• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method

    2014-10-14 03:45:02TANGYanZHONGBenHeGUOXiaoDongLIUHengZHONGYanJunNIEXiangTANGHong
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:溶膠倍率電化學(xué)

    TANG Yan ZHONG Ben-He,* GUO Xiao-Dong LIU Heng ZHONG Yan-JunNIE Xiang TANG Hong

    (1College of Chemical Engineering,Sichuan University,Chengdu 610065,P.R.China;2College of Materials Science and Engineering,Sichuan University,Chengdu 610065,P.R.China)

    Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method

    TANG Yan1ZHONG Ben-He1,*GUO Xiao-Dong1LIU Heng2ZHONG Yan-Jun1NIE Xiang1TANG Hong1

    (1College of Chemical Engineering,Sichuan University,Chengdu 610065,P.R.China;2College of Materials Science and Engineering,Sichuan University,Chengdu 610065,P.R.China)

    Abstract: A Li3V2(PO4)3/C composite cathode material was obtained by a sol-gel method using deionized water and organic solvents as mixed solvents.Ethanol,ethylene glycol,and 1,2-propylene glycol were used as the organic solvents and polyacrylic acid(PAA)was used as the chelating agent and carbon source.The structure,morphology,and electrochemical performance of the synthesized materials were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),charge-discharge tests,and cyclic voltammetry.XRD analysis showed that all the materials were well crystallized and that the addition of organic solvents did not affect the crystal structure of Li3V2(PO4)3.The results of galvanostatic cycling showed that the electrochemical performance of the products was improved by the addition of organic solvents.The material synthesized using 1,2-propylene glycol had the best electrochemical performance.It exhibited an initial discharge capacity of 132.89 mAh·g-1at 0.1C(1C=150 mA·g-1)in the voltage range of 3.0-4.5 V.The initial discharge capacity was as high as 125.42 mAh·g-1upon discharging at 10C,and it had a capacity retention of 95.79%after 700 cycles.These results indicate a good rate and cycling performance in the voltage range of 3.0-4.5 V;while in the voltage range of 3.0-4.8 V,it exhibits a bad rate performance.SEM images indicated that the sample prepared using the mixed solvents had a flake-like and needle-like shape,which facilitates the interface ion-transfer process and thus improves the overall electrochemical properties.

    Key Words:Lithium ion battery;Cathode material;Li3V2(PO4)3;Sol-gel method;Mixed solvents

    1 Introduction

    Lithium ion batteries have become the most promising energy storage devices for portable electronics.Some poly-anionic phosphate materials,such as the olivine-type LiFePO41-3and monoclinic Li3V2(PO4)3(LVP)4-10,have attracted much interest in the past decade.The reversible cycling of all three lithium ions from LVP would correspond to a theoretical capacity of 197 mAh·g-1,which is the highest for all phosphate that have been reported11-13.Owing to good ion mobility,high lithium capacity,and a high operating voltage,LVP has been proposed to be a potential candidate of cathode materials for Li-ion batteries.LVP has good high-rate performance and good cycling stability.14,15It may play an important role in the expanding demand of electric vehicles(EVs)and hybrid electric vehicles(HEVs)in the future.

    In the literature,carbon-coated LVP powders have been synthesized via various methods such as solid-state reaction,16-18sol-gel process,19-21and microwave solid-state reaction.22,23Among them,the solid-state reaction is simple,environment friendly,and reaction efficient,but the particle size of the material is non-uniform.By using microwave,the reaction time can be greatly shortened;however,the preparation condition is difficult to control.Although the sol-gel process is complex,this method allows reactants to mix at the atomic or molecular level,thus reducing the calcination temperature and time of the products.Therefore,the sol-gel process is a promising method to synthesize higher purity material with uniform particle size.

    So far,nearly all the LVP synthesized by the sol-gel method used pure deionized water as solvent.A few studies have been reported to use some organic solvents,but paper16did not specify the role of organic solvent.Surface tension of an organic solvent is smaller than that of water.Therefore,the organic solvent is not only used as solvent,but also would play the role of surfactant,which has an impact on the growth of the particle.Also,during the drying process,the gel is not easy to reunite,thereby reducing the particle size.In this work,LVP precursor was synthesized by the sol-gel method with an organic solvent in water.Ethanol,ethylene glycol,and 1,2-propylene glycol were used as organic solvents.The effects of different organic solvents on the performance of LVP samples were evaluated.

    2 Experimental

    The LVP/C composites were prepared by a sol-gel method.The stoichiometric ratio of LiOH·H2O(99%(w,mass fraction)),NH4VO3(99%),H3PO4(85%)were used as raw materials.Polyacrylic acid(PAA)(30%)was used as carbon source and chelating reagent.Organic solvents(in this work,ethanol,ethylene glycol,and 1,2-propylene glycol were chosen as organic solvents)and deionized water were mixed in proportion of 40:60(volume ratio).First,LiOH·H2O and NH4VO3were dissolved in deionized water at room temperature.Then organic solvent and 10%(w)of PAA were added into the solution.Finally,H3PO4was added to the mixture.This solution was constantly stirred for 2 h at 80°C,and then the excess solvent was removed by vacuum distillation.The resulting gel precursor was dried in a vacuum oven at 90°C for 15 h.After drying,the precursors were decomposed in tube furnace at 350°C for 4 h,then heated at 700°C for 6 h under flowing argon.The final product was a black powder.

    The carbon content was verified by CS-902 analytical instrument(Wanlianda Xinke,Beijing,China).The crystalline structure of each product was analyzed by X-ray diffraction(XRD,D/max-rB,Rigaku,Cu Kαradiation)(λ=0.15046 nm)operated at 40 kV and 40 mA.The particle morphology and particle size of the LVP powders were observed by scanning electron microscopy(SEM,SPA400 Seiko Instruments).

    The specific surface areas(SSA)were measured with Brunauer-Emmett-Teller(BET)method by N2physisorption at 77 K on Quanachrome automated surface area&pore size analysizer(Autosorb SI).The samples were pretreated at 300°C for 3 h prior to the measurement.

    The cathode was fabricated by pressing a mixture of 80%(w)LVP/C,13%(w)acetylene black(conducting additive),and 7%(w)PVDF(binder)onto an Al foil.The anode was lithium foil and the electrolyte was 1 mol·L-1LiPF6solution in ethylene carbonate:propylene carbonate:diethyl carbonate[1:1:1(volume ratio)].Galvanostatic charging/discharging tests were operated in the voltage range of 3.0-4.5 V and 3.0-4.8 V at room temperature(25°C)with a battery test system(Neware BTS-610).Cyclic voltammetry(CV)was performed on the positive electrode in the cells described above by a CHI 660C electrochemical work station.CV tests were carried out in voltage ranges 3.0-4.5 V and 3.0-4.8 V at a scanning rate of 0.10 mV·s-1.

    3 Results and discussion

    Fig.1 shows the X-ray diffraction patterns of the LVP/C composites synthesized with different organic solvents;they are similar to those reported by Rui24and Saidi25et al.The characteristic peaks of all the LVP/C samples are sharp and without any impurity peaks.The carbon left in the LVP can not be detected because the residual carbon is only about 3%and in amorphous form.It can be concluded that the samples with all solvents have produced a single phase of LVP/C with monoclinic structure.Table 1 shows the cell parameters of LVP/C samples,and it can be seen that the cell volumes of the four samples are close to each other.It indicates that different solvents do not have significant effects on the cell parameters of the products.In addition,the mean coherent domain sizes of the samples were calculated by Jada 5.0 software which takesaccount of all the major diffraction peaks in the XRD pattern.It can be seen that the mean coherent domain sizes of the samples synthesized by mixed solvents are smaller than that using pure deionized water;and the grain size of sample D is the smallest one,which may facilitate the electron transport and ions diffusion.

    Fig.2 shows the first charge/discharge curves of LVP/C samples in the voltage range of 3.0-4.5 V at 0.1C.It can be seen that all the initial charge curves of the samples exhibit three stable voltage plateaus at 3.57,3.65,and 4.08 V.These plateaus correspond to the two-phase transitions between the single phases of LixV2(PO4)3(x=2.5,2.0,1.0).The initial discharge capacities of samples A,B,C,and D are 123.59,127.60,130.51,and 132.89 mAh·g-1,respectively.Compared with sample A,samples B,C and D,which are synthesized with mixed solvents,have higher discharge capacity.Fig.3 displays the average discharge capacity of samples A,B,C,and D at 0.1C,0.2C,0.5C,1C,3C,5C,10C,and 20Crates,respectively.It can be seen that the capacity of the samples basically possesses better retention,only fading faster at higher rates for sample A.The discharge capacities of samples A,B,C,and D at 20Crates are 95.92,110.85,116.92,and 119.99 mAh·g-1,which are 77.61%,86.87%,89.30%,and 90.29%of the capacity at 0.1Crate,respectively.Obviously,the electrochemical performance of products can be improved by adding organic solvents during the reaction of precursors,especially at high discharge rate.

    In order to explain why the samples obtained by adding organic solvents have better electrochemical performance,the SEM images of samplesAand D in Fig.4 are compared carefully.As shown in Fig.4(a,b),the sample synthesized by pure deionized water presents an irregularity of shape with particle size of 1-3 μm.This kind of shape with a small specific surface area does not favor lithium-ion diffusion.When the current increases,the diffusion of lithium ion is blocked and the capacity decreases.The sample synthesized in the mixed solvent by adding some 1,2-propylene glycol,to some extent,is part of the particle agglomerate,but the original particle size is small and most of the particles are distributed in the range of 1-2 μm(Fig.4(c,d)).Most of the particles have a flake-like shape,as mentioned previously;26the morphology of flake-like shape has a large specific surface area and results in good electrochemical performance.There are also particles in needlelike shape that are about 0.1 μm in diameter and 1 μm in length;meanwhile these particles also have a large specific surface area.We believe that the flake-like and needle-like shape leads to the better performance of sample D.It can be concluded that the existence of organic solvent can affect the shape ofthe particle.The surface tension of organic solvents is smaller than that of water;the solvent can selectively control the surface energy of different particle faces in the process of gel formation.PAA is a long-chain molecule,so that the LVP precursor particle can grow along its long-chain direction to give flake-like and needle-like particles.

    Table 1 Cell parameters of the samples

    A confirmation,quite valuable being quantitative,of the positive influence of the solvent on the grain characteristics comes from specific surface area measurements with the BET method.The data reported in Table 2 show that 1,2-propylene glycolwater mixed solvents markedly enhance the specific surface area of the powders.The sample D shows a specific surface area almost 1.5 times that of the sample prepared by pure deionized water.Therefore,it can be concluded that the solvents have great effects on the specific surface area of the samples.

    Among the samples,sample D gave the best performance.Fig.5 demonstrates the cycle and rate performance of sample D at various discharge rates.It can be seen that its cycling stability is excellent at each rate.The discharge capacity does not decrease at each rate after several cycles.As the rate increases,the discharge capacity decreases only a little;when the current comes to 20C,the specific capacity is still as high as 119.99 mAh·g-1.The discharge voltage decreases as the rate increases since the polarization becomes heavier with increasing the rate.From Fig.6,we can clearly see that sample D shows a good cycling stability at 10Crate.The initial specific capacity is 125.42 mAh·g-1and decreases to 120.14 mAh·g-1after 700 cycles(the ratio of 95.79%of the initial capacity).The good performance of LVP/C obtained in this experiment,combined with its high safety,implies that it can be a candidate cathode material for the lithium ion battery of HEVs and EVs in the future.

    Table 2 Specific surface area(S)of the sample synthesized with different solvents

    Monoclinic lithium vanadium phosphate contains three independent lithium sites with a theoretical discharge capacity of 197 mAh·g-1,while three Li ions are completely released from the cathode.Fig.7 shows the electrochemical performance of sample D in the voltage range of 3.0-4.8 V.Sample D presents an initial charge specific capacity of 196.14 mAh·g-1at 0.1C,equivalent to the theoretical capacity(Fig.7(a)).The initial discharge capacity is 165.96 mAh·g-1,which is only 84.61%ofthe initial charge capacity.When keeping the charge rate at 1C rate and increasing the discharge rate,the polarization becomes heavy and the voltage decreases a lot.The discharge specific capacity decreases from 117.80 to 105.06 mAh·g-1when discharge rate increasing from 10C to 20C rate.It can be seen from Fig.7(b)that the fading seems to be unavoidable since the capacity of sample D is 139.69 mAh·g-1after six cycles at 0.1C and 0.2C rates,respectively,a capacity decrease of about 26.27 mAh·g-1.However,it is obvious that the major decay exists in the first 12 cycles with a fading rate of 2.19 mAh·g-1per cycle.With the increase of discharge rate,the latter 60 cycles remain stable,especially at 10Cand 20Crate.The initial specific capacity is 117.80 mAh·g-1and is also as high as 116.21 mAh·g-1after 20 cycles at 10Crate.Compared with the stable cycle ability presented in LVP samples in the voltage range of 3.0-4.5 V(Fig.5),there is a significant fading of capacity in the voltage range of 3.0-4.8 V,which might be due to the following reasons.One is the oxidation of electrolyte in this high electrochemical window(3.0-4.8 V).The other is that the crystal structures of LVP is distorted during the phase transition process at the high voltage(>4.6 V).The resistance of Li3V2(PO4)3sample might be increased during the extraction/reinsertion process,which results in the poor cycle ability.

    In order to compare the behavior of LVP at different voltage ranges,the CV curve obtained in the voltage ranges of 3.0-4.5 V and 3.0-4.8 V are shown in Fig.8.Fig.8(A)shows the CV curves of sample D from 3.0 to 4.5 V.The voltage range to 4.5 V exhibits typical oxidative peaks near 3.63,3.72,and 4.14 V(vs Li/Li+)as well as reductive peaks 3.53,3.60,and 3.99 V(vs Li/Li+),respectively.It corresponds to lithium extraction and insertion in the stoichiometric ranges:x=0.0-0.5,0.5-1.0,1.0-2.0 in Li3-xV2(PO4)3,respectively.Among the three CV curves,the first cycle has the weakest peak intensities;as the cycle number increases,the peak intensities become stronger and the oxidative/reductive peaks are approaching to each other,promising a good cycle stability.The CV profile of LVP in the voltage range of 3.0-4.8 V is shown in Fig.8(B).There are four oxidation and three reduction peaks present in the CV curve.The oxidation peak at 4.58 V is the extraction of the third Li+ion associated with the phase transition process from LiV2(PO4)3to V2(PO4)3.From Fig.8(B),it can be seen that peakintensities gradually decrease with increasing cycle number,especially from the first to the second cycle.This change corresponds to a significant capacity fading charging to 4.8 V.

    4 Conclusions

    In this work,the electrochemical performance of the LVP/C cathode material,especially the high-rate performance,was greatly improved by using an organic/water as mixture solvent.The precursor of LVPwas prepared by a sol-gel method using PAA as the chelating agent and carbon source.Electrochemical tests show that the discharge capacity of the samples is increased by adding the organic solvents.The sample with adding 1,2-propylene glycol gave the best electrochemical performance.In the voltage range of 3.0-4.5 V,the discharge capacity is 132.89,128.59,125.07,119.99 mAh·g-1at 0.1C,1C,10C,20C,respectively.The specific capacity of sample D is as high as 120.14 mAh·g-1after 700 cycles at 10C rate.In the voltage range of 3.0-4.8 V,the capacity of the materials has a significant fading and poor cycle stability.

    (1)Guo,X.D.;Zhong,B.H.;Liu,H.;Wu,D.Q.;Tang,Y.;Tang,H.J.Electrochem.Soc.2009,156,A787.

    (2)Tang,Y.;Guo,X.D.;Zhong,B.H.;Liu,H.Inorganic Chemicals Industry 2010,42,12.[唐 艷,郭孝東,鐘本和,劉 恒.無機(jī)鹽工業(yè),2010,42,12.]

    (3)Wu,D.Q.;Zhong,B.H.;Xu,R.;Guo,X.D.;Liu,H.;Song,Y.;Tang,Y.New Chemical Materials 2010,38,37.[吳德橋,鐘本和,徐 瑞,郭孝東,劉 恒,宋 楊,唐 艷.化工新型材料,2010,38,37.]

    (4) Li,Y.Z.;Zhou,Z.;Gao,X.P.;Yan,J.Electrochimica Acta 2007,52,4922.

    (5)Jiang,T.;Wei,Y.J.;Pan,W.C.;Li,Z.;Ming,X.;Chen,G.;Wang,C.Z.J.Alloy.Compd.2009,488,L26.

    (6)Li,L.J.;Li,X.H.;Wang,Z.X.;Guo,H.J.;Wu,L.;Hao,Y.;Zheng,J.C.J.Alloy.Compd.2010,497,176.

    (7)Guo,X.D.;Zhong,B.H.;Tang,Y.;Liu,H.;Wu,D.Q.;Yang,H.L.J.Chem.Eng.Chin.Univ.2009,23,701.[郭孝東,鐘本和,唐 艷,劉 恒,吳德橋,楊海蘭.高校化學(xué)工程學(xué)報(bào),2009,23,701.]

    (8)Guo,X.D.;Zhong,B.H.;Tang,Y.;Liao,W.H.;Wu,D.Q.Chemical Research and Application 2008,20,625. [郭孝東,鐘本和,唐 艷,廖文華,吳德橋.化學(xué)研究與應(yīng)用,2008,20,625.]

    (9) Hou,C.P.;Yue,M.Acta Phys.-Chim.Sin.2007,23,1954.[侯春平,岳 敏.物理化學(xué)學(xué)報(bào),2007,23,1954.]

    (10) Zheng,J.C.;Li,X.H.;Wang,Z.X.;Li,J.H.;Wu,L.;Li,L.J.;Guo,H.J.Acta Phys.-Chim.Sin.2009,25,1916.[鄭俊超,李新海,王志興,李金輝,伍 凌,李靈均,郭華軍.物理化學(xué)學(xué)報(bào),2009,25,1916.]

    (11)Chen,Q.Q.;Wang,J.M.;Tang,Z.;He,W.C.;Shao,H.B.;Zhang,J.Q.Electrochimica Acta 2007,52,5251.

    (12)Tan,L.;Luo,Z.M.;Liu,H.W.;Yu,Y.J.Alloy.Compd.2010,502,407.

    (13) Jang,I.C.;Lim,H.H.;Lee,S.B.;Karthikeyan,K.;Aravindan,V.;Kang,K.S.;Yoon,W.S.;Cho,W.I.;Lee,Y.S.J.Alloy.Compd.2010,497,321.

    (14)Wang,L.;Zhang,L.C.;Lieberwirth,L.;Xu,H.W.;Chen,C.H.Electrochem.Commun.2010,12,52.

    (15)Wang,J.W.;Zhang,X.F.;Liu,J.;Yang,G.L.;Ge,Y.C.;Yu,Z.J.;Wang,R.S.;Pan,X.M.Electrochimica Acta 2010,55,6879.(16)Wang,L.J.;Zhou,X.C.;Guo,Y.L.J.Power Sources 2010,195,2844.

    (17)Fu,P.;Zhao,Y.M.;Dong,Y.Z.;Hou,X.M.J.Phys.Chem.Solid 2010,71,394.

    (18) Zhou,X.C.;Liu,Y.M.;Guo,Y.L.Electrochimica Acta 2009,54,2253.

    (19) Jiang,T.;Pan,W.C.;Wang,J.;Bie,X.F.;Du,F.;Wei,Y.J.Electrochimica Acta 2010,55,3864.

    (20) Huang,J.S.;Yang,L.;Liu,K.Y.;Tang,Y.F.J.Power Sources 2010,195,5013.

    (21) Dai,C.S.;Wang,F.P.;Liu,J.T.;Wang,D.L.;Hu,X.G.Chin.J.Inorg.Chem.2008,24,381.[戴長(zhǎng)松,王福平,劉靜濤,王殿龍,胡信國(guó).無機(jī)化學(xué)學(xué)報(bào),2008,24,381.]

    (22)Yang,G.;Liu,H.D.;Ji,H.M.;Chen,Z.Z.;Jiang,X.F.J.Power Sources 2010,195,5374.

    (23)Yang,G.;Liu,H.D.;Ji,H.M.;Chen,Z.Z.;Jiang,X.F.Electrochimica Acta 2010,55,2951.

    (24) Rui,X.H.;Li,C.;Chen,C.H.Electrochimica Acta 2009,54,3374.

    (25) Saidi,M.Y.;Barker,J.;Huang,H.;Swoyer,J.L.;Adamson,G.J.Power Sources 2003,119-121,266.

    (26)Fu,P.;Zhao,Y.;Dong,Y.;An,X.;Shen,G.Electrochimica Acta 2006,52,1003.

    混合溶劑對(duì)溶膠-凝膠法制備的Li3V2(PO4)3/C高倍率性能的影響

    唐 艷1鐘本和1,*郭孝東1劉 恒2鐘艷君1聶 翔1唐 紅1

    (1四川大學(xué)化學(xué)工程學(xué)院,成都610065;2四川大學(xué)材料科學(xué)與工程學(xué)院,成都610065)

    以有機(jī)-水為混合溶劑,采用溶膠-凝膠法制備鋰離子電池正極材料Li3V2(PO4)3/C,選取乙醇、乙二醇和1,2-丙二醇為有機(jī)溶劑,聚丙烯酸(PAA)為碳源和螯合劑.通過X射線衍射(XRD)、掃描電鏡(SEM)、恒流充放電以及循環(huán)伏安測(cè)試等方法,研究了產(chǎn)物的結(jié)構(gòu)形貌及電化學(xué)性能.XRD測(cè)試結(jié)果表明所有溶劑制備的樣品結(jié)晶良好,有機(jī)溶劑的加入不影響Li3V2(PO4)3材料的晶型結(jié)構(gòu).恒流充放電結(jié)果表明有機(jī)溶劑的加入改善了材料的電化學(xué)性能.以1,2-丙二醇-水為溶劑的樣品電化學(xué)性能最好,在3.0-4.5 V電壓范圍內(nèi),0.1C(1C=150 mA·g-1)倍率首次放電比容量為132.89 mAh·g-1,10C倍率首次放電比容量達(dá)125.42 mAh·g-1,循環(huán)700周后容量保持率為95.79%,具有良好的倍率性能與循環(huán)性能;在3.0-4.8 V電壓范圍內(nèi)倍率性能較差.掃描電鏡結(jié)果表明混合溶劑制備的樣品呈片狀和針狀,這種形狀有利于鋰離子的擴(kuò)散,因此提高了材料的電化學(xué)性能.

    鋰離子電池; 正極材料;Li3V2(PO4)3; 溶膠-凝膠法; 混合溶劑

    O646;O614.1;TM912.9

    Received:January 3,2011;Revised:February 14,2011;Published on Web:March 7,2011.

    ?Corresponding author.Email:Zhongbenhe@hotmail.com;Tel:+86-28-85406702;Fax:+86-28-85405517.

    The project was supported by the National Science&Technology Pillar Program of China(2007BAQ01055).

    國(guó)家科技支撐計(jì)劃(2007BAQ01055)資助項(xiàng)目

    猜你喜歡
    溶膠倍率電化學(xué)
    大型桅桿起重機(jī)起升變倍率方法及其應(yīng)用
    電化學(xué)中的防護(hù)墻——離子交換膜
    溶膠-凝膠法制備高性能ZrO2納濾膜
    關(guān)于量子電化學(xué)
    FANUC0iD系統(tǒng)速度倍率PMC控制方法
    電化學(xué)在廢水處理中的應(yīng)用
    Na摻雜Li3V2(PO4)3/C的合成及電化學(xué)性能
    一種智能加工系統(tǒng)中的機(jī)床倍率控制方法
    拉伸倍率對(duì)BOPP薄膜性能的影響
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅(qū)體
    99精品久久久久人妻精品| 免费日韩欧美在线观看| 免费一级毛片在线播放高清视频 | 捣出白浆h1v1| 亚洲,欧美精品.| 国产精品久久久人人做人人爽| 国产又色又爽无遮挡免费看| 亚洲专区中文字幕在线| ponron亚洲| 国产欧美日韩一区二区三区在线| 超碰97精品在线观看| 日韩中文字幕欧美一区二区| 丝袜在线中文字幕| 欧美性长视频在线观看| 免费在线观看视频国产中文字幕亚洲| 看免费av毛片| 中文字幕av电影在线播放| 国产精品一区二区免费欧美| 欧洲精品卡2卡3卡4卡5卡区| 精品乱码久久久久久99久播| 日韩成人在线观看一区二区三区| 18禁观看日本| 两性午夜刺激爽爽歪歪视频在线观看 | 好看av亚洲va欧美ⅴa在| 黑人操中国人逼视频| 欧美最黄视频在线播放免费 | 飞空精品影院首页| 不卡一级毛片| 国产激情久久老熟女| 久99久视频精品免费| 久久午夜亚洲精品久久| 午夜免费观看网址| 亚洲熟妇中文字幕五十中出 | 色播在线永久视频| 亚洲一区二区三区不卡视频| 午夜日韩欧美国产| 欧美乱码精品一区二区三区| 久久人妻av系列| 人人澡人人妻人| 日日夜夜操网爽| 欧美另类亚洲清纯唯美| 美女 人体艺术 gogo| 精品熟女少妇八av免费久了| 成年人黄色毛片网站| 欧美精品一区二区免费开放| 十八禁人妻一区二区| 男人的好看免费观看在线视频 | 久久久久久久国产电影| 超碰97精品在线观看| 精品福利观看| 色婷婷久久久亚洲欧美| 曰老女人黄片| 色老头精品视频在线观看| 777久久人妻少妇嫩草av网站| 黑人巨大精品欧美一区二区mp4| 热re99久久精品国产66热6| 老汉色∧v一级毛片| 欧美亚洲日本最大视频资源| 老熟女久久久| 国产亚洲精品第一综合不卡| 极品少妇高潮喷水抽搐| 波多野结衣av一区二区av| 在线观看www视频免费| 久久精品亚洲熟妇少妇任你| 久久久久久久久免费视频了| 久久人人爽av亚洲精品天堂| 法律面前人人平等表现在哪些方面| 亚洲综合色网址| 无人区码免费观看不卡| 中文字幕人妻熟女乱码| 久久亚洲真实| 免费人成视频x8x8入口观看| 人成视频在线观看免费观看| 在线观看午夜福利视频| 最新的欧美精品一区二区| 国产精品成人在线| 亚洲五月婷婷丁香| 99热国产这里只有精品6| 日韩一卡2卡3卡4卡2021年| 操美女的视频在线观看| 法律面前人人平等表现在哪些方面| 久久久国产一区二区| 欧美成人免费av一区二区三区 | 天天操日日干夜夜撸| 亚洲欧美一区二区三区黑人| 1024视频免费在线观看| 免费在线观看黄色视频的| av超薄肉色丝袜交足视频| 国产精品98久久久久久宅男小说| 丝袜在线中文字幕| 女人爽到高潮嗷嗷叫在线视频| 一本大道久久a久久精品| 香蕉久久夜色| 美女国产高潮福利片在线看| 午夜福利在线观看吧| 十八禁人妻一区二区| 麻豆av在线久日| 国产精品偷伦视频观看了| 精品熟女少妇八av免费久了| 视频区图区小说| 三级毛片av免费| www.熟女人妻精品国产| 成人影院久久| 在线国产一区二区在线| 高清欧美精品videossex| 欧美日韩瑟瑟在线播放| 夜夜躁狠狠躁天天躁| 人人妻人人添人人爽欧美一区卜| 99久久99久久久精品蜜桃| 女性被躁到高潮视频| 香蕉久久夜色| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦在线免费观看视频4| 男男h啪啪无遮挡| 中文字幕精品免费在线观看视频| 午夜激情av网站| 国产乱人伦免费视频| 亚洲五月色婷婷综合| 999久久久国产精品视频| 久久精品国产a三级三级三级| ponron亚洲| 国产精品国产高清国产av | avwww免费| 一本一本久久a久久精品综合妖精| 亚洲av电影在线进入| 亚洲久久久国产精品| 在线天堂中文资源库| 国产精品自产拍在线观看55亚洲 | 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 久久久久久亚洲精品国产蜜桃av| 一级作爱视频免费观看| 日本wwww免费看| 亚洲成a人片在线一区二区| 一夜夜www| 久久精品91无色码中文字幕| 99热国产这里只有精品6| 精品国产一区二区久久| 欧美国产精品一级二级三级| 久久热在线av| 怎么达到女性高潮| 欧美性长视频在线观看| 亚洲欧美精品综合一区二区三区| 老司机亚洲免费影院| 久久久精品区二区三区| av天堂在线播放| 日韩中文字幕欧美一区二区| 建设人人有责人人尽责人人享有的| 久久人人97超碰香蕉20202| 在线视频色国产色| 亚洲熟妇中文字幕五十中出 | 亚洲国产中文字幕在线视频| 日日爽夜夜爽网站| 亚洲色图综合在线观看| 又黄又粗又硬又大视频| 少妇粗大呻吟视频| 欧美精品高潮呻吟av久久| 宅男免费午夜| 国产成人精品在线电影| 亚洲五月天丁香| 欧美色视频一区免费| 高清毛片免费观看视频网站 | a级毛片黄视频| 悠悠久久av| 亚洲第一av免费看| 另类亚洲欧美激情| av有码第一页| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美国产一区二区入口| 精品一品国产午夜福利视频| 一级a爱片免费观看的视频| 国产不卡一卡二| 国产亚洲精品第一综合不卡| 精品一区二区三卡| 亚洲少妇的诱惑av| 亚洲精品中文字幕在线视频| 大型黄色视频在线免费观看| 自线自在国产av| 欧美 日韩 精品 国产| 精品亚洲成国产av| 亚洲一区二区三区欧美精品| 90打野战视频偷拍视频| 久久精品国产亚洲av高清一级| 亚洲一区二区三区欧美精品| 午夜老司机福利片| 香蕉国产在线看| 色婷婷av一区二区三区视频| 狂野欧美激情性xxxx| 国产高清videossex| 十分钟在线观看高清视频www| 自拍欧美九色日韩亚洲蝌蚪91| 日本vs欧美在线观看视频| 国产亚洲欧美精品永久| 国产高清国产精品国产三级| av国产精品久久久久影院| 成年版毛片免费区| 国产成+人综合+亚洲专区| 一区二区三区国产精品乱码| 国产精品亚洲一级av第二区| 男人舔女人的私密视频| 在线观看www视频免费| 欧美在线黄色| 国产在线观看jvid| 村上凉子中文字幕在线| 啦啦啦 在线观看视频| 日韩三级视频一区二区三区| 高清黄色对白视频在线免费看| 亚洲欧美激情综合另类| 精品久久久久久久久久免费视频 | 香蕉丝袜av| 亚洲色图 男人天堂 中文字幕| 国产精品美女特级片免费视频播放器 | 亚洲第一青青草原| 99精品欧美一区二区三区四区| 国产精品av久久久久免费| 亚洲五月婷婷丁香| 最新在线观看一区二区三区| 午夜成年电影在线免费观看| 午夜日韩欧美国产| 国产精品一区二区精品视频观看| 18禁观看日本| 精品人妻在线不人妻| 99精国产麻豆久久婷婷| 欧美成狂野欧美在线观看| 女人被狂操c到高潮| 午夜免费鲁丝| 看片在线看免费视频| 在线播放国产精品三级| 亚洲色图综合在线观看| 午夜两性在线视频| 村上凉子中文字幕在线| 91精品三级在线观看| 国产伦人伦偷精品视频| 国产精品成人在线| 狂野欧美激情性xxxx| 啦啦啦在线免费观看视频4| 免费在线观看视频国产中文字幕亚洲| 国产精品1区2区在线观看. | 9191精品国产免费久久| 成年人午夜在线观看视频| 乱人伦中国视频| 国产免费av片在线观看野外av| 天天添夜夜摸| 久久九九热精品免费| 亚洲综合色网址| 99国产精品99久久久久| 老熟妇乱子伦视频在线观看| ponron亚洲| 国产一卡二卡三卡精品| a级毛片在线看网站| 日本wwww免费看| 精品一区二区三区av网在线观看| 精品第一国产精品| 成人国语在线视频| 国精品久久久久久国模美| 欧美成人午夜精品| 精品一区二区三卡| 久久久国产精品麻豆| 最近最新免费中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 国产1区2区3区精品| 国产亚洲av高清不卡| 91字幕亚洲| 另类亚洲欧美激情| 天天操日日干夜夜撸| 国产精品美女特级片免费视频播放器 | 人人妻人人澡人人爽人人夜夜| 日韩人妻精品一区2区三区| 三级毛片av免费| 午夜精品久久久久久毛片777| 国产单亲对白刺激| 亚洲av成人一区二区三| 老司机靠b影院| 在线观看www视频免费| 99re6热这里在线精品视频| 久久精品91无色码中文字幕| 法律面前人人平等表现在哪些方面| 欧美乱色亚洲激情| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 中文字幕精品免费在线观看视频| 三上悠亚av全集在线观看| 日韩欧美三级三区| 一级片免费观看大全| 色婷婷av一区二区三区视频| 国产精品一区二区免费欧美| 亚洲精品成人av观看孕妇| 国产真人三级小视频在线观看| 亚洲第一av免费看| 成在线人永久免费视频| a级毛片在线看网站| 性少妇av在线| 欧美最黄视频在线播放免费 | 欧美午夜高清在线| 国产精品av久久久久免费| tocl精华| 搡老乐熟女国产| 手机成人av网站| 久久香蕉精品热| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久毛片微露脸| 男人的好看免费观看在线视频 | 桃红色精品国产亚洲av| 人妻久久中文字幕网| 国产精品乱码一区二三区的特点 | 亚洲熟女精品中文字幕| 国产aⅴ精品一区二区三区波| 激情视频va一区二区三区| 日本黄色日本黄色录像| 国产成人啪精品午夜网站| 欧美人与性动交α欧美软件| 久久久久久免费高清国产稀缺| 国产亚洲精品第一综合不卡| 亚洲成人免费av在线播放| or卡值多少钱| 一进一出抽搐动态| 中文字幕人妻熟人妻熟丝袜美 | 久久中文看片网| 岛国在线免费视频观看| 少妇人妻精品综合一区二区 | 超碰av人人做人人爽久久 | 日韩有码中文字幕| 日韩欧美精品v在线| 69av精品久久久久久| 国产精品一区二区免费欧美| 动漫黄色视频在线观看| 国产男靠女视频免费网站| 国产三级黄色录像| 美女 人体艺术 gogo| 成人精品一区二区免费| 一区二区三区高清视频在线| 国产高清视频在线观看网站| 国产成人影院久久av| 真实男女啪啪啪动态图| 亚洲中文字幕日韩| 欧美午夜高清在线| 国产精品精品国产色婷婷| 亚洲成av人片免费观看| 窝窝影院91人妻| 身体一侧抽搐| 久久久久久久久久黄片| 69av精品久久久久久| 蜜桃亚洲精品一区二区三区| 日韩国内少妇激情av| 精品久久久久久,| 极品教师在线免费播放| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩卡通动漫| 97超级碰碰碰精品色视频在线观看| 蜜桃久久精品国产亚洲av| 欧美乱色亚洲激情| 国产伦一二天堂av在线观看| 精品国产超薄肉色丝袜足j| 亚洲男人的天堂狠狠| av专区在线播放| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 我要搜黄色片| av片东京热男人的天堂| 精品熟女少妇八av免费久了| 天堂网av新在线| 亚洲av五月六月丁香网| 亚洲成av人片在线播放无| 亚洲电影在线观看av| 欧美午夜高清在线| 久99久视频精品免费| xxx96com| 女同久久另类99精品国产91| 亚洲av美国av| 久久精品91无色码中文字幕| 一级黄片播放器| 国产色婷婷99| 在线天堂最新版资源| 久久婷婷人人爽人人干人人爱| 久9热在线精品视频| 国产 一区 欧美 日韩| 国产极品精品免费视频能看的| 最新在线观看一区二区三区| 欧美日韩国产亚洲二区| 日本五十路高清| 久久久久久久午夜电影| 欧美中文日本在线观看视频| 国内精品一区二区在线观看| 午夜免费观看网址| 老鸭窝网址在线观看| 窝窝影院91人妻| 我的老师免费观看完整版| 亚洲av第一区精品v没综合| 美女 人体艺术 gogo| 精品久久久久久久久久久久久| 好男人电影高清在线观看| 亚洲av成人av| 成年免费大片在线观看| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 女人十人毛片免费观看3o分钟| 国产97色在线日韩免费| 国产中年淑女户外野战色| 看片在线看免费视频| 国产精品香港三级国产av潘金莲| 男女视频在线观看网站免费| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 热99在线观看视频| 啪啪无遮挡十八禁网站| svipshipincom国产片| 免费av不卡在线播放| 国产一区在线观看成人免费| 男人的好看免费观看在线视频| 国产精品 欧美亚洲| 日韩精品中文字幕看吧| 人人妻人人澡欧美一区二区| 亚洲熟妇熟女久久| 欧美成人一区二区免费高清观看| 日本一本二区三区精品| 亚洲av成人不卡在线观看播放网| 国产国拍精品亚洲av在线观看 | 1024手机看黄色片| 久久久久久久亚洲中文字幕 | 欧美午夜高清在线| 亚洲国产色片| 国产精品电影一区二区三区| 午夜福利在线在线| 18禁美女被吸乳视频| 日韩欧美国产在线观看| 老汉色∧v一级毛片| 乱人视频在线观看| 又爽又黄无遮挡网站| 国产伦一二天堂av在线观看| 黄色女人牲交| 真人一进一出gif抽搐免费| 小蜜桃在线观看免费完整版高清| 婷婷精品国产亚洲av在线| 免费高清视频大片| 黄色视频,在线免费观看| 内地一区二区视频在线| 国产亚洲精品综合一区在线观看| 国内精品久久久久精免费| 成人av一区二区三区在线看| www日本黄色视频网| av欧美777| 欧美性猛交╳xxx乱大交人| 亚洲不卡免费看| 好男人电影高清在线观看| 午夜亚洲福利在线播放| av黄色大香蕉| 悠悠久久av| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看| 国产午夜福利久久久久久| 久久中文看片网| 欧美丝袜亚洲另类 | 无人区码免费观看不卡| 国产成+人综合+亚洲专区| av天堂在线播放| 久久精品91无色码中文字幕| 国产伦精品一区二区三区视频9 | 中文字幕av成人在线电影| 国产伦人伦偷精品视频| 欧美大码av| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 观看免费一级毛片| 亚洲精品亚洲一区二区| а√天堂www在线а√下载| 99精品在免费线老司机午夜| 嫩草影视91久久| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| avwww免费| 亚洲成人久久爱视频| 国内精品一区二区在线观看| 日本 av在线| 精品无人区乱码1区二区| 又紧又爽又黄一区二区| 丁香欧美五月| 久久精品91蜜桃| 最近视频中文字幕2019在线8| 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 在线免费观看的www视频| 女人被狂操c到高潮| 丰满人妻熟妇乱又伦精品不卡| 九九在线视频观看精品| 日本与韩国留学比较| 免费av毛片视频| 免费观看的影片在线观看| www.熟女人妻精品国产| 午夜福利高清视频| 欧美在线黄色| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 男女床上黄色一级片免费看| 色视频www国产| 1000部很黄的大片| 中文字幕人成人乱码亚洲影| 麻豆成人午夜福利视频| 在线国产一区二区在线| 中文字幕人妻丝袜一区二区| 九九热线精品视视频播放| 91麻豆av在线| 国产成人欧美在线观看| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 精品久久久久久成人av| h日本视频在线播放| 免费大片18禁| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 亚洲性夜色夜夜综合| av黄色大香蕉| 日韩国内少妇激情av| 午夜福利免费观看在线| e午夜精品久久久久久久| 一级黄色大片毛片| 欧美日本亚洲视频在线播放| 亚洲五月婷婷丁香| 操出白浆在线播放| 国产精品1区2区在线观看.| 国产av不卡久久| 亚洲男人的天堂狠狠| 网址你懂的国产日韩在线| 欧美性感艳星| 中国美女看黄片| 白带黄色成豆腐渣| 3wmmmm亚洲av在线观看| 亚洲人与动物交配视频| 成年版毛片免费区| 搡老妇女老女人老熟妇| 亚洲欧美精品综合久久99| 在线观看av片永久免费下载| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 成年版毛片免费区| 国产午夜福利久久久久久| 免费看十八禁软件| 中文字幕人妻熟人妻熟丝袜美 | 精品99又大又爽又粗少妇毛片 | 国产真实伦视频高清在线观看 | 国产三级在线视频| 国产精华一区二区三区| 99久久成人亚洲精品观看| 精华霜和精华液先用哪个| 叶爱在线成人免费视频播放| 日韩欧美在线二视频| 亚洲真实伦在线观看| 18禁美女被吸乳视频| 国产探花在线观看一区二区| 一本综合久久免费| 国产av不卡久久| 观看美女的网站| 亚洲成a人片在线一区二区| 精品一区二区三区av网在线观看| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 男人的好看免费观看在线视频| 黄色日韩在线| 一级a爱片免费观看的视频| 无人区码免费观看不卡| 午夜免费男女啪啪视频观看 | av在线天堂中文字幕| 亚洲狠狠婷婷综合久久图片| 尤物成人国产欧美一区二区三区| netflix在线观看网站| 午夜日韩欧美国产| 久久精品影院6| xxx96com| 香蕉av资源在线| 亚洲男人的天堂狠狠| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 99久久精品热视频| 久久精品夜夜夜夜夜久久蜜豆| 国产97色在线日韩免费| 天堂av国产一区二区熟女人妻| 日本与韩国留学比较| 亚洲av免费高清在线观看| 999久久久精品免费观看国产| 91av网一区二区| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 成人性生交大片免费视频hd| 嫩草影视91久久| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲av五月六月丁香网| 欧美xxxx黑人xx丫x性爽| 久久精品国产综合久久久| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 香蕉丝袜av| 手机成人av网站| 欧美黑人巨大hd| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 我的老师免费观看完整版| 亚洲av免费高清在线观看| 国产乱人视频| 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 婷婷丁香在线五月| 婷婷六月久久综合丁香| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 国产亚洲精品久久久com| 岛国在线观看网站| 久久精品91无色码中文字幕| 午夜福利在线观看免费完整高清在 | 久久久久久久午夜电影| 成人永久免费在线观看视频| 观看美女的网站| 欧美日韩瑟瑟在线播放|