• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anionic Production Pathways Involved in the Reaction between OH-and CH2ClF

    2014-10-14 03:45:02SONGLeiYUFengWULiXiaZHOUXiaoGuoLIUShiLin
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:親核負(fù)離子陰離子

    SONG Lei YU Feng WU Li-Xia ZHOU Xiao-Guo,* LIU Shi-Lin

    (1Hefei National Laboratory for Physical Sciences at the Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,P.R.China; 2Department of Mathematics and Physics,Xi′an Technological University,Xi′an 710032,P.R.China)

    Anionic Production Pathways Involved in the Reaction between OH-and CH2ClF

    SONG Lei1YU Feng2WU Li-Xia1ZHOU Xiao-Guo1,*LIU Shi-Lin1

    (1Hefei National Laboratory for Physical Sciences at the Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,P.R.China;2Department of Mathematics and Physics,Xi′an Technological University,Xi′an 710032,P.R.China)

    Abstract: The anionic production pathways involved in the reaction between hydroxide anion(OH-)and chlorofluoromethane(CH2ClF)were theoretically investigated.The optimized geometries of all the important species on the reaction potential energy surface were obtained at the B3LYP/6-31+G(d,p)and B3LYP/6-311++G(2d,p)levels.Consequently,harmonic vibrational frequencies and zero point energies(ZPEs)were calculated.Based on the relative energies of all the species that were calculated at the CCSD(T)/6-311+G(3df,3dp)level,the anionic production channels for the H+-abstraction and the bimolecular nucleophilic substitution(SN2)reaction processes are elaborated upon.According to the calculated barrier heights for the production pathways,the H+-abstraction channel is dominant,which agrees very well with previous experimental conclusions.In addition,non-typical anionic products are suggested to form during the SN2 reaction processes where the serious dynamic effect probably causes the SN2 reaction process to produce F-.

    Key Words:Hydroxide anion;Chlorofluoromethane;Reaction mechanism;Proton transfer;Nucleophilic substitution(SN2)reaction

    1 Introduction

    The reactions of anions with neutral molecules play an important role in ionospheric chemistry,organic chemistry,combustion chemistry,and surface chemistry,1-3thus the corresponding investigations have drawn extensive attention since 1950s.Many experimental techniques have been developed to explore these reactions in gas phase between anions with organic and inorganic molecules,such as flowing afterglow,4flowdrift tube,5ion cyclotron resonance,6tandem mass spectrum,7selected ion flow tube(SIFT),8and crossed beam.9The reaction rates and the branching ratios have been measured subsequently.Based on the observed products,the reaction mechanisms have been speculated.However,due to the influence of secondary reactions involved in experiments and low sensitivity of detectors,different experimental methods have always revealed very different reaction rate coefficients and branching ratios,e.g.,the reported reaction rate coefficients and branching ratios are generally considered to be accurate to±20%.2,10In addition,the electron detachment processes have been often involved in the reaction of anions with molecules,and the corresponding neutral products could not been probed by all aforementioned experimental techniques.Therefore,to uncover the comprehensive reaction mechanisms,theoretical calculations are believed to be more powerful to describe the reaction processes,especially when the secondary reactions and electron detachment channels exist.

    Chlorofluorocarbons(CFCs)are considered to be accountable for the depletion of ozone and greenhouse effect.11-13Chlorofluoromethane(CH2ClF)is a typical molecule of hydrochlorofluorocarbons(HCFCs),14,15which are formulated to be transitional replacements of the CFCs,used as refrigerants,solvents,blowing agents for plastic foam manufacture,and fire extinguishersunderthe MontrealProtocol.16However,since CH2ClF includes chlorine atom as well,which is potentially released to do harm to the environment,some reactions14,17-20including the reactions of CH2ClF with cations,anions,and OH radical have been investigated in both theoretical and experimental fields.Hydroxide anion(OH-),as a typical nucleophile and base,10,21has active chemical properties like the atomic oxygen radical anion in the gas phase,and it can sink hazardous substances in the air by reacting with them.In addition,the comprehensive investigation of OH-(H2O)nwith kinds of gas molecules has been thought to be able to provide a significant clue to liquid-phase reactions.22,23Therefore,it is meaningful to extensively study the OH-+CH2ClF reaction.

    Mayhew et al.10have investigated the reaction of OH-with CH2ClF using the SIFT technique,and four potential thermodynamic production pathways have been probably involved as follows,

    These four pathways are defined as(1)proton abstraction,(2)SN2 to produce Cl-,(3)SN2 to produce F-,(4)replacement of Cl atom channel,respectively.Among these four production pathways,the channels(1-3)are exothermic,while the channel(4)is endothermic by 47 kJ·mol-1.10In Mayhew et al.′s experiment,only anionic products of channel(1)and(2)were observed as CHClF-(molar ratio,90%)and Cl-(molar ratio,10%).No OCl-anion from channel(4)was observed,which agrees with thermochemical surmise.However,the measured branching ratios of anionic products of CHClF-and Cl-are on the contrary order to thermochemical results,and no F-anions were observed although the channel(3)is exothermic as well.Thus,the extensive theoretical calculations are expected to reveal the detailed reaction mechanism and anionic production channels involved,and more information can be provided to deeply understand the SN2 reaction pathway by comparing the channels(2)and(3).In addition,the theoretical calculations will also identify the neutral products,e.g.,H2+CHFO and/or HF+CH2O from channel(2),which cannot be revealed by the experiments yet.

    In this work,the anionic production channels(1-3)involved in the title reaction will be investigated using quantum chemical calculations.Based on the calculated barrier heights for various production channels,the dominant production channel will be discussed,and thus the branching ratios observed in the previous experiments10will be explained.

    2 Computational methods

    All quantum chemical calculations were performed using the Gaussian 03 program package.24Geometries of all stationary points including reactants,intermediate complexes(IMs),transition states(TSs),and products on the potential energy surface(PES)were optimized at the B3LYP25,26/6-31+G(d,p)level.To consider the diffuse electron effects involved in the title reaction system,polarized and diffuse functions were expanded to the basis set,and the geometries were re-optimized at the B3LYP/6-311++G(2d,p)level to study the expansive basis set effects.Harmonic vibrational frequencies,ZPEs(scaled by a factor of 0.9857),27and thermal enthalpy corrections were calculated at the B3LYP/6-31+G(d,p)level.Moreover,intrinsic reaction coordinate(IRC)28,29calculations at the B3LYP/6-31+G(d,p)level were performed to identify the corresponding reactant and product for every transition state.The Mulliken population analysis30was utilized to characterize the charge distributions for the intermediate complexes and anionic products.The single point energies of stationary points were calculated at the CCSD(T)31-33/6-311+G(3df,3dp)level with the B3LYP/6-31+G(d,p)optimized geometries,and subsequently the relative energies were obtained as well as reaction enthalpies.To compare with the experimental data,the reaction enthalpies at the CCSD(T)/aug-cc-pVDZ and G3MP2B334,35levels were also calculated to verify the reliability of the present calculated results at the CCSD(T)/6-311+G(3df,3dp)level.

    3 Results and discussion

    The reaction enthalpies at 298.15 K of the production channels(1-3)were calculated at the G3MP2B3,CCSD(T)/aug-ccpVDZ,and CCSD(T)/6-311+G(3df,3dp)levels,respectively,and listed in Table 1,where all calculated enthalpies have already included the thermal correction at the B3LYP/6-31+G(d,p)level.Although our previous calculations on the similar reaction systems,e.g.,O-+C2H4,36,37O-+C5H5N,38O-+CH3CN,39exhibited the most accurate relative energies obtained at the G3MP2B3 level,the CCSD(T)/6-311+G(3df,3dp)level shows the best performance in the title reaction,and the maximum error is within 3 kJ·mol-1.The potential reason is due to the difference between the open-shell and close-shell systems.

    As we expected,all final products of channels(1-3)could be produced through a typical multi-step reaction process as shown in the following schemes.

    where the CH2FOH fragment could further dissociate to CHFO+H2or CH2O+HF.Fig.1 shows the optimized geometries of main reactants,products,IMs and TSs,where parameters in normal type were obtained at the B3LYP/6-31+G(d,p)level and those in bold type were calculated at the B3LYP/6-311++G(2d,p)level.Briefly,all geometry parameters at both levels are consistent,and the differences of bond length and bond angles are less than 0.0032 nm and 1.6°.Therefore,the diffuse electron effect is not serious in the title reaction,although some molecular structures are very loose.Thus the B3LYP/6-31+G(d,p)geometries are used in the following sections unless otherwise noted.

    The CCSD(T)/6-311+G(3df,3dp)relative energies at 0 K with ZPEs correction of all species involved in the title reaction are summarized in Table 2,where the imaginary frequencies of transition states calculated at the B3LYP/6-31+G(d,p)level are listed as well.Based on these relative energies,the potential energy profile of the title reaction is shown in Fig.2,where the anionic production pathways(1-3)are represented respectively.

    On the entrance PES of the title reaction,a unique intermediate complex denoted by IM1 is formed rapidly with OH-approaching CH2ClF,due to the ion-induced dipole interaction.As shown in Fig.1,the bond length of active C―H bond is elongated from 0.1090 nm in the CH2ClF to 0.1157 nm in IM1,and the distance between approaching OH-and the active H atom is 0.1595 nm,even much shorter than a normal hydrogen bonding length,indicating that the ion-induced dipole interaction is very strong indeed.The energy of IM1 is 96.8 kJ·mol-1lower than those of reactants,thus it can further isomerize and dissociate to final products.As mentioned above,there are three anionic production channels(1-3)probably involved in the reaction,which will be described in the following processes,e.g.,H+-abstraction and SN2 reactions.

    Table 1 Reaction enthalpies(in kJ·mol-1)of various production channels at 298.15 K

    3.1 H+-abstraction reaction channel(1)

    IM1 can isomerize to IM2 through TS1 with a very lower barrier.As shown in Fig.1,the structures of IM1,TS1,and IM2 are fairly similar,in which the structure of CHFCl moiety is almost kept and only the distances between O and active H atom,C and the H atom are changed dramatically.The distance of O and H atom is shortened from 0.1595 nm in IM1 to 0.1274 nm in TS1,followed by a decrease to 0.1036 nm in IM2,while the C―H bond length is elongated gradually from 0.1157 nm in IM1 to 0.1343 nm in TS1 and 0.1772 nm in IM2.Thus,the O―H bond is formed and the C―H bond is broken in this isomerization process.Meanwhile,the producing H―O―H angle decreases to 102.87°in IM2,implying a water molecule is formed actually in IM2.Obviously,IM2 is an ion-induced dipole complex of CHFCl-and H2O,and thus it can decompose to the final products,H2O and CHClF-,by collision-induced dissociation without barriers.The overall production pathway is exothermic by 23.2 kJ·mol-1.

    The present IRC calculations confirm that TS1 is the isomerization barrier from IM1 to IM2 indeed.The minimum energy path at the B3LYP/6-31+G(d,p)level along this process is shown in Fig.3,where the charge distributions are obtained by the Mulliken population analysis and represented as well.A typical electron transfer happens in this process,and the negative charge of OH-anion is almost completely transferred to the CHFCl moiety in the transition state region.As a result,the produced intermediate IM2 is a complex of CHFCl-and H2O indeed.

    The similar phenomena were observed in the reaction of OH-with CH(4-n)Cln(n=1-4)by Borisovet al.40As they mentioned,the barrier heights of H+-abstraction decrease with the increasing ofn(n=1-4),and moreover,these barriers even vanish away when thenequals to 3 or over.Actually,this change tendency of barrier height is related to the acidity of protons on halogens and the alkalinity of OH-.With the increasing of the number of halogens,the protons become more and more acidic,and thus the H+-abstraction more probably proceeds.

    3.2 SN2 reaction channel to produce Cl-(2)

    The SN2 reaction pathway to produce Cl-also starts from IM1.As shown in Fig.2,this process passes a barrier and produces a complex on the exit PES.The overall reaction pathway is similar to the reaction of OH-with CH2F2.41

    The transition state has the[HO…CH2F…Cl]-structure ofCssymmetry and is noted as TS2.As shown in Fig.1,the C―Cl bond length is elongated from 0.1849 nm in IM1 to 0.2053 nm in TS2,while the distance between C and O atoms is shortened to 0.2356 nm in TS2.Three atoms(O,C,and Cl)are nearly collinear.Therefore,this transition state looks very like a typical SN2 reaction transition state,which should connect to a collinear product-like complex of CH2FOH…Cl-structure on the exit PES.However,the forward IRC calculation indicates that an unexpected potential minimum CH2FOH…Cl-(denoted by IM3)will be formed.IM3 breaks the Cssymmetry of the SN2 reaction system and is not the traditional collinear SN2 product complex.As indicated in Fig.4,there is a special exitchannel stage along MEP,which is noted as CX1.The relative energy along MEP dramatically drops to CX1 on the first stage after TS2,and then decreases slowly.The structure of CX1 looks very like the expected collinear SN2 product complex(Cl-…CH2FOH),although it is not a real potential minimum.Actually,the dissociating Cl-will roam towards the CH2FOH moiety and abstract the proton of OH group,due to the strong ion-induced dipole interaction.Thus the collinear symmetry is broken and a hydrogen-bond between H and Cl atoms is formed to be 0.2010 nm in IM3.In addition,the negative charge of OH-anion is transferred to the Cl atom in the transition state region as shown in Fig.4.Thus the produced intermediate IM3 is a complex of Cl-and CH2FOH indeed.

    The energy of TS2 is 32.2 kJ·mol-1higher than that of IM1,and the energy difference between TS2 and IM3 is 282.2 kJ·mol-1.Thus it is highly exothermic from IM1 to IM3,and IM3 is energetic enough to proceed subsequent decomposition and isomerization.As shown in Fig.2,IM3 can decompose easilyto Cl-and CH2FOH directly,and the overall reaction pathway of OH-+CH2FCl? Cl-+CH2FOH is exothermic by 252.8 kJ·mol-1.However,CH2FOH cannot exist stably,and further dissociations will take place to produce H2+CHFO and/or HF+CH2O.The corresponding TSs are denoted as TS3 and TS4,respectively.As shown in Table 1,the total energy of TS3 and Cl-is 101.2 kJ·mol-1higher than that of reactants,and thus this pathway to produce H2and CHFO is difficult to happen in experiment.On the contrary,although the channel to produce HF and CH2O also needs overcome a high barrier(TS4)of 185.6 kJ·mol-1,the energy of TS4+Cl-is still lower than that of reactants.Therefore HF and CH2O should be the real neutral products corresponding to Cl-observed in experiment.

    Table 2 Total energies and relative energies at 0 K,enthalpies at 298.15 K of all species involved in the title reaction calculated at the CCSD(T)/6-311+G(3df,3dp)level with ZPEs correction and enthalpies correction,respectively

    3.3 SN2 reaction channel to produce F-(3)

    The other SN2 reaction process of the title reaction is expected to produce F-and CH2ClOHviaisomerization and decomposition of IM1.As shown in Fig.1,a transition state with the[HO…CH2Cl…F]-structure andCssymmetry is found and denoted as TS5.Obviously,TS5 is rather similar to TS2 which is a traditional SN2 transition state to produce F-,where the C―F bond length is elongated from 0.1396 nm in IM1 to 0.1758 nm in TS5,and the distance between C and O atoms is shortened to 0.2000 nm in TS5.To our surprise,the forward IRC calculation of TS5 points to an unexpected potential minimum IM5 instead of the SN2 reaction product F-…CH2ClOH.As shown in Fig.5,IM5 is nearly a three-body intermediate complex ofCl-…CH2O…HF,where the CH2O…HF moiety is very similar to IM4 and a much stronger hydrogen bond of 0.1480 nm exists between the HF and O atom.Thus,IM5 can subsequently dissociate to Cl-,CH2O and HF by collision without any barrier.

    The detailed information of geometry and charge distributions in this process is exhibited in Fig.5.Along MEP,the initial reaction stage after TS5 undergoes a typical SN2 process and the relative energy quickly drops,and a SN2 product complex(F-…CH2ClOH)is formed(denoted as CX2 in Fig.5).However,because CX2 is not a real potential minimum,the energy drops forward slowly on the PES.Due to the strong ion-induced dipole interaction,the dissociating F-will roam towards the CH2ClOH moiety and abstract a proton of OH group.Thus,HF and formaldehyde(CH2O)are produced,and Cl-is repulsed far away.A strong hydrogen-bond between F and O connects the HF and CH2O molecules.A complex CX3 is noted in Fig.5 and represents this special stage on PES.As shown in Fig.5,the negative charge of OH-anion is transferred to the F atom initially in the region of TS5,while the electron is re-exchanged when the F-extracts a proton of OH group to produce HF and formaldehyde in the CX3 region.Thus IM5 replaces the expected SN2 reaction product and is finally produced along the MEP.

    Here we should demonstrate that all mentioned MEPs related to TS2 and TS5 only reflect static reaction pathways,and dynamic effects probably exist prominently in the anion-molecule reaction42-46especially for the SN2 reaction channels,e.g.,the SN2 reaction products of F-+CH3O are confirmed to occur along the dynamic reaction pathway in the O-+CH3F reaction,although the static reaction process related to the corresponding SN2 transition state does point to other products of HF+CH2O-.Since geometries of the SN2 transition states and MEPs for the title reaction and O-+CH3F reaction are very similar,the SN2 reaction channel(3)to produce F-and CH2ClOH can also be expected to happen in a real experiment,as well as the Cl-+CH2O+HF production pathway.However,due to the much higher energy of TS5 than that of TS2,the branching ratio of anionic products from the SN2 channel(3)are minor indeed.Therefore,for both SN2 reaction processes(2)and(3),the dominant products should be Cl-,HF,and formaldehyde.

    3.4 Comparisons with the previous experimental conclusions

    Based on the calculated barrier heights and reaction enthalpies,the H+-abstraction(1),SN2 reaction channels(2)and(3)can take place and the Cl-and CHClF-anions are expected to produce,which is consistent with the observed anionic products in experiments.10In addition,all three anionic production channels pass the same initial intermediate complex IM1 on the entrance PES,and thus the branching ratios should mainly depend on the barrier heights of subsequent isomerization and decomposition processes.Since the transition state TS1 has the lowest relative energy compared with TS2 and TS5,the H+-abstraction channel(1)is dominant,which agrees well with the experimental conclusions.10

    4 Conclusions

    The anionic production pathways involved in the reaction of hydroxide anion(OH-)with chlorofluoromethane(CH2ClF)have been studied.The unique intermediate has been located on the entrance potential energy surface,which is a typical ion-induced dipole complex indeed.All anionic products are formed via the isomerization and decomposition of this intermediate.

    Based on the calculated barrier heights and reaction enthalpies,the H+-abstraction and two SN2 reaction channels can take place,and thus the Cl-and CHClF-anions are expected to produce finally,which is consistent with the observed anionic products in experiments.Since the transition state of H+-abstraction process has the lowest barrier height compared with those of the SN2 reaction channels,the H+-abstraction channel is certainly dominant,which agrees well with the experimental conclusions.In addition,present calculation also shows that the major neutral molecule products corresponding to the SN2 channel to produce Cl-should be HF and formaldehyde.Moreover,the MEP revealed by IRC calculations of the SN2 channel of OH-attacking C―F bond of CH2FCl represents the static reaction pathway to produce Cl-instead of the SN2 reaction product F-,however the characteristics of MEP imply that probably the serious dynamic effect exists in the real reaction process.As a result,the dynamic SN2 reaction process to produce F-probably happens in experiment,and the further trajectory calculations are undergoing to confirm our prediction.

    Acknowledgments: Authors are grateful to Supercomputing Center of University of Science and Technology of China(USTC)for the computational resources support of this work.

    (1) Deckers,J.;van Tiggelen,A.Combust.Flame 1957,1,281.

    (2) Lee,J.;Grabowski,J.J.Chem.Rev.1992,92,1611.

    (3) Fialkov,A.B.Prog.Energy Combust.Sci.1997,23,399.

    (4) Grabowski,J.J.;Melly,S.J.Int.J.Mass Spectrom.1987,81,147.

    (5) McFarland,M.;Albritton,D.L.;Fehsenfeld,F.C.;Ferguson,E.E.;Schmeltekopf,A.L.J.Chem.Phys.1973,59,6610.

    (6) Beauchamp,J.L.Annu.Rev.Phys.Chem.1971,22,527.

    (7) Futrell,J.H.;Miller,C.D.Rev.Sci.Instrum.1966,37,1521.

    (8)Adams,N.G.;Smith,D.Int.J.Mass Spectrom.Ion Phys.1976,21,349.

    (9) Bilotta,R.M.;Preuninger,F.N.;Farrar,J.M.J.Chem.Phys.1980,73,1637.

    (10)Mayhew,C.A.;Peverall,R.;Timperley,C.M.;Watts,P.Int.J.Mass Spectrom.2004,233,155.

    (11) Solomon,S.Rev.Geophys.1999,37,275.

    (12) Rowland,F.S.Ambio 1990,19,281.

    (13) Molina,M.J.;Rowland,F.S.Nature 1974,249,810.

    (14) Bhatnagar,A.;Carr,R.W.Chem.Phys.Lett.1996,258,651.

    (15) Blanco,S.;Lesarri,A.;López,J.C.;Alonso,J.L.;Guarnieri,A.J.Mol.Spectrosc.1995,174,397.

    (16) http://en.wikipedia.org/wiki/Montreal_Protocol(accessed May 4,2010).

    (17)Howle,C.R.;Mayhew,C.A.;Tuckett,R.P.J.Phys.Chem.A 2005,109,3626.

    (18) Peverall,R.;Kennedy,R.A.;Mayhew,C.A.;Watts,P.Int.J.Mass Spectrom.1997,171,51.

    (19) Chiorboli,C.;Piazza,R.;Tosato,M.L.;Carassiti,V.Coord.Chem.Rev.1993,125,241.

    (20) Bottoni,A.;Poggi,G.;Emmi,S.S.J.Mol.Struct.-Theochem 1993,279,299.

    (21)Tanner,S.D.;Mackay,G.I.;Bohme,D.K.Can.J.Chem.1981,59,1615.

    (22)Yang,X.;Zhang,X.;Castleman,A.W.J.Phys.Chem.1991,95,8520.

    (23)Yang,X.;Castleman,A.W.J.Am.Chem.Soc.1991,113,6766.

    (24) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03,Revision C.02,D.01,E.01;Gaussian Inc.:Pittsburgh,PA,2003.

    (25) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (26) Becke,A.D.J.Chem.Phys.1993,98,1372.

    (27) Merrick,J.P.;Moran,D.;Radom,L.J.Phys.Chem.A 2007,111,11683.

    (28) Gonzalez,C.;Schlegel,H.B.J.Phys.Chem.1990,94,5523.

    (29) Gonzalez,C.;Schlegel,H.B.J.Chem.Phys.1989,90,2154.

    (30) Mulliken,R.S.J.Chem.Phys.1955,23,1833.

    (31) Purvis,G.D.;Bartlett,R.J.J.Chem.Phys.1982,76,1910.

    (32) Urban,M.;Noga,J.;Cole,S.J.;Bartlett,R.J.J.Chem.Phys.1985,83,4041.

    (33) Scuseria,G.E.;Janssen,C.L.;Schaefer,H.F.J.Chem.Phys.1988,89,7382.

    (34) Curtiss,L.A.;Redfern,P.C.;Raghavachari,K.;Rassolov,V.;Pople,J.A.J.Chem.Phys.1999,110,4703.

    (35) Baboul,A.G.;Curtiss,L.A.;Redfern,P.C.;Raghavachari,K.J.Chem.Phys.1999,110,7650.

    (36)Yu,F.;Zhao,Y.G.;Wang,Y.;Zhou,X.G.;Liu,S.L.Acta Chim.Sin.2007,65,899.[于 鋒,趙英國,王 勇,周曉國,劉世林.化學(xué)學(xué)報,2007,65,899.]

    (37)Wang,X.L.;Yu,F.;Xie,D.;Liu,S.L.;Zhou,X.G.Acta Chim.Sin.2008,66,2499.[王新磊,于 鋒,謝 丹,劉世林,周曉國.化學(xué)學(xué)報,2008,66,2499.]

    (38)Wu,L.X.;Yu,F.;Song,L.;Zhou,X.G.;Liu,S.L.J.Mol.Struct.-Theochem 2010,958,82.

    (39)Yu,F.;Wu,L.X.;Zhou,X.G.;Liu,S.L.Chin.J.Chem.Phys.2010,23,643.[于 鋒,吳琍霞,周曉國,劉世林.化學(xué)物理學(xué)報,2010,23,643.]

    (40) Borisov,Y.A.;Arcia,E.E.;Mielke,S.L.;Garrett,B.C.;Dunning,T.H.J.Phys.Chem.A 2001,105,7724.

    (41)Lee,E.P.F.;Dyke,J.M.;Mayhew,C.A.J.Phys.Chem.A 1998,102,8349.

    (42)Yu,F.;Wu,L.X.;Song,L.;Zhou,X.G.;Liu,S.L.J.Mol.Struct.-Theochem 2010,958,41.

    (43)Yu,F.;Wu,L.X.;Liu,S.L.;Zhou,X.G.J.Mol.Struct.-Theochem 2010,947,1.

    (44)Wu,L.X.;Yu,F.;Liu,J.;Dai,J.H.;Zhou,X.G.;Liu,S.L.Acta Phys.-Chim.Sin.2010,26,2331.[吳琍霞,于 鋒,劉 靜,戴靜華,周曉國,劉世林.物理化學(xué)學(xué)報,2010,26,2331.]

    (45) Sun,L.;Song,K.;Hase,W.L.Science 2002,296,875.

    (46) Hase,W.L.Science 1994,266,998.

    OH-與CH2ClF反應(yīng)的陰離子產(chǎn)物通道

    宋 磊1于 鋒2吳琍霞1周曉國1,*劉世林1

    (1合肥微尺度物質(zhì)科學(xué)國家實驗室(籌),中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,合肥230026;2西安工業(yè)大學(xué)數(shù)學(xué)物理系,西安710032)

    理論研究了羥基負(fù)離子(OH-)與氟氯代甲烷(CH2ClF)反應(yīng)的陰離子產(chǎn)物通道.分別在B3LYP/6-31+G(d,p)和B3LYP/6-311++G(2d,p)水平上得到反應(yīng)勢能面上各關(guān)鍵物種的優(yōu)化構(gòu)型,進(jìn)而計算得到諧振頻率和零點能.基于CCSD(T)/6-311+G(3df,3dp)水平的相對能量,描述了由質(zhì)子轉(zhuǎn)移和雙分子親核取代(SN2)過程生成各陰離子產(chǎn)物的途徑.各陰離子產(chǎn)物途徑勢壘的計算結(jié)果表明質(zhì)子轉(zhuǎn)移過程是實驗中的主要產(chǎn)物通道,與以往實驗測量的結(jié)論相符.此外,計算還顯示雙分子親核取代過程得到了非典型的陰離子產(chǎn)物,其中動力學(xué)效應(yīng)可能會導(dǎo)致F-的生成.

    羥基負(fù)離子; 氟氯代甲烷; 反應(yīng)機(jī)理; 質(zhì)子轉(zhuǎn)移; 親核取代(SN2)反應(yīng)

    O641

    Received:November 24,2010;Revised:January 24,2011;Published on Web:March 2,2011.

    ?Corresponding author.Email:xzhou@ustc.edu.cn;Tel:+86-551-3600031.

    The project was supported by the National Natural Science Foundation of China(20603033,10979042)and National Key Basic Research Program of China(973)(2007CB815204).

    國家自然科學(xué)基金(20603033,10979042)和國家重點基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB815204)資助項目

    猜你喜歡
    親核負(fù)離子陰離子
    森林公園負(fù)離子濃度及負(fù)離子物質(zhì)量和價值量研究
    負(fù)離子人造板研究現(xiàn)狀及發(fā)展建議
    有機(jī)化學(xué)微課設(shè)計思路探討——以雙分子親核取代反應(yīng)為例
    云南化工(2021年9期)2021-12-21 07:44:20
    靜電對負(fù)離子地板測試的影響
    高壓脈沖電刺激下龍舌蘭釋放負(fù)離子的研究
    反芻動物陰離子鹽營養(yǎng)機(jī)制研究進(jìn)展
    A 3-fold Interpenetrated lvt Cd(II) Network Constructed from 4-[(3-pyridyl)methylamino]benzoate Acid①
    D311B型陰離子交換樹脂吸附Cr(Ⅵ)的研究及應(yīng)用
    有關(guān)親核取代反應(yīng)和β—消去反應(yīng)的教學(xué)思考
    陰離子捕收劑CY-12#反浮選弱磁精礦試驗
    金屬礦山(2013年11期)2013-03-11 16:55:04
    一本综合久久免费| 国产亚洲精品av在线| 在线观看免费视频日本深夜| 在线观看一区二区三区| 69人妻影院| 在线观看免费午夜福利视频| 成人欧美大片| 熟女电影av网| 一区福利在线观看| 国产精品久久久久久人妻精品电影| 欧美日韩一级在线毛片| 好男人在线观看高清免费视频| e午夜精品久久久久久久| 亚洲在线观看片| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 午夜福利视频1000在线观看| 欧美日韩福利视频一区二区| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 成人国产一区最新在线观看| 日韩欧美 国产精品| 国产精品影院久久| av中文乱码字幕在线| 国产精品香港三级国产av潘金莲| 日韩欧美三级三区| 九九热线精品视视频播放| 琪琪午夜伦伦电影理论片6080| 亚洲精品国产精品久久久不卡| a级毛片a级免费在线| 免费大片18禁| 亚洲五月天丁香| 国产精品嫩草影院av在线观看 | 国内精品久久久久久久电影| 久久久久久九九精品二区国产| 欧美+亚洲+日韩+国产| 搡老岳熟女国产| 香蕉丝袜av| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 国产免费一级a男人的天堂| 国产蜜桃级精品一区二区三区| 国产精品久久久久久人妻精品电影| 婷婷丁香在线五月| 岛国在线观看网站| 成人三级黄色视频| 国产伦人伦偷精品视频| 亚洲avbb在线观看| 亚洲专区国产一区二区| 国产精品久久久久久精品电影| 免费人成视频x8x8入口观看| 国产在视频线在精品| 三级男女做爰猛烈吃奶摸视频| 日本 av在线| 男女之事视频高清在线观看| 亚洲性夜色夜夜综合| 日韩国内少妇激情av| 久久精品国产综合久久久| 成人永久免费在线观看视频| 国产亚洲精品一区二区www| 91字幕亚洲| 麻豆国产97在线/欧美| 久9热在线精品视频| 免费观看精品视频网站| 久久久久亚洲av毛片大全| 丰满乱子伦码专区| 一进一出抽搐动态| 免费看光身美女| 美女免费视频网站| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 国产一区二区三区视频了| 深夜精品福利| 无人区码免费观看不卡| 欧美乱色亚洲激情| 男人舔女人下体高潮全视频| 午夜免费激情av| 国产综合懂色| 成人av一区二区三区在线看| 欧美一区二区亚洲| 日本在线视频免费播放| 夜夜看夜夜爽夜夜摸| 88av欧美| 成人性生交大片免费视频hd| 国产熟女xx| 无遮挡黄片免费观看| 一个人免费在线观看电影| 少妇的丰满在线观看| 国内精品一区二区在线观看| 美女黄网站色视频| 欧美日韩一级在线毛片| 99国产精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 最近最新中文字幕大全免费视频| 精品久久久久久久久久久久久| 久久国产精品影院| 亚洲激情在线av| 国产亚洲精品久久久com| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 国产精品久久久久久久久免 | 99精品在免费线老司机午夜| 神马国产精品三级电影在线观看| 国产高清有码在线观看视频| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 欧美日韩乱码在线| 久久人妻av系列| 三级国产精品欧美在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品456在线播放app | 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 欧美性猛交╳xxx乱大交人| 中出人妻视频一区二区| 在线观看免费视频日本深夜| or卡值多少钱| 色尼玛亚洲综合影院| 午夜两性在线视频| 一个人免费在线观看的高清视频| 色综合欧美亚洲国产小说| 亚洲av五月六月丁香网| 五月玫瑰六月丁香| 非洲黑人性xxxx精品又粗又长| 欧美日韩国产亚洲二区| 国产精品,欧美在线| 麻豆成人午夜福利视频| 国内精品一区二区在线观看| 亚洲av成人av| 99久国产av精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲激情在线av| 别揉我奶头~嗯~啊~动态视频| netflix在线观看网站| 精华霜和精华液先用哪个| 最近最新免费中文字幕在线| a级一级毛片免费在线观看| 欧美又色又爽又黄视频| 亚洲18禁久久av| 久久久久久国产a免费观看| 久久国产精品影院| 不卡一级毛片| 丰满的人妻完整版| 国产精品三级大全| 老鸭窝网址在线观看| 国产精品爽爽va在线观看网站| 成人无遮挡网站| 色精品久久人妻99蜜桃| 午夜激情福利司机影院| 中文字幕人妻熟人妻熟丝袜美 | 久久中文看片网| 91久久精品国产一区二区成人 | 亚洲va日本ⅴa欧美va伊人久久| 久久久久亚洲av毛片大全| 日韩欧美三级三区| 日本黄色片子视频| 精品国产亚洲在线| 久久6这里有精品| 在线观看av片永久免费下载| 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 悠悠久久av| 免费看美女性在线毛片视频| 久久伊人香网站| 色哟哟哟哟哟哟| 国产精品自产拍在线观看55亚洲| 国产综合懂色| 91av网一区二区| 午夜老司机福利剧场| 美女被艹到高潮喷水动态| 亚洲自拍偷在线| 午夜老司机福利剧场| 午夜视频国产福利| 国产欧美日韩一区二区三| 别揉我奶头~嗯~啊~动态视频| 欧美乱色亚洲激情| 麻豆国产97在线/欧美| 国产精品久久久久久久久免 | 全区人妻精品视频| 免费大片18禁| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| tocl精华| 成人国产综合亚洲| 综合色av麻豆| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美+亚洲+日韩+国产| 久久久久久久精品吃奶| 一级毛片高清免费大全| 亚洲,欧美精品.| x7x7x7水蜜桃| 免费av不卡在线播放| 久久香蕉国产精品| 国产aⅴ精品一区二区三区波| 亚洲精品在线观看二区| 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看 | 国产私拍福利视频在线观看| 中出人妻视频一区二区| 中文字幕av成人在线电影| 欧美在线一区亚洲| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 国产精品亚洲av一区麻豆| 亚洲人成网站在线播放欧美日韩| 欧美日韩乱码在线| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线| 免费在线观看亚洲国产| 精品一区二区三区人妻视频| 久久精品91无色码中文字幕| 国产免费男女视频| 国产国拍精品亚洲av在线观看 | 91字幕亚洲| 欧美成人a在线观看| 一区二区三区国产精品乱码| 久久久久久久久久黄片| 成人亚洲精品av一区二区| 老熟妇仑乱视频hdxx| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 日韩 欧美 亚洲 中文字幕| 亚洲人成电影免费在线| 九九在线视频观看精品| 久久久久久大精品| 啦啦啦观看免费观看视频高清| av国产免费在线观看| 国产真实乱freesex| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 男女那种视频在线观看| 精华霜和精华液先用哪个| 国产真实乱freesex| 国产黄片美女视频| 色综合站精品国产| svipshipincom国产片| 亚洲av成人不卡在线观看播放网| 久9热在线精品视频| 亚洲色图av天堂| 亚洲狠狠婷婷综合久久图片| 免费在线观看日本一区| 国产一区在线观看成人免费| av女优亚洲男人天堂| 亚洲av五月六月丁香网| 日本a在线网址| 99精品在免费线老司机午夜| 亚洲精品色激情综合| 色av中文字幕| 欧美av亚洲av综合av国产av| 女警被强在线播放| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 国产伦精品一区二区三区四那| www.色视频.com| 国产日本99.免费观看| 精品一区二区三区视频在线观看免费| 最近最新中文字幕大全免费视频| 国产亚洲精品一区二区www| www.999成人在线观看| 成年女人毛片免费观看观看9| 国产精品综合久久久久久久免费| 禁无遮挡网站| 国产视频一区二区在线看| 免费观看人在逋| 啦啦啦韩国在线观看视频| 色综合亚洲欧美另类图片| 国产日本99.免费观看| 色哟哟哟哟哟哟| 亚洲五月天丁香| 无限看片的www在线观看| 19禁男女啪啪无遮挡网站| 一本精品99久久精品77| 草草在线视频免费看| 免费在线观看成人毛片| 国产三级中文精品| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 日本 欧美在线| 亚洲无线观看免费| 午夜福利免费观看在线| 国产激情欧美一区二区| 波多野结衣高清作品| 亚洲不卡免费看| 日韩成人在线观看一区二区三区| 51国产日韩欧美| 熟女电影av网| 日韩高清综合在线| 国产精品99久久99久久久不卡| 日韩欧美免费精品| netflix在线观看网站| 天堂√8在线中文| 中文在线观看免费www的网站| 国产真人三级小视频在线观看| 国产中年淑女户外野战色| 欧美三级亚洲精品| 午夜福利视频1000在线观看| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 成人无遮挡网站| 久久久久国产精品人妻aⅴ院| 亚洲av电影在线进入| 脱女人内裤的视频| 国产精品一区二区三区四区久久| 亚洲avbb在线观看| 一区福利在线观看| 欧美成人免费av一区二区三区| 亚洲真实伦在线观看| 日韩有码中文字幕| 国产极品精品免费视频能看的| 99久久无色码亚洲精品果冻| 欧美不卡视频在线免费观看| 欧美在线一区亚洲| 国产乱人伦免费视频| 欧美日韩乱码在线| 无限看片的www在线观看| 国产一区二区三区在线臀色熟女| 国产亚洲精品综合一区在线观看| 午夜福利免费观看在线| 午夜日韩欧美国产| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 亚洲,欧美精品.| 9191精品国产免费久久| 丰满乱子伦码专区| 在线国产一区二区在线| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 色综合站精品国产| 欧美高清成人免费视频www| 久久香蕉国产精品| 麻豆一二三区av精品| 久久精品影院6| 亚洲在线自拍视频| 长腿黑丝高跟| 欧美最黄视频在线播放免费| 久久精品影院6| 亚洲av成人精品一区久久| 九九久久精品国产亚洲av麻豆| 色综合欧美亚洲国产小说| 日韩成人在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 欧美一区二区精品小视频在线| 一本一本综合久久| 国产高清视频在线播放一区| 18禁黄网站禁片午夜丰满| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 又粗又爽又猛毛片免费看| 亚洲人成电影免费在线| 国产三级中文精品| e午夜精品久久久久久久| 精品人妻1区二区| 国产麻豆成人av免费视频| 每晚都被弄得嗷嗷叫到高潮| av女优亚洲男人天堂| 国语自产精品视频在线第100页| 美女高潮喷水抽搐中文字幕| 99热只有精品国产| 国产精品一区二区三区四区久久| 黄色片一级片一级黄色片| 欧美激情久久久久久爽电影| 一区福利在线观看| 久久久国产成人免费| 少妇高潮的动态图| 十八禁网站免费在线| 两人在一起打扑克的视频| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲| 亚洲天堂国产精品一区在线| 国产av在哪里看| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 欧美黑人欧美精品刺激| 99久国产av精品| 老熟妇仑乱视频hdxx| 欧美成人a在线观看| 午夜日韩欧美国产| 宅男免费午夜| 成人鲁丝片一二三区免费| 三级国产精品欧美在线观看| 久久亚洲真实| 欧美日韩国产亚洲二区| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| av国产免费在线观看| 亚洲av电影不卡..在线观看| 亚洲av男天堂| 亚洲在线观看片| 国产成人福利小说| 久久亚洲国产成人精品v| 欧美性猛交╳xxx乱大交人| 伦精品一区二区三区| 最近中文字幕高清免费大全6| 九草在线视频观看| 一级毛片我不卡| 在线天堂最新版资源| 亚洲av免费高清在线观看| 国产高潮美女av| 能在线免费观看的黄片| 亚洲乱码一区二区免费版| 韩国高清视频一区二区三区| 亚洲成人精品中文字幕电影| 熟妇人妻不卡中文字幕| 亚洲av男天堂| 日韩电影二区| 国产精品爽爽va在线观看网站| 国产伦理片在线播放av一区| 日日摸夜夜添夜夜爱| 国产毛片a区久久久久| 18禁在线无遮挡免费观看视频| 高清午夜精品一区二区三区| 在线 av 中文字幕| freevideosex欧美| 欧美 日韩 精品 国产| 国产一区二区在线观看日韩| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 赤兔流量卡办理| 免费看美女性在线毛片视频| 看十八女毛片水多多多| 午夜免费激情av| 一区二区三区高清视频在线| 国产69精品久久久久777片| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆| 少妇的逼好多水| kizo精华| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区在线观看99 | 老师上课跳d突然被开到最大视频| 国产成年人精品一区二区| 日韩一区二区视频免费看| 成人特级av手机在线观看| 尾随美女入室| 天天躁日日操中文字幕| 成年女人看的毛片在线观看| 久久精品夜色国产| 3wmmmm亚洲av在线观看| 真实男女啪啪啪动态图| 夫妻午夜视频| 国产探花极品一区二区| 亚洲高清免费不卡视频| 日韩欧美国产在线观看| 久久久久久久久大av| 亚洲在线观看片| av一本久久久久| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| 特级一级黄色大片| 欧美xxxx黑人xx丫x性爽| 永久网站在线| 韩国av在线不卡| 日韩中字成人| 国产日韩欧美在线精品| 乱人视频在线观看| 亚洲成色77777| 亚洲精品日本国产第一区| freevideosex欧美| 内地一区二区视频在线| 亚洲av福利一区| 欧美日本视频| 精品久久久久久久末码| 国产精品综合久久久久久久免费| 亚洲精品中文字幕在线视频 | a级毛色黄片| 最新中文字幕久久久久| 中文字幕久久专区| 一个人免费在线观看电影| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影小说 | 国产成人精品一,二区| 97在线视频观看| 少妇熟女aⅴ在线视频| 一区二区三区免费毛片| 天天躁夜夜躁狠狠久久av| 美女高潮的动态| 久久久成人免费电影| 免费人成在线观看视频色| 免费大片18禁| 国产av码专区亚洲av| 久久久久精品性色| 哪个播放器可以免费观看大片| 中文字幕人妻熟人妻熟丝袜美| 夫妻午夜视频| 女人久久www免费人成看片| 春色校园在线视频观看| 久久99精品国语久久久| 精品久久久久久久久久久久久| 国产精品三级大全| 国产成人精品福利久久| 国产片特级美女逼逼视频| 日韩欧美精品v在线| 天堂影院成人在线观看| 综合色av麻豆| av天堂中文字幕网| 免费黄色在线免费观看| 国产一区二区在线观看日韩| 成人综合一区亚洲| 91在线精品国自产拍蜜月| 精品熟女少妇av免费看| 啦啦啦啦在线视频资源| 日韩欧美三级三区| 97超碰精品成人国产| 91精品伊人久久大香线蕉| 国产女主播在线喷水免费视频网站 | 亚洲欧美精品自产自拍| 女人被狂操c到高潮| 亚洲综合色惰| 久久久久久久久中文| 国产免费视频播放在线视频 | 三级国产精品片| 久久久成人免费电影| 国产在线男女| 亚洲高清免费不卡视频| 亚洲精品亚洲一区二区| 亚洲av在线观看美女高潮| 97在线视频观看| 成年版毛片免费区| 日韩 亚洲 欧美在线| 久久久久精品久久久久真实原创| 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频 | 蜜桃亚洲精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产日韩欧美精品在线观看| 美女内射精品一级片tv| 亚洲精品乱码久久久久久按摩| 亚洲美女搞黄在线观看| 丰满乱子伦码专区| 三级男女做爰猛烈吃奶摸视频| 97精品久久久久久久久久精品| 久久这里只有精品中国| 久久久久久久久中文| 精品久久久久久久末码| 日日啪夜夜撸| 久久久a久久爽久久v久久| 一级毛片久久久久久久久女| 欧美xxⅹ黑人| 亚洲av不卡在线观看| 国产成人福利小说| 国产白丝娇喘喷水9色精品| 最近2019中文字幕mv第一页| 99久久精品热视频| 国产亚洲精品av在线| 亚洲精品国产av成人精品| 中文欧美无线码| 乱码一卡2卡4卡精品| 久久久精品欧美日韩精品| 99视频精品全部免费 在线| 天堂俺去俺来也www色官网 | 精品99又大又爽又粗少妇毛片| 国产黄a三级三级三级人| 免费大片黄手机在线观看| 国产精品一区www在线观看| 亚洲av成人精品一二三区| 午夜免费男女啪啪视频观看| 美女内射精品一级片tv| 亚洲真实伦在线观看| 又黄又爽又刺激的免费视频.| 成人漫画全彩无遮挡| 日本-黄色视频高清免费观看| 免费看av在线观看网站| 一级片'在线观看视频| 国产成人精品福利久久| 最近的中文字幕免费完整| 久久这里只有精品中国| 欧美日本视频| 国产精品熟女久久久久浪| 日韩中字成人| 少妇的逼水好多| 好男人视频免费观看在线| 免费高清在线观看视频在线观看| 又黄又爽又刺激的免费视频.| 69人妻影院| 久久久久久九九精品二区国产| 色尼玛亚洲综合影院| 成人漫画全彩无遮挡| 寂寞人妻少妇视频99o| 特大巨黑吊av在线直播| 一级毛片电影观看| 一级毛片黄色毛片免费观看视频| 久热久热在线精品观看| 国国产精品蜜臀av免费| 国产有黄有色有爽视频| 亚洲成人一二三区av| 床上黄色一级片| 成人亚洲精品一区在线观看 | 噜噜噜噜噜久久久久久91| 日本免费在线观看一区| 亚洲av不卡在线观看| 成人特级av手机在线观看| 你懂的网址亚洲精品在线观看| 极品教师在线视频| 日本猛色少妇xxxxx猛交久久| 国产高清不卡午夜福利| 超碰97精品在线观看| 一级片'在线观看视频| .国产精品久久| 又爽又黄无遮挡网站| 国产精品三级大全| 国产熟女欧美一区二区| 久久久久久久大尺度免费视频| 成人特级av手机在线观看| 亚洲电影在线观看av| 欧美极品一区二区三区四区| 色综合站精品国产|