• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acid Dye Adsorption Properties of Ethylenediamine-Modified Magnetic Chitosan Nanoparticles

    2014-10-14 03:45:10ZHOULiMinSHANGChaoLIUZhiRong
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:酸性染料乙二胺東華

    ZHOU Li-Min SHANG Chao LIU Zhi-Rong

    (1State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology,Nanchang 330013,P.R.China; 2Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology,Fuzhou 344000,Jiangxi Province,P.R.China)

    Acid Dye Adsorption Properties of Ethylenediamine-Modified Magnetic Chitosan Nanoparticles

    ZHOU Li-Min1,2,*SHANG Chao1LIU Zhi-Rong1

    (1State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology,Nanchang 330013,P.R.China;2Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense,East China Institute of Technology,Fuzhou 344000,Jiangxi Province,P.R.China)

    Abstract: Ethylenediamine-modified magnetic chitosan nanoparticles(EMCN)were prepared and used for the adsorption of Acid Orange 7(AO7)and Acid Orange 10(AO10)from aqueous solutions.Magnetic chitosan nanoparticles were prepared by adding a basic precipitant NaOH solution to a W/O microemulsion system containing cyclohexane/n-hexanol,chitosan and ferrous salt.This was then modified with ethylenediamine to increase the amine content and to improve the adsorption capacity.Transmission electron microscopy showed that the EMCN was essentially monodispersed and had a main particle size distribution of 15-40 nm.Adsorption experiments indicated that the maximum adsorption capacity was at a pH of 4.0 for AO7 and a pH of 3.0 for AO10.Because of the small diameter and the high surface reactivity of EMCN,the adsorption equilibrium for both dyes was reached very quickly.The equilibrium experiments fitted the Langmuir isotherm model well and the maximum adsorption capacities of 3.47 and 2.25 mmol·g-1were obtained for AO7 and AO10,respectively.We estimated the thermodynamic parameters and accordingly the adsorption process was found to be spontaneous and exothermic.Additionally,we regenerated EMCN with an NH4OH/NH4Cl solution(pH 10.0)and the regenerated material was used to readsorb the dyes.

    Key Words:Adsorption;Chitosan;Magnetic nanoparticle;Ethylenediamine;Acid dye

    1 Introduction

    Most of dyes released during textiles,clothing,printing,and dyeing processes are considered as hazardous and toxic to some organisms and may cause allergic dermatitis,skin irritation,carcinogenic,and mutagenic to human and aquatic organisms.1Several techniques are available for the treatment of dyes such as a electrochemical technique,2a bio-degradation process,3homogeneous and heterogeneous photocatalytic oxidation.4,5Among the many techniques for dye removal,adsorption is the procedure of choice as it can be used to remove different types of dyes.6,7Various adsorbents have been developed until now and chitosan is one of them which is being greatly exploited because it is relatively cheap and exhibit higher adsorption capacities.8,9The use of chitosan resins for the removal of dyes from aqueous solutions was recently reported by several authors.6,9-12

    Chitosan is usually needed to be cross-linked to improve its chemical stability in acid media.Although the crosslinking method may enhance the resistance of chitosan against acids,the process may reduce its adsorption capacity of dyes,especially when the crosslinking procedure involves in the reaction of amino groups,which are expected to play a great part in the adsorption process.In order to improve the adsorption capacity and selectivity of dyes,a number of chitosan derivates have been obtained by grafting functional groups such as acrylic and acrylamide,9poly(methylmethacrylate),10poly(alkyl methacrylate),11and vinyl acetate12through a crosslinked chitosan back bone.

    Most of the chitosan-based adsorbents were submicron to micron-sized and need large internal porosities to ensure adequate surface area for adsorption.Compared to the traditional micron-sized supports used in separation process,nano-sized adsorbents possess quite good performance due to high specific surface area and the absence of internal diffusion resistance.13However,the nano-adsorbents could not be separated easily from aqueous solution by filtration or centrifugation.Magnetic nano-adsorbents can be manipulated by an external magnetic field and hence facilitate phase separation.

    Several studies have indicated that―NH2groups in chitosan are the main groups for the adsorption of dyes containing sulfonate groups through the ionic interactions of the colored dye ions with the protonated amino groups on the chitosan.6,8,9In this work,the magnetic chitosan nanoparticles(MCN)were prepared and then modified with ethylenediamine(EMCN)to increase the―NH2active groups and thus enhance the adsorption capacity for acid dyes.The adsorption behaviour of the EMCN toward Acid Orange 7(AO7)and Acid Orange 10(AO10)was studied.The equilibrium isotherms and thermodynamic were discussed.

    2 Experimental

    2.1 Chemicals and reagents

    Chitosan with 40 mesh,90%degree of deacetylation and relative molecular mass of 1.3×105was purchased from Yuhuan Ocean Biology Company(Zhejiang,China).Glutardialdehyde,epichlorohydrine,ethylenediamine,Acid Orange 7 and Acid Orange 10 were purchased from Aldrich and Sigma Chemical,and were used without any further purification.All the other reagents used in this work were of analytical grade.

    2.2 Preparation and characterization of the adsorbents

    The preparation of magnetic chitosan nanoparticles(EMCN)in a W/O microemulsion system containing chitosan and ferrous salt was in accordance with the previous work.14Grafting of ethylenediamine using epichlorohydrin as a crosslinking agent was carried out similar to the procedure described by Atia et al.15with chitosan resin.The magnetic chitosan nanoparticles(2.5 g)were suspended in 35 mL isopropyl alcohol to which 2.5 mL epichlorohydrine(31.25 mmol)dissolved in 50 mL acetone/water mixture(volume ratio 1:1)was added.The contents were stirred for 24 h at 333 K.The solid was isolated and then were transfered in 50 mL ethanol/water mixture(volume ratio 1:1),then ethylenediamine(2.5 mL)was added.The reaction mixture was stirred at 333 K for 12 h,then the solid products(ethylenediamine-modified magnetic chitosan nanoparticles,EMCN)were isolated and washed with ethanol followed by water,and finally dried in a vacuum oven at 333 K.

    The dimension and morphology of the EMCN were observed by transmission electron microscopy(TEM)(Hitachi,H-800).X-ray diffraction(XRD)data were collected on a XRD-2000X-ray diffractometer with Cu Kαradiation.Thermalgravimetric analysis was conducted on Shimadzu TGA-50H with heating rate of 10 K·min-1.The concentration of the amine active sites in the obtained resins was estimated using the volumetric method.16

    2.3 Batch adsorption

    Batch adsorption were performed at controlled pH and temperature by shaking 50 mg of EMCN with 50 mL dye solution for 1.5 h at 200 r·min-1.The parameter ranges for the experiments are:pH 2-10;temperature 298-318 K;initial concentration for the dyes 0.5-6 mmol·L-1.The solution pH was adjusted to the desired value by adding either nitric acid or sodium hydroxide standardized solutions.After mixing,the aqueous phase was separated from the solid phase by magnetic settlement and centrifugation at 12000 r·min-1.The residual concentration of dyes was determined at the maximum wavelength(484 nm for AO7 and 475 nm for AO10)using a Cary 50 UVVis spectrophotometer(Varian,USA).

    For the desorption studies,the dye-loaded EMCN were collected and washed with distilled water to remove any unadsorbed dyes,and then were agitated with NH4OH/NH4Cl(pH 10.0,5.6 mol·L-1NH4OH/1.0 mol·L-1NH4Cl)for 2 h.To investigate the reusablity of the adsorbents,the EMCN after desorption was reused in adsorption experiments and the process was repeated for three times.

    3 Results and discussion

    3.1 Characterization of EMCN

    The TEM image of EMCN is shown in Fig.1.It can be observed that EMCN were essentially monodispersed and had a particle size distribution of 15-40 nm.Fig.2 shows the XRD pattern for EMCN.Eight characteristic peaks for Fe3O4marked by their indices((111),(220),(311),(400),(422),(511),(440),and(622))were observed for the sample.These peaks are consistent with the database in JCPDS file(PDF No.65-3107)and reveal that the resultant nanoparticles are pure Fe3O4with a spinel structure.

    The average mass content of Fe3O4in the EMCN by TGA was about 33.5%,as calculated from the TGA data at 873 K.The magnetization measurement performed with vibrating sample magnetometer(VSM)(Fig.3)indicated that the saturation magnetization of the EMCN was 25.6 A·m2·kg-1.As mentioned in a previous report,this magnetic susceptibility value is sufficient for this resin to be used in wastewater treatment.14The concentration of the amine active sites of the MCN and EMCN was determined to be 2.4 mmol·g-1and 3.8 mmol·g-1,respectively.

    3.2 Effect of pH

    The influence of pH on the adsorption capacity(Q)of AO7 and AO10 onto the EMCN for pH 2-10 are illustrated in Fig.4.It can be seen that the maximum uptake values for AO7 and AO10 were obtained at pH 4.0 and pH 3.0,respecitively(the optimum pH values selected for the further experiments).The observed decrease in the uptake value at low pH(less than the optimum pH values)may be attributed to the decrease in dye dissociation which leads to a lower concentration of the anionic dye species available to interact with the resin's active sites.Above the optimum pH values,the EMCN displays a sharp decrease in the uptake value as pH increases.This behaviour can be explained on the basis of the lower extent of protonation of amino groups at high pH value.

    The mechanisms of the adsorption process of the acid dyes(AO7 and AO10)on the EMCN are likely to be the ionic interactions of the colored dye ions with the amino groups of the EMCN.In aqueous solution,the acid dyes are first dissolved and the sulfonate groups of acid dye(D―SO3Na)dissociate and are converted to anionic dye ions.

    Also,in the presence of H+,the amino groups of the EMCN(R―NH2)became protonated.

    The adsorption process then proceeds due to the electrostatic attraction between these two oppositely charged ions.

    The point of zero charge for the EMCN was found to be 4.8 using standard potentiometric method.Therefore,the surface charge of the EMCN is positively charged at pH<4.8.It seems that at pH 3-4,most of―NH2groups are protonated,which are favorable for the adsorpion of anionic dyes.However,at high pH,the number of protonated―NH2groups will decrease and more OH-ions will be available to compete with the anion-ic sulfonic groups,therefore the adsorption capacity for the acid dyes decreases.

    3.3 Effect of contact time

    Fig.5 shows the effect of contact time on the adsorption capacity of AO7 and AO10 by the EMCN.The results demonstrate that the adsorption for both dyes is rapid.In the case of AO7,the maximum adsorption is attained in 40 min,while for AO10 it takes 60 min,after which the change in the removal percentage is insignificant.The contact time of 90 min was found to be sufficient to reach equilibrium,and so it was selected in further experiments.

    It was reported that more than 2 h is needed to attain equilibrium for dyes with several adsorbents,such as glutaraldehyde and H2SO4-crosslinked chitosan resin,6chitosan/kaolin/γ-Fe2O3composites,7and chitosan derivatives.9In contrast,in the present study,AO7 and AO10 are adsorbed in a short time(no more than 1 h).This can be attributed to the large surface area,the sufficient exposure of active sites and the high surface reactivity of the magnetic chitosan nanoparticles.

    3.4 Adsorption isotherms

    Fig.6 shows the adsorption isotherms of AO7 and AO10 on the EMCN at different temperatures.The equilibrium adsorption capacity of the dye(Qe)increased with increasing of dye concentration.The adsorption curves indicate that the uptake of both dyes decreases with increasing temperature.The adsorption isotherms were studied using three isotherm models:

    Langmuir isotherm equation:

    Freundlich isotherm equation:

    and Dubinin-Radushkevich(D-R)isotherm equation17:

    where Ceis the equilibrium concentration of the dye(mmol·L-1);Qeis the adsorbed value of dyes at equilibrium concentration(mmol·g-1);KLis the Langmuir binding constant which is related to the energy of adsorption(L·mmol-1);KFand bFare the Freundlich constants related to the adsorption capacity and intensity,respectively.QDRis D-R maximum adsorption capacities of the dye(mmol·g-1);K is the D-R constants;ε is the Polanyi potential given as Eq.(4)18:

    where R is the gas constant(8.314 J·(K.·mol)-1),and T is the temperature(K).The D-R constant(K)can give the valuable information regarding the mean energy of adsorption by Eq.(5)19:

    where E is the mean adsorption energy.The results were listed in Table 1.The Langmuir isotherm was found to fit quite well with the experimental data for both AO7 and AO10 in comparison with the linear correlation coefficients(r2).This indicates the homogeneity of active sites on the surface of the EMCN.It is notable that the EMCN is a composite adsorbent which is composed of chitosan and Fe3O4.However,chitosan was mainly responsible for the adsorption of the adsorption of the dyes,therefore,it is reasonable that the EMCN can provide the homogeneity of active sites.

    The Langmuir maximum adsorption capacity(Qm)of AO7(2.82-3.47 mmol·g-1)at different temperatures(298-318 K)was much higher than that of AO10(1.79-2.25 mmol·g-1).The difference in the degree of adsorption may be attributed to the size and chemical structure of the dye molecule.AO7 has only one sulfonate acid group(monovalent)and has the smaller molecular size which implies smaller surface area and protonated amino groups of the adsorbent being occupied by each dye molecule.The small molecular size not only increases the concentration of dye on the surface of the chitosan particle but also enables a deeper penetration of dye molecules into the internal pore structure of the EMCN.The monovalent nature of AO7 dye molecules makes more protonated amino groups on the chitosan particle available for the adsorption of dye molecules.It also reduces the electrostatic repulsion of adjacent dye molecules on the adsorbent surface when compared with divalent dye molecule such as AO10,enabling dye molecules to be packed more closely on the adsorbent surface.

    The maximum adsorption capacities(Qm)of the EMCN obtained by Langmuir isotherm for AO7 and AO10 adsorption at 298 K were 3.47 and 2.25 mmol·g-1,respectively,which were higher than that of the unmodified magnetic chitosan microspheres(2.65 mmol·g-1for AO7 and 1.76 mmol·g-1for AO10)obtained in the same conditions.These results indicated that chemical modification with ethylenediamine improved the adsorption capacity for both AO7 and AO10 due to the higher concentration of active sites of the EMCN.

    It was notable that only 66.5%of chitosan was responsible for the adsorption of the AO7 and AO10 dyes.The maximum adsorption capacity based on the weight of chitosan were 5.12 mmol·g-1(1827 mg·g-1)for AO7 and 3.38 mmol·g-1(1530 mg·g-1)for AO10,respectively,which were higher than those of other adsorbents.6,9The high adsorption capacity of the EMCN for the dyes might be reasonably referred to the high specific surface area of magnetic chitosan nanoparticles with a much smaller diameter,leading to almost all active sites available.

    In addition,the mean adsorption energy(E)from the D-R isotherm means the free energy of one mole of solute from infinity(in solution)to the adsorbent's surface.The adsorption behavior could be the physical adsorption in the range of 1-8 kJ·mol-1and the chemical adsorption in more than 8 kJ·mol-1.18TheEvalues(Table 1)of 8.53-9.29 kJ·mol-1for AO7 and 8.41-9.66 kJ·mol-1for AO10 indicated that the adsorption of both dyes onto the EMCN might be predominant on the chemisorption process.

    The degree of suitability of the obtained resins towards dyes was estimated from the values of the separation factor(RL)using the following relation.20

    whereKLis the Langmuir equilibrium constant andC0is the initial concentration of dye.Values of 0<RL<1 indicates the suitability of the process.The values ofRLfor the EMCN toward the adsorption of AO7 and AO10 for all concentration ranges(0.5-6.0 mmol·L-1)at 298-318 K lie between 0.012-0.162 and 0.020-0.231,respectively.This indicates the suitability of the EMCN for bothAO7 andAO10 adsorption.

    Table 1 Langmuir,Freundlich and Dubinin-Radushkevich isotherm constants and correlation coefficients

    3.5 Thermodynamic of AO7 and AO10 adsorption

    The thermodynamic parameters of the adsorption process are obtained from experiments at various temperatures(298-318 K).The values ofKL(Table 1)at different temperature were processed according to the following van't Hoff equation21to obtain the thermodynamic parameters.

    where ΔH?and ΔS?are enthalpy and entropy changes,respectively,Ris the universal gas constant(8.314 J·mol-1·K-1)andTis the absolute temperature(K).Plotting lnKLagainst 1/Tgives a straight line with slope and intercept equal to ΔH?/Rand ΔS?/R,respectively.The values of ΔH?and ΔS?were calculated from Fig.7 and reported in Table 2.The negtive values of ΔH?indicate the exothermic nature of adsorption process.The positive values of ΔS?suggest the increased randomness during the adsorption of AO7 and AO10.The source of this entropy gain is due to liberation of water molecules from the hydrated shells of the sorbed species.18Gibbs free energy of adsorption(ΔG?)was calculated from the following relation andaslo given in Table 2.

    Table 2 Thermodynamic parameters ofAO7 and AO10 adsorption by EMCN

    The negative values of ΔG?for both dyes indicate that the adsorption on the EMCN is a spontaneous process,whereby no energy input from outside of the system is required.However,the values of ΔG?decreased with increasing temperature,suggesting that adsorption of AO7 and AO10 onto the EMCN became less favourable at higher temperature.6As the temperature increases,the mobility of dye molecules increases,causing the molecules to escape from the solid phase to the liquid phase.Therefore,the amount of AO7 and AO10 that can be adsorbed will decrease.The increase mobility of dye molecules at elevated temperature may also be reflected in the values ofKL(Table 2).The values ofKLfor both dyes decrease as the temperature increases,indicating lower affinity of the resins towards the dyes at higher temperature.

    3.6 Desorption and reuse

    It was observed that at the first adsorption step,the adsorption capacities for the AO7 and AO10 dyes reached the values of 3.16 and 2.13 mmol·g-1,respectively.After the desorption step,the adsorbed AO7 and AO10 dyes were removed about 81.1%and 87.8%,respectively,by NH4OH/NH4Cl solution at pH 10.This could be ascribed to the fact that,in the basic solution,the positively charged amino groups were deprotonated and the electrostatic interaction between chitosan and dye molecules became much weaker.After one cycle of adsorption and desorption of the acid dyes,about 1.2%of Fe3O4on the EMCN was dissolved and 95%of the saturation magnetization was remained.The results of thermogravimetric tests showed that the average mass content of Fe3O4on the EMCN decreased from 33.5%before adsorption to 32.3%after desorption.No obvious leakage of resin materials and change of the EMCN were observed in the experimental process.The EMCN becomes more resistant to acidic and alkaline mediums compared to their parent chitosan due to the cross-linking reaction in the preparation process.The total adsorption capacities of both AO7 and AO10 dyes for the second and the third step maintain more than 90%of those for the first adsorption step.Therefore,the EMCN can be reused for further dye adsorption.

    4 Conclusions

    This research has demonstrated that the EMCN can be used for the effective adsorption ofAO7 andAO10 from aqueous solution.The EMCN exhibited good kinetic characteristics(equilibrium time are 40 min for AO7 and 60 min for AO10)and high adsorption loading capacities for AO7 and AO10(i.e.,3.47 and 2.25 mmol·g-1at 298 K,respectively).The EMCN also showed good improvements in the uptake properties of AO7 and AO10 compared to unmodified ones.Equilibrium experiments fitted well the Langmuir isotherm model and the adsorption capacity decreases with increasing temperature.The EMCN showed higher adsorption capacity for AO7 than for AO10 due to the size and chemical structure of the dye molecule.In addition,the mean adsorption energy from the Dubinnin-Radushkevich isotherms revealed that the adsorption process was predominant on the chemisorption process.Thermodynamic calculation indicated that the adsorption process was spontaneous and exothermic.Furthermore,the EMCN could be regenerated using NH4OH/NH4Cl solution at pH10 and could be reused to adsorb the dyes.

    (1) Zollinger,H.Colour Chemistry-Synthesis,Properties of Organic Dyes and Pigments;VCH Publishers:New York,1987;pp 28-35.

    (2) Lin,S.H.;Peng,C.F.Water Res.1994,28,277.

    (3)McMullan,G.;Meehan,C.;Conneely,A.;Kirby,N.;Robinson,T.;Nigam,P.;Banat,I.M.;Marchant,R.;Smyth,W.F.Appl.Microbiol.Biotechnol.2001,56,81.

    (4) Liu,D.;Xu,Y.M.Acta Phys.-Chim.Sin.2008,24,1584.[劉 鼎許宜銘.物理化學(xué)學(xué)報,2008,24,1584.]

    (5) Jiang,R.;Zhu,H.Y.;Li,X.D.;Xiao,L.Chem.Eng.J.2009,152,537.

    (6)Kamari,A.;Wan,N.W.;Chong,M.Y.;Cheah,M.L.Desalination2009,249,1180.

    (7) Zhu,H.Y.;Jiang,R.;Xiao,L.Appl.Clay Sci.2010,48,522.

    (8) Crini,G.;Badot,P.M.Prog.Polym.Sci.2008,33,399.

    (9) Kyzas,G.Z.;Lazaridis,N.K.J.Colloid Interface Sci.2009,331,32.

    (10) Singha,V.;Sharma,A.K.;Tripathi,D.N.;Sanghi R.J.Hazard.Mater.2009,161,955.

    (11) Konaganti,V.;Kota,R.;Patil,S.;Madras,G.Chem.Eng.J.2010,158,393.

    (12) Elkholy,S.;Khalil,K.D.;Elsabee,M.Z.;Ewels,M.J.Appl.Polm.Sci.2007,103,1651.

    (13)Chang,Y.C.;Chang,S.W.;Chen,D.H.React.Funct.Polym.2006,66,335.

    (14) Zhi,J.;Wang,Y.;Lu,Y.;Ma,J.;Luo,G.React.Funct.Polym.2006,66,1552.

    (15)Atia,A.A.Hydrometallurgy2005,80,13.

    (16)Latha,G.A.;George,K.B.;Kannan,G.K.;Ninan,N.K.J.Appl.Polm.Sci.1991,43,1159.

    (17) Ramnani,S.P.;Sabharwal,S.React.Funct.Polym.2006,66,902.

    (18)Chen,A.H.;Chen,S.M.J.Hazard.Mater.2009,172,1111.

    (19)Varma,A.J.;Deshpande,S.V.;Kennedy,J.F.Carbohydr.Polym.2004,55,77.

    (20) Qi,L.;Xu,Z.Colloids Surf.A2004,251,186.

    (21) Tellinghuisen,J.Biophys.Chem.2006,120,114.

    乙二胺改性磁性殼聚糖納米粒子對酸性染料的吸附特性

    周利民1,2,*尚 超1劉峙嶸1

    (1東華理工大學(xué)核資源與環(huán)境國家重點實驗室培育基地,南昌330013;2東華理工大學(xué)放射地質(zhì)與勘探國防基礎(chǔ)重點實驗室,江西撫州344000)

    利用乙二胺改性磁性殼聚糖納米粒子(EMCN)吸附酸性橙7(AO7)和酸性橙10(AO10).EMCN制備時先通過在由環(huán)已烷/正已醇、殼聚糖和鐵鹽組成的反相微乳體系中加NaOH溶液沉淀劑,得到磁性殼聚糖納米粒子,再經(jīng)乙二胺改性以增加氨基含量和提高吸附容量.透射電鏡表明,EMCN分散良好,粒徑15-40 nm.吸附實驗表明,AO7和AO10最佳吸附分別在pH 4.0和pH 3.0.EMCN具有粒徑小和高表面活性,因此吸附速率快.吸附平衡符合Langmuir模型,AO7和AO10的最大吸附容量分別為3.47和2.25 mmol·g-1.熱力學(xué)分析表明吸附過程放熱,且能自發(fā)進行.EMCN可用NH4OH/NH4Cl(pH 10.0)溶液再生并可重復(fù)使用.

    吸附;殼聚糖;磁性納米粒子;乙二胺;酸性染料

    O647.3

    Received:December 8,2010;Revised:December 22,2010;Published on Web:January 28,2011.

    ?Corresponding author.Email:minglzh@sohu.com;Tel:+86-794-8829625;Fax:+86-794-8258320.

    The project was supported by the Science&Technology Pillar Program of Jiangxi,China(2009BSB08600)and Scientific Research Fund from the Education Bureau of Jiangxi,China(GJJ10494).

    江西省科技支撐項目(2009BSB08600)和江西省教育廳科技項目(GJJ10494)資助

    猜你喜歡
    酸性染料乙二胺東華
    認識成語
    相同的“手” 不同的義
    兩種乙二胺碘酸鹽的制備與性能
    含能材料(2022年4期)2022-04-16 06:28:04
    通過化學(xué)處理對甘蔗渣活性炭進行硫固定及其對酸性染料吸附的影響
    立體幾何中這樣運用設(shè)而不求
    氨綸染色性能的改進研究
    紡織報告(2016年1期)2016-03-26 05:32:03
    錦/棉織物一浴法染色研究進展
    酸性染料可染改性聚酯纖維的染色研究
    2-羥基-1-萘醛縮乙二胺Schiff堿及其稀土金屬配合物的合成和表征
    對稱性破缺:手性高氯酸乙酸·二(乙二胺)合鋅(Ⅱ)的合成與結(jié)構(gòu)
    啦啦啦啦在线视频资源| 亚洲欧洲日产国产| 国产免费一区二区三区四区乱码| 超碰成人久久| 在线亚洲精品国产二区图片欧美| 在线精品无人区一区二区三| 中国美女看黄片| 亚洲成国产人片在线观看| 亚洲精品久久午夜乱码| 超碰97精品在线观看| 日韩欧美一区二区三区在线观看 | 欧美国产精品一级二级三级| av免费在线观看网站| av在线app专区| 国产伦理片在线播放av一区| 亚洲天堂av无毛| 一级片'在线观看视频| 在线观看舔阴道视频| 三上悠亚av全集在线观看| 1024香蕉在线观看| 啦啦啦啦在线视频资源| 91精品三级在线观看| 久久久久久久久久久久大奶| 日韩大片免费观看网站| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网 | 午夜91福利影院| 亚洲国产成人一精品久久久| 亚洲精品美女久久av网站| 桃红色精品国产亚洲av| 青青草视频在线视频观看| av免费在线观看网站| 午夜福利乱码中文字幕| 又大又爽又粗| 50天的宝宝边吃奶边哭怎么回事| 少妇粗大呻吟视频| 午夜福利免费观看在线| 国产黄频视频在线观看| 免费在线观看日本一区| 日韩欧美国产一区二区入口| 日韩欧美免费精品| 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 亚洲国产毛片av蜜桃av| 永久免费av网站大全| 久久久久视频综合| 日韩 亚洲 欧美在线| av欧美777| 久久99一区二区三区| 久久久久视频综合| 国产精品1区2区在线观看. | 人妻人人澡人人爽人人| 欧美在线黄色| 天天操日日干夜夜撸| 免费不卡黄色视频| 一本综合久久免费| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区| 午夜激情久久久久久久| 欧美精品啪啪一区二区三区 | videosex国产| 国产精品九九99| 久久久国产精品麻豆| 水蜜桃什么品种好| 亚洲成人免费电影在线观看| 欧美精品高潮呻吟av久久| 久久中文字幕一级| 高清av免费在线| 五月天丁香电影| 精品国产一区二区三区四区第35| 啪啪无遮挡十八禁网站| av网站在线播放免费| 五月天丁香电影| 久久精品熟女亚洲av麻豆精品| 精品福利永久在线观看| 两个人看的免费小视频| 久久久久久久国产电影| 欧美日韩亚洲综合一区二区三区_| 国产成人av教育| 91精品国产国语对白视频| 中文字幕制服av| av有码第一页| 亚洲精品乱久久久久久| 又紧又爽又黄一区二区| 十八禁网站网址无遮挡| 色婷婷av一区二区三区视频| 咕卡用的链子| 国产精品香港三级国产av潘金莲| 永久免费av网站大全| 2018国产大陆天天弄谢| 欧美日韩av久久| 成年动漫av网址| 亚洲精品自拍成人| 50天的宝宝边吃奶边哭怎么回事| videos熟女内射| 51午夜福利影视在线观看| 777米奇影视久久| 国产免费视频播放在线视频| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 青春草亚洲视频在线观看| 亚洲精品第二区| av视频免费观看在线观看| 国产黄色免费在线视频| 久久久久久久精品精品| 91成人精品电影| 肉色欧美久久久久久久蜜桃| 国产高清videossex| 99热全是精品| 亚洲精品美女久久av网站| 亚洲欧美成人综合另类久久久| 亚洲av片天天在线观看| 日韩欧美一区视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产免费视频播放在线视频| 美女午夜性视频免费| 久久免费观看电影| 日日夜夜操网爽| 亚洲精品一区蜜桃| 亚洲激情五月婷婷啪啪| 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| 午夜免费鲁丝| 亚洲成人免费av在线播放| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 在线亚洲精品国产二区图片欧美| 欧美激情高清一区二区三区| 丰满迷人的少妇在线观看| 蜜桃国产av成人99| 黄频高清免费视频| av一本久久久久| 婷婷色av中文字幕| 免费高清在线观看日韩| 国产成人啪精品午夜网站| 99热全是精品| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 曰老女人黄片| 成年人免费黄色播放视频| 久久这里只有精品19| 亚洲专区字幕在线| 久久亚洲国产成人精品v| 国产欧美日韩综合在线一区二区| 一边摸一边抽搐一进一出视频| 宅男免费午夜| 18禁裸乳无遮挡动漫免费视频| 97人妻天天添夜夜摸| 亚洲av美国av| 日韩大片免费观看网站| 欧美日韩黄片免| 人人妻人人澡人人爽人人夜夜| 日韩中文字幕视频在线看片| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 中文字幕高清在线视频| 久久国产精品男人的天堂亚洲| 最近最新免费中文字幕在线| av在线播放精品| 国产高清视频在线播放一区 | 欧美精品亚洲一区二区| 成人免费观看视频高清| 亚洲avbb在线观看| 热re99久久精品国产66热6| 午夜福利免费观看在线| 91大片在线观看| 午夜精品国产一区二区电影| 啪啪无遮挡十八禁网站| 大片免费播放器 马上看| 久久狼人影院| 99热国产这里只有精品6| 不卡av一区二区三区| 国产欧美日韩一区二区三 | 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 男女国产视频网站| 亚洲伊人色综图| 伊人亚洲综合成人网| 黄片播放在线免费| 美女午夜性视频免费| 成年人黄色毛片网站| 一本久久精品| 国产在线视频一区二区| 免费久久久久久久精品成人欧美视频| 18禁观看日本| 一级,二级,三级黄色视频| 脱女人内裤的视频| 欧美变态另类bdsm刘玥| 最新在线观看一区二区三区| 欧美日韩亚洲高清精品| 日本a在线网址| 亚洲情色 制服丝袜| 国产野战对白在线观看| 国产av又大| 丰满少妇做爰视频| 国产一区二区三区综合在线观看| 老司机午夜福利在线观看视频 | 动漫黄色视频在线观看| 1024香蕉在线观看| 丝袜美腿诱惑在线| 国产一区二区在线观看av| 午夜免费鲁丝| 999精品在线视频| 国产又色又爽无遮挡免| 欧美xxⅹ黑人| 免费在线观看黄色视频的| 成人影院久久| 亚洲国产精品成人久久小说| 在线观看人妻少妇| 大香蕉久久网| 成年人黄色毛片网站| 欧美国产精品一级二级三级| 欧美人与性动交α欧美软件| 日本五十路高清| 欧美精品一区二区大全| 男男h啪啪无遮挡| 日韩电影二区| 99久久精品国产亚洲精品| 亚洲欧美激情在线| 在线看a的网站| 精品国内亚洲2022精品成人 | 又黄又粗又硬又大视频| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 777久久人妻少妇嫩草av网站| 大香蕉久久网| 精品一区二区三区av网在线观看 | 美女午夜性视频免费| 美女主播在线视频| 亚洲中文字幕日韩| av超薄肉色丝袜交足视频| 男男h啪啪无遮挡| 蜜桃在线观看..| 99热网站在线观看| 性色av一级| 最近最新中文字幕大全免费视频| 咕卡用的链子| 欧美日韩中文字幕国产精品一区二区三区 | 19禁男女啪啪无遮挡网站| 高清av免费在线| 日韩制服丝袜自拍偷拍| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av香蕉五月 | av网站免费在线观看视频| 日日爽夜夜爽网站| 精品乱码久久久久久99久播| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 两性夫妻黄色片| 国产精品熟女久久久久浪| 国产一卡二卡三卡精品| 熟女少妇亚洲综合色aaa.| 999久久久精品免费观看国产| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 欧美成人午夜精品| 日本a在线网址| 国产1区2区3区精品| 久久精品熟女亚洲av麻豆精品| 国产麻豆69| 亚洲成人免费电影在线观看| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区 | 国产高清videossex| tube8黄色片| 纵有疾风起免费观看全集完整版| 欧美大码av| 丝袜喷水一区| 视频在线观看一区二区三区| 国产1区2区3区精品| 久久亚洲国产成人精品v| 91麻豆av在线| 午夜免费成人在线视频| 黄色片一级片一级黄色片| 久久人人爽人人片av| 中文字幕另类日韩欧美亚洲嫩草| 精品欧美一区二区三区在线| 在线 av 中文字幕| 一区福利在线观看| 国产精品久久久久久人妻精品电影 | 99久久精品国产亚洲精品| 免费日韩欧美在线观看| 国产区一区二久久| 国产精品 欧美亚洲| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 国产精品自产拍在线观看55亚洲 | 欧美日韩视频精品一区| 夫妻午夜视频| 国产视频一区二区在线看| 80岁老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清 | 国产国语露脸激情在线看| 欧美一级毛片孕妇| 色综合欧美亚洲国产小说| 91精品国产国语对白视频| av免费在线观看网站| 无遮挡黄片免费观看| 午夜免费观看性视频| 国产精品av久久久久免费| 国产精品亚洲av一区麻豆| 亚洲精品国产av成人精品| 波多野结衣av一区二区av| 人人妻人人澡人人爽人人夜夜| 亚洲天堂av无毛| av一本久久久久| 久久久久国产精品人妻一区二区| 午夜影院在线不卡| 亚洲av电影在线进入| 日本wwww免费看| 窝窝影院91人妻| 999精品在线视频| 亚洲精品久久成人aⅴ小说| 亚洲av日韩在线播放| 午夜老司机福利片| 精品国产乱子伦一区二区三区 | 精品乱码久久久久久99久播| 后天国语完整版免费观看| 淫妇啪啪啪对白视频 | 波多野结衣av一区二区av| 国产免费现黄频在线看| 日本wwww免费看| 人妻人人澡人人爽人人| 国产精品香港三级国产av潘金莲| 国产伦人伦偷精品视频| av天堂久久9| 18禁观看日本| 国产成人精品在线电影| 波多野结衣一区麻豆| 久久久久久久精品精品| 亚洲专区中文字幕在线| 黑丝袜美女国产一区| 欧美中文综合在线视频| 曰老女人黄片| 亚洲 国产 在线| 国产精品九九99| 香蕉国产在线看| 日韩中文字幕视频在线看片| 91老司机精品| 欧美日韩精品网址| 欧美精品高潮呻吟av久久| 国产在线视频一区二区| 欧美精品人与动牲交sv欧美| 香蕉国产在线看| 成人三级做爰电影| 丝袜脚勾引网站| 日本欧美视频一区| 狠狠狠狠99中文字幕| 午夜激情久久久久久久| 亚洲国产精品成人久久小说| 高清视频免费观看一区二区| 亚洲国产av新网站| 国产亚洲av高清不卡| 久久中文字幕一级| 日本猛色少妇xxxxx猛交久久| 一本久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 天堂中文最新版在线下载| 人妻久久中文字幕网| 日韩 亚洲 欧美在线| avwww免费| 免费观看人在逋| 自拍欧美九色日韩亚洲蝌蚪91| 国产1区2区3区精品| 国产野战对白在线观看| 精品国产乱码久久久久久男人| 爱豆传媒免费全集在线观看| 五月天丁香电影| 国产av一区二区精品久久| 亚洲国产欧美一区二区综合| 久久久精品94久久精品| 激情视频va一区二区三区| 美女高潮喷水抽搐中文字幕| 91国产中文字幕| 脱女人内裤的视频| www.自偷自拍.com| 黄频高清免费视频| 欧美另类亚洲清纯唯美| 黄色视频在线播放观看不卡| 深夜精品福利| 久久九九热精品免费| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| av不卡在线播放| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 一级毛片女人18水好多| 乱人伦中国视频| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 精品国产乱子伦一区二区三区 | 19禁男女啪啪无遮挡网站| 热99re8久久精品国产| 又紧又爽又黄一区二区| 欧美黑人精品巨大| 一区在线观看完整版| 一级毛片女人18水好多| 国产欧美日韩一区二区三区在线| 国产欧美亚洲国产| 国产区一区二久久| 91九色精品人成在线观看| 成年动漫av网址| 十八禁人妻一区二区| 国产一区二区 视频在线| 国产亚洲欧美精品永久| 两性午夜刺激爽爽歪歪视频在线观看 | 19禁男女啪啪无遮挡网站| 人人妻人人澡人人看| 97精品久久久久久久久久精品| 日韩视频一区二区在线观看| 成年女人毛片免费观看观看9 | 妹子高潮喷水视频| videosex国产| 免费av中文字幕在线| 欧美亚洲日本最大视频资源| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 男女下面插进去视频免费观看| 国产精品免费大片| 一边摸一边做爽爽视频免费| 美女高潮到喷水免费观看| 亚洲av男天堂| 亚洲欧美精品综合一区二区三区| 免费在线观看完整版高清| 老司机午夜十八禁免费视频| 97人妻天天添夜夜摸| www.999成人在线观看| 十分钟在线观看高清视频www| 99国产精品一区二区三区| 另类亚洲欧美激情| 亚洲天堂av无毛| 人妻人人澡人人爽人人| 午夜福利一区二区在线看| 亚洲国产av新网站| 国产精品熟女久久久久浪| 亚洲成av片中文字幕在线观看| 亚洲伊人久久精品综合| 一级黄色大片毛片| 国产欧美日韩一区二区三 | 日本vs欧美在线观看视频| 超碰97精品在线观看| 国产在线免费精品| 国产国语露脸激情在线看| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 精品一区二区三区av网在线观看 | 精品一区二区三区四区五区乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区字幕在线| 男人添女人高潮全过程视频| 日韩视频一区二区在线观看| 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 国产成人欧美| 巨乳人妻的诱惑在线观看| 国产色视频综合| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| 最新在线观看一区二区三区| 欧美日韩黄片免| 天天操日日干夜夜撸| 亚洲中文日韩欧美视频| 深夜精品福利| 免费久久久久久久精品成人欧美视频| av线在线观看网站| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 精品人妻熟女毛片av久久网站| 正在播放国产对白刺激| 久久久国产欧美日韩av| 99香蕉大伊视频| 国产精品一区二区精品视频观看| 成人亚洲精品一区在线观看| 青春草亚洲视频在线观看| 国产又爽黄色视频| 精品熟女少妇八av免费久了| 黄色视频在线播放观看不卡| 一个人免费在线观看的高清视频 | 青春草亚洲视频在线观看| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕| 一本综合久久免费| 捣出白浆h1v1| 高清av免费在线| 老熟女久久久| 在线观看免费午夜福利视频| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 亚洲av成人一区二区三| 精品人妻熟女毛片av久久网站| 男女高潮啪啪啪动态图| 免费少妇av软件| 日韩制服骚丝袜av| 国产亚洲一区二区精品| 人成视频在线观看免费观看| 免费在线观看视频国产中文字幕亚洲 | 大型av网站在线播放| 色婷婷久久久亚洲欧美| 男女免费视频国产| 91精品伊人久久大香线蕉| 黄色视频不卡| 午夜福利视频精品| 精品久久久久久久毛片微露脸 | 午夜激情av网站| 亚洲精品国产精品久久久不卡| 日韩大片免费观看网站| 国产深夜福利视频在线观看| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 欧美国产精品va在线观看不卡| 国产精品av久久久久免费| 亚洲中文日韩欧美视频| 一本一本久久a久久精品综合妖精| 一级毛片电影观看| 天天影视国产精品| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 99久久人妻综合| 黄色片一级片一级黄色片| 超碰97精品在线观看| 国产精品久久久人人做人人爽| 国产国语露脸激情在线看| 热re99久久精品国产66热6| 桃红色精品国产亚洲av| 黄网站色视频无遮挡免费观看| 纵有疾风起免费观看全集完整版| 久久精品亚洲熟妇少妇任你| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 大香蕉久久网| 色视频在线一区二区三区| kizo精华| 亚洲精品国产一区二区精华液| 老熟女久久久| 日本av免费视频播放| 亚洲五月色婷婷综合| 老鸭窝网址在线观看| a 毛片基地| 国产精品 国内视频| 97精品久久久久久久久久精品| 这个男人来自地球电影免费观看| 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| 1024视频免费在线观看| 丝袜脚勾引网站| av超薄肉色丝袜交足视频| 国产亚洲一区二区精品| 女人精品久久久久毛片| 亚洲成av片中文字幕在线观看| 久久精品亚洲熟妇少妇任你| 最黄视频免费看| 亚洲精品久久成人aⅴ小说| 精品少妇内射三级| 丝袜人妻中文字幕| 国产精品麻豆人妻色哟哟久久| 50天的宝宝边吃奶边哭怎么回事| 大型av网站在线播放| 999久久久国产精品视频| av一本久久久久| 美女脱内裤让男人舔精品视频| 另类精品久久| 一级片'在线观看视频| 亚洲av日韩精品久久久久久密| 亚洲精品成人av观看孕妇| 99久久精品国产亚洲精品| 欧美黑人欧美精品刺激| 色婷婷久久久亚洲欧美| 黄色片一级片一级黄色片| 日韩欧美一区二区三区在线观看 | 久久免费观看电影| 嫩草影视91久久| 国产高清videossex| 俄罗斯特黄特色一大片| 美女视频免费永久观看网站| 国产男女内射视频| 午夜福利在线免费观看网站| 首页视频小说图片口味搜索| 久久av网站| 不卡av一区二区三区| 女警被强在线播放| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 日本欧美视频一区| 免费av中文字幕在线| 他把我摸到了高潮在线观看 | 中文精品一卡2卡3卡4更新| 欧美97在线视频| av一本久久久久| 宅男免费午夜| 天堂8中文在线网| videosex国产| 欧美人与性动交α欧美软件| 免费观看人在逋| 欧美日韩av久久| 亚洲精品久久久久久婷婷小说|