• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method

    2014-10-14 03:45:02TANGYanZHONGBenHeGUOXiaoDongLIUHengZHONGYanJunNIEXiangTANGHong
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:溶膠倍率電化學(xué)

    TANG Yan ZHONG Ben-He,* GUO Xiao-Dong LIU Heng ZHONG Yan-JunNIE Xiang TANG Hong

    (1College of Chemical Engineering,Sichuan University,Chengdu 610065,P.R.China;2College of Materials Science and Engineering,Sichuan University,Chengdu 610065,P.R.China)

    Effects of Mixed Solvents on the High-Rate Performance of Li3V2(PO4)3/C Prepared by Sol-Gel Method

    TANG Yan1ZHONG Ben-He1,*GUO Xiao-Dong1LIU Heng2ZHONG Yan-Jun1NIE Xiang1TANG Hong1

    (1College of Chemical Engineering,Sichuan University,Chengdu 610065,P.R.China;2College of Materials Science and Engineering,Sichuan University,Chengdu 610065,P.R.China)

    Abstract: A Li3V2(PO4)3/C composite cathode material was obtained by a sol-gel method using deionized water and organic solvents as mixed solvents.Ethanol,ethylene glycol,and 1,2-propylene glycol were used as the organic solvents and polyacrylic acid(PAA)was used as the chelating agent and carbon source.The structure,morphology,and electrochemical performance of the synthesized materials were studied by X-ray diffraction(XRD),scanning electron microscopy(SEM),charge-discharge tests,and cyclic voltammetry.XRD analysis showed that all the materials were well crystallized and that the addition of organic solvents did not affect the crystal structure of Li3V2(PO4)3.The results of galvanostatic cycling showed that the electrochemical performance of the products was improved by the addition of organic solvents.The material synthesized using 1,2-propylene glycol had the best electrochemical performance.It exhibited an initial discharge capacity of 132.89 mAh·g-1at 0.1C(1C=150 mA·g-1)in the voltage range of 3.0-4.5 V.The initial discharge capacity was as high as 125.42 mAh·g-1upon discharging at 10C,and it had a capacity retention of 95.79%after 700 cycles.These results indicate a good rate and cycling performance in the voltage range of 3.0-4.5 V;while in the voltage range of 3.0-4.8 V,it exhibits a bad rate performance.SEM images indicated that the sample prepared using the mixed solvents had a flake-like and needle-like shape,which facilitates the interface ion-transfer process and thus improves the overall electrochemical properties.

    Key Words:Lithium ion battery;Cathode material;Li3V2(PO4)3;Sol-gel method;Mixed solvents

    1 Introduction

    Lithium ion batteries have become the most promising energy storage devices for portable electronics.Some poly-anionic phosphate materials,such as the olivine-type LiFePO41-3and monoclinic Li3V2(PO4)3(LVP)4-10,have attracted much interest in the past decade.The reversible cycling of all three lithium ions from LVP would correspond to a theoretical capacity of 197 mAh·g-1,which is the highest for all phosphate that have been reported11-13.Owing to good ion mobility,high lithium capacity,and a high operating voltage,LVP has been proposed to be a potential candidate of cathode materials for Li-ion batteries.LVP has good high-rate performance and good cycling stability.14,15It may play an important role in the expanding demand of electric vehicles(EVs)and hybrid electric vehicles(HEVs)in the future.

    In the literature,carbon-coated LVP powders have been synthesized via various methods such as solid-state reaction,16-18sol-gel process,19-21and microwave solid-state reaction.22,23Among them,the solid-state reaction is simple,environment friendly,and reaction efficient,but the particle size of the material is non-uniform.By using microwave,the reaction time can be greatly shortened;however,the preparation condition is difficult to control.Although the sol-gel process is complex,this method allows reactants to mix at the atomic or molecular level,thus reducing the calcination temperature and time of the products.Therefore,the sol-gel process is a promising method to synthesize higher purity material with uniform particle size.

    So far,nearly all the LVP synthesized by the sol-gel method used pure deionized water as solvent.A few studies have been reported to use some organic solvents,but paper16did not specify the role of organic solvent.Surface tension of an organic solvent is smaller than that of water.Therefore,the organic solvent is not only used as solvent,but also would play the role of surfactant,which has an impact on the growth of the particle.Also,during the drying process,the gel is not easy to reunite,thereby reducing the particle size.In this work,LVP precursor was synthesized by the sol-gel method with an organic solvent in water.Ethanol,ethylene glycol,and 1,2-propylene glycol were used as organic solvents.The effects of different organic solvents on the performance of LVP samples were evaluated.

    2 Experimental

    The LVP/C composites were prepared by a sol-gel method.The stoichiometric ratio of LiOH·H2O(99%(w,mass fraction)),NH4VO3(99%),H3PO4(85%)were used as raw materials.Polyacrylic acid(PAA)(30%)was used as carbon source and chelating reagent.Organic solvents(in this work,ethanol,ethylene glycol,and 1,2-propylene glycol were chosen as organic solvents)and deionized water were mixed in proportion of 40:60(volume ratio).First,LiOH·H2O and NH4VO3were dissolved in deionized water at room temperature.Then organic solvent and 10%(w)of PAA were added into the solution.Finally,H3PO4was added to the mixture.This solution was constantly stirred for 2 h at 80°C,and then the excess solvent was removed by vacuum distillation.The resulting gel precursor was dried in a vacuum oven at 90°C for 15 h.After drying,the precursors were decomposed in tube furnace at 350°C for 4 h,then heated at 700°C for 6 h under flowing argon.The final product was a black powder.

    The carbon content was verified by CS-902 analytical instrument(Wanlianda Xinke,Beijing,China).The crystalline structure of each product was analyzed by X-ray diffraction(XRD,D/max-rB,Rigaku,Cu Kαradiation)(λ=0.15046 nm)operated at 40 kV and 40 mA.The particle morphology and particle size of the LVP powders were observed by scanning electron microscopy(SEM,SPA400 Seiko Instruments).

    The specific surface areas(SSA)were measured with Brunauer-Emmett-Teller(BET)method by N2physisorption at 77 K on Quanachrome automated surface area&pore size analysizer(Autosorb SI).The samples were pretreated at 300°C for 3 h prior to the measurement.

    The cathode was fabricated by pressing a mixture of 80%(w)LVP/C,13%(w)acetylene black(conducting additive),and 7%(w)PVDF(binder)onto an Al foil.The anode was lithium foil and the electrolyte was 1 mol·L-1LiPF6solution in ethylene carbonate:propylene carbonate:diethyl carbonate[1:1:1(volume ratio)].Galvanostatic charging/discharging tests were operated in the voltage range of 3.0-4.5 V and 3.0-4.8 V at room temperature(25°C)with a battery test system(Neware BTS-610).Cyclic voltammetry(CV)was performed on the positive electrode in the cells described above by a CHI 660C electrochemical work station.CV tests were carried out in voltage ranges 3.0-4.5 V and 3.0-4.8 V at a scanning rate of 0.10 mV·s-1.

    3 Results and discussion

    Fig.1 shows the X-ray diffraction patterns of the LVP/C composites synthesized with different organic solvents;they are similar to those reported by Rui24and Saidi25et al.The characteristic peaks of all the LVP/C samples are sharp and without any impurity peaks.The carbon left in the LVP can not be detected because the residual carbon is only about 3%and in amorphous form.It can be concluded that the samples with all solvents have produced a single phase of LVP/C with monoclinic structure.Table 1 shows the cell parameters of LVP/C samples,and it can be seen that the cell volumes of the four samples are close to each other.It indicates that different solvents do not have significant effects on the cell parameters of the products.In addition,the mean coherent domain sizes of the samples were calculated by Jada 5.0 software which takesaccount of all the major diffraction peaks in the XRD pattern.It can be seen that the mean coherent domain sizes of the samples synthesized by mixed solvents are smaller than that using pure deionized water;and the grain size of sample D is the smallest one,which may facilitate the electron transport and ions diffusion.

    Fig.2 shows the first charge/discharge curves of LVP/C samples in the voltage range of 3.0-4.5 V at 0.1C.It can be seen that all the initial charge curves of the samples exhibit three stable voltage plateaus at 3.57,3.65,and 4.08 V.These plateaus correspond to the two-phase transitions between the single phases of LixV2(PO4)3(x=2.5,2.0,1.0).The initial discharge capacities of samples A,B,C,and D are 123.59,127.60,130.51,and 132.89 mAh·g-1,respectively.Compared with sample A,samples B,C and D,which are synthesized with mixed solvents,have higher discharge capacity.Fig.3 displays the average discharge capacity of samples A,B,C,and D at 0.1C,0.2C,0.5C,1C,3C,5C,10C,and 20Crates,respectively.It can be seen that the capacity of the samples basically possesses better retention,only fading faster at higher rates for sample A.The discharge capacities of samples A,B,C,and D at 20Crates are 95.92,110.85,116.92,and 119.99 mAh·g-1,which are 77.61%,86.87%,89.30%,and 90.29%of the capacity at 0.1Crate,respectively.Obviously,the electrochemical performance of products can be improved by adding organic solvents during the reaction of precursors,especially at high discharge rate.

    In order to explain why the samples obtained by adding organic solvents have better electrochemical performance,the SEM images of samplesAand D in Fig.4 are compared carefully.As shown in Fig.4(a,b),the sample synthesized by pure deionized water presents an irregularity of shape with particle size of 1-3 μm.This kind of shape with a small specific surface area does not favor lithium-ion diffusion.When the current increases,the diffusion of lithium ion is blocked and the capacity decreases.The sample synthesized in the mixed solvent by adding some 1,2-propylene glycol,to some extent,is part of the particle agglomerate,but the original particle size is small and most of the particles are distributed in the range of 1-2 μm(Fig.4(c,d)).Most of the particles have a flake-like shape,as mentioned previously;26the morphology of flake-like shape has a large specific surface area and results in good electrochemical performance.There are also particles in needlelike shape that are about 0.1 μm in diameter and 1 μm in length;meanwhile these particles also have a large specific surface area.We believe that the flake-like and needle-like shape leads to the better performance of sample D.It can be concluded that the existence of organic solvent can affect the shape ofthe particle.The surface tension of organic solvents is smaller than that of water;the solvent can selectively control the surface energy of different particle faces in the process of gel formation.PAA is a long-chain molecule,so that the LVP precursor particle can grow along its long-chain direction to give flake-like and needle-like particles.

    Table 1 Cell parameters of the samples

    A confirmation,quite valuable being quantitative,of the positive influence of the solvent on the grain characteristics comes from specific surface area measurements with the BET method.The data reported in Table 2 show that 1,2-propylene glycolwater mixed solvents markedly enhance the specific surface area of the powders.The sample D shows a specific surface area almost 1.5 times that of the sample prepared by pure deionized water.Therefore,it can be concluded that the solvents have great effects on the specific surface area of the samples.

    Among the samples,sample D gave the best performance.Fig.5 demonstrates the cycle and rate performance of sample D at various discharge rates.It can be seen that its cycling stability is excellent at each rate.The discharge capacity does not decrease at each rate after several cycles.As the rate increases,the discharge capacity decreases only a little;when the current comes to 20C,the specific capacity is still as high as 119.99 mAh·g-1.The discharge voltage decreases as the rate increases since the polarization becomes heavier with increasing the rate.From Fig.6,we can clearly see that sample D shows a good cycling stability at 10Crate.The initial specific capacity is 125.42 mAh·g-1and decreases to 120.14 mAh·g-1after 700 cycles(the ratio of 95.79%of the initial capacity).The good performance of LVP/C obtained in this experiment,combined with its high safety,implies that it can be a candidate cathode material for the lithium ion battery of HEVs and EVs in the future.

    Table 2 Specific surface area(S)of the sample synthesized with different solvents

    Monoclinic lithium vanadium phosphate contains three independent lithium sites with a theoretical discharge capacity of 197 mAh·g-1,while three Li ions are completely released from the cathode.Fig.7 shows the electrochemical performance of sample D in the voltage range of 3.0-4.8 V.Sample D presents an initial charge specific capacity of 196.14 mAh·g-1at 0.1C,equivalent to the theoretical capacity(Fig.7(a)).The initial discharge capacity is 165.96 mAh·g-1,which is only 84.61%ofthe initial charge capacity.When keeping the charge rate at 1C rate and increasing the discharge rate,the polarization becomes heavy and the voltage decreases a lot.The discharge specific capacity decreases from 117.80 to 105.06 mAh·g-1when discharge rate increasing from 10C to 20C rate.It can be seen from Fig.7(b)that the fading seems to be unavoidable since the capacity of sample D is 139.69 mAh·g-1after six cycles at 0.1C and 0.2C rates,respectively,a capacity decrease of about 26.27 mAh·g-1.However,it is obvious that the major decay exists in the first 12 cycles with a fading rate of 2.19 mAh·g-1per cycle.With the increase of discharge rate,the latter 60 cycles remain stable,especially at 10Cand 20Crate.The initial specific capacity is 117.80 mAh·g-1and is also as high as 116.21 mAh·g-1after 20 cycles at 10Crate.Compared with the stable cycle ability presented in LVP samples in the voltage range of 3.0-4.5 V(Fig.5),there is a significant fading of capacity in the voltage range of 3.0-4.8 V,which might be due to the following reasons.One is the oxidation of electrolyte in this high electrochemical window(3.0-4.8 V).The other is that the crystal structures of LVP is distorted during the phase transition process at the high voltage(>4.6 V).The resistance of Li3V2(PO4)3sample might be increased during the extraction/reinsertion process,which results in the poor cycle ability.

    In order to compare the behavior of LVP at different voltage ranges,the CV curve obtained in the voltage ranges of 3.0-4.5 V and 3.0-4.8 V are shown in Fig.8.Fig.8(A)shows the CV curves of sample D from 3.0 to 4.5 V.The voltage range to 4.5 V exhibits typical oxidative peaks near 3.63,3.72,and 4.14 V(vs Li/Li+)as well as reductive peaks 3.53,3.60,and 3.99 V(vs Li/Li+),respectively.It corresponds to lithium extraction and insertion in the stoichiometric ranges:x=0.0-0.5,0.5-1.0,1.0-2.0 in Li3-xV2(PO4)3,respectively.Among the three CV curves,the first cycle has the weakest peak intensities;as the cycle number increases,the peak intensities become stronger and the oxidative/reductive peaks are approaching to each other,promising a good cycle stability.The CV profile of LVP in the voltage range of 3.0-4.8 V is shown in Fig.8(B).There are four oxidation and three reduction peaks present in the CV curve.The oxidation peak at 4.58 V is the extraction of the third Li+ion associated with the phase transition process from LiV2(PO4)3to V2(PO4)3.From Fig.8(B),it can be seen that peakintensities gradually decrease with increasing cycle number,especially from the first to the second cycle.This change corresponds to a significant capacity fading charging to 4.8 V.

    4 Conclusions

    In this work,the electrochemical performance of the LVP/C cathode material,especially the high-rate performance,was greatly improved by using an organic/water as mixture solvent.The precursor of LVPwas prepared by a sol-gel method using PAA as the chelating agent and carbon source.Electrochemical tests show that the discharge capacity of the samples is increased by adding the organic solvents.The sample with adding 1,2-propylene glycol gave the best electrochemical performance.In the voltage range of 3.0-4.5 V,the discharge capacity is 132.89,128.59,125.07,119.99 mAh·g-1at 0.1C,1C,10C,20C,respectively.The specific capacity of sample D is as high as 120.14 mAh·g-1after 700 cycles at 10C rate.In the voltage range of 3.0-4.8 V,the capacity of the materials has a significant fading and poor cycle stability.

    (1)Guo,X.D.;Zhong,B.H.;Liu,H.;Wu,D.Q.;Tang,Y.;Tang,H.J.Electrochem.Soc.2009,156,A787.

    (2)Tang,Y.;Guo,X.D.;Zhong,B.H.;Liu,H.Inorganic Chemicals Industry 2010,42,12.[唐 艷,郭孝東,鐘本和,劉 恒.無機(jī)鹽工業(yè),2010,42,12.]

    (3)Wu,D.Q.;Zhong,B.H.;Xu,R.;Guo,X.D.;Liu,H.;Song,Y.;Tang,Y.New Chemical Materials 2010,38,37.[吳德橋,鐘本和,徐 瑞,郭孝東,劉 恒,宋 楊,唐 艷.化工新型材料,2010,38,37.]

    (4) Li,Y.Z.;Zhou,Z.;Gao,X.P.;Yan,J.Electrochimica Acta 2007,52,4922.

    (5)Jiang,T.;Wei,Y.J.;Pan,W.C.;Li,Z.;Ming,X.;Chen,G.;Wang,C.Z.J.Alloy.Compd.2009,488,L26.

    (6)Li,L.J.;Li,X.H.;Wang,Z.X.;Guo,H.J.;Wu,L.;Hao,Y.;Zheng,J.C.J.Alloy.Compd.2010,497,176.

    (7)Guo,X.D.;Zhong,B.H.;Tang,Y.;Liu,H.;Wu,D.Q.;Yang,H.L.J.Chem.Eng.Chin.Univ.2009,23,701.[郭孝東,鐘本和,唐 艷,劉 恒,吳德橋,楊海蘭.高校化學(xué)工程學(xué)報(bào),2009,23,701.]

    (8)Guo,X.D.;Zhong,B.H.;Tang,Y.;Liao,W.H.;Wu,D.Q.Chemical Research and Application 2008,20,625. [郭孝東,鐘本和,唐 艷,廖文華,吳德橋.化學(xué)研究與應(yīng)用,2008,20,625.]

    (9) Hou,C.P.;Yue,M.Acta Phys.-Chim.Sin.2007,23,1954.[侯春平,岳 敏.物理化學(xué)學(xué)報(bào),2007,23,1954.]

    (10) Zheng,J.C.;Li,X.H.;Wang,Z.X.;Li,J.H.;Wu,L.;Li,L.J.;Guo,H.J.Acta Phys.-Chim.Sin.2009,25,1916.[鄭俊超,李新海,王志興,李金輝,伍 凌,李靈均,郭華軍.物理化學(xué)學(xué)報(bào),2009,25,1916.]

    (11)Chen,Q.Q.;Wang,J.M.;Tang,Z.;He,W.C.;Shao,H.B.;Zhang,J.Q.Electrochimica Acta 2007,52,5251.

    (12)Tan,L.;Luo,Z.M.;Liu,H.W.;Yu,Y.J.Alloy.Compd.2010,502,407.

    (13) Jang,I.C.;Lim,H.H.;Lee,S.B.;Karthikeyan,K.;Aravindan,V.;Kang,K.S.;Yoon,W.S.;Cho,W.I.;Lee,Y.S.J.Alloy.Compd.2010,497,321.

    (14)Wang,L.;Zhang,L.C.;Lieberwirth,L.;Xu,H.W.;Chen,C.H.Electrochem.Commun.2010,12,52.

    (15)Wang,J.W.;Zhang,X.F.;Liu,J.;Yang,G.L.;Ge,Y.C.;Yu,Z.J.;Wang,R.S.;Pan,X.M.Electrochimica Acta 2010,55,6879.(16)Wang,L.J.;Zhou,X.C.;Guo,Y.L.J.Power Sources 2010,195,2844.

    (17)Fu,P.;Zhao,Y.M.;Dong,Y.Z.;Hou,X.M.J.Phys.Chem.Solid 2010,71,394.

    (18) Zhou,X.C.;Liu,Y.M.;Guo,Y.L.Electrochimica Acta 2009,54,2253.

    (19) Jiang,T.;Pan,W.C.;Wang,J.;Bie,X.F.;Du,F.;Wei,Y.J.Electrochimica Acta 2010,55,3864.

    (20) Huang,J.S.;Yang,L.;Liu,K.Y.;Tang,Y.F.J.Power Sources 2010,195,5013.

    (21) Dai,C.S.;Wang,F.P.;Liu,J.T.;Wang,D.L.;Hu,X.G.Chin.J.Inorg.Chem.2008,24,381.[戴長(zhǎng)松,王福平,劉靜濤,王殿龍,胡信國(guó).無機(jī)化學(xué)學(xué)報(bào),2008,24,381.]

    (22)Yang,G.;Liu,H.D.;Ji,H.M.;Chen,Z.Z.;Jiang,X.F.J.Power Sources 2010,195,5374.

    (23)Yang,G.;Liu,H.D.;Ji,H.M.;Chen,Z.Z.;Jiang,X.F.Electrochimica Acta 2010,55,2951.

    (24) Rui,X.H.;Li,C.;Chen,C.H.Electrochimica Acta 2009,54,3374.

    (25) Saidi,M.Y.;Barker,J.;Huang,H.;Swoyer,J.L.;Adamson,G.J.Power Sources 2003,119-121,266.

    (26)Fu,P.;Zhao,Y.;Dong,Y.;An,X.;Shen,G.Electrochimica Acta 2006,52,1003.

    混合溶劑對(duì)溶膠-凝膠法制備的Li3V2(PO4)3/C高倍率性能的影響

    唐 艷1鐘本和1,*郭孝東1劉 恒2鐘艷君1聶 翔1唐 紅1

    (1四川大學(xué)化學(xué)工程學(xué)院,成都610065;2四川大學(xué)材料科學(xué)與工程學(xué)院,成都610065)

    以有機(jī)-水為混合溶劑,采用溶膠-凝膠法制備鋰離子電池正極材料Li3V2(PO4)3/C,選取乙醇、乙二醇和1,2-丙二醇為有機(jī)溶劑,聚丙烯酸(PAA)為碳源和螯合劑.通過X射線衍射(XRD)、掃描電鏡(SEM)、恒流充放電以及循環(huán)伏安測(cè)試等方法,研究了產(chǎn)物的結(jié)構(gòu)形貌及電化學(xué)性能.XRD測(cè)試結(jié)果表明所有溶劑制備的樣品結(jié)晶良好,有機(jī)溶劑的加入不影響Li3V2(PO4)3材料的晶型結(jié)構(gòu).恒流充放電結(jié)果表明有機(jī)溶劑的加入改善了材料的電化學(xué)性能.以1,2-丙二醇-水為溶劑的樣品電化學(xué)性能最好,在3.0-4.5 V電壓范圍內(nèi),0.1C(1C=150 mA·g-1)倍率首次放電比容量為132.89 mAh·g-1,10C倍率首次放電比容量達(dá)125.42 mAh·g-1,循環(huán)700周后容量保持率為95.79%,具有良好的倍率性能與循環(huán)性能;在3.0-4.8 V電壓范圍內(nèi)倍率性能較差.掃描電鏡結(jié)果表明混合溶劑制備的樣品呈片狀和針狀,這種形狀有利于鋰離子的擴(kuò)散,因此提高了材料的電化學(xué)性能.

    鋰離子電池; 正極材料;Li3V2(PO4)3; 溶膠-凝膠法; 混合溶劑

    O646;O614.1;TM912.9

    Received:January 3,2011;Revised:February 14,2011;Published on Web:March 7,2011.

    ?Corresponding author.Email:Zhongbenhe@hotmail.com;Tel:+86-28-85406702;Fax:+86-28-85405517.

    The project was supported by the National Science&Technology Pillar Program of China(2007BAQ01055).

    國(guó)家科技支撐計(jì)劃(2007BAQ01055)資助項(xiàng)目

    猜你喜歡
    溶膠倍率電化學(xué)
    大型桅桿起重機(jī)起升變倍率方法及其應(yīng)用
    電化學(xué)中的防護(hù)墻——離子交換膜
    溶膠-凝膠法制備高性能ZrO2納濾膜
    關(guān)于量子電化學(xué)
    FANUC0iD系統(tǒng)速度倍率PMC控制方法
    電化學(xué)在廢水處理中的應(yīng)用
    Na摻雜Li3V2(PO4)3/C的合成及電化學(xué)性能
    一種智能加工系統(tǒng)中的機(jī)床倍率控制方法
    拉伸倍率對(duì)BOPP薄膜性能的影響
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅(qū)體
    精品一区二区三区视频在线观看免费| 国产大屁股一区二区在线视频| www日本黄色视频网| 不卡一级毛片| 国产精品99久久久久久久久| 性欧美人与动物交配| 国产精品爽爽va在线观看网站| 日本与韩国留学比较| 日韩制服骚丝袜av| 成人亚洲欧美一区二区av| 亚洲av中文字字幕乱码综合| 亚洲天堂国产精品一区在线| 精品日产1卡2卡| 午夜老司机福利剧场| 欧美性感艳星| 变态另类丝袜制服| 久久99热这里只有精品18| 深夜a级毛片| 婷婷精品国产亚洲av在线| 亚洲色图av天堂| 可以在线观看毛片的网站| 老司机午夜福利在线观看视频| 亚洲最大成人手机在线| 亚洲欧美日韩卡通动漫| 欧美性感艳星| 亚洲性夜色夜夜综合| 免费看a级黄色片| 黄色配什么色好看| 天堂av国产一区二区熟女人妻| 中文字幕免费在线视频6| 久99久视频精品免费| 国产高清有码在线观看视频| 国产一区二区在线av高清观看| 婷婷色综合大香蕉| 2021天堂中文幕一二区在线观| 欧美最新免费一区二区三区| 亚洲色图av天堂| 国产午夜精品论理片| 久久久欧美国产精品| 波多野结衣巨乳人妻| 亚洲天堂国产精品一区在线| 女人被狂操c到高潮| 国产日本99.免费观看| 最近2019中文字幕mv第一页| videossex国产| 内射极品少妇av片p| 欧美绝顶高潮抽搐喷水| 狂野欧美激情性xxxx在线观看| 天堂影院成人在线观看| 亚洲欧美日韩卡通动漫| 亚洲av成人av| 热99在线观看视频| 男人舔女人下体高潮全视频| 欧美日本亚洲视频在线播放| 国产高清视频在线播放一区| 欧美日韩一区二区视频在线观看视频在线 | 在线免费观看的www视频| 又粗又爽又猛毛片免费看| 网址你懂的国产日韩在线| 国产精品一区二区三区四区免费观看 | 成人高潮视频无遮挡免费网站| 国产91av在线免费观看| 久久精品国产99精品国产亚洲性色| 亚洲四区av| 国模一区二区三区四区视频| 色播亚洲综合网| 99国产精品一区二区蜜桃av| 色综合站精品国产| 国产一区亚洲一区在线观看| 久久婷婷人人爽人人干人人爱| 蜜臀久久99精品久久宅男| 22中文网久久字幕| 99视频精品全部免费 在线| 欧美最新免费一区二区三区| 看十八女毛片水多多多| 国产黄片美女视频| 日韩国内少妇激情av| 成人欧美大片| 亚洲av成人精品一区久久| 日本一本二区三区精品| 日本一本二区三区精品| 国产 一区 欧美 日韩| 中文在线观看免费www的网站| 99久久成人亚洲精品观看| 国产综合懂色| 亚洲第一电影网av| 色尼玛亚洲综合影院| 色尼玛亚洲综合影院| 国产久久久一区二区三区| 天堂影院成人在线观看| 精品久久久久久久久久久久久| 乱系列少妇在线播放| 亚洲国产精品成人久久小说 | 国产成人福利小说| 日韩欧美三级三区| 亚洲av.av天堂| 丰满人妻一区二区三区视频av| 男女做爰动态图高潮gif福利片| 日韩中字成人| 日韩精品有码人妻一区| 香蕉av资源在线| 亚洲国产欧洲综合997久久,| 色综合站精品国产| 国产精品精品国产色婷婷| 国产精品久久久久久av不卡| 久久久久九九精品影院| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 日本黄色片子视频| 如何舔出高潮| 色尼玛亚洲综合影院| 国产 一区 欧美 日韩| 中文字幕av在线有码专区| 人人妻人人看人人澡| 日韩,欧美,国产一区二区三区 | 大型黄色视频在线免费观看| 天天躁夜夜躁狠狠久久av| 亚洲精品日韩av片在线观看| 男女做爰动态图高潮gif福利片| 久久久成人免费电影| 99在线人妻在线中文字幕| 久久久久久国产a免费观看| 日本a在线网址| 丝袜美腿在线中文| 99久久精品国产国产毛片| 麻豆精品久久久久久蜜桃| 99热这里只有是精品在线观看| 中文字幕精品亚洲无线码一区| 秋霞在线观看毛片| 亚洲av不卡在线观看| 男女那种视频在线观看| 亚洲中文日韩欧美视频| 成人高潮视频无遮挡免费网站| 欧美日韩综合久久久久久| 亚洲一区二区三区色噜噜| av在线观看视频网站免费| 一a级毛片在线观看| 少妇丰满av| 久久精品国产清高在天天线| 国产蜜桃级精品一区二区三区| 久久久久久久久久黄片| 国产一区亚洲一区在线观看| 精品一区二区免费观看| 国产成年人精品一区二区| 精品一区二区免费观看| 国产极品精品免费视频能看的| 国产一级毛片七仙女欲春2| 日产精品乱码卡一卡2卡三| 看非洲黑人一级黄片| 国产亚洲91精品色在线| 亚洲av熟女| 卡戴珊不雅视频在线播放| 亚洲av免费高清在线观看| 国产人妻一区二区三区在| 亚洲一区高清亚洲精品| 中出人妻视频一区二区| 内地一区二区视频在线| 天堂影院成人在线观看| 成人美女网站在线观看视频| 免费av观看视频| 日本成人三级电影网站| 日韩人妻高清精品专区| 少妇人妻一区二区三区视频| 亚洲一级一片aⅴ在线观看| 色综合站精品国产| 91久久精品国产一区二区三区| a级毛片a级免费在线| 免费搜索国产男女视频| 美女内射精品一级片tv| 在线免费观看不下载黄p国产| 最新在线观看一区二区三区| 美女高潮的动态| 最近最新中文字幕大全电影3| 亚洲av中文字字幕乱码综合| 伊人久久精品亚洲午夜| 中文亚洲av片在线观看爽| 国内精品美女久久久久久| 亚洲自拍偷在线| 一进一出好大好爽视频| 亚洲av成人av| 综合色av麻豆| av卡一久久| 简卡轻食公司| 免费在线观看成人毛片| 国产乱人偷精品视频| 97超碰精品成人国产| 国产精品1区2区在线观看.| 日韩欧美 国产精品| 国产精品久久久久久精品电影| 色综合亚洲欧美另类图片| 少妇的逼好多水| 午夜亚洲福利在线播放| 亚洲高清免费不卡视频| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久成人| 欧美最新免费一区二区三区| 一区福利在线观看| 亚洲av一区综合| 女人十人毛片免费观看3o分钟| 午夜免费激情av| 毛片女人毛片| 日本黄色片子视频| 搡老熟女国产l中国老女人| 久久精品91蜜桃| 午夜a级毛片| 亚洲性夜色夜夜综合| 亚洲国产精品成人久久小说 | 亚洲av电影不卡..在线观看| 国产午夜精品论理片| av天堂在线播放| 我要搜黄色片| 成人欧美大片| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 免费无遮挡裸体视频| 国产精品日韩av在线免费观看| 成人鲁丝片一二三区免费| 欧美三级亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 最近最新中文字幕大全电影3| 大型黄色视频在线免费观看| 欧美zozozo另类| 免费人成在线观看视频色| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 成熟少妇高潮喷水视频| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 亚洲性久久影院| 久久久久久久久久黄片| 直男gayav资源| 又粗又爽又猛毛片免费看| 久久天躁狠狠躁夜夜2o2o| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 成人av在线播放网站| 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 高清毛片免费看| 精品一区二区三区人妻视频| 欧美成人一区二区免费高清观看| 亚洲无线观看免费| 亚州av有码| 成年女人毛片免费观看观看9| 免费av不卡在线播放| av在线天堂中文字幕| 国产高清三级在线| 男女做爰动态图高潮gif福利片| 久99久视频精品免费| 看免费成人av毛片| 久久综合国产亚洲精品| 麻豆一二三区av精品| 搡女人真爽免费视频火全软件 | 精品不卡国产一区二区三区| 丝袜美腿在线中文| 国产探花极品一区二区| 欧美性感艳星| 日韩欧美在线乱码| 精品久久国产蜜桃| 亚洲三级黄色毛片| 国产成年人精品一区二区| 校园春色视频在线观看| 欧美日本亚洲视频在线播放| 插阴视频在线观看视频| 免费av不卡在线播放| 亚洲av一区综合| 成人欧美大片| 长腿黑丝高跟| 中文字幕人妻熟人妻熟丝袜美| 人人妻,人人澡人人爽秒播| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 国产aⅴ精品一区二区三区波| 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 在线观看66精品国产| 噜噜噜噜噜久久久久久91| 又黄又爽又刺激的免费视频.| 亚洲中文字幕一区二区三区有码在线看| 3wmmmm亚洲av在线观看| 亚洲人与动物交配视频| 国产女主播在线喷水免费视频网站 | 少妇熟女欧美另类| 两个人的视频大全免费| 在线观看午夜福利视频| 久久亚洲国产成人精品v| АⅤ资源中文在线天堂| 国产成人a区在线观看| 久久婷婷人人爽人人干人人爱| 在线免费十八禁| 在线观看66精品国产| 免费看美女性在线毛片视频| 波多野结衣巨乳人妻| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 村上凉子中文字幕在线| 三级毛片av免费| 精品不卡国产一区二区三区| 岛国在线免费视频观看| 免费看光身美女| 露出奶头的视频| 国产高清三级在线| 丰满人妻一区二区三区视频av| 国产精品久久久久久久久免| 亚洲自拍偷在线| 亚洲国产色片| 身体一侧抽搐| 高清毛片免费观看视频网站| 在线a可以看的网站| 欧美zozozo另类| 欧美激情国产日韩精品一区| 欧美日韩乱码在线| 看黄色毛片网站| 精品一区二区免费观看| 免费黄网站久久成人精品| 亚洲自拍偷在线| 人妻少妇偷人精品九色| 成人特级黄色片久久久久久久| 久久人人爽人人爽人人片va| 天堂网av新在线| 高清午夜精品一区二区三区 | av在线播放精品| 亚洲成av人片在线播放无| 男女边吃奶边做爰视频| 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 99热这里只有精品一区| 亚洲欧美成人综合另类久久久 | 久久精品久久久久久噜噜老黄 | 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 毛片女人毛片| 国产免费一级a男人的天堂| 毛片女人毛片| 永久网站在线| 久久久色成人| ponron亚洲| 欧美成人a在线观看| 日韩,欧美,国产一区二区三区 | 精品欧美国产一区二区三| 小蜜桃在线观看免费完整版高清| 国产精品无大码| 一进一出好大好爽视频| 99久国产av精品国产电影| 搞女人的毛片| 美女黄网站色视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲自拍偷在线| 在线免费观看不下载黄p国产| 麻豆久久精品国产亚洲av| 国产成人影院久久av| 在线a可以看的网站| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 一夜夜www| av在线亚洲专区| 国产精品精品国产色婷婷| 国产精品不卡视频一区二区| av在线天堂中文字幕| 搡老熟女国产l中国老女人| 欧美一区二区国产精品久久精品| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 看片在线看免费视频| 十八禁网站免费在线| 又爽又黄a免费视频| 国产精品久久久久久精品电影| 中文字幕免费在线视频6| 日韩精品有码人妻一区| 级片在线观看| 日日撸夜夜添| 黄色欧美视频在线观看| 国产成人福利小说| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 亚洲人成网站在线观看播放| or卡值多少钱| 不卡视频在线观看欧美| 夜夜爽天天搞| 黄色日韩在线| 国产亚洲av嫩草精品影院| 寂寞人妻少妇视频99o| 99在线视频只有这里精品首页| 亚洲第一区二区三区不卡| 国产精华一区二区三区| 不卡一级毛片| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 亚洲欧美中文字幕日韩二区| 人人妻,人人澡人人爽秒播| 午夜激情福利司机影院| 亚洲欧美日韩无卡精品| 久久精品国产99精品国产亚洲性色| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 一级a爱片免费观看的视频| 欧美丝袜亚洲另类| 久久久午夜欧美精品| 美女高潮的动态| 亚洲精品成人久久久久久| 精品99又大又爽又粗少妇毛片| 欧美日韩精品成人综合77777| 欧美3d第一页| 草草在线视频免费看| 老师上课跳d突然被开到最大视频| 菩萨蛮人人尽说江南好唐韦庄 | 嫩草影院新地址| 成年版毛片免费区| 嫩草影院入口| 亚洲欧美精品自产自拍| 非洲黑人性xxxx精品又粗又长| 国产三级中文精品| 欧美丝袜亚洲另类| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人亚洲精品av一区二区| 男女做爰动态图高潮gif福利片| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 精品久久久噜噜| 麻豆国产97在线/欧美| 亚洲中文日韩欧美视频| 狠狠狠狠99中文字幕| 人妻制服诱惑在线中文字幕| 亚洲婷婷狠狠爱综合网| 精品一区二区三区人妻视频| 国产日本99.免费观看| 18禁黄网站禁片免费观看直播| 亚洲精品456在线播放app| 午夜a级毛片| 久久久久久久久久久丰满| 久久久久久久久久黄片| 久久久欧美国产精品| 男女之事视频高清在线观看| 看十八女毛片水多多多| 日韩亚洲欧美综合| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| av国产免费在线观看| 亚洲图色成人| 国产黄a三级三级三级人| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| av国产免费在线观看| 国产av一区在线观看免费| 97超视频在线观看视频| 在线国产一区二区在线| 国产黄色小视频在线观看| 免费无遮挡裸体视频| 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 91精品国产九色| 99热网站在线观看| 国产伦精品一区二区三区四那| 国产精品爽爽va在线观看网站| 尾随美女入室| 中国美女看黄片| 精品一区二区三区人妻视频| 麻豆av噜噜一区二区三区| 一a级毛片在线观看| 国产乱人偷精品视频| 国产av不卡久久| 波多野结衣巨乳人妻| 亚洲七黄色美女视频| 亚洲中文字幕日韩| 秋霞在线观看毛片| 草草在线视频免费看| 大又大粗又爽又黄少妇毛片口| 欧美性猛交黑人性爽| 日韩国内少妇激情av| 亚洲精品影视一区二区三区av| 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| 美女大奶头视频| 亚洲不卡免费看| 亚洲18禁久久av| 亚洲精华国产精华液的使用体验 | 国产单亲对白刺激| 国产伦精品一区二区三区视频9| 真实男女啪啪啪动态图| 激情 狠狠 欧美| 成年版毛片免费区| 亚洲四区av| 免费看a级黄色片| 欧美中文日本在线观看视频| 久久婷婷人人爽人人干人人爱| 亚洲人成网站高清观看| 欧美性感艳星| 在线天堂最新版资源| 热99re8久久精品国产| 国产 一区精品| 真实男女啪啪啪动态图| 深爱激情五月婷婷| 亚洲成人av在线免费| 人妻少妇偷人精品九色| 一a级毛片在线观看| 真实男女啪啪啪动态图| 18禁在线播放成人免费| 中文亚洲av片在线观看爽| 乱系列少妇在线播放| 黄片wwwwww| 99热这里只有是精品50| 观看美女的网站| 国产精品亚洲一级av第二区| 在线免费十八禁| 3wmmmm亚洲av在线观看| 99精品在免费线老司机午夜| 久久综合国产亚洲精品| 欧美三级亚洲精品| 成人二区视频| 亚洲av免费在线观看| 国产午夜精品论理片| 99久久无色码亚洲精品果冻| 99久久久亚洲精品蜜臀av| 国产成人aa在线观看| 一区福利在线观看| 麻豆一二三区av精品| 国产高清有码在线观看视频| 99久久久亚洲精品蜜臀av| 干丝袜人妻中文字幕| 久久久久久久久久黄片| 搞女人的毛片| 国产欧美日韩一区二区精品| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 少妇高潮的动态图| 99在线视频只有这里精品首页| 村上凉子中文字幕在线| av黄色大香蕉| 成人漫画全彩无遮挡| 国产精品亚洲一级av第二区| 少妇人妻精品综合一区二区 | 免费电影在线观看免费观看| 亚洲欧美成人精品一区二区| 97热精品久久久久久| 国产免费一级a男人的天堂| 特大巨黑吊av在线直播| 亚洲精品粉嫩美女一区| 日韩欧美在线乱码| 午夜福利在线观看吧| 国产老妇女一区| 国产视频内射| 色吧在线观看| 久久久久久久久久成人| 好男人在线观看高清免费视频| 精品熟女少妇av免费看| 欧美成人精品欧美一级黄| 国产精品人妻久久久影院| 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 男女啪啪激烈高潮av片| 级片在线观看| 中国国产av一级| 熟女电影av网| 免费在线观看成人毛片| 我的女老师完整版在线观看| 内射极品少妇av片p| 毛片女人毛片| 亚洲成人中文字幕在线播放| 亚洲三级黄色毛片| 欧美zozozo另类| 老熟妇仑乱视频hdxx| 最近中文字幕高清免费大全6| 小说图片视频综合网站| 国产中年淑女户外野战色| 免费av毛片视频| 国产单亲对白刺激| 免费av毛片视频| a级一级毛片免费在线观看| 性插视频无遮挡在线免费观看| 日韩欧美 国产精品| 中文字幕免费在线视频6| 男女边吃奶边做爰视频| 黄色日韩在线| a级毛色黄片| 免费不卡的大黄色大毛片视频在线观看 | 国产视频一区二区在线看| 成年免费大片在线观看| 91麻豆精品激情在线观看国产| 色尼玛亚洲综合影院| 高清日韩中文字幕在线| 中文资源天堂在线| 99久久精品国产国产毛片| 国产一区二区在线观看日韩| 99精品在免费线老司机午夜| or卡值多少钱| 日本黄色视频三级网站网址| 国产麻豆成人av免费视频| 久久99热这里只有精品18| 久久亚洲国产成人精品v| 国产亚洲av嫩草精品影院| 美女免费视频网站| 美女被艹到高潮喷水动态| 亚洲精品影视一区二区三区av| 亚洲成人av在线免费| 亚洲一区高清亚洲精品| 国产一区二区在线观看日韩| 在线国产一区二区在线| 性色avwww在线观看| 精品久久久久久久久亚洲| a级一级毛片免费在线观看| 最近手机中文字幕大全| 色噜噜av男人的天堂激情| 欧美日本视频| 国产精品嫩草影院av在线观看| 美女大奶头视频| 欧美一级a爱片免费观看看| 亚洲五月天丁香|