• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anionic Production Pathways Involved in the Reaction between OH-and CH2ClF

    2014-10-14 03:45:02SONGLeiYUFengWULiXiaZHOUXiaoGuoLIUShiLin
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:親核負(fù)離子陰離子

    SONG Lei YU Feng WU Li-Xia ZHOU Xiao-Guo,* LIU Shi-Lin

    (1Hefei National Laboratory for Physical Sciences at the Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,P.R.China; 2Department of Mathematics and Physics,Xi′an Technological University,Xi′an 710032,P.R.China)

    Anionic Production Pathways Involved in the Reaction between OH-and CH2ClF

    SONG Lei1YU Feng2WU Li-Xia1ZHOU Xiao-Guo1,*LIU Shi-Lin1

    (1Hefei National Laboratory for Physical Sciences at the Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,P.R.China;2Department of Mathematics and Physics,Xi′an Technological University,Xi′an 710032,P.R.China)

    Abstract: The anionic production pathways involved in the reaction between hydroxide anion(OH-)and chlorofluoromethane(CH2ClF)were theoretically investigated.The optimized geometries of all the important species on the reaction potential energy surface were obtained at the B3LYP/6-31+G(d,p)and B3LYP/6-311++G(2d,p)levels.Consequently,harmonic vibrational frequencies and zero point energies(ZPEs)were calculated.Based on the relative energies of all the species that were calculated at the CCSD(T)/6-311+G(3df,3dp)level,the anionic production channels for the H+-abstraction and the bimolecular nucleophilic substitution(SN2)reaction processes are elaborated upon.According to the calculated barrier heights for the production pathways,the H+-abstraction channel is dominant,which agrees very well with previous experimental conclusions.In addition,non-typical anionic products are suggested to form during the SN2 reaction processes where the serious dynamic effect probably causes the SN2 reaction process to produce F-.

    Key Words:Hydroxide anion;Chlorofluoromethane;Reaction mechanism;Proton transfer;Nucleophilic substitution(SN2)reaction

    1 Introduction

    The reactions of anions with neutral molecules play an important role in ionospheric chemistry,organic chemistry,combustion chemistry,and surface chemistry,1-3thus the corresponding investigations have drawn extensive attention since 1950s.Many experimental techniques have been developed to explore these reactions in gas phase between anions with organic and inorganic molecules,such as flowing afterglow,4flowdrift tube,5ion cyclotron resonance,6tandem mass spectrum,7selected ion flow tube(SIFT),8and crossed beam.9The reaction rates and the branching ratios have been measured subsequently.Based on the observed products,the reaction mechanisms have been speculated.However,due to the influence of secondary reactions involved in experiments and low sensitivity of detectors,different experimental methods have always revealed very different reaction rate coefficients and branching ratios,e.g.,the reported reaction rate coefficients and branching ratios are generally considered to be accurate to±20%.2,10In addition,the electron detachment processes have been often involved in the reaction of anions with molecules,and the corresponding neutral products could not been probed by all aforementioned experimental techniques.Therefore,to uncover the comprehensive reaction mechanisms,theoretical calculations are believed to be more powerful to describe the reaction processes,especially when the secondary reactions and electron detachment channels exist.

    Chlorofluorocarbons(CFCs)are considered to be accountable for the depletion of ozone and greenhouse effect.11-13Chlorofluoromethane(CH2ClF)is a typical molecule of hydrochlorofluorocarbons(HCFCs),14,15which are formulated to be transitional replacements of the CFCs,used as refrigerants,solvents,blowing agents for plastic foam manufacture,and fire extinguishersunderthe MontrealProtocol.16However,since CH2ClF includes chlorine atom as well,which is potentially released to do harm to the environment,some reactions14,17-20including the reactions of CH2ClF with cations,anions,and OH radical have been investigated in both theoretical and experimental fields.Hydroxide anion(OH-),as a typical nucleophile and base,10,21has active chemical properties like the atomic oxygen radical anion in the gas phase,and it can sink hazardous substances in the air by reacting with them.In addition,the comprehensive investigation of OH-(H2O)nwith kinds of gas molecules has been thought to be able to provide a significant clue to liquid-phase reactions.22,23Therefore,it is meaningful to extensively study the OH-+CH2ClF reaction.

    Mayhew et al.10have investigated the reaction of OH-with CH2ClF using the SIFT technique,and four potential thermodynamic production pathways have been probably involved as follows,

    These four pathways are defined as(1)proton abstraction,(2)SN2 to produce Cl-,(3)SN2 to produce F-,(4)replacement of Cl atom channel,respectively.Among these four production pathways,the channels(1-3)are exothermic,while the channel(4)is endothermic by 47 kJ·mol-1.10In Mayhew et al.′s experiment,only anionic products of channel(1)and(2)were observed as CHClF-(molar ratio,90%)and Cl-(molar ratio,10%).No OCl-anion from channel(4)was observed,which agrees with thermochemical surmise.However,the measured branching ratios of anionic products of CHClF-and Cl-are on the contrary order to thermochemical results,and no F-anions were observed although the channel(3)is exothermic as well.Thus,the extensive theoretical calculations are expected to reveal the detailed reaction mechanism and anionic production channels involved,and more information can be provided to deeply understand the SN2 reaction pathway by comparing the channels(2)and(3).In addition,the theoretical calculations will also identify the neutral products,e.g.,H2+CHFO and/or HF+CH2O from channel(2),which cannot be revealed by the experiments yet.

    In this work,the anionic production channels(1-3)involved in the title reaction will be investigated using quantum chemical calculations.Based on the calculated barrier heights for various production channels,the dominant production channel will be discussed,and thus the branching ratios observed in the previous experiments10will be explained.

    2 Computational methods

    All quantum chemical calculations were performed using the Gaussian 03 program package.24Geometries of all stationary points including reactants,intermediate complexes(IMs),transition states(TSs),and products on the potential energy surface(PES)were optimized at the B3LYP25,26/6-31+G(d,p)level.To consider the diffuse electron effects involved in the title reaction system,polarized and diffuse functions were expanded to the basis set,and the geometries were re-optimized at the B3LYP/6-311++G(2d,p)level to study the expansive basis set effects.Harmonic vibrational frequencies,ZPEs(scaled by a factor of 0.9857),27and thermal enthalpy corrections were calculated at the B3LYP/6-31+G(d,p)level.Moreover,intrinsic reaction coordinate(IRC)28,29calculations at the B3LYP/6-31+G(d,p)level were performed to identify the corresponding reactant and product for every transition state.The Mulliken population analysis30was utilized to characterize the charge distributions for the intermediate complexes and anionic products.The single point energies of stationary points were calculated at the CCSD(T)31-33/6-311+G(3df,3dp)level with the B3LYP/6-31+G(d,p)optimized geometries,and subsequently the relative energies were obtained as well as reaction enthalpies.To compare with the experimental data,the reaction enthalpies at the CCSD(T)/aug-cc-pVDZ and G3MP2B334,35levels were also calculated to verify the reliability of the present calculated results at the CCSD(T)/6-311+G(3df,3dp)level.

    3 Results and discussion

    The reaction enthalpies at 298.15 K of the production channels(1-3)were calculated at the G3MP2B3,CCSD(T)/aug-ccpVDZ,and CCSD(T)/6-311+G(3df,3dp)levels,respectively,and listed in Table 1,where all calculated enthalpies have already included the thermal correction at the B3LYP/6-31+G(d,p)level.Although our previous calculations on the similar reaction systems,e.g.,O-+C2H4,36,37O-+C5H5N,38O-+CH3CN,39exhibited the most accurate relative energies obtained at the G3MP2B3 level,the CCSD(T)/6-311+G(3df,3dp)level shows the best performance in the title reaction,and the maximum error is within 3 kJ·mol-1.The potential reason is due to the difference between the open-shell and close-shell systems.

    As we expected,all final products of channels(1-3)could be produced through a typical multi-step reaction process as shown in the following schemes.

    where the CH2FOH fragment could further dissociate to CHFO+H2or CH2O+HF.Fig.1 shows the optimized geometries of main reactants,products,IMs and TSs,where parameters in normal type were obtained at the B3LYP/6-31+G(d,p)level and those in bold type were calculated at the B3LYP/6-311++G(2d,p)level.Briefly,all geometry parameters at both levels are consistent,and the differences of bond length and bond angles are less than 0.0032 nm and 1.6°.Therefore,the diffuse electron effect is not serious in the title reaction,although some molecular structures are very loose.Thus the B3LYP/6-31+G(d,p)geometries are used in the following sections unless otherwise noted.

    The CCSD(T)/6-311+G(3df,3dp)relative energies at 0 K with ZPEs correction of all species involved in the title reaction are summarized in Table 2,where the imaginary frequencies of transition states calculated at the B3LYP/6-31+G(d,p)level are listed as well.Based on these relative energies,the potential energy profile of the title reaction is shown in Fig.2,where the anionic production pathways(1-3)are represented respectively.

    On the entrance PES of the title reaction,a unique intermediate complex denoted by IM1 is formed rapidly with OH-approaching CH2ClF,due to the ion-induced dipole interaction.As shown in Fig.1,the bond length of active C―H bond is elongated from 0.1090 nm in the CH2ClF to 0.1157 nm in IM1,and the distance between approaching OH-and the active H atom is 0.1595 nm,even much shorter than a normal hydrogen bonding length,indicating that the ion-induced dipole interaction is very strong indeed.The energy of IM1 is 96.8 kJ·mol-1lower than those of reactants,thus it can further isomerize and dissociate to final products.As mentioned above,there are three anionic production channels(1-3)probably involved in the reaction,which will be described in the following processes,e.g.,H+-abstraction and SN2 reactions.

    Table 1 Reaction enthalpies(in kJ·mol-1)of various production channels at 298.15 K

    3.1 H+-abstraction reaction channel(1)

    IM1 can isomerize to IM2 through TS1 with a very lower barrier.As shown in Fig.1,the structures of IM1,TS1,and IM2 are fairly similar,in which the structure of CHFCl moiety is almost kept and only the distances between O and active H atom,C and the H atom are changed dramatically.The distance of O and H atom is shortened from 0.1595 nm in IM1 to 0.1274 nm in TS1,followed by a decrease to 0.1036 nm in IM2,while the C―H bond length is elongated gradually from 0.1157 nm in IM1 to 0.1343 nm in TS1 and 0.1772 nm in IM2.Thus,the O―H bond is formed and the C―H bond is broken in this isomerization process.Meanwhile,the producing H―O―H angle decreases to 102.87°in IM2,implying a water molecule is formed actually in IM2.Obviously,IM2 is an ion-induced dipole complex of CHFCl-and H2O,and thus it can decompose to the final products,H2O and CHClF-,by collision-induced dissociation without barriers.The overall production pathway is exothermic by 23.2 kJ·mol-1.

    The present IRC calculations confirm that TS1 is the isomerization barrier from IM1 to IM2 indeed.The minimum energy path at the B3LYP/6-31+G(d,p)level along this process is shown in Fig.3,where the charge distributions are obtained by the Mulliken population analysis and represented as well.A typical electron transfer happens in this process,and the negative charge of OH-anion is almost completely transferred to the CHFCl moiety in the transition state region.As a result,the produced intermediate IM2 is a complex of CHFCl-and H2O indeed.

    The similar phenomena were observed in the reaction of OH-with CH(4-n)Cln(n=1-4)by Borisovet al.40As they mentioned,the barrier heights of H+-abstraction decrease with the increasing ofn(n=1-4),and moreover,these barriers even vanish away when thenequals to 3 or over.Actually,this change tendency of barrier height is related to the acidity of protons on halogens and the alkalinity of OH-.With the increasing of the number of halogens,the protons become more and more acidic,and thus the H+-abstraction more probably proceeds.

    3.2 SN2 reaction channel to produce Cl-(2)

    The SN2 reaction pathway to produce Cl-also starts from IM1.As shown in Fig.2,this process passes a barrier and produces a complex on the exit PES.The overall reaction pathway is similar to the reaction of OH-with CH2F2.41

    The transition state has the[HO…CH2F…Cl]-structure ofCssymmetry and is noted as TS2.As shown in Fig.1,the C―Cl bond length is elongated from 0.1849 nm in IM1 to 0.2053 nm in TS2,while the distance between C and O atoms is shortened to 0.2356 nm in TS2.Three atoms(O,C,and Cl)are nearly collinear.Therefore,this transition state looks very like a typical SN2 reaction transition state,which should connect to a collinear product-like complex of CH2FOH…Cl-structure on the exit PES.However,the forward IRC calculation indicates that an unexpected potential minimum CH2FOH…Cl-(denoted by IM3)will be formed.IM3 breaks the Cssymmetry of the SN2 reaction system and is not the traditional collinear SN2 product complex.As indicated in Fig.4,there is a special exitchannel stage along MEP,which is noted as CX1.The relative energy along MEP dramatically drops to CX1 on the first stage after TS2,and then decreases slowly.The structure of CX1 looks very like the expected collinear SN2 product complex(Cl-…CH2FOH),although it is not a real potential minimum.Actually,the dissociating Cl-will roam towards the CH2FOH moiety and abstract the proton of OH group,due to the strong ion-induced dipole interaction.Thus the collinear symmetry is broken and a hydrogen-bond between H and Cl atoms is formed to be 0.2010 nm in IM3.In addition,the negative charge of OH-anion is transferred to the Cl atom in the transition state region as shown in Fig.4.Thus the produced intermediate IM3 is a complex of Cl-and CH2FOH indeed.

    The energy of TS2 is 32.2 kJ·mol-1higher than that of IM1,and the energy difference between TS2 and IM3 is 282.2 kJ·mol-1.Thus it is highly exothermic from IM1 to IM3,and IM3 is energetic enough to proceed subsequent decomposition and isomerization.As shown in Fig.2,IM3 can decompose easilyto Cl-and CH2FOH directly,and the overall reaction pathway of OH-+CH2FCl? Cl-+CH2FOH is exothermic by 252.8 kJ·mol-1.However,CH2FOH cannot exist stably,and further dissociations will take place to produce H2+CHFO and/or HF+CH2O.The corresponding TSs are denoted as TS3 and TS4,respectively.As shown in Table 1,the total energy of TS3 and Cl-is 101.2 kJ·mol-1higher than that of reactants,and thus this pathway to produce H2and CHFO is difficult to happen in experiment.On the contrary,although the channel to produce HF and CH2O also needs overcome a high barrier(TS4)of 185.6 kJ·mol-1,the energy of TS4+Cl-is still lower than that of reactants.Therefore HF and CH2O should be the real neutral products corresponding to Cl-observed in experiment.

    Table 2 Total energies and relative energies at 0 K,enthalpies at 298.15 K of all species involved in the title reaction calculated at the CCSD(T)/6-311+G(3df,3dp)level with ZPEs correction and enthalpies correction,respectively

    3.3 SN2 reaction channel to produce F-(3)

    The other SN2 reaction process of the title reaction is expected to produce F-and CH2ClOHviaisomerization and decomposition of IM1.As shown in Fig.1,a transition state with the[HO…CH2Cl…F]-structure andCssymmetry is found and denoted as TS5.Obviously,TS5 is rather similar to TS2 which is a traditional SN2 transition state to produce F-,where the C―F bond length is elongated from 0.1396 nm in IM1 to 0.1758 nm in TS5,and the distance between C and O atoms is shortened to 0.2000 nm in TS5.To our surprise,the forward IRC calculation of TS5 points to an unexpected potential minimum IM5 instead of the SN2 reaction product F-…CH2ClOH.As shown in Fig.5,IM5 is nearly a three-body intermediate complex ofCl-…CH2O…HF,where the CH2O…HF moiety is very similar to IM4 and a much stronger hydrogen bond of 0.1480 nm exists between the HF and O atom.Thus,IM5 can subsequently dissociate to Cl-,CH2O and HF by collision without any barrier.

    The detailed information of geometry and charge distributions in this process is exhibited in Fig.5.Along MEP,the initial reaction stage after TS5 undergoes a typical SN2 process and the relative energy quickly drops,and a SN2 product complex(F-…CH2ClOH)is formed(denoted as CX2 in Fig.5).However,because CX2 is not a real potential minimum,the energy drops forward slowly on the PES.Due to the strong ion-induced dipole interaction,the dissociating F-will roam towards the CH2ClOH moiety and abstract a proton of OH group.Thus,HF and formaldehyde(CH2O)are produced,and Cl-is repulsed far away.A strong hydrogen-bond between F and O connects the HF and CH2O molecules.A complex CX3 is noted in Fig.5 and represents this special stage on PES.As shown in Fig.5,the negative charge of OH-anion is transferred to the F atom initially in the region of TS5,while the electron is re-exchanged when the F-extracts a proton of OH group to produce HF and formaldehyde in the CX3 region.Thus IM5 replaces the expected SN2 reaction product and is finally produced along the MEP.

    Here we should demonstrate that all mentioned MEPs related to TS2 and TS5 only reflect static reaction pathways,and dynamic effects probably exist prominently in the anion-molecule reaction42-46especially for the SN2 reaction channels,e.g.,the SN2 reaction products of F-+CH3O are confirmed to occur along the dynamic reaction pathway in the O-+CH3F reaction,although the static reaction process related to the corresponding SN2 transition state does point to other products of HF+CH2O-.Since geometries of the SN2 transition states and MEPs for the title reaction and O-+CH3F reaction are very similar,the SN2 reaction channel(3)to produce F-and CH2ClOH can also be expected to happen in a real experiment,as well as the Cl-+CH2O+HF production pathway.However,due to the much higher energy of TS5 than that of TS2,the branching ratio of anionic products from the SN2 channel(3)are minor indeed.Therefore,for both SN2 reaction processes(2)and(3),the dominant products should be Cl-,HF,and formaldehyde.

    3.4 Comparisons with the previous experimental conclusions

    Based on the calculated barrier heights and reaction enthalpies,the H+-abstraction(1),SN2 reaction channels(2)and(3)can take place and the Cl-and CHClF-anions are expected to produce,which is consistent with the observed anionic products in experiments.10In addition,all three anionic production channels pass the same initial intermediate complex IM1 on the entrance PES,and thus the branching ratios should mainly depend on the barrier heights of subsequent isomerization and decomposition processes.Since the transition state TS1 has the lowest relative energy compared with TS2 and TS5,the H+-abstraction channel(1)is dominant,which agrees well with the experimental conclusions.10

    4 Conclusions

    The anionic production pathways involved in the reaction of hydroxide anion(OH-)with chlorofluoromethane(CH2ClF)have been studied.The unique intermediate has been located on the entrance potential energy surface,which is a typical ion-induced dipole complex indeed.All anionic products are formed via the isomerization and decomposition of this intermediate.

    Based on the calculated barrier heights and reaction enthalpies,the H+-abstraction and two SN2 reaction channels can take place,and thus the Cl-and CHClF-anions are expected to produce finally,which is consistent with the observed anionic products in experiments.Since the transition state of H+-abstraction process has the lowest barrier height compared with those of the SN2 reaction channels,the H+-abstraction channel is certainly dominant,which agrees well with the experimental conclusions.In addition,present calculation also shows that the major neutral molecule products corresponding to the SN2 channel to produce Cl-should be HF and formaldehyde.Moreover,the MEP revealed by IRC calculations of the SN2 channel of OH-attacking C―F bond of CH2FCl represents the static reaction pathway to produce Cl-instead of the SN2 reaction product F-,however the characteristics of MEP imply that probably the serious dynamic effect exists in the real reaction process.As a result,the dynamic SN2 reaction process to produce F-probably happens in experiment,and the further trajectory calculations are undergoing to confirm our prediction.

    Acknowledgments: Authors are grateful to Supercomputing Center of University of Science and Technology of China(USTC)for the computational resources support of this work.

    (1) Deckers,J.;van Tiggelen,A.Combust.Flame 1957,1,281.

    (2) Lee,J.;Grabowski,J.J.Chem.Rev.1992,92,1611.

    (3) Fialkov,A.B.Prog.Energy Combust.Sci.1997,23,399.

    (4) Grabowski,J.J.;Melly,S.J.Int.J.Mass Spectrom.1987,81,147.

    (5) McFarland,M.;Albritton,D.L.;Fehsenfeld,F.C.;Ferguson,E.E.;Schmeltekopf,A.L.J.Chem.Phys.1973,59,6610.

    (6) Beauchamp,J.L.Annu.Rev.Phys.Chem.1971,22,527.

    (7) Futrell,J.H.;Miller,C.D.Rev.Sci.Instrum.1966,37,1521.

    (8)Adams,N.G.;Smith,D.Int.J.Mass Spectrom.Ion Phys.1976,21,349.

    (9) Bilotta,R.M.;Preuninger,F.N.;Farrar,J.M.J.Chem.Phys.1980,73,1637.

    (10)Mayhew,C.A.;Peverall,R.;Timperley,C.M.;Watts,P.Int.J.Mass Spectrom.2004,233,155.

    (11) Solomon,S.Rev.Geophys.1999,37,275.

    (12) Rowland,F.S.Ambio 1990,19,281.

    (13) Molina,M.J.;Rowland,F.S.Nature 1974,249,810.

    (14) Bhatnagar,A.;Carr,R.W.Chem.Phys.Lett.1996,258,651.

    (15) Blanco,S.;Lesarri,A.;López,J.C.;Alonso,J.L.;Guarnieri,A.J.Mol.Spectrosc.1995,174,397.

    (16) http://en.wikipedia.org/wiki/Montreal_Protocol(accessed May 4,2010).

    (17)Howle,C.R.;Mayhew,C.A.;Tuckett,R.P.J.Phys.Chem.A 2005,109,3626.

    (18) Peverall,R.;Kennedy,R.A.;Mayhew,C.A.;Watts,P.Int.J.Mass Spectrom.1997,171,51.

    (19) Chiorboli,C.;Piazza,R.;Tosato,M.L.;Carassiti,V.Coord.Chem.Rev.1993,125,241.

    (20) Bottoni,A.;Poggi,G.;Emmi,S.S.J.Mol.Struct.-Theochem 1993,279,299.

    (21)Tanner,S.D.;Mackay,G.I.;Bohme,D.K.Can.J.Chem.1981,59,1615.

    (22)Yang,X.;Zhang,X.;Castleman,A.W.J.Phys.Chem.1991,95,8520.

    (23)Yang,X.;Castleman,A.W.J.Am.Chem.Soc.1991,113,6766.

    (24) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision C.02,D.01,E.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (25) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (26) Becke,A.D.J.Chem.Phys.1993,98,1372.

    (27) Merrick,J.P.;Moran,D.;Radom,L.J.Phys.Chem.A 2007,111,11683.

    (28) Gonzalez,C.;Schlegel,H.B.J.Phys.Chem.1990,94,5523.

    (29) Gonzalez,C.;Schlegel,H.B.J.Chem.Phys.1989,90,2154.

    (30) Mulliken,R.S.J.Chem.Phys.1955,23,1833.

    (31) Purvis,G.D.;Bartlett,R.J.J.Chem.Phys.1982,76,1910.

    (32) Urban,M.;Noga,J.;Cole,S.J.;Bartlett,R.J.J.Chem.Phys.1985,83,4041.

    (33) Scuseria,G.E.;Janssen,C.L.;Schaefer,H.F.J.Chem.Phys.1988,89,7382.

    (34) Curtiss,L.A.;Redfern,P.C.;Raghavachari,K.;Rassolov,V.;Pople,J.A.J.Chem.Phys.1999,110,4703.

    (35) Baboul,A.G.;Curtiss,L.A.;Redfern,P.C.;Raghavachari,K.J.Chem.Phys.1999,110,7650.

    (36)Yu,F.;Zhao,Y.G.;Wang,Y.;Zhou,X.G.;Liu,S.L.Acta Chim.Sin.2007,65,899.[于 鋒,趙英國,王 勇,周曉國,劉世林.化學(xué)學(xué)報,2007,65,899.]

    (37)Wang,X.L.;Yu,F.;Xie,D.;Liu,S.L.;Zhou,X.G.Acta Chim.Sin.2008,66,2499.[王新磊,于 鋒,謝 丹,劉世林,周曉國.化學(xué)學(xué)報,2008,66,2499.]

    (38)Wu,L.X.;Yu,F.;Song,L.;Zhou,X.G.;Liu,S.L.J.Mol.Struct.-Theochem 2010,958,82.

    (39)Yu,F.;Wu,L.X.;Zhou,X.G.;Liu,S.L.Chin.J.Chem.Phys.2010,23,643.[于 鋒,吳琍霞,周曉國,劉世林.化學(xué)物理學(xué)報,2010,23,643.]

    (40) Borisov,Y.A.;Arcia,E.E.;Mielke,S.L.;Garrett,B.C.;Dunning,T.H.J.Phys.Chem.A 2001,105,7724.

    (41)Lee,E.P.F.;Dyke,J.M.;Mayhew,C.A.J.Phys.Chem.A 1998,102,8349.

    (42)Yu,F.;Wu,L.X.;Song,L.;Zhou,X.G.;Liu,S.L.J.Mol.Struct.-Theochem 2010,958,41.

    (43)Yu,F.;Wu,L.X.;Liu,S.L.;Zhou,X.G.J.Mol.Struct.-Theochem 2010,947,1.

    (44)Wu,L.X.;Yu,F.;Liu,J.;Dai,J.H.;Zhou,X.G.;Liu,S.L.Acta Phys.-Chim.Sin.2010,26,2331.[吳琍霞,于 鋒,劉 靜,戴靜華,周曉國,劉世林.物理化學(xué)學(xué)報,2010,26,2331.]

    (45) Sun,L.;Song,K.;Hase,W.L.Science 2002,296,875.

    (46) Hase,W.L.Science 1994,266,998.

    OH-與CH2ClF反應(yīng)的陰離子產(chǎn)物通道

    宋 磊1于 鋒2吳琍霞1周曉國1,*劉世林1

    (1合肥微尺度物質(zhì)科學(xué)國家實驗室(籌),中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,合肥230026;2西安工業(yè)大學(xué)數(shù)學(xué)物理系,西安710032)

    理論研究了羥基負(fù)離子(OH-)與氟氯代甲烷(CH2ClF)反應(yīng)的陰離子產(chǎn)物通道.分別在B3LYP/6-31+G(d,p)和B3LYP/6-311++G(2d,p)水平上得到反應(yīng)勢能面上各關(guān)鍵物種的優(yōu)化構(gòu)型,進(jìn)而計算得到諧振頻率和零點能.基于CCSD(T)/6-311+G(3df,3dp)水平的相對能量,描述了由質(zhì)子轉(zhuǎn)移和雙分子親核取代(SN2)過程生成各陰離子產(chǎn)物的途徑.各陰離子產(chǎn)物途徑勢壘的計算結(jié)果表明質(zhì)子轉(zhuǎn)移過程是實驗中的主要產(chǎn)物通道,與以往實驗測量的結(jié)論相符.此外,計算還顯示雙分子親核取代過程得到了非典型的陰離子產(chǎn)物,其中動力學(xué)效應(yīng)可能會導(dǎo)致F-的生成.

    羥基負(fù)離子; 氟氯代甲烷; 反應(yīng)機(jī)理; 質(zhì)子轉(zhuǎn)移; 親核取代(SN2)反應(yīng)

    O641

    Received:November 24,2010;Revised:January 24,2011;Published on Web:March 2,2011.

    ?Corresponding author.Email:xzhou@ustc.edu.cn;Tel:+86-551-3600031.

    The project was supported by the National Natural Science Foundation of China(20603033,10979042)and National Key Basic Research Program of China(973)(2007CB815204).

    國家自然科學(xué)基金(20603033,10979042)和國家重點基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB815204)資助項目

    猜你喜歡
    親核負(fù)離子陰離子
    森林公園負(fù)離子濃度及負(fù)離子物質(zhì)量和價值量研究
    負(fù)離子人造板研究現(xiàn)狀及發(fā)展建議
    有機(jī)化學(xué)微課設(shè)計思路探討——以雙分子親核取代反應(yīng)為例
    云南化工(2021年9期)2021-12-21 07:44:20
    靜電對負(fù)離子地板測試的影響
    高壓脈沖電刺激下龍舌蘭釋放負(fù)離子的研究
    反芻動物陰離子鹽營養(yǎng)機(jī)制研究進(jìn)展
    A 3-fold Interpenetrated lvt Cd(II) Network Constructed from 4-[(3-pyridyl)methylamino]benzoate Acid①
    D311B型陰離子交換樹脂吸附Cr(Ⅵ)的研究及應(yīng)用
    有關(guān)親核取代反應(yīng)和β—消去反應(yīng)的教學(xué)思考
    陰離子捕收劑CY-12#反浮選弱磁精礦試驗
    金屬礦山(2013年11期)2013-03-11 16:55:04
    国产精品爽爽va在线观看网站| 国产精品免费一区二区三区在线| 久久这里有精品视频免费| 麻豆乱淫一区二区| 日韩亚洲欧美综合| 精品久久久久久久久av| 色噜噜av男人的天堂激情| av国产免费在线观看| 国产av在哪里看| 91av网一区二区| 久久精品国产亚洲av香蕉五月| avwww免费| 在线免费观看的www视频| 嫩草影院新地址| 嫩草影院精品99| 国产黄片视频在线免费观看| 一本久久中文字幕| 日韩高清综合在线| 少妇熟女欧美另类| 国产成人aa在线观看| 极品教师在线视频| 日本在线视频免费播放| 男女那种视频在线观看| 久久久久久久久中文| 国产欧美日韩精品一区二区| 麻豆一二三区av精品| 久久这里有精品视频免费| 成人永久免费在线观看视频| 国产成人精品久久久久久| 午夜福利高清视频| 中文欧美无线码| 我的老师免费观看完整版| 日本与韩国留学比较| 久久99蜜桃精品久久| 22中文网久久字幕| 亚洲成人久久性| 国产极品天堂在线| 亚洲精品日韩在线中文字幕 | 国产av在哪里看| 国产精品久久久久久久电影| 麻豆成人av视频| 亚洲成av人片在线播放无| 少妇的逼水好多| 成人高潮视频无遮挡免费网站| 婷婷亚洲欧美| 午夜福利在线观看免费完整高清在 | 美女被艹到高潮喷水动态| 亚洲无线观看免费| 熟妇人妻久久中文字幕3abv| 日本熟妇午夜| www.av在线官网国产| 午夜免费男女啪啪视频观看| 亚洲欧美成人精品一区二区| 可以在线观看毛片的网站| 99精品在免费线老司机午夜| 十八禁国产超污无遮挡网站| 亚洲av电影不卡..在线观看| 少妇人妻精品综合一区二区 | 99热精品在线国产| 成人一区二区视频在线观看| 久久这里有精品视频免费| 小蜜桃在线观看免费完整版高清| 久久久久久久久中文| 老师上课跳d突然被开到最大视频| 亚洲国产日韩欧美精品在线观看| h日本视频在线播放| 三级经典国产精品| 久久热精品热| 亚洲激情五月婷婷啪啪| 自拍偷自拍亚洲精品老妇| 日韩中字成人| 日韩欧美一区二区三区在线观看| 亚洲精品日韩av片在线观看| 亚洲欧美成人精品一区二区| 精品久久久久久久久久久久久| 色尼玛亚洲综合影院| 精品久久久久久久久久久久久| 精品久久久噜噜| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av涩爱 | 变态另类丝袜制服| av免费观看日本| 搡女人真爽免费视频火全软件| 亚洲精品国产成人久久av| 日本一二三区视频观看| 欧美成人免费av一区二区三区| 欧美最黄视频在线播放免费| av在线亚洲专区| 国产高清不卡午夜福利| 国产熟女欧美一区二区| 日本五十路高清| 熟女电影av网| 边亲边吃奶的免费视频| 免费观看a级毛片全部| 久久人人精品亚洲av| 亚洲精品自拍成人| 日韩制服骚丝袜av| 一级毛片电影观看 | 精品人妻视频免费看| av国产免费在线观看| 国产不卡一卡二| 国产男人的电影天堂91| a级毛片免费高清观看在线播放| 91在线精品国自产拍蜜月| 国产国拍精品亚洲av在线观看| 91久久精品国产一区二区三区| 国产女主播在线喷水免费视频网站 | 久久久久国产网址| 欧美高清成人免费视频www| 乱码一卡2卡4卡精品| 国产伦精品一区二区三区四那| 亚洲,欧美,日韩| 欧美日韩一区二区视频在线观看视频在线 | 久久国内精品自在自线图片| 禁无遮挡网站| 日韩亚洲欧美综合| 最近2019中文字幕mv第一页| 一级毛片我不卡| 日日干狠狠操夜夜爽| 搡老妇女老女人老熟妇| 99国产精品一区二区蜜桃av| 给我免费播放毛片高清在线观看| 日本黄色片子视频| 色尼玛亚洲综合影院| 国产精品电影一区二区三区| 免费人成在线观看视频色| 成年版毛片免费区| 国产乱人视频| 免费av毛片视频| 欧美性感艳星| 中文字幕精品亚洲无线码一区| 一级av片app| 久久这里有精品视频免费| 久久亚洲国产成人精品v| 特级一级黄色大片| 欧美不卡视频在线免费观看| av.在线天堂| 免费观看a级毛片全部| 久久久久久大精品| 久久午夜福利片| 色播亚洲综合网| 国产黄片视频在线免费观看| 日本av手机在线免费观看| 国产一区二区三区在线臀色熟女| 久久久精品94久久精品| 国国产精品蜜臀av免费| 久久精品影院6| 99热网站在线观看| 婷婷六月久久综合丁香| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品成人久久久久久| 国产精品无大码| 日韩欧美精品v在线| 亚洲自拍偷在线| 国产精品无大码| 成人三级黄色视频| 国产一区二区三区av在线 | 能在线免费看毛片的网站| 桃色一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 免费观看的影片在线观看| 男插女下体视频免费在线播放| 性色avwww在线观看| 男人的好看免费观看在线视频| 99riav亚洲国产免费| 亚洲精品久久国产高清桃花| 99riav亚洲国产免费| 男插女下体视频免费在线播放| 欧美成人一区二区免费高清观看| 亚洲五月天丁香| 国产成人影院久久av| 免费观看的影片在线观看| 久久午夜亚洲精品久久| 精品欧美国产一区二区三| 国产淫片久久久久久久久| 可以在线观看的亚洲视频| 非洲黑人性xxxx精品又粗又长| 韩国av在线不卡| 成人二区视频| 欧美极品一区二区三区四区| 精品久久久久久成人av| 久久精品国产鲁丝片午夜精品| 天堂影院成人在线观看| 欧美日韩综合久久久久久| 亚洲人成网站在线播放欧美日韩| 男人舔女人下体高潮全视频| 色哟哟·www| 黄片wwwwww| 1000部很黄的大片| 99久久中文字幕三级久久日本| 又粗又硬又长又爽又黄的视频 | 嫩草影院入口| 好男人视频免费观看在线| 在线免费观看不下载黄p国产| 国产单亲对白刺激| 成年av动漫网址| 精品少妇黑人巨大在线播放 | 欧美日韩国产亚洲二区| 美女脱内裤让男人舔精品视频 | 国产精品一及| 深爱激情五月婷婷| 51国产日韩欧美| 午夜视频国产福利| 日本黄大片高清| 九九久久精品国产亚洲av麻豆| 欧美一区二区国产精品久久精品| 国产淫片久久久久久久久| 日本在线视频免费播放| 亚洲色图av天堂| 26uuu在线亚洲综合色| 成人三级黄色视频| 少妇裸体淫交视频免费看高清| 日本免费a在线| 免费大片18禁| 狂野欧美激情性xxxx在线观看| 国产成人精品婷婷| 国产精品免费一区二区三区在线| 日韩欧美一区二区三区在线观看| 在线观看一区二区三区| 18禁在线播放成人免费| 搡老妇女老女人老熟妇| 男女视频在线观看网站免费| 97热精品久久久久久| 国产单亲对白刺激| 又爽又黄a免费视频| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| 亚洲激情五月婷婷啪啪| 日韩中字成人| avwww免费| 久久婷婷人人爽人人干人人爱| 男女下面进入的视频免费午夜| 少妇丰满av| 久久这里只有精品中国| avwww免费| 久久婷婷人人爽人人干人人爱| 观看美女的网站| 色综合站精品国产| 久久国内精品自在自线图片| 精品日产1卡2卡| 天堂av国产一区二区熟女人妻| 在线播放无遮挡| 天堂中文最新版在线下载 | 女人十人毛片免费观看3o分钟| 1024手机看黄色片| 女的被弄到高潮叫床怎么办| 校园春色视频在线观看| 久久久精品大字幕| 亚洲成人久久性| 国产 一区精品| 黑人高潮一二区| 精品欧美国产一区二区三| 国产一级毛片在线| 欧美变态另类bdsm刘玥| 男的添女的下面高潮视频| 亚洲自偷自拍三级| 插阴视频在线观看视频| 国产日韩欧美在线精品| 人人妻人人看人人澡| 日韩精品青青久久久久久| 天堂√8在线中文| 亚洲四区av| 精品久久久久久成人av| 亚洲最大成人中文| www日本黄色视频网| 69av精品久久久久久| 久久精品国产鲁丝片午夜精品| 插逼视频在线观看| 日韩欧美三级三区| 国产片特级美女逼逼视频| 久久久久久久久中文| 亚洲在久久综合| 精华霜和精华液先用哪个| 床上黄色一级片| 亚洲va在线va天堂va国产| 日本在线视频免费播放| 欧美不卡视频在线免费观看| 久久99蜜桃精品久久| 天堂√8在线中文| 麻豆乱淫一区二区| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 久99久视频精品免费| 日本在线视频免费播放| ponron亚洲| 一区二区三区四区激情视频 | 久久精品人妻少妇| 中国国产av一级| 又爽又黄无遮挡网站| h日本视频在线播放| 国产精品一区二区三区四区久久| 中文字幕精品亚洲无线码一区| 日本熟妇午夜| 亚洲欧美成人综合另类久久久 | 美女cb高潮喷水在线观看| 久久久欧美国产精品| 此物有八面人人有两片| 69人妻影院| 国产 一区 欧美 日韩| 国产爱豆传媒在线观看| 青青草视频在线视频观看| 在线播放国产精品三级| 欧美+亚洲+日韩+国产| 亚洲aⅴ乱码一区二区在线播放| 91精品一卡2卡3卡4卡| 少妇的逼好多水| 真实男女啪啪啪动态图| 在线免费观看的www视频| 日本三级黄在线观看| av免费观看日本| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站 | 精品人妻视频免费看| 久久精品夜色国产| 欧美精品一区二区大全| 在现免费观看毛片| 亚洲第一区二区三区不卡| 亚洲婷婷狠狠爱综合网| 伦理电影大哥的女人| 一夜夜www| 国产精品人妻久久久久久| 99在线人妻在线中文字幕| 中文在线观看免费www的网站| 日韩精品有码人妻一区| 国产精品久久电影中文字幕| 免费观看a级毛片全部| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 国产av在哪里看| 51国产日韩欧美| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 国产免费男女视频| 69人妻影院| 久久久久久久久久成人| 69人妻影院| 搞女人的毛片| 成人午夜高清在线视频| 99久久九九国产精品国产免费| 观看美女的网站| 亚洲无线观看免费| 一个人免费在线观看电影| 亚洲国产日韩欧美精品在线观看| 深爱激情五月婷婷| 不卡视频在线观看欧美| 69av精品久久久久久| 日韩,欧美,国产一区二区三区 | 麻豆乱淫一区二区| 久久人人精品亚洲av| 青春草国产在线视频 | 国产精品嫩草影院av在线观看| 成人亚洲欧美一区二区av| 嫩草影院入口| 99视频精品全部免费 在线| 午夜福利在线观看吧| 婷婷精品国产亚洲av| 免费人成视频x8x8入口观看| 国产精品一区二区在线观看99 | 男女做爰动态图高潮gif福利片| 国产亚洲欧美98| 国产亚洲5aaaaa淫片| 韩国av在线不卡| 午夜福利在线在线| 青春草国产在线视频 | 成人av在线播放网站| 永久网站在线| 国产精品久久久久久精品电影小说 | 日韩av不卡免费在线播放| 亚洲成人久久爱视频| 久久热精品热| a级毛色黄片| 午夜福利在线在线| 国产单亲对白刺激| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 黑人高潮一二区| 天堂网av新在线| 久久人人爽人人爽人人片va| 国产探花在线观看一区二区| 久久久久久大精品| 特级一级黄色大片| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 久久国内精品自在自线图片| 久久久久久九九精品二区国产| 一进一出抽搐动态| 自拍偷自拍亚洲精品老妇| 成年免费大片在线观看| 看非洲黑人一级黄片| 亚洲久久久久久中文字幕| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 久久久久久伊人网av| 老女人水多毛片| 国产精品人妻久久久影院| 大又大粗又爽又黄少妇毛片口| 有码 亚洲区| 久久久欧美国产精品| 欧美性猛交╳xxx乱大交人| 久久亚洲国产成人精品v| 在线观看美女被高潮喷水网站| 亚洲欧美日韩东京热| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久免费av| 男人的好看免费观看在线视频| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 欧美又色又爽又黄视频| 国产单亲对白刺激| 99久久精品热视频| 成人综合一区亚洲| 我要看日韩黄色一级片| 日本熟妇午夜| 午夜老司机福利剧场| 国产精品久久久久久久电影| 人妻少妇偷人精品九色| 亚洲乱码一区二区免费版| 国产单亲对白刺激| 国产蜜桃级精品一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲精品粉嫩美女一区| 伦精品一区二区三区| 欧美激情在线99| 成人亚洲欧美一区二区av| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 又爽又黄无遮挡网站| avwww免费| 一本精品99久久精品77| 国产一区二区激情短视频| 在线播放无遮挡| 久久精品综合一区二区三区| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 久99久视频精品免费| 欧美潮喷喷水| 亚洲欧美精品专区久久| 国内精品宾馆在线| 日韩视频在线欧美| 亚洲精品日韩av片在线观看| 国产中年淑女户外野战色| 成年女人看的毛片在线观看| 99久久无色码亚洲精品果冻| 久久久久久久久久成人| 狂野欧美激情性xxxx在线观看| 国产av麻豆久久久久久久| 久久久成人免费电影| 亚洲人成网站在线播| 久久精品国产亚洲网站| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 久久久久久久久中文| 久久久精品94久久精品| 联通29元200g的流量卡| 亚洲av.av天堂| 成年免费大片在线观看| 日韩制服骚丝袜av| 十八禁国产超污无遮挡网站| 男女边吃奶边做爰视频| 一个人看视频在线观看www免费| 亚洲国产精品成人综合色| av.在线天堂| 欧美xxxx性猛交bbbb| 成人三级黄色视频| 国产亚洲av片在线观看秒播厂 | 亚洲国产日韩欧美精品在线观看| 日日摸夜夜添夜夜爱| 欧美日韩一区二区视频在线观看视频在线 | 亚洲天堂国产精品一区在线| 男女边吃奶边做爰视频| 人妻制服诱惑在线中文字幕| 久久九九热精品免费| 欧美又色又爽又黄视频| 内地一区二区视频在线| 国产黄a三级三级三级人| 日日摸夜夜添夜夜添av毛片| 亚洲五月天丁香| 国产免费一级a男人的天堂| 久久99热6这里只有精品| 亚洲美女视频黄频| 99久久精品一区二区三区| 国产黄片视频在线免费观看| 久久精品91蜜桃| 好男人在线观看高清免费视频| 插逼视频在线观看| 性色avwww在线观看| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久末码| 久久久久国产网址| 免费观看人在逋| 色5月婷婷丁香| 免费看美女性在线毛片视频| 久久亚洲国产成人精品v| 嫩草影院精品99| 亚洲性久久影院| 亚洲av一区综合| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 美女脱内裤让男人舔精品视频 | 成人特级黄色片久久久久久久| 最近的中文字幕免费完整| 欧美bdsm另类| 联通29元200g的流量卡| 嫩草影院新地址| 啦啦啦啦在线视频资源| 国产蜜桃级精品一区二区三区| av专区在线播放| 两个人视频免费观看高清| 国产成人精品久久久久久| 欧美丝袜亚洲另类| 26uuu在线亚洲综合色| 欧美一级a爱片免费观看看| 美女xxoo啪啪120秒动态图| 网址你懂的国产日韩在线| 成人性生交大片免费视频hd| 色噜噜av男人的天堂激情| 成人综合一区亚洲| 狠狠狠狠99中文字幕| 国产极品精品免费视频能看的| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 午夜福利在线在线| 午夜久久久久精精品| 狂野欧美激情性xxxx在线观看| 三级经典国产精品| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品中国| 亚洲人成网站在线观看播放| 欧美成人a在线观看| 日韩人妻高清精品专区| 国产久久久一区二区三区| 色综合站精品国产| 免费av不卡在线播放| 中文字幕精品亚洲无线码一区| 精品人妻视频免费看| 国产成人精品一,二区 | 亚洲国产高清在线一区二区三| 色视频www国产| 97超视频在线观看视频| 日韩国内少妇激情av| 欧美色视频一区免费| 日韩中字成人| 久久这里有精品视频免费| 国产成人a∨麻豆精品| 日韩av不卡免费在线播放| 别揉我奶头 嗯啊视频| 97在线视频观看| av天堂中文字幕网| 免费在线观看成人毛片| 日韩欧美三级三区| 免费看光身美女| 亚洲国产精品成人久久小说 | 日韩视频在线欧美| 丝袜美腿在线中文| 男人舔奶头视频| 午夜久久久久精精品| 免费看美女性在线毛片视频| 寂寞人妻少妇视频99o| 99久国产av精品| 亚洲精品粉嫩美女一区| 国产精品一区二区在线观看99 | 偷拍熟女少妇极品色| 欧美日韩一区二区视频在线观看视频在线 | 美女内射精品一级片tv| 全区人妻精品视频| 一本一本综合久久| 午夜福利高清视频| 亚洲成a人片在线一区二区| 五月伊人婷婷丁香| 久久久久久久久久久丰满| 亚州av有码| 欧美变态另类bdsm刘玥| 在线观看美女被高潮喷水网站| 国产精品.久久久| 一本久久精品| 日本免费一区二区三区高清不卡| 啦啦啦啦在线视频资源| 天堂√8在线中文| 国语自产精品视频在线第100页| 中文字幕精品亚洲无线码一区| 国产精品,欧美在线| 日本熟妇午夜| 国产麻豆成人av免费视频| 色吧在线观看| 久久鲁丝午夜福利片| 狂野欧美白嫩少妇大欣赏| 免费电影在线观看免费观看| 亚洲最大成人中文| 午夜激情欧美在线| 爱豆传媒免费全集在线观看| 成人永久免费在线观看视频| 麻豆国产av国片精品| 久久99热这里只有精品18| 国产成人一区二区在线| 国产片特级美女逼逼视频| 九九久久精品国产亚洲av麻豆| 91狼人影院| 国产真实乱freesex| 免费av毛片视频| 不卡视频在线观看欧美| 久久精品夜色国产| 亚州av有码| 国产白丝娇喘喷水9色精品| 国产精品一二三区在线看| 天堂√8在线中文| 一级黄色大片毛片| 蜜桃亚洲精品一区二区三区| 丰满乱子伦码专区| 午夜福利在线观看免费完整高清在 | 日韩av不卡免费在线播放| 国产 一区 欧美 日韩| 亚洲aⅴ乱码一区二区在线播放|