• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acid Dye Adsorption Properties of Ethylenediamine-Modified Magnetic Chitosan Nanoparticles

    2014-10-14 03:45:10ZHOULiMinSHANGChaoLIUZhiRong
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:酸性染料乙二胺東華

    ZHOU Li-Min SHANG Chao LIU Zhi-Rong

    (1State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology,Nanchang 330013,P.R.China; 2Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology,Fuzhou 344000,Jiangxi Province,P.R.China)

    Acid Dye Adsorption Properties of Ethylenediamine-Modified Magnetic Chitosan Nanoparticles

    ZHOU Li-Min1,2,*SHANG Chao1LIU Zhi-Rong1

    (1State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology,Nanchang 330013,P.R.China;2Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology,Fuzhou 344000,Jiangxi Province,P.R.China)

    Abstract: Ethylenediamine-modified magnetic chitosan nanoparticles(EMCN)were prepared and used for the adsorption of Acid Orange 7(AO7)and Acid Orange 10(AO10)from aqueous solutions.Magnetic chitosan nanoparticles were prepared by adding a basic precipitant NaOH solution to a W/O microemulsion system containing cyclohexane/n-hexanol,chitosan and ferrous salt.This was then modified with ethylenediamine to increase the amine content and to improve the adsorption capacity.Transmission electron microscopy showed that the EMCN was essentially monodispersed and had a main particle size distribution of 15-40 nm.Adsorption experiments indicated that the maximum adsorption capacity was at a pH of 4.0 for AO7 and a pH of 3.0 for AO10.Because of the small diameter and the high surface reactivity of EMCN,the adsorption equilibrium for both dyes was reached very quickly.The equilibrium experiments fitted the Langmuir isotherm model well and the maximum adsorption capacities of 3.47 and 2.25 mmol·g-1were obtained for AO7 and AO10,respectively.We estimated the thermodynamic parameters and accordingly the adsorption process was found to be spontaneous and exothermic.Additionally,we regenerated EMCN with an NH4OH/NH4Cl solution(pH 10.0)and the regenerated material was used to readsorb the dyes.

    Key Words:Adsorption;Chitosan;Magnetic nanoparticle;Ethylenediamine;Acid dye

    1 Introduction

    Most of dyes released during textiles,clothing,printing,and dyeing processes are considered as hazardous and toxic to some organisms and may cause allergic dermatitis,skin irritation,carcinogenic,and mutagenic to human and aquatic organisms.1Several techniques are available for the treatment of dyes such as a electrochemical technique,2a bio-degradation process,3homogeneous and heterogeneous photocatalytic oxidation.4,5Among the many techniques for dye removal,adsorption is the procedure of choice as it can be used to remove different types of dyes.6,7Various adsorbents have been developed until now and chitosan is one of them which is being greatly exploited because it is relatively cheap and exhibit higher adsorption capacities.8,9The use of chitosan resins for the removal of dyes from aqueous solutions was recently reported by several authors.6,9-12

    Chitosan is usually needed to be cross-linked to improve its chemical stability in acid media.Although the crosslinking method may enhance the resistance of chitosan against acids,the process may reduce its adsorption capacity of dyes,especially when the crosslinking procedure involves in the reaction of amino groups,which are expected to play a great part in the adsorption process.In order to improve the adsorption capacity and selectivity of dyes,a number of chitosan derivates have been obtained by grafting functional groups such as acrylic and acrylamide,9poly(methylmethacrylate),10poly(alkyl methacrylate),11and vinyl acetate12through a crosslinked chitosan back bone.

    Most of the chitosan-based adsorbents were submicron to micron-sized and need large internal porosities to ensure adequate surface area for adsorption.Compared to the traditional micron-sized supports used in separation process,nano-sized adsorbents possess quite good performance due to high specific surface area and the absence of internal diffusion resistance.13However,the nano-adsorbents could not be separated easily from aqueous solution by filtration or centrifugation.Magnetic nano-adsorbents can be manipulated by an external magnetic field and hence facilitate phase separation.

    Several studies have indicated that―NH2groups in chitosan are the main groups for the adsorption of dyes containing sulfonate groups through the ionic interactions of the colored dye ions with the protonated amino groups on the chitosan.6,8,9In this work,the magnetic chitosan nanoparticles(MCN)were prepared and then modified with ethylenediamine(EMCN)to increase the―NH2active groups and thus enhance the adsorption capacity for acid dyes.The adsorption behaviour of the EMCN toward Acid Orange 7(AO7)and Acid Orange 10(AO10)was studied.The equilibrium isotherms and thermodynamic were discussed.

    2 Experimental

    2.1 Chemicals and reagents

    Chitosan with 40 mesh,90%degree of deacetylation and relative molecular mass of 1.3×105was purchased from Yuhuan Ocean Biology Company(Zhejiang,China).Glutardialdehyde,epichlorohydrine,ethylenediamine,Acid Orange 7 and Acid Orange 10 were purchased from Aldrich and Sigma Chemical,and were used without any further purification.All the other reagents used in this work were of analytical grade.

    2.2 Preparation and characterization of the adsorbents

    The preparation of magnetic chitosan nanoparticles(EMCN)in a W/O microemulsion system containing chitosan and ferrous salt was in accordance with the previous work.14Grafting of ethylenediamine using epichlorohydrin as a crosslinking agent was carried out similar to the procedure described by Atia et al.15with chitosan resin.The magnetic chitosan nanoparticles(2.5 g)were suspended in 35 mL isopropyl alcohol to which 2.5 mL epichlorohydrine(31.25 mmol)dissolved in 50 mL acetone/water mixture(volume ratio 1:1)was added.The contents were stirred for 24 h at 333 K.The solid was isolated and then were transfered in 50 mL ethanol/water mixture(volume ratio 1:1),then ethylenediamine(2.5 mL)was added.The reaction mixture was stirred at 333 K for 12 h,then the solid products(ethylenediamine-modified magnetic chitosan nanoparticles,EMCN)were isolated and washed with ethanol followed by water,and finally dried in a vacuum oven at 333 K.

    The dimension and morphology of the EMCN were observed by transmission electron microscopy(TEM)(Hitachi,H-800).X-ray diffraction(XRD)data were collected on a XRD-2000X-ray diffractometer with Cu Kαradiation.Thermalgravimetric analysis was conducted on Shimadzu TGA-50H with heating rate of 10 K·min-1.The concentration of the amine active sites in the obtained resins was estimated using the volumetric method.16

    2.3 Batch adsorption

    Batch adsorption were performed at controlled pH and temperature by shaking 50 mg of EMCN with 50 mL dye solution for 1.5 h at 200 r·min-1.The parameter ranges for the experiments are:pH 2-10;temperature 298-318 K;initial concentration for the dyes 0.5-6 mmol·L-1.The solution pH was adjusted to the desired value by adding either nitric acid or sodium hydroxide standardized solutions.After mixing,the aqueous phase was separated from the solid phase by magnetic settlement and centrifugation at 12000 r·min-1.The residual concentration of dyes was determined at the maximum wavelength(484 nm for AO7 and 475 nm for AO10)using a Cary 50 UVVis spectrophotometer(Varian,USA).

    For the desorption studies,the dye-loaded EMCN were collected and washed with distilled water to remove any unadsorbed dyes,and then were agitated with NH4OH/NH4Cl(pH 10.0,5.6 mol·L-1NH4OH/1.0 mol·L-1NH4Cl)for 2 h.To investigate the reusablity of the adsorbents,the EMCN after desorption was reused in adsorption experiments and the process was repeated for three times.

    3 Results and discussion

    3.1 Characterization of EMCN

    The TEM image of EMCN is shown in Fig.1.It can be observed that EMCN were essentially monodispersed and had a particle size distribution of 15-40 nm.Fig.2 shows the XRD pattern for EMCN.Eight characteristic peaks for Fe3O4marked by their indices((111),(220),(311),(400),(422),(511),(440),and(622))were observed for the sample.These peaks are consistent with the database in JCPDS file(PDF No.65-3107)and reveal that the resultant nanoparticles are pure Fe3O4with a spinel structure.

    The average mass content of Fe3O4in the EMCN by TGA was about 33.5%,as calculated from the TGA data at 873 K.The magnetization measurement performed with vibrating sample magnetometer(VSM)(Fig.3)indicated that the saturation magnetization of the EMCN was 25.6 A·m2·kg-1.As mentioned in a previous report,this magnetic susceptibility value is sufficient for this resin to be used in wastewater treatment.14The concentration of the amine active sites of the MCN and EMCN was determined to be 2.4 mmol·g-1and 3.8 mmol·g-1,respectively.

    3.2 Effect of pH

    The influence of pH on the adsorption capacity(Q)of AO7 and AO10 onto the EMCN for pH 2-10 are illustrated in Fig.4.It can be seen that the maximum uptake values for AO7 and AO10 were obtained at pH 4.0 and pH 3.0,respecitively(the optimum pH values selected for the further experiments).The observed decrease in the uptake value at low pH(less than the optimum pH values)may be attributed to the decrease in dye dissociation which leads to a lower concentration of the anionic dye species available to interact with the resin's active sites.Above the optimum pH values,the EMCN displays a sharp decrease in the uptake value as pH increases.This behaviour can be explained on the basis of the lower extent of protonation of amino groups at high pH value.

    The mechanisms of the adsorption process of the acid dyes(AO7 and AO10)on the EMCN are likely to be the ionic interactions of the colored dye ions with the amino groups of the EMCN.In aqueous solution,the acid dyes are first dissolved and the sulfonate groups of acid dye(D―SO3Na)dissociate and are converted to anionic dye ions.

    Also,in the presence of H+,the amino groups of the EMCN(R―NH2)became protonated.

    The adsorption process then proceeds due to the electrostatic attraction between these two oppositely charged ions.

    The point of zero charge for the EMCN was found to be 4.8 using standard potentiometric method.Therefore,the surface charge of the EMCN is positively charged at pH<4.8.It seems that at pH 3-4,most of―NH2groups are protonated,which are favorable for the adsorpion of anionic dyes.However,at high pH,the number of protonated―NH2groups will decrease and more OH-ions will be available to compete with the anion-ic sulfonic groups,therefore the adsorption capacity for the acid dyes decreases.

    3.3 Effect of contact time

    Fig.5 shows the effect of contact time on the adsorption capacity of AO7 and AO10 by the EMCN.The results demonstrate that the adsorption for both dyes is rapid.In the case of AO7,the maximum adsorption is attained in 40 min,while for AO10 it takes 60 min,after which the change in the removal percentage is insignificant.The contact time of 90 min was found to be sufficient to reach equilibrium,and so it was selected in further experiments.

    It was reported that more than 2 h is needed to attain equilibrium for dyes with several adsorbents,such as glutaraldehyde and H2SO4-crosslinked chitosan resin,6chitosan/kaolin/γ-Fe2O3composites,7and chitosan derivatives.9In contrast,in the present study,AO7 and AO10 are adsorbed in a short time(no more than 1 h).This can be attributed to the large surface area,the sufficient exposure of active sites and the high surface reactivity of the magnetic chitosan nanoparticles.

    3.4 Adsorption isotherms

    Fig.6 shows the adsorption isotherms of AO7 and AO10 on the EMCN at different temperatures.The equilibrium adsorption capacity of the dye(Qe)increased with increasing of dye concentration.The adsorption curves indicate that the uptake of both dyes decreases with increasing temperature.The adsorption isotherms were studied using three isotherm models:

    Langmuir isotherm equation:

    Freundlich isotherm equation:

    and Dubinin-Radushkevich(D-R)isotherm equation17:

    where Ceis the equilibrium concentration of the dye(mmol·L-1);Qeis the adsorbed value of dyes at equilibrium concentration(mmol·g-1);KLis the Langmuir binding constant which is related to the energy of adsorption(L·mmol-1);KFand bFare the Freundlich constants related to the adsorption capacity and intensity,respectively.QDRis D-R maximum adsorption capacities of the dye(mmol·g-1);K is the D-R constants;ε is the Polanyi potential given as Eq.(4)18:

    where R is the gas constant(8.314 J·(K.·mol)-1),and T is the temperature(K).The D-R constant(K)can give the valuable information regarding the mean energy of adsorption by Eq.(5)19:

    where E is the mean adsorption energy.The results were listed in Table 1.The Langmuir isotherm was found to fit quite well with the experimental data for both AO7 and AO10 in comparison with the linear correlation coefficients(r2).This indicates the homogeneity of active sites on the surface of the EMCN.It is notable that the EMCN is a composite adsorbent which is composed of chitosan and Fe3O4.However,chitosan was mainly responsible for the adsorption of the adsorption of the dyes,therefore,it is reasonable that the EMCN can provide the homogeneity of active sites.

    The Langmuir maximum adsorption capacity(Qm)of AO7(2.82-3.47 mmol·g-1)at different temperatures(298-318 K)was much higher than that of AO10(1.79-2.25 mmol·g-1).The difference in the degree of adsorption may be attributed to the size and chemical structure of the dye molecule.AO7 has only one sulfonate acid group(monovalent)and has the smaller molecular size which implies smaller surface area and protonated amino groups of the adsorbent being occupied by each dye molecule.The small molecular size not only increases the concentration of dye on the surface of the chitosan particle but also enables a deeper penetration of dye molecules into the internal pore structure of the EMCN.The monovalent nature of AO7 dye molecules makes more protonated amino groups on the chitosan particle available for the adsorption of dye molecules.It also reduces the electrostatic repulsion of adjacent dye molecules on the adsorbent surface when compared with divalent dye molecule such as AO10,enabling dye molecules to be packed more closely on the adsorbent surface.

    The maximum adsorption capacities(Qm)of the EMCN obtained by Langmuir isotherm for AO7 and AO10 adsorption at 298 K were 3.47 and 2.25 mmol·g-1,respectively,which were higher than that of the unmodified magnetic chitosan microspheres(2.65 mmol·g-1for AO7 and 1.76 mmol·g-1for AO10)obtained in the same conditions.These results indicated that chemical modification with ethylenediamine improved the adsorption capacity for both AO7 and AO10 due to the higher concentration of active sites of the EMCN.

    It was notable that only 66.5%of chitosan was responsible for the adsorption of the AO7 and AO10 dyes.The maximum adsorption capacity based on the weight of chitosan were 5.12 mmol·g-1(1827 mg·g-1)for AO7 and 3.38 mmol·g-1(1530 mg·g-1)for AO10,respectively,which were higher than those of other adsorbents.6,9The high adsorption capacity of the EMCN for the dyes might be reasonably referred to the high specific surface area of magnetic chitosan nanoparticles with a much smaller diameter,leading to almost all active sites available.

    In addition,the mean adsorption energy(E)from the D-R isotherm means the free energy of one mole of solute from infinity(in solution)to the adsorbent's surface.The adsorption behavior could be the physical adsorption in the range of 1-8 kJ·mol-1and the chemical adsorption in more than 8 kJ·mol-1.18TheEvalues(Table 1)of 8.53-9.29 kJ·mol-1for AO7 and 8.41-9.66 kJ·mol-1for AO10 indicated that the adsorption of both dyes onto the EMCN might be predominant on the chemisorption process.

    The degree of suitability of the obtained resins towards dyes was estimated from the values of the separation factor(RL)using the following relation.20

    whereKLis the Langmuir equilibrium constant andC0is the initial concentration of dye.Values of 0<RL<1 indicates the suitability of the process.The values ofRLfor the EMCN toward the adsorption of AO7 and AO10 for all concentration ranges(0.5-6.0 mmol·L-1)at 298-318 K lie between 0.012-0.162 and 0.020-0.231,respectively.This indicates the suitability of the EMCN for bothAO7 andAO10 adsorption.

    Table 1 Langmuir,Freundlich and Dubinin-Radushkevich isotherm constants and correlation coefficients

    3.5 Thermodynamic of AO7 and AO10 adsorption

    The thermodynamic parameters of the adsorption process are obtained from experiments at various temperatures(298-318 K).The values ofKL(Table 1)at different temperature were processed according to the following van't Hoff equation21to obtain the thermodynamic parameters.

    where ΔH?and ΔS?are enthalpy and entropy changes,respectively,Ris the universal gas constant(8.314 J·mol-1·K-1)andTis the absolute temperature(K).Plotting lnKLagainst 1/Tgives a straight line with slope and intercept equal to ΔH?/Rand ΔS?/R,respectively.The values of ΔH?and ΔS?were calculated from Fig.7 and reported in Table 2.The negtive values of ΔH?indicate the exothermic nature of adsorption process.The positive values of ΔS?suggest the increased randomness during the adsorption of AO7 and AO10.The source of this entropy gain is due to liberation of water molecules from the hydrated shells of the sorbed species.18Gibbs free energy of adsorption(ΔG?)was calculated from the following relation andaslo given in Table 2.

    Table 2 Thermodynamic parameters ofAO7 and AO10 adsorption by EMCN

    The negative values of ΔG?for both dyes indicate that the adsorption on the EMCN is a spontaneous process,whereby no energy input from outside of the system is required.However,the values of ΔG?decreased with increasing temperature,suggesting that adsorption of AO7 and AO10 onto the EMCN became less favourable at higher temperature.6As the temperature increases,the mobility of dye molecules increases,causing the molecules to escape from the solid phase to the liquid phase.Therefore,the amount of AO7 and AO10 that can be adsorbed will decrease.The increase mobility of dye molecules at elevated temperature may also be reflected in the values ofKL(Table 2).The values ofKLfor both dyes decrease as the temperature increases,indicating lower affinity of the resins towards the dyes at higher temperature.

    3.6 Desorption and reuse

    It was observed that at the first adsorption step,the adsorption capacities for the AO7 and AO10 dyes reached the values of 3.16 and 2.13 mmol·g-1,respectively.After the desorption step,the adsorbed AO7 and AO10 dyes were removed about 81.1%and 87.8%,respectively,by NH4OH/NH4Cl solution at pH 10.This could be ascribed to the fact that,in the basic solution,the positively charged amino groups were deprotonated and the electrostatic interaction between chitosan and dye molecules became much weaker.After one cycle of adsorption and desorption of the acid dyes,about 1.2%of Fe3O4on the EMCN was dissolved and 95%of the saturation magnetization was remained.The results of thermogravimetric tests showed that the average mass content of Fe3O4on the EMCN decreased from 33.5%before adsorption to 32.3%after desorption.No obvious leakage of resin materials and change of the EMCN were observed in the experimental process.The EMCN becomes more resistant to acidic and alkaline mediums compared to their parent chitosan due to the cross-linking reaction in the preparation process.The total adsorption capacities of both AO7 and AO10 dyes for the second and the third step maintain more than 90%of those for the first adsorption step.Therefore,the EMCN can be reused for further dye adsorption.

    4 Conclusions

    This research has demonstrated that the EMCN can be used for the effective adsorption ofAO7 andAO10 from aqueous solution.The EMCN exhibited good kinetic characteristics(equilibrium time are 40 min for AO7 and 60 min for AO10)and high adsorption loading capacities for AO7 and AO10(i.e.,3.47 and 2.25 mmol·g-1at 298 K,respectively).The EMCN also showed good improvements in the uptake properties of AO7 and AO10 compared to unmodified ones.Equilibrium experiments fitted well the Langmuir isotherm model and the adsorption capacity decreases with increasing temperature.The EMCN showed higher adsorption capacity for AO7 than for AO10 due to the size and chemical structure of the dye molecule.In addition,the mean adsorption energy from the Dubinnin-Radushkevich isotherms revealed that the adsorption process was predominant on the chemisorption process.Thermodynamic calculation indicated that the adsorption process was spontaneous and exothermic.Furthermore,the EMCN could be regenerated using NH4OH/NH4Cl solution at pH10 and could be reused to adsorb the dyes.

    (1) Zollinger,H.Colour Chemistry-Synthesis,Properties of Organic Dyes and Pigments;VCH Publishers:New York,1987;pp 28-35.

    (2) Lin,S.H.;Peng,C.F.Water Res.1994,28,277.

    (3)McMullan,G.;Meehan,C.;Conneely,A.;Kirby,N.;Robinson,T.;Nigam,P.;Banat,I.M.;Marchant,R.;Smyth,W.F.Appl.Microbiol.Biotechnol.2001,56,81.

    (4) Liu,D.;Xu,Y.M.Acta Phys.-Chim.Sin.2008,24,1584.[劉 鼎許宜銘.物理化學(xué)學(xué)報,2008,24,1584.]

    (5) Jiang,R.;Zhu,H.Y.;Li,X.D.;Xiao,L.Chem.Eng.J.2009,152,537.

    (6)Kamari,A.;Wan,N.W.;Chong,M.Y.;Cheah,M.L.Desalination2009,249,1180.

    (7) Zhu,H.Y.;Jiang,R.;Xiao,L.Appl.Clay Sci.2010,48,522.

    (8) Crini,G.;Badot,P.M.Prog.Polym.Sci.2008,33,399.

    (9) Kyzas,G.Z.;Lazaridis,N.K.J.Colloid Interface Sci.2009,331,32.

    (10) Singha,V.;Sharma,A.K.;Tripathi,D.N.;Sanghi R.J.Hazard.Mater.2009,161,955.

    (11) Konaganti,V.;Kota,R.;Patil,S.;Madras,G.Chem.Eng.J.2010,158,393.

    (12) Elkholy,S.;Khalil,K.D.;Elsabee,M.Z.;Ewels,M.J.Appl.Polm.Sci.2007,103,1651.

    (13)Chang,Y.C.;Chang,S.W.;Chen,D.H.React.Funct.Polym.2006,66,335.

    (14) Zhi,J.;Wang,Y.;Lu,Y.;Ma,J.;Luo,G.React.Funct.Polym.2006,66,1552.

    (15)Atia,A.A.Hydrometallurgy2005,80,13.

    (16)Latha,G.A.;George,K.B.;Kannan,G.K.;Ninan,N.K.J.Appl.Polm.Sci.1991,43,1159.

    (17) Ramnani,S.P.;Sabharwal,S.React.Funct.Polym.2006,66,902.

    (18)Chen,A.H.;Chen,S.M.J.Hazard.Mater.2009,172,1111.

    (19)Varma,A.J.;Deshpande,S.V.;Kennedy,J.F.Carbohydr.Polym.2004,55,77.

    (20) Qi,L.;Xu,Z.Colloids Surf.A2004,251,186.

    (21) Tellinghuisen,J.Biophys.Chem.2006,120,114.

    乙二胺改性磁性殼聚糖納米粒子對酸性染料的吸附特性

    周利民1,2,*尚 超1劉峙嶸1

    (1東華理工大學(xué)核資源與環(huán)境國家重點實驗室培育基地,南昌330013;2東華理工大學(xué)放射地質(zhì)與勘探國防基礎(chǔ)重點實驗室,江西撫州344000)

    利用乙二胺改性磁性殼聚糖納米粒子(EMCN)吸附酸性橙7(AO7)和酸性橙10(AO10).EMCN制備時先通過在由環(huán)已烷/正已醇、殼聚糖和鐵鹽組成的反相微乳體系中加NaOH溶液沉淀劑,得到磁性殼聚糖納米粒子,再經(jīng)乙二胺改性以增加氨基含量和提高吸附容量.透射電鏡表明,EMCN分散良好,粒徑15-40 nm.吸附實驗表明,AO7和AO10最佳吸附分別在pH 4.0和pH 3.0.EMCN具有粒徑小和高表面活性,因此吸附速率快.吸附平衡符合Langmuir模型,AO7和AO10的最大吸附容量分別為3.47和2.25 mmol·g-1.熱力學(xué)分析表明吸附過程放熱,且能自發(fā)進行.EMCN可用NH4OH/NH4Cl(pH 10.0)溶液再生并可重復(fù)使用.

    吸附;殼聚糖;磁性納米粒子;乙二胺;酸性染料

    O647.3

    Received:December 8,2010;Revised:December 22,2010;Published on Web:January 28,2011.

    ?Corresponding author.Email:minglzh@sohu.com;Tel:+86-794-8829625;Fax:+86-794-8258320.

    The project was supported by the Science&Technology Pillar Program of Jiangxi,China(2009BSB08600)and Scientific Research Fund from the Education Bureau of Jiangxi,China(GJJ10494).

    江西省科技支撐項目(2009BSB08600)和江西省教育廳科技項目(GJJ10494)資助

    猜你喜歡
    酸性染料乙二胺東華
    認識成語
    相同的“手” 不同的義
    兩種乙二胺碘酸鹽的制備與性能
    含能材料(2022年4期)2022-04-16 06:28:04
    通過化學(xué)處理對甘蔗渣活性炭進行硫固定及其對酸性染料吸附的影響
    立體幾何中這樣運用設(shè)而不求
    氨綸染色性能的改進研究
    紡織報告(2016年1期)2016-03-26 05:32:03
    錦/棉織物一浴法染色研究進展
    酸性染料可染改性聚酯纖維的染色研究
    2-羥基-1-萘醛縮乙二胺Schiff堿及其稀土金屬配合物的合成和表征
    對稱性破缺:手性高氯酸乙酸·二(乙二胺)合鋅(Ⅱ)的合成與結(jié)構(gòu)
    日韩欧美在线乱码| 成人毛片60女人毛片免费| 大又大粗又爽又黄少妇毛片口| 精品久久久久久成人av| 青春草国产在线视频 | 色视频www国产| 简卡轻食公司| 一本久久精品| 两个人视频免费观看高清| 99在线人妻在线中文字幕| 长腿黑丝高跟| 搡女人真爽免费视频火全软件| 国产精品福利在线免费观看| 亚洲激情五月婷婷啪啪| 亚洲人成网站在线播放欧美日韩| 久久人妻av系列| videossex国产| 综合色丁香网| 日本爱情动作片www.在线观看| 丰满乱子伦码专区| 长腿黑丝高跟| 亚洲自偷自拍三级| 高清日韩中文字幕在线| 精品人妻视频免费看| 精品一区二区三区人妻视频| 婷婷精品国产亚洲av| 日韩欧美在线乱码| 又黄又爽又刺激的免费视频.| 极品教师在线视频| 精品一区二区三区视频在线| 毛片一级片免费看久久久久| 淫秽高清视频在线观看| 日韩欧美三级三区| 亚洲av男天堂| 国产不卡一卡二| 欧美又色又爽又黄视频| 成人毛片a级毛片在线播放| 少妇高潮的动态图| 在线国产一区二区在线| 可以在线观看毛片的网站| 99热精品在线国产| 精品久久久久久久久久免费视频| 尤物成人国产欧美一区二区三区| 青春草国产在线视频 | 精品久久久久久久末码| 听说在线观看完整版免费高清| 天堂√8在线中文| av免费在线看不卡| 成人三级黄色视频| 大型黄色视频在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产av麻豆久久久久久久| 午夜久久久久精精品| 国产日本99.免费观看| 日日干狠狠操夜夜爽| 又粗又硬又长又爽又黄的视频 | www.色视频.com| 精华霜和精华液先用哪个| 国产三级中文精品| 国产精品一区二区性色av| h日本视频在线播放| 国内精品一区二区在线观看| 色5月婷婷丁香| 免费av观看视频| 午夜免费男女啪啪视频观看| a级一级毛片免费在线观看| 天堂网av新在线| 国产成人精品一,二区 | 国产成人91sexporn| 搡女人真爽免费视频火全软件| 精华霜和精华液先用哪个| 精品午夜福利在线看| 哪里可以看免费的av片| 97人妻精品一区二区三区麻豆| 91aial.com中文字幕在线观看| 亚洲精品日韩av片在线观看| 国内揄拍国产精品人妻在线| 久久久久久伊人网av| 亚洲美女视频黄频| 国产精品一及| 精品99又大又爽又粗少妇毛片| 国模一区二区三区四区视频| 免费搜索国产男女视频| 欧美最新免费一区二区三区| 熟女人妻精品中文字幕| 亚洲av免费在线观看| 久久久久久久久久黄片| 美女国产视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| av.在线天堂| 免费看光身美女| 国产色爽女视频免费观看| 一级黄片播放器| 免费看日本二区| 免费在线观看成人毛片| 熟女人妻精品中文字幕| 最近的中文字幕免费完整| 国产黄色视频一区二区在线观看 | 在线观看66精品国产| 网址你懂的国产日韩在线| 免费无遮挡裸体视频| 免费无遮挡裸体视频| 欧美最新免费一区二区三区| 国产高清不卡午夜福利| 99视频精品全部免费 在线| 免费无遮挡裸体视频| 色综合色国产| 看十八女毛片水多多多| 久久久久久久久久成人| 少妇熟女aⅴ在线视频| 国产精品一二三区在线看| 嫩草影院新地址| 天美传媒精品一区二区| 观看美女的网站| 国产黄a三级三级三级人| 美女黄网站色视频| 亚洲自偷自拍三级| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久久久丰满| 婷婷色av中文字幕| 一级av片app| 久久精品久久久久久久性| 久久99热6这里只有精品| 亚洲欧美日韩高清专用| 在现免费观看毛片| 免费人成视频x8x8入口观看| 中文字幕熟女人妻在线| 国产一区二区激情短视频| 欧美精品国产亚洲| 久久人人爽人人爽人人片va| 国产亚洲91精品色在线| 国产精品日韩av在线免费观看| a级毛片a级免费在线| 久久久久久国产a免费观看| 国产av不卡久久| 国产成年人精品一区二区| 久久精品国产清高在天天线| 日韩欧美一区二区三区在线观看| 男人舔女人下体高潮全视频| 国产不卡一卡二| 26uuu在线亚洲综合色| 精品一区二区免费观看| 少妇丰满av| 久久这里只有精品中国| 男人舔女人下体高潮全视频| 日韩欧美一区二区三区在线观看| 狂野欧美激情性xxxx在线观看| 嫩草影院新地址| 搡老妇女老女人老熟妇| 卡戴珊不雅视频在线播放| 性插视频无遮挡在线免费观看| 一边摸一边抽搐一进一小说| 欧美成人a在线观看| 免费搜索国产男女视频| 男插女下体视频免费在线播放| 日韩亚洲欧美综合| 国产精华一区二区三区| 在线免费十八禁| 亚洲国产精品成人久久小说 | 国产精品一区二区在线观看99 | 国产精品无大码| 婷婷色综合大香蕉| www.色视频.com| 亚洲精品色激情综合| 麻豆国产97在线/欧美| 欧美性猛交黑人性爽| 我要看日韩黄色一级片| 美女xxoo啪啪120秒动态图| 青青草视频在线视频观看| 亚洲av熟女| 亚洲欧美日韩卡通动漫| 日本一二三区视频观看| 午夜精品在线福利| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av成人精品| 男插女下体视频免费在线播放| 一区二区三区免费毛片| 久久久久九九精品影院| 日本欧美国产在线视频| 国产真实乱freesex| 久99久视频精品免费| 日韩一区二区三区影片| 欧美最黄视频在线播放免费| kizo精华| 自拍偷自拍亚洲精品老妇| av免费观看日本| 亚洲欧洲国产日韩| 久久久成人免费电影| 99久久中文字幕三级久久日本| 一边亲一边摸免费视频| 久久久久久久午夜电影| 欧美性感艳星| 亚洲aⅴ乱码一区二区在线播放| 夜夜爽天天搞| 午夜老司机福利剧场| 麻豆成人午夜福利视频| 人妻少妇偷人精品九色| 免费看av在线观看网站| 级片在线观看| 最近最新中文字幕大全电影3| 赤兔流量卡办理| 天天一区二区日本电影三级| 婷婷亚洲欧美| 中文亚洲av片在线观看爽| 边亲边吃奶的免费视频| 国产精品无大码| 久久精品国产亚洲av香蕉五月| 国产成年人精品一区二区| 欧美一区二区亚洲| 一区二区三区四区激情视频 | 中文字幕久久专区| 中文资源天堂在线| 白带黄色成豆腐渣| 永久网站在线| 亚洲乱码一区二区免费版| av在线观看视频网站免费| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx在线观看| 久久久国产成人免费| 国产在线精品亚洲第一网站| 国产白丝娇喘喷水9色精品| 只有这里有精品99| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 国产探花在线观看一区二区| 亚洲中文字幕一区二区三区有码在线看| 99热网站在线观看| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 日本熟妇午夜| 亚洲国产精品sss在线观看| 深爱激情五月婷婷| 啦啦啦啦在线视频资源| 国产成人freesex在线| 男女下面进入的视频免费午夜| av视频在线观看入口| 欧美丝袜亚洲另类| 又爽又黄a免费视频| 插逼视频在线观看| 热99在线观看视频| 夜夜爽天天搞| 校园春色视频在线观看| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 中文字幕久久专区| 自拍偷自拍亚洲精品老妇| 欧美一区二区亚洲| 成年免费大片在线观看| 国产成人午夜福利电影在线观看| 91久久精品电影网| 亚洲国产欧美在线一区| 毛片女人毛片| 国产日韩欧美在线精品| 插逼视频在线观看| 久久久久久久久大av| 高清毛片免费观看视频网站| 久久精品国产亚洲av天美| 少妇高潮的动态图| 国产一区二区在线观看日韩| 精品免费久久久久久久清纯| 老司机福利观看| 欧美激情国产日韩精品一区| 亚洲成人精品中文字幕电影| 一个人免费在线观看电影| 一级av片app| 国内精品一区二区在线观看| 99热网站在线观看| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| .国产精品久久| 久久久久久久久大av| 亚洲精品国产av成人精品| 最近最新中文字幕大全电影3| 九九在线视频观看精品| 91麻豆精品激情在线观看国产| 好男人视频免费观看在线| 直男gayav资源| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 亚洲婷婷狠狠爱综合网| 99久久成人亚洲精品观看| 欧美区成人在线视频| 黑人高潮一二区| 国产精华一区二区三区| 亚洲人成网站高清观看| 免费观看在线日韩| 久久亚洲精品不卡| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| av福利片在线观看| 精品午夜福利在线看| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验 | 午夜精品在线福利| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 18禁在线播放成人免费| 少妇人妻精品综合一区二区 | 国产精品无大码| 91久久精品国产一区二区成人| 成年av动漫网址| 变态另类成人亚洲欧美熟女| www.色视频.com| 18禁裸乳无遮挡免费网站照片| 亚洲第一电影网av| 欧美最新免费一区二区三区| 美女大奶头视频| 毛片一级片免费看久久久久| 男女那种视频在线观看| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 老司机福利观看| 三级经典国产精品| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| 伦精品一区二区三区| 婷婷六月久久综合丁香| 久久午夜福利片| 高清毛片免费看| 一区二区三区高清视频在线| 国产视频首页在线观看| 亚洲av不卡在线观看| 波野结衣二区三区在线| 在线免费观看的www视频| 久久精品夜色国产| 91狼人影院| 国内揄拍国产精品人妻在线| 国产亚洲精品久久久com| 联通29元200g的流量卡| 亚洲精品自拍成人| 精品免费久久久久久久清纯| 尤物成人国产欧美一区二区三区| 日本黄大片高清| 青春草亚洲视频在线观看| 亚洲精品456在线播放app| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区 | av天堂在线播放| 亚洲av一区综合| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 乱人视频在线观看| 国产精品久久久久久精品电影小说 | 久久久久久久久久久免费av| 我的女老师完整版在线观看| 午夜爱爱视频在线播放| 久久久久久久久久成人| 国产私拍福利视频在线观看| 秋霞在线观看毛片| 少妇熟女aⅴ在线视频| 日韩三级伦理在线观看| 久久精品久久久久久久性| 成人亚洲欧美一区二区av| 国产亚洲91精品色在线| 韩国av在线不卡| 大香蕉久久网| 国产国拍精品亚洲av在线观看| 啦啦啦啦在线视频资源| av福利片在线观看| 国产精品三级大全| 成人二区视频| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 精品99又大又爽又粗少妇毛片| 色哟哟哟哟哟哟| 观看美女的网站| 国产精品麻豆人妻色哟哟久久 | 天堂影院成人在线观看| 国内少妇人妻偷人精品xxx网站| 少妇裸体淫交视频免费看高清| 99久久成人亚洲精品观看| 天天躁夜夜躁狠狠久久av| 色播亚洲综合网| 天堂av国产一区二区熟女人妻| 18禁黄网站禁片免费观看直播| 国内精品宾馆在线| 国产精品99久久久久久久久| 99久久中文字幕三级久久日本| 欧美色欧美亚洲另类二区| 岛国毛片在线播放| 美女黄网站色视频| 干丝袜人妻中文字幕| 精品不卡国产一区二区三区| 亚洲内射少妇av| 又爽又黄无遮挡网站| 亚洲国产高清在线一区二区三| 亚洲av一区综合| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区| 嫩草影院新地址| 真实男女啪啪啪动态图| 午夜福利在线在线| 最后的刺客免费高清国语| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 一进一出抽搐动态| 免费看光身美女| av又黄又爽大尺度在线免费看 | 国产高清有码在线观看视频| 天堂网av新在线| 免费观看a级毛片全部| 日本欧美国产在线视频| 人妻制服诱惑在线中文字幕| 一边亲一边摸免费视频| 亚洲人成网站在线播| 国产成人精品久久久久久| 岛国在线免费视频观看| 国产av麻豆久久久久久久| 日韩精品有码人妻一区| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 国产精品三级大全| 日本在线视频免费播放| 我的老师免费观看完整版| 青春草亚洲视频在线观看| 男女那种视频在线观看| 26uuu在线亚洲综合色| 美女 人体艺术 gogo| 中文亚洲av片在线观看爽| 午夜亚洲福利在线播放| 观看免费一级毛片| 3wmmmm亚洲av在线观看| av女优亚洲男人天堂| www.av在线官网国产| 国国产精品蜜臀av免费| 直男gayav资源| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 伊人久久精品亚洲午夜| 波多野结衣高清作品| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 免费观看的影片在线观看| 岛国毛片在线播放| 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 深夜a级毛片| 午夜激情欧美在线| 成人特级黄色片久久久久久久| 欧美在线一区亚洲| 精品少妇黑人巨大在线播放 | 国产精品女同一区二区软件| 青春草视频在线免费观看| 久久久成人免费电影| 婷婷色av中文字幕| 日韩精品青青久久久久久| 日韩欧美在线乱码| 国产精品免费一区二区三区在线| 麻豆av噜噜一区二区三区| 久久久久久九九精品二区国产| 亚洲成人中文字幕在线播放| 国产高清视频在线观看网站| 夜夜夜夜夜久久久久| 色综合色国产| 日韩欧美三级三区| 国产片特级美女逼逼视频| 在线播放国产精品三级| 久久久久久久久久久免费av| 久久99精品国语久久久| 亚洲精品色激情综合| 一级毛片电影观看 | 久久精品国产亚洲av香蕉五月| 日韩欧美精品免费久久| 国产伦理片在线播放av一区 | 久久久色成人| 在线a可以看的网站| 91在线精品国自产拍蜜月| 国产精品野战在线观看| av免费在线看不卡| 91精品国产九色| 最好的美女福利视频网| av女优亚洲男人天堂| 全区人妻精品视频| 亚洲五月天丁香| 亚洲色图av天堂| 嫩草影院精品99| a级一级毛片免费在线观看| 97超视频在线观看视频| 成年av动漫网址| 国产精品无大码| 久久精品夜色国产| 人人妻人人澡人人爽人人夜夜 | 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| 麻豆国产av国片精品| 欧美日韩综合久久久久久| 美女xxoo啪啪120秒动态图| 美女被艹到高潮喷水动态| 亚洲国产欧美在线一区| 亚洲图色成人| 久久人人精品亚洲av| 可以在线观看的亚洲视频| 成年女人看的毛片在线观看| 亚洲精品影视一区二区三区av| 91狼人影院| 97在线视频观看| 99久久成人亚洲精品观看| 91av网一区二区| 人妻系列 视频| 日韩精品青青久久久久久| 国内精品宾馆在线| 国产老妇女一区| 男女视频在线观看网站免费| 尾随美女入室| 有码 亚洲区| 国产高清三级在线| 亚洲av.av天堂| 国产久久久一区二区三区| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 男的添女的下面高潮视频| 亚洲av免费高清在线观看| 大香蕉久久网| 欧美日韩乱码在线| 久久久久久久久中文| 国产男人的电影天堂91| 国产大屁股一区二区在线视频| 免费观看a级毛片全部| 日本撒尿小便嘘嘘汇集6| ponron亚洲| 国产精品嫩草影院av在线观看| 三级经典国产精品| av在线播放精品| 久久精品国产亚洲av涩爱 | 精品久久久久久久久久免费视频| 亚洲欧美日韩无卡精品| 一级黄片播放器| 亚洲国产高清在线一区二区三| 最近手机中文字幕大全| 99视频精品全部免费 在线| 欧美zozozo另类| 国产午夜精品论理片| 色综合站精品国产| 啦啦啦韩国在线观看视频| 26uuu在线亚洲综合色| 男人狂女人下面高潮的视频| 久久欧美精品欧美久久欧美| 欧美xxxx性猛交bbbb| 久久热精品热| 51国产日韩欧美| 久久精品人妻少妇| 好男人视频免费观看在线| 久久久久久久久久久免费av| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱 | 啦啦啦观看免费观看视频高清| av免费在线看不卡| 久久精品国产亚洲av天美| 男女做爰动态图高潮gif福利片| 国产精品久久久久久久久免| 黄片wwwwww| 91精品国产九色| 亚洲精品日韩av片在线观看| 女的被弄到高潮叫床怎么办| 久久国产乱子免费精品| 国产一级毛片在线| 亚洲欧美日韩无卡精品| 国产精品伦人一区二区| 亚洲自拍偷在线| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 夜夜夜夜夜久久久久| av在线观看视频网站免费| 成人二区视频| 久久99蜜桃精品久久| 亚洲一区高清亚洲精品| 国产午夜精品久久久久久一区二区三区| 干丝袜人妻中文字幕| 18禁黄网站禁片免费观看直播| 国产久久久一区二区三区| 色吧在线观看| 99热这里只有是精品50| 长腿黑丝高跟| 大又大粗又爽又黄少妇毛片口| 国产高清视频在线观看网站| 乱码一卡2卡4卡精品| 亚洲国产欧洲综合997久久,| 国产欧美日韩精品一区二区| 国产成人福利小说| 少妇的逼水好多| 中文字幕熟女人妻在线| 尾随美女入室| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 国产亚洲av嫩草精品影院| 欧美日韩一区二区视频在线观看视频在线 | 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 欧美一区二区精品小视频在线| 51国产日韩欧美| 蜜臀久久99精品久久宅男| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 久久久久久久久久成人| 少妇猛男粗大的猛烈进出视频 | 国产一级毛片七仙女欲春2| 国产精品嫩草影院av在线观看| 一区二区三区高清视频在线| 精品无人区乱码1区二区| 久久人人精品亚洲av| 精品久久久久久成人av| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 国产一区二区激情短视频| 伦精品一区二区三区| 久久6这里有精品| 国产精品久久久久久久电影| 亚洲国产色片| 99国产极品粉嫩在线观看| 啦啦啦啦在线视频资源|