited by gas flow rate and path length.Increasing gas flow rate will lead to HONO collection efficiency decreasing,and increasing path length will lead to intensity reductions.The response time depended on the volume of the absorption tubing and the liquid flow rate.

    Table 1 summaries the measurement range,the detection limit,the response time,the precision,and accuracy of the LOPAP instrument.The detection limits were defined as the mixing ratios calculated from three times the standard deviation of the blank signals.32The relative overall uncertainties for each channel were calculated from the sum of the uncertainties of the gas flow rate,the liquid flow rate,and the uncertainty of the slope of the calibration fit.32

    3.3 Interference

    Particularly wet chemical instruments usually suffer from in-terferences,which make the quantification and correction of the interferences paramount important.Since the instrument was designed with two channels,interferences and all of the HONO were absorbed in channel 1,while only interferences were absorbed in channel 2.Therefore,the differences of the two channels were considered as the interference-free HONO under the assumption of a small uptake of these interferences were taken in the coils.

    Table 1 Summary of parameters of the HONO-LOPAP instrument

    In this part,interfering compounds were measured without HONO existing,and the interferences were given as the interference signal after the subtraction of channel 2 from channel 1 divided by the concentration of the interfering compounds(=100%×interference signal(subtraction)/ccompound).32,34All values given in this part correspond to a gas flow rate of 1.0 L·min-1and a liquid flow rate of 0.5 mL·min-1in R1.

    It is known that additional HONO was formed on the walls of the polyfluoroalkoxy(PFA)-tube before the gas inlet caused by heterogeneous reactions.In these cases,careful attention was drawn on removing the additional HONO(but not the species themselves)from the gas flow and keeping all tubes as short as possible.In these experiments,a NOxanalyzer(42i,Thermo,USA),O3analyzer(49i,Thermo,USA),and SO2-H2S analyzer(450i,Thermo,USA)were used.

    3.3.1 NO interference

    The pure NO interference was measured with a concentration of 3×10-7mol·mol-1diluted from a calibration gas mixture containing 1.5×10-5mol·mol-1in zero air.No significant interference signal was detected.

    3.3.2 NO2interference

    The NO2interference was measured with a concentration range from 1.25×10-7to 3×10-7mol·mol-1.The interference signal was about 5×10-12mol·mol-1.The interference after the subtraction of channel 2 from channel 1 was only 0.02%.

    3.3.3 O3interference

    The ozone interference was tested with pure ozone source of 2×10-7mol·mol-1,which was generated by zero air with a UV light.There was no significant interference signal detected in each channel,which means that the concentration of the ozone interference is below the detection limit.

    3.3.4 O3+NO2interference

    2×10-7mol·mol-1ozone in combination with 2×10-7mol·mol-1nitrogen dioxide was found to increase the NO2interference per channel.After the subtraction of channel 2 from channel 1,the interference was found to be similar to the pure NO2interference.

    3.3.5 O3+HONO interference

    The HONO source was generated by the reaction between sodium nitrite and excess dilute sulfuric acid in a coil.The 2×10-7mol·mol-1O3had hardly any influence on the HONO signal.

    3.3.6 NO2+SO2interference

    In the liquid phase,the reaction between NO2and SO2is an important interference in wet chemical methods.24Since the reaction between NO2and SO2mainly occurs on the wet surface,the interference of them can be minished by reducing pipe length.1×10-7mol·mol-1SO2in combination with 1×10-7mol·mol-1NO2were found no NO2interference signal changes per channel.After the subtraction of channel 2 from channel 1,the interference was found to be similar to the pure NO2interference.

    Table 2 summarises interferences of the LOPAP instrument,and it was found that there were interference signals only when NO2existed and the value was 0.02%.

    3.4 Field measurements

    As we have seen from Fig.3,the concentration of HONO varied from 0.36×10-9mol·mol-1to 2.90×10-9mol·mol-1,which is similar to the range of concentration measured in Beijing.The concentrations of NO2were in the range of 1×10-8to 7×10-8mol·mol-1.The concentration of HONO had a clear diurnal variation.The maximum concentration of HONO appeared at 4:00 AM,after sunrise HONO concentration typically decreased due to thephotolysis of HONO.Moreover,there was a slight growth around 7:00 to 9:00 AM,which could be associated with the motor vehicle emissions.The main components of motor vehicle direct emission were NOx(NO and NO2)with HONO accounted for 1%of the NOx,and NO2could convert to HONO through the heterogenous reaction on wet surfaces,which will be explained in detail in below.The minimum concentration of HONO appeared after 14:00 to 17:00 PM,while the solar radiation intensity during that time was at high level.The relationship between HONO concentration and solar radiation intensity can be illustrated by Fig.4,when the solar radiation intensity was high,the concentration of HONO was at low level,while at night the situation was opposite.During the daytime,HONO was easily photolyzed under direct sunlight,thus the concentration was low;but during the night,without sunlight,HONO consumption was very slow,the HONO can accumulate until the next day before sunrise and reach maximum concentration.As the decreasing of the solar radiation intensity from 17:00 PM,HONO concentration increased again,which was contributed by traffic emission.

    Table 2 Interferences of the LOPAP instrument obtained from laboratory measurements with typical operational conditions using a gas flow rate of 1.0 L·min-1 and a liquid flow rate of 0.5 mL·min-1

    Fig.3 Time series of HONO with NO2

    Fig.4 Temporal variations of HONO and NO2with the solar radiation

    In addition,the ratio of HONO/NOxcan reflect the contribution of HONO concentration from the burning of fossil fuels and motor vehicle exhaust emissions.45Fig.4 shows that the variation trend between HONO concentration and the concentration ratio of HONO/NOxhas some differences,for example,the ratio of HONO/NOxdecreased while the HONO concentration was still at high level at 3:00 AM,and even during the daytime the variation trend was not fitting well.It implies that there were other sources of HONO besides direct emission,especially at night.Moreover,the ratio of HONO/NOxincreased during the traffic peak.

    The ratio between HONO concentration from direct emission and total HONO concentration at night can be calculated by the formula below:46

    where,HONOemis the concentration from burning of fossil fuels and motor vehicle exhaust emissions,the coefficient 0.0035 is from traffic tunnel field observation by Kirchstetter.46From the data of the night on September 3,the mean value of r at night was 10.6%with the maximum value 18.4%at 18:00 PM,which was consistent with the traffic peak.

    As an important precursor of HONO,NO2can influence the generation of HONO.By analyzing the correlation between NO2and HONO at daytime and night,we found that the correlation coefficient(R2)between NO2and HONO was 0.00246 from 6:00 AM to 18:00 PM and 0.203 from 18:00 to 24:00 PM.However,these values were smaller than 0.429 obtained by Li et al.42measured at Pearl River Delta(PRD),which demonstrates that the HONO source from heterogenous reaction of NO2was smaller.HONO/NO2is used to evaluate the HONO source from heterogenous reaction of NO2,which is little affected by transmission and convection in theory,except when the value of HONO concentration is high.From Fig.4,the ratio of HONO/NO2was varied from 0 to 8%,which was in accordance with 2%-10%obtained by other field measurements.47-50The ratio of HONO/NO2also had a clear diurnal variation,which was much smaller in daytime than that at night.It can be explained that the heterogenous reaction of NO2mainly occurred at night,which makes heterogenous reaction of NO2an important night source of HONO.In Gutzwiller et al.′s study,51the ratio of HONO/NO2in the atmosphere is usually 4%,and in their opinion this ratio could be explained by neither direct emission nor heterogenous reaction of NO2,in other words there must be other sources of HONO which contributed more than sources mentioned above.For example,photolysis reactions on the surface of the wet soot,photolysis of HNO3to generate HONO and NOx,might help to explain the unknown sources.48,49

    4 Conclusions

    Ahome-made long path absorption photometer(LOPAP)which uses wet chemical sampling and photometric detection to measure nitrous acid(HONO)has been developed and test.This instrument overcomes the known problems with current HONO measurement techniques and is a cheap,sensitive,compact,and continuously working HONO monitor for not only laboratory but also field studies.

    The instrument includes two channels in external sampling module.By subtracting the signal of second channel from the first channel the occurrence of possible unknown interferences can be minimized.The instrument has a detection limit of 9×10-12mol·mol-1and an accuracy of 10%at 5 min response time,with a good linear relation.In addition,the probable interferences from NO,NO2,O3,NO2+O3,NO2+SO2,O3+HONO were tested.It was found that there was interference signal only when NO2existed and the value was 0.02%.With the instrument,six days′field observations were performed in Institute of Chemistry,Chinese Academy of Sciences,Beijing,from 29 August to 4 September,2013.The diurnal variation of concentration of HONO and the correlation between HONO concentration and solar radiation intensity,concentrations of NOxand NO2were obtained.Results from the ratio of HONO/NO2indicated unknown sources except heterogenous reaction of NO2.Furthermore,the LOPAP device can be transformed to detect other trace gases such as NO252and O353as well.

    (1)Harris,G.W.;Carter,W.P.L.;Winer,A.M.;Pitts,J.N.;Platt,U.;Perner,D.Environ.Sci.Technol.1982,16,414.doi:10.1021/es00101a009

    (2)Calvert,J.G.;Yarwood,G.;Dunker,A.M.Res.Chem.Intermed.1994,20,463.doi:10.1163/156856794X00423

    (3)Zhu,C.Z.;Zhang,R.X.;Fang,H.J.;Zhao,Q.X.;Hou,H.Q.Acta Phys.-Chim.Sin.2005,21,367.[朱承駐,張仁熙,房豪杰,趙慶祥,侯惠奇.物理化學(xué)學(xué)報,2005,21,367.]doi:10.3866/PKU.WHXB20050405

    (4)Harrison,R.M.;Peak,J.D.;Collins,G.M.J.Geophys.Res.1996,101,14429.doi:10.1029/96JD00341

    (5)Alicke,B.;Geyer,A.;Hofzumahaus,A.;Holland,F.;Konrad,S.;Patz,H.W.;Schafer,J.;Stutz,J.;Volz-Thomas,A.;Platt,U.J.Geophys.Res.2003,108,PHO 3-1

    (6)Zhou,X.L.;Civerolo,K.;Dai,H.P.;Huang,G.;Schwab,J.;Demerjian,K.J.Geophys.Res.2002,107,ACH 13-1.

    (7)Aumont,B.;Chervier,F.;Laval,S.Atmos.Environ.2003,37,487.doi:10.1016/S1352-2310(02)00920-2

    (8)Acker,K.;Moller,D.;Auel,R.;Wieprecht,W.;Kalass,D.Atmos.Res.2005,74,507.doi:10.1016/j.atmosres.2004.04.009

    (9)Kleffmann,J.;Gavriloaiei,T.;Hofzumahaus,A.;Holland,F.;Koppmann,R.;Rupp,L.;Schlosser,E.;Siese,M.;Wahner,A.Geophys.Res.Lett.2005,32.doi:10.1029/2005GL022524.

    (10)Kleffmann,J.ChemPhysChem 2007,8,1137.

    (11)Li,X.;Rohrer,F.;Hofzumahaus,A.;Brauers,T.;Haseler,R.;Bohn,B.;Broch,S.;Fuchs,H.;Gomm,S.;Holland,F.;Jager,J.;Kaiser,J.;Keutsch,F.,N.;Lohse,I.;Lu,K.D.;Tillmann,R.;Wegener,R.;Wolfe,G.M.;Mentel,T.F.;Kiendler-Scharr,A.;Wahner,A.Science 2014,344,292.doi:10.1126/science.1248999

    (12)Finlayson-Pitts,B.J.;Wingen,L.M.;Sumner,A.L.;Syomin,D.;Ramazan,K.A.Phys.Chem.Chem.Phys.2003,5,223.doi:10.1039/b208564j

    (13)Su,H.;Cheng,Y.;Oswald,R.;Behrendt,T.;Trebs,I.;Meixner,F.X.;Andreae,M.O.;Cheng,P.;Zhang,Y.;Poeschl,U.Science 2011,333,1616.doi:10.1126/science.1207687

    (14)Spataro,F.;Ianniello,A.;Esposito,G.;Allegrini,I.;Zhu,T.;Hu,M.Sci.Total.Environ.2013,447,210.doi:10.1016/j.scitotenv.2012.12.065

    (15)Li,L.;Zhang,H.;Ye,G.A.J.Radioanal.Nucl.Chem.2013,295,325.doi:10.1007/s10967-012-1833-8

    (16)Cheng,P.;Cheng,Y.;Lu,K.;Su,H.;Yang,Q.;Zou,Y.;Zhao,Y.;Dong,H.;Zeng,L.;Zhang,Y.J.Environ.Sci-China 2013,25,895.doi:10.1016/S1001-0742(12)60251-4

    (17)Platt,U.;Perner,D.;Patz,H.W.J.Geophys.Res.1979,84,6329.doi:10.1029/JC084iC10p06329

    (18)Kurtenbach,R.;Becker,K.H.;Gomes,J.A.G.;Kleffmann,J.;Lorzer,J.C.;Spittler,M.;Wiesen,P.;Ackermann,R.;Geyer,A.;Platt,U.Atmos.Environ.2001,35,3385.doi:10.1016/S1352-2310(01)00138-8

    (19)Ndour,M.;D′Anna,B.;George,C.;Ka,O.;Balkanski,Y.;Kleffmann,J.;Stemmler,K.;Ammann,M.Geophys.Res.Lett.2008,35,L05812.doi:10.1029/2007GL032006

    (20)Schiller,C.L.;Locquiao,S.;Johnson,T.J.;Harris,G.W.J.Atmos.Chem.2001,40,275.doi:10.1023/A:1012264601306

    (21)Gherman,T.;Venables,D.S.;Vaughan,S.;Orphal,J.;Ruth,A.A.Environ.Sci.Technol.2008,42,890.doi:10.1021/es0716913

    (22)Wang,L.M.;Zhang,J.S.Environ.Sci.Technol.2000,34,4221.doi:10.1021/es0011055

    (23)Zhang,J.S.;Wang,L.M.Abstr.Am.Chem.Soc.2000,219,U276.

    (24)Liao,W.;Hecobian,A.;Mastromarino,J.;Tan,D.Atmos.Environ.2006,40,17.doi:10.1016/j.atmosenv.2005.07.001

    (25)Simon,P.K.;Dasgupta,P.K.Environ.Sci.Technol.1995,29,1534.doi:10.1021/es00006a015

    (26)Spindler,G.;Hesper,J.;Bruggemann,E.;Dubois,R.;Muller,T.;Herrmann,H.Atmos.Environ.2003,37,2643.doi:10.1016/S1352-2310(03)00209-7

    (27)Acker,K.;Febo,A.;Trick,S.;Perrino,C.;Bruno,P.;Wiesen,P.;Moller,D.;Wieprecht,W.;Auel,R.;Giusto,M.;Geyer,A.;Platt,U.;Allegrini,I.Atmos.Environ.2006,40,3123.doi:10.1016/j.atmosenv.2006.01.028

    (28)Beine,H.;Colussi,A.J.;Amoroso,A.;Esposito,G.;Montagnoli,M.;Hoffmann,M.R.Environmental Research Letters 2008,3,045005.doi:10.1088/1748-9326/3/4/045005

    (29)Huang,G.;Zhou,X.L.;Deng,G.H.;Qiao,H.C.;Civerolo,K.Atmos.Environ.2002,36,2225.doi:10.1016/S1352-2310(02)00170-X

    (30)Takenaka,N.;Terada,H.;Oro,Y.;Hiroi,M.;Yoshikawa,H.;Okitsu,K.;Bandow,H.Analyst 2004,129,1130.doi:10.1039/b407726a

    (31)Dong,H.B.;Zeng,L.M.;Hu,M.;Wu,Y.S.;Zhang,Y.H.;Slanina,J.;Zheng,M.;Wang,Z.F.;Jansen,R.Atmos.Chem.Phys.2012,12,10519.doi:10.5194/acp-12-10519-2012

    (32)Heland,J.;Kleffmann,J.;Kurtenbach,R.;Wiesen,P.Environ.Sci.Technol.2001,35,3207.doi:10.1021/es000303t

    (33)Villena,G.;Kleffmann,J.;Kurtenbach,R.;Wiesen,P.;Lissi,E.;Rubio,M.A.;Croxatto,G.;Rappenglueck,B.Atmos.Environ.2011,45,3867.doi:10.1016/j.atmosenv.2011.01.073

    (34)Kleffmann,J.;Heland,J.;Kurtenbach,R.;Lorzer,J.;Wiesen,P.Environ.Sci.Pollut.Res.2002,48.

    (35)Kleffmann,J.;Lorzer,J.C.;Wiesen,P.;Kern,C.;Trick,S.;Volkamer,R.;Rodenas,M.;Wirtz,K.Atmos.Environ.2006,40,3640.doi:10.1016/j.atmosenv.2006.03.027

    (36)An,J.;Zhang,W.;Qu,Y.Atmos.Environ.2009,43,3454.doi:10.1016/j.atmosenv.2009.04.052

    (37)Hendrick,F.;Muller,J.F.;Clemer,K.;Wang,P.;De Maziere,M.;Fayt,C.;Gielen,C.;Hermans,C.;Ma,J.Z.;Pinardi,G.;Stavrakou,T.;Vlemmix,T.;Van Roozendael,M.Atmos.Chem.Phys.2014,14,765.doi:10.5194/acp-14-765-2014

    (39)Wu,Z.;Hu,M.;Shao,K.;Slanina,J.Chemosphere 2009,76,1028.doi:10.1016/j.chemosphere.2009.04.066

    (40)Qin,M.;Xie,P.;Su,H.;Gu,J.;Peng,F.;Li,S.;Zeng,L.;Liu,J.;Liu,W.;Zhang,Y.Atmos.Environ.2009,43,5731.doi:10.1016/j.atmosenv.2009.08.017

    (41)Hao,N.;Zhou,B.;Chen,D.;Chen,L.M.J.Environ.Sci-China 2006,18,910.doi:10.1016/S1001-0742(06)60013-2

    (42)Li,X.;Brauers,T.;Haeseler,R.;Bohn,B.;Fuchs,H.;Hofzumahaus,A.;Holland,F.;Lou,S.;Lu,K.D.;Rohrer,F.;Hu,M.;Zeng,L.M.;Zhang,Y.H.;Garland,R.M.;Su,H.;Nowak,A.;Wiedensohler,A.;Takegawa,N.;Shao,M.;Wahner,A.Atmos.Chem.Phys.2012,12,1497.doi:10.5194/acp-12-1497-2012

    (43)Su,H.;Cheng,Y.F.;Cheng,P.;Zhang,Y.H.;Dong,S.;Zeng,L.M.;Wang,X.;Slanina,J.;Shao,M.;Wiedensohler,A.Atmos.Environ.2008,42,6219.doi:10.1016/j.atmosenv.2008.04.006

    (44)Zhang,Y.H.;Su,H.;Zhong,L.J.;Cheng,Y.F.;Zeng,L.M.;Wang,X.S.;Xiang,Y.R.;Wang,J.L.;Gao,D.F.;Shao,M.;Fan,S.J.;Liu,S.C.Atmos.Environ.2008,42,6203.doi:10.1016/j.atmosenv.2008.05.002

    (45)Kleffmann,J.;Kurtenbach,R.;Lorzer,J.;Wiesen,P.;Kalthoff,N.;Vogel,B.;Vogel,H.Atmos.Environ.2003,37,2949.doi:10.1016/S1352-2310(03)00242-5

    (46)Kirchstetter,T.W.;Harley,R.A.Environ.Sci.Technol.1996,30,2843.doi:10.1021/es960135y

    (47)Stutz,J.;Alicke,B.;Ackermann,R.;Geyer,A.;Wang,S.H.;White,A.B.;Williams,E.J.;Spicer,C.W.;Fast,J.D.J.Geophys.Res.2004,109,D03307.doi:10.1029/2003JD004135

    (48)Febo,A.;Perrino,C.;Allegrini,I.Atmos.Environ.1996,30,3599.doi:10.1016/1352-2310(96)00069-6

    (49)Alicke,B.;Platt,U.;Stutz,J.J.Geophys.Res.2002,107,D22.doi:10.1029/2000JD000075

    (50)Zhou,X.;Huang,G.;Civerolo,K.;Roychowdhury,U.;Demerjian,K.L.J.Geophys.Res.2007,112,D08311.doi:10.1029/2006JD007256

    (51)Gutzwiller,L.;Arens,F.;Baltensperger,U.;Gaggeler,H.W.;Ammann,M.Environ.Sci.Technol.2002,36,677.doi:10.1021/es015673b

    (52)Villena,G.;Bejan,I.;Kurtenbach,R.;Wiesen,P.;Kleffmann,J.Atmos.Meas.Technol.2011,4,1663.doi:10.5194/amt-4-1663-2011

    (53)Peters,S.;Bejan,I.;Kurtenbach,R.;Liedtke,S.;Villena,G.;Wiesen,P.;Kleffmann,J.Atmos.Environ.2013,67,112.doi:10.1016/j.atmosenv.2012.10.058

    猜你喜歡
    分子實驗室
    《分子催化》征稿啟事
    分子催化(2022年1期)2022-11-02 07:12:28
    分子的擴(kuò)散
    電競實驗室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實驗室
    電子競技(2020年2期)2020-04-14 04:40:38
    分子中鍵角的大小比較
    電競實驗室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實驗室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實驗室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實驗室
    電子競技(2019年19期)2019-01-16 05:36:09
    “精日”分子到底是什么?
    新民周刊(2018年8期)2018-03-02 15:45:54
    亚洲av成人不卡在线观看播放网 | 黑人猛操日本美女一级片| 国产一区二区三区av在线| 日韩av不卡免费在线播放| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 国产伦理片在线播放av一区| 久久久欧美国产精品| 久久精品熟女亚洲av麻豆精品| 亚洲第一av免费看| 日本欧美视频一区| tube8黄色片| 午夜福利视频在线观看免费| 亚洲伊人色综图| 久久久久久人人人人人| 日韩中文字幕欧美一区二区 | 侵犯人妻中文字幕一二三四区| av卡一久久| 亚洲色图综合在线观看| 亚洲,一卡二卡三卡| xxxhd国产人妻xxx| 久久综合国产亚洲精品| 青春草亚洲视频在线观看| 成人国语在线视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品中文字幕在线视频| 国产亚洲一区二区精品| 天堂俺去俺来也www色官网| 国产日韩欧美视频二区| 水蜜桃什么品种好| 无限看片的www在线观看| 欧美人与性动交α欧美软件| 嫩草影院入口| 卡戴珊不雅视频在线播放| 国产成人免费无遮挡视频| 热re99久久国产66热| 嫩草影院入口| 国语对白做爰xxxⅹ性视频网站| 美国免费a级毛片| 午夜福利影视在线免费观看| 超碰成人久久| 国产老妇伦熟女老妇高清| 激情视频va一区二区三区| 欧美日韩亚洲高清精品| 乱人伦中国视频| 搡老岳熟女国产| 久久狼人影院| 亚洲,欧美精品.| 看十八女毛片水多多多| 国产免费福利视频在线观看| 婷婷色麻豆天堂久久| 久久精品久久久久久噜噜老黄| 最新在线观看一区二区三区 | 91aial.com中文字幕在线观看| 欧美日韩一级在线毛片| 日韩大片免费观看网站| 国产激情久久老熟女| 我的亚洲天堂| 日韩免费高清中文字幕av| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 悠悠久久av| 日日啪夜夜爽| 天堂中文最新版在线下载| 欧美激情极品国产一区二区三区| 一级毛片黄色毛片免费观看视频| 一级片免费观看大全| 观看av在线不卡| 国产精品亚洲av一区麻豆 | 青春草视频在线免费观看| 赤兔流量卡办理| 国产成人一区二区在线| 久久久久久久久久久免费av| 中文字幕人妻丝袜制服| 久久精品亚洲av国产电影网| 久久久精品国产亚洲av高清涩受| 国产男人的电影天堂91| 黄色怎么调成土黄色| 日韩免费高清中文字幕av| 一区二区三区激情视频| 午夜福利视频在线观看免费| 免费看不卡的av| 十八禁网站网址无遮挡| 五月开心婷婷网| 久久人妻熟女aⅴ| 欧美精品一区二区免费开放| 亚洲av男天堂| 国产精品女同一区二区软件| 亚洲成人手机| 老司机在亚洲福利影院| 老汉色∧v一级毛片| 精品一区二区三卡| 91精品三级在线观看| 高清黄色对白视频在线免费看| 香蕉国产在线看| 极品人妻少妇av视频| 美女扒开内裤让男人捅视频| 热re99久久国产66热| 啦啦啦啦在线视频资源| 精品一区二区三卡| 19禁男女啪啪无遮挡网站| 永久免费av网站大全| 如日韩欧美国产精品一区二区三区| 极品人妻少妇av视频| 久久影院123| 一区二区三区乱码不卡18| 在线观看www视频免费| 91成人精品电影| 国产成人午夜福利电影在线观看| 女人久久www免费人成看片| 人成视频在线观看免费观看| 色精品久久人妻99蜜桃| 欧美在线一区亚洲| 欧美精品人与动牲交sv欧美| 国产av精品麻豆| 成年美女黄网站色视频大全免费| 国产一区二区激情短视频 | 性色av一级| 黄色 视频免费看| 国产亚洲精品第一综合不卡| 午夜福利,免费看| 久久精品国产亚洲av高清一级| 丝袜人妻中文字幕| 亚洲色图 男人天堂 中文字幕| 亚洲免费av在线视频| 日日爽夜夜爽网站| 亚洲一区中文字幕在线| 亚洲精品国产区一区二| 国产淫语在线视频| 性高湖久久久久久久久免费观看| 国产黄色免费在线视频| 最新在线观看一区二区三区 | 99热网站在线观看| 欧美另类一区| 午夜福利视频精品| 欧美亚洲日本最大视频资源| 无遮挡黄片免费观看| 在线精品无人区一区二区三| 亚洲av日韩在线播放| 一区在线观看完整版| 国产精品亚洲av一区麻豆 | 乱人伦中国视频| 国产淫语在线视频| 五月开心婷婷网| 丝袜人妻中文字幕| 一本—道久久a久久精品蜜桃钙片| 成人影院久久| 日韩欧美精品免费久久| 久久人人爽人人片av| 91成人精品电影| 91精品三级在线观看| 天天操日日干夜夜撸| 欧美日韩一级在线毛片| 免费av中文字幕在线| 丰满少妇做爰视频| 国产一级毛片在线| 精品国产一区二区三区四区第35| 女人久久www免费人成看片| 最新的欧美精品一区二区| 成人国语在线视频| 久久99热这里只频精品6学生| a级毛片黄视频| 激情视频va一区二区三区| 欧美在线黄色| 国产高清不卡午夜福利| 超色免费av| 成人国语在线视频| 青春草亚洲视频在线观看| 久久精品亚洲熟妇少妇任你| 亚洲专区中文字幕在线 | 日韩av免费高清视频| 亚洲婷婷狠狠爱综合网| 婷婷色av中文字幕| 精品一品国产午夜福利视频| 美女高潮到喷水免费观看| 又大又爽又粗| 欧美中文综合在线视频| 国产99久久九九免费精品| 一边摸一边抽搐一进一出视频| av线在线观看网站| 亚洲精品美女久久久久99蜜臀 | 婷婷色麻豆天堂久久| 777米奇影视久久| 女人爽到高潮嗷嗷叫在线视频| 免费看av在线观看网站| 国产av一区二区精品久久| 国产精品av久久久久免费| 青草久久国产| 国产亚洲欧美精品永久| 人妻人人澡人人爽人人| 韩国精品一区二区三区| 深夜精品福利| 天天躁夜夜躁狠狠久久av| 成年女人毛片免费观看观看9 | 亚洲av日韩精品久久久久久密 | 亚洲中文av在线| 欧美亚洲 丝袜 人妻 在线| av网站在线播放免费| 天天躁日日躁夜夜躁夜夜| 久久久久久人妻| 精品少妇黑人巨大在线播放| 国产精品 国内视频| 久久久久国产一级毛片高清牌| 免费观看性生交大片5| 日韩一区二区三区影片| 国产xxxxx性猛交| 狠狠婷婷综合久久久久久88av| 99热网站在线观看| 好男人视频免费观看在线| 久久久久久久大尺度免费视频| 99国产精品免费福利视频| 黄片无遮挡物在线观看| 丰满乱子伦码专区| 久久久久国产精品人妻一区二区| 搡老岳熟女国产| 精品国产一区二区三区久久久樱花| 亚洲美女视频黄频| 久久国产亚洲av麻豆专区| 自线自在国产av| 久久久国产精品麻豆| 中文字幕人妻熟女乱码| 两个人看的免费小视频| 日韩一区二区三区影片| 国产又色又爽无遮挡免| 这个男人来自地球电影免费观看 | 婷婷色综合www| 丁香六月天网| 99国产综合亚洲精品| 色吧在线观看| 老司机深夜福利视频在线观看| 国产成人系列免费观看| av视频在线观看入口| 欧美一级毛片孕妇| 日韩精品中文字幕看吧| 婷婷六月久久综合丁香| 满18在线观看网站| 欧美成人免费av一区二区三区| 国产熟女xx| 日本欧美视频一区| 亚洲黑人精品在线| 国产精品永久免费网站| 曰老女人黄片| 亚洲片人在线观看| 男女下面插进去视频免费观看| 成熟少妇高潮喷水视频| 亚洲国产精品合色在线| 亚洲国产看品久久| 老鸭窝网址在线观看| 欧美成人免费av一区二区三区| 欧美性长视频在线观看| 美女午夜性视频免费| 欧美在线一区亚洲| √禁漫天堂资源中文www| av免费在线观看网站| 两个人免费观看高清视频| 母亲3免费完整高清在线观看| 伦理电影免费视频| 亚洲三区欧美一区| 美女国产高潮福利片在线看| 国产真人三级小视频在线观看| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 欧美乱码精品一区二区三区| 亚洲国产精品999在线| 91av网站免费观看| 成熟少妇高潮喷水视频| 精品福利观看| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 免费一级毛片在线播放高清视频 | 真人一进一出gif抽搐免费| 久久 成人 亚洲| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 人妻久久中文字幕网| 少妇 在线观看| 亚洲,欧美精品.| 久久久国产成人免费| 在线国产一区二区在线| 国产男靠女视频免费网站| 国产亚洲精品久久久久5区| 多毛熟女@视频| 亚洲成人免费电影在线观看| 在线天堂中文资源库| 精品一区二区三区四区五区乱码| 在线观看舔阴道视频| 国产xxxxx性猛交| 亚洲精品久久国产高清桃花| 精品国内亚洲2022精品成人| www.自偷自拍.com| 日韩欧美免费精品| 成人18禁在线播放| 在线观看www视频免费| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 91在线观看av| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看| 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 男女之事视频高清在线观看| 国产av一区在线观看免费| 精品一区二区三区视频在线观看免费| 在线天堂中文资源库| e午夜精品久久久久久久| 天天一区二区日本电影三级 | 大码成人一级视频| 欧美性长视频在线观看| 精品人妻在线不人妻| 青草久久国产| 色综合婷婷激情| 国产一区在线观看成人免费| 国产成人影院久久av| 成人精品一区二区免费| 美女大奶头视频| 后天国语完整版免费观看| 咕卡用的链子| 免费av毛片视频| 热99re8久久精品国产| 亚洲自偷自拍图片 自拍| 免费av毛片视频| 精品无人区乱码1区二区| 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 给我免费播放毛片高清在线观看| 色播在线永久视频| 男女下面进入的视频免费午夜 | 亚洲精品国产精品久久久不卡| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 一级作爱视频免费观看| 国产亚洲精品综合一区在线观看 | 午夜免费鲁丝| ponron亚洲| а√天堂www在线а√下载| 国产人伦9x9x在线观看| 午夜福利高清视频| 狠狠狠狠99中文字幕| 国产片内射在线| 不卡一级毛片| 极品教师在线免费播放| 免费久久久久久久精品成人欧美视频| 亚洲三区欧美一区| 露出奶头的视频| www.精华液| 亚洲国产欧美日韩在线播放| 日本a在线网址| 两个人看的免费小视频| 欧美日韩黄片免| 免费高清在线观看日韩| 欧美日韩亚洲国产一区二区在线观看| 国产一级毛片七仙女欲春2 | 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 夜夜看夜夜爽夜夜摸| 成人免费观看视频高清| 久久久国产成人精品二区| 久久香蕉精品热| or卡值多少钱| 日韩欧美在线二视频| 老司机靠b影院| 亚洲精品中文字幕一二三四区| xxx96com| 人人妻人人澡欧美一区二区 | 久久国产精品影院| 亚洲无线在线观看| av视频免费观看在线观看| 麻豆国产av国片精品| 久久精品亚洲熟妇少妇任你| 亚洲熟妇中文字幕五十中出| 久久久久久亚洲精品国产蜜桃av| 麻豆成人av在线观看| videosex国产| www.精华液| 伊人久久大香线蕉亚洲五| 中亚洲国语对白在线视频| 色播在线永久视频| 一区二区日韩欧美中文字幕| 国产麻豆成人av免费视频| 色老头精品视频在线观看| 亚洲精品粉嫩美女一区| 久久久久久亚洲精品国产蜜桃av| 激情视频va一区二区三区| 日本免费a在线| 黄色a级毛片大全视频| 国产三级在线视频| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 亚洲成人精品中文字幕电影| 久久久久九九精品影院| 搞女人的毛片| 天堂动漫精品| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频 | 精品欧美一区二区三区在线| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清 | 精品国产一区二区三区四区第35| 三级毛片av免费| 久久久久久久久中文| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 首页视频小说图片口味搜索| 国产熟女xx| av欧美777| 制服诱惑二区| 亚洲精品av麻豆狂野| 国产精品久久久久久亚洲av鲁大| 色综合站精品国产| 亚洲成a人片在线一区二区| 一本大道久久a久久精品| 男女做爰动态图高潮gif福利片 | 热99re8久久精品国产| 欧美国产精品va在线观看不卡| 大码成人一级视频| 神马国产精品三级电影在线观看 | 亚洲最大成人中文| 咕卡用的链子| 国产精品精品国产色婷婷| 中文字幕人妻熟女乱码| 自线自在国产av| 欧美日韩一级在线毛片| 九色国产91popny在线| 欧美激情 高清一区二区三区| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 欧美另类亚洲清纯唯美| 国产xxxxx性猛交| 91麻豆av在线| 国产主播在线观看一区二区| 制服人妻中文乱码| 长腿黑丝高跟| 看黄色毛片网站| 亚洲无线在线观看| 国产日韩一区二区三区精品不卡| 亚洲熟妇熟女久久| 色综合婷婷激情| 国产精品精品国产色婷婷| 好看av亚洲va欧美ⅴa在| 精品国产乱码久久久久久男人| 色综合婷婷激情| 黑丝袜美女国产一区| 91在线观看av| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 夜夜爽天天搞| 激情在线观看视频在线高清| 一a级毛片在线观看| 亚洲无线在线观看| 好男人在线观看高清免费视频 | 欧美日韩亚洲综合一区二区三区_| 亚洲精品在线观看二区| 啦啦啦 在线观看视频| 又大又爽又粗| 欧美黄色淫秽网站| 午夜成年电影在线免费观看| 无限看片的www在线观看| 麻豆久久精品国产亚洲av| 1024香蕉在线观看| av视频在线观看入口| 精品高清国产在线一区| 搞女人的毛片| 亚洲第一av免费看| 日韩av在线大香蕉| 国内精品久久久久精免费| 色在线成人网| 99riav亚洲国产免费| 亚洲国产欧美网| 亚洲第一青青草原| 一进一出抽搐动态| 精品第一国产精品| 妹子高潮喷水视频| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 国产精品美女特级片免费视频播放器 | 一区二区日韩欧美中文字幕| 午夜福利视频1000在线观看 | 亚洲人成77777在线视频| 日韩大尺度精品在线看网址 | 国产欧美日韩一区二区精品| 亚洲国产精品合色在线| 国产精品久久久久久精品电影 | av福利片在线| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| av欧美777| 欧美色视频一区免费| 变态另类成人亚洲欧美熟女 | 精品久久久精品久久久| 欧美老熟妇乱子伦牲交| 亚洲第一欧美日韩一区二区三区| 在线观看www视频免费| 法律面前人人平等表现在哪些方面| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 999精品在线视频| 黄片大片在线免费观看| 啦啦啦观看免费观看视频高清 | 在线观看日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 男女之事视频高清在线观看| 久久人人爽av亚洲精品天堂| 一区福利在线观看| 极品人妻少妇av视频| 99国产精品一区二区三区| 国产欧美日韩一区二区三| 一进一出抽搐动态| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 精品卡一卡二卡四卡免费| 午夜免费观看网址| 亚洲成国产人片在线观看| 国产av在哪里看| 男人的好看免费观看在线视频 | 亚洲人成77777在线视频| 国产高清有码在线观看视频 | 国产免费av片在线观看野外av| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 一区在线观看完整版| 亚洲五月色婷婷综合| 亚洲国产精品成人综合色| 一边摸一边抽搐一进一出视频| 日日干狠狠操夜夜爽| 亚洲av片天天在线观看| 国产亚洲欧美在线一区二区| 亚洲天堂国产精品一区在线| 欧美在线黄色| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 亚洲五月天丁香| 可以在线观看毛片的网站| 宅男免费午夜| 亚洲国产精品久久男人天堂| 精品国产一区二区三区四区第35| 精品午夜福利视频在线观看一区| 乱人伦中国视频| 免费看十八禁软件| 亚洲午夜理论影院| 90打野战视频偷拍视频| 啦啦啦观看免费观看视频高清 | 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 亚洲黑人精品在线| 成人永久免费在线观看视频| 久久人妻福利社区极品人妻图片| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人av教育| 亚洲一区二区三区色噜噜| 一级,二级,三级黄色视频| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 看免费av毛片| 91麻豆精品激情在线观看国产| 精品久久蜜臀av无| 亚洲片人在线观看| 国产精品永久免费网站| 久久狼人影院| 女人被狂操c到高潮| 乱人伦中国视频| 日本vs欧美在线观看视频| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 国产成人免费无遮挡视频| 日韩精品免费视频一区二区三区| 制服诱惑二区| 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 中文字幕av电影在线播放| 免费高清视频大片| 日韩中文字幕欧美一区二区| 啦啦啦 在线观看视频| 午夜久久久久精精品| 亚洲片人在线观看| 精品日产1卡2卡| 午夜福利18| 桃色一区二区三区在线观看| 老司机靠b影院| 国产精华一区二区三区| 在线观看www视频免费| 亚洲人成电影观看| 97人妻天天添夜夜摸| 大型av网站在线播放| 国产精品野战在线观看| 国产精品一区二区三区四区久久 | 亚洲免费av在线视频| 国产又色又爽无遮挡免费看| 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 国产成人精品久久二区二区免费| 制服丝袜大香蕉在线| 国产精品99久久99久久久不卡| 午夜精品在线福利| 国产高清视频在线播放一区| 无人区码免费观看不卡| 国产在线观看jvid| 久久草成人影院| 免费av毛片视频| 高清在线国产一区| 亚洲精品美女久久av网站| 久久 成人 亚洲| 国产三级黄色录像| 91精品国产国语对白视频| 天堂√8在线中文| 国产精品一区二区免费欧美| 99精品欧美一区二区三区四区| 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 窝窝影院91人妻| or卡值多少钱|