• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells

    2014-10-14 03:44:40LAOChunFengCHUZengZeZOUDeChun
    物理化學學報 2014年5期
    關鍵詞:敏化丙基二氧化鈦

    LAO Chun-Feng CHU Zeng-Ze ZOU De-Chun,*

    (1Researchand Development Center of Haier Group,Qingdao 266103,Shandong Province,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells

    LAO Chun-Feng1CHU Zeng-Ze2ZOU De-Chun2,*

    (1Researchand Development Center of Haier Group,Qingdao 266103,Shandong Province,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    Abstract: A dye-sensitized solar cell(DSSC)based on a 3-aminopropyltrimethoxysilane(APTS)-modified TiO2electrode was fabricated.This cell generated a short current of 18.32 mA·cm-2,an open voltage of 775.9 mV,and its overall photo-to-electricity conversion efficiency was 9.15%under 100 mW·cm-2white light irradiation from a xenon lamp.The three DSSC parameters for the bare TiO2electrode were found to be 18.08 mA·cm-2,749.9 mV,and 7.70%.Compared with the unmodified solar cell,the overall conversion efficiency improved by 18.8%and the fill factor improved from 0.57 to 0.64.This improvement is attributed to the inhibition of the back reaction at the interface between the semiconductor and the electrolyte.The dark current-applied voltage curve shows that the onset voltage shifts from-0.30 to-0.40 V,which indicates a reduction in defects and surface states on the TiO2surface because of the presence of APTS.Furthermore,special experiments were conducted to investigate the interaction among TiO2,APTS,and the cis-Ru(dcpyH2)2(SCN)2dye.In these experiments,APTS and the dye were self-assembled onto a TiO2electrode in layers.The interaction was characterized by X-ray photoelectron spectroscopy(XPS).Qualitative and quantitative results showed that the―OCH2CH3was partially removed and it formed mono-bridge or bi-bridge Si―O―Ti bonds.The cis-Ru(dcpyH2)2(SCN)2dye adsorbed onto APTS through an electrostatic interaction between―COOH and―NH2from the dye.FT-IR spectra further confirmed this inner interaction.

    Key Words:Dye-sensitized solar cell;3-Aminopropyltrimethoxysilane;Self-assembly;TiO2;X-ray photoelectron spectroscopy

    1 Introduction

    Dye-sensitized solar cells(DSSCs)have attracted much attention ever since power conversion efficiency reached the high value of 10%.1,2In a Gr?tzel solar cell,a nano-crystalline semiconductor plays an important role.Several oxides,such as TiO2,1ZnO,3SnO2,4Fe2O3,5Nb2O5,6ZrO2,7Al2O3,8etc.,have been studied for photoelectrical conversion.Among them,TiO2has shown the best performance when using cis-Ru(dcpyH2)2(SCN)2as the sensitiser.In DSSCs,for the lack of space charge layer,9the charge transport from the excited dye to the back contactbecomesakeyproblemthatinfluencestheoverallphototo-current efficiency(η).The charge lost may come from two aspects:one is the photo-injected electron back reaction with triodide ions in the electrolyte,10and the other is the presence of an electron acceptor,such as oxygen and iodine,which leads to the loss of the photo-generated electron at the interface between the nanocrystal of TiO2and the electrolyte layer during the transport of electrons to the back contact.11

    Traditionally,an inorganic semiconductor or insulating metal oxides which act as a blocking layer were employed to modify TiO2.12-14They act as shells to protect the electron from back reaction.The reported organic material that modifies the TiO2electrode is the 4-tert-butylpyridine.2After treatment for 15 min,the electrode showed better light-to-electricity conversion efficiency as the fill factor and open voltage improved.This mechanism proposes that the state of Ti(IV)ions at the surface of TiO2interacts with the pyridine derivative.And also,there are reports that using La3+15and Ho3+16to optimize the electron injection process.

    Self-assembly(SA)has been widely used since 1997.17In SA,3-aminopropyltrimethoxysilane(APTS)is often used to functionalize the surface of silica,18zeolite,19Pt,Au particle,etc.In these works,APTS usually serves as the source of the amino group(―NH2),which is the most significant component in electrostatic self-assembly.APTS-modified titania has a good performance in catalysis.20The effect of APTS on DSSCs has already been reported.21In this study,we employed APTS as a blocking layer to modify TiO2photoelectrode and further fabricated the dye-sensitized solar cell.The design idea is not only to separate dye layer and TiO2film using APTS layer to retard electron recombination at interface,but also to improve the surface properties of TiO2film.We also noticed that a similar work was reported very recently.22In contrast to their post-modification using APTS after N3-sensitization of TiO2photoanode,our method is to directly functionalize the surface of TiO2film with APTS,and then coat dye molecules onto APTS-modified TiO2electrode,as illustrated in Scheme 1.

    2 Experimental

    2.1 Materials

    Titanium tetra-isopropoxide(Ti(i-OC3H7)4),4-tert-butylpyridine,propylene carbonate(PC),3-aminopropyltrimethoxysilane(APTS),and poly(ethylene glycol)(PEG,MW=20000)were purchased from Acros.An optically transparent conducting glass(CTO,F-doped SnO2)was obtained from Asahi Glass Co.Ltd.,Japan.cis-Ru(dcpyH2)2(SCN)2(Ru535)was taken from solaronix SA.Other chemicals and solvents used in the experiment were at least reagent grade(crc-bj.com Inc.,China)and were used without further purification.Tetrabutylammonium perchlorate(TBAP),lithium perchlorate,and acetonitrile were dried before using them in electrochemical measurement.

    2.2 TiO2and modified TiO2electrode

    The TiO2colloid was prepared following the procedure indicated in the literature.2The TiO2electrode was prepared in the same manner as we reported before23but with some modifications this time.The TiO2colloid was cast on the CTO by means of the doctor-blade method.The as-cast films were heated at 450°C for 30 min in air.This procedure was repeated for five times until the thickness reached 10 μm.After washing with 0.1 mol·L-1TiCl4for four times,the films were rinsed with deionised water and were heated at 450°C for another 30 min.

    The prepared-TiO2electrode was immersed in the solution of APTS(dissolved in dichloromethane,6.625×10-3mol·L-1)when it was still hot(ca 80°C),and it was kept in this solution for 20 min.Then it was washed with dichloromethane for five times and dried at 80°C in an oven for 10 min.The APTS-modified and unmodified TiO2electrode were immersed in 3×10-4mol·L-1cis-Ru(dcbpyH2)2(SCN)2for 24 h,and then they were used to assemble the DSSCs.The counter electrode,a 2-μm thick Pt on CTO glass,was placed directly on top of the TiO2electrode,and together,they were clipped tightly.The electrolyte,which was composed of 0.5 mol·L-1LiI,0.1 mol·L-14-tert-butylpyridine,and 0.05 mol·L-1I2in acetonitrile/PC(volume ratio 1/1),was attracted into the space by capillary force.

    2.3 Equipments and methods

    The UV absorption spectra were measured by means of a UV-Vis spectrophotometer V-550(JASCO,Japan).The prepared TiO2nano-particle was analyzed by X-ray diffraction(XRD)using CuKαradiation at 40 kV and 100 mA,and a graphite monochromator.In addition,it was scanned at a 2θof 2(°)·min-1with a diffractometer(Model Dmax-2000,Rigaku Co.,Tokyo,Japan)to determine the phase of the crystalline products.The morphology of the products was observed using transmission electron microscopy(TEM,Model JEM-200CX,JEOL,Ltd.,Tokyo,Japan).The thickness of films was determined with a DEKTAK 3 profilometer(Vecco,USA).The APTS-modified TiO2electrodes and the self-assembly of Ru535 on them were characterized with X-ray photoelecton spectrameter(XPS).The XPS data were taken on an AXISUltra instrument from Kratos Analytical(England)using monochromatic AlKαradiation(225 W,15 mA,15 kV)and lowenergy electron flooding for charge compensation.To compensate for surface charges effects,binding energies were calibrated using C 1shydrocarbon peak at 284.80 eV.

    The chemical structures of the dye and the dye on APTS were measured on a FT-IR microscope(Nicolet Magna-IR 750,Nicolet NicPlan IR Microscope,UK)with the detector of MCT/A.

    AM1.5 solar light was simulated by a 500-W Xe lamp,with the L-42(Toshiba,Japan)filter to cut off the light with a wavelength of less than 420 nm,while IRA-25S(Toshiba,Japan)removed the infrared radiation.The intensity of the light was determined by the Multi function optical Meter Mode 1835-C(Newport,USA).

    The photocurrent density-voltage curve was measured by Multimeter 2000(Keithley,USA)which was controlled by a computer system.The effect of the applied voltage on the dark current-voltage was measured in a three-electrode system.TiO2or APTS-modified TiO2,platinum wire,and Ag/AgCl functioned as the working electrode,counter electrode,and reference electrode,respectively.The electrolyte solution was 0.2 mol·L-1TBAP in CH3CN containing 0.1 mol·L-1LiClO4.Potential control was carried out on a model 600 voltammetric analyser(CH Instruments,USA).The amount of adsorbed dye was determined by means of desorption in a 0.01 mol·L-1NaOH solution with methanol as the solvent.

    3 Results and discussion

    3.1 Current-voltage characteristics

    Fig.1 shows the photocurrent density-voltage curve.After treatment with APTS,the fill factor(FF)greatly improved from 0.57 to 0.64.Also,the open-circuit voltage(Voc)increased from 749.9 to 775.9 mV,while there was a little shift from 18.08 to 18.32 mA·cm-2in short current density(Isc).As a result,the photo-to-electricity conversion efficiency(η)improved by 18.8%from 7.70%to 9.15%,as shown in Table 1.

    The fill factor(FF)is defined as

    where,VoptandIoptcorrespond to the voltage and current density when the output power efficiency is in the maximum.

    The photo-to-electricity conversion efficiency is defined as

    where,Pinis the light intensity.

    It shoud be pointed out that all the data related to fill factor and conversion efficiency were not corrected by the absorption and reflection of the CTO(F-doped SnO2)substrate glass to the light in the range of 420-800 nm.

    In Fig.1,the inset shows the light transmittance(TL)-wavelength(λ)curve of the CTO glass in the range of 420-800 nm.The CTO glass used here was more opaque than others(usually>90%in the visible region).Photo flux(P(W·m-2))was obtained through the following expression:

    where,F(λ)is the incident photo flux density at wavelengthλ,andTL(λ)is the transmittance of the CTO glass at wavelengthλ.According to equation(3),at the irradiation of 100 mW·cm-2,the intensity of light that reaches the interface of the TiO2and the CTO glass is only 71.4 mW·cm-2.Because short-circuit current density is almost linear to light intensity,2,12if the transmittance could reach the value of 90%,the short-circuit current density will reach the value of 23.08 and 22.78 mA·cm-2for the APTS-modified and unmodified TiO2electrode,respectively.If there is not muches change in the open voltageand fill factor,the conversion efficiency of the solar cells made from the TiO2electrode will reach as high as 9.7%,and the ATPS-modified solar cells will reach an efficiency as high as 11.5%.

    Table 1 Performance parameters of the cells based on the TiO2electrode and theAPTS-modified TiO2electrode

    The high short-circuit current densities could be partly attributed to the spectrum of the Xe lamp we used.Fig.2 illustrates the spectral comparison of Xe lamp and AM1.5 solar emission.The wavelength range of Xe lamp is mainly from 450 to 700 nm,and this region matches properly with the spectral region in which our solar cells can harvest sun flux more efficiently and perform better,which can be seen from monochromatic incident photon-to-electron conversion efficiency(IPCE)-wavelength curve.This probably contributes to the high short-circuit current densities.

    3.2 Self-assembly ofAPTStosuppress back reaction

    A little decrease in dye adsorption of the ATPS-modified TiO2film(1.013×10-7mol·cm-2)was found when it was compared to the unmodified TiO2film(1.368×10-7mol·cm-2).However,there is a little shift in short-circuit photocurrent,fill factor,open-circuit voltage,and overall conversion efficiency.This suggests that the decrease in dye adsorption is compensated by the fact that APTS makes the TiO2film favourable in the electron transport,12and restrains back reaction at the semiconductor electrolyte junction.The back reaction mainly arises from the reduction of triiodide by the conduction band electron despite the existence of the monolayer of Ru535.

    This occurs when the small-size triiodide penetrates the nanosized pores that the dye cannot cover.As can be seen in Fig.3,after being modified with APTS,the onset of dark current was shifted by-0.10 V from-0.30 to-0.40 V,which means that the dark current from the combination of the electron in the conduction band of TiO2with triiodide or other surface state has been suppressed.APTS is smaller in size as compared to Ru535,so it can be easily filled into the pores.As a result,the back reaction caused by triiodide and the conduction band electron could be partly avoided.For general regenerative photoelectrochemical systems,the following relation holds:24,25

    where,Iinjis the flux of charge resulting from sensitized injection,ncbis the concentration of electrons at the TiO2surface,[I-3]represents the concentration of the I-3ions and ketis the rate constant for triiodide reduction.After being covered by APTS,the product of ncb,ket,and[I-3]was reduced,which led to the increase of the open-circuit photovoltage according to Eq.(5).The surface states of Ti(IV)are more active in charge transfer.2,26After being partly covered by APTS,these surface states were mostly blocked.The fill factor and short-circuit photocurrent density were consequently improved for the suppression of back reaction.Just as Kay et al.reported,13in metal oxide functionalised mesoporous SnO2solar cells,the insulating layer has an optimum thickness of only a few angstroms.If the concentration of APTS in dichloromethane is too dense,or if the TiO2film is treated for an excessively long time,the short-circuit photocurrent decreases greatly.Therefore,the concentration and treatment time in our experiment were optimised.This can be contributed to the much higher conducting band in APTS.If the APTS layer is too thick,the electron will not be able to penetrate this layer and be injected into the conduction band of TiO2.Also,too much APTS will block the adsorption of the dye,which is the most important for a higher photocurrent.

    3.3 Characteristics of a dye-sensitized APTS-modified TiO2electrode

    In APTS-modified DSSCs,the interaction among the dye,APTS,and TiO2film is the most important.In unmodified DSSCs,however,the dye coordinates with the TiO2surface through the carboxylate group in bridging the badentate mode in F type,27-29and it uses two of its four carboxylic acid groups.In previous study,the interaction between APTS and TiO2was thoroughly investigated.20,30After slightly being heated,APTS was inclined to lose methoxy and interacted with TiO2to form the covalent bond of Si―O―Ti.In water solution,APTS acted with carboxylic acid in electrostatic force,17,31,32as also provenin this system.After immersing in APTS,the interaction among the dye,APTS,and TiO2surface is demonstrated,as shown in Scheme2.

    XPS proved to be an efficient method to characterize APTS-modified multi-layer films.33,34Under anhydrous condition,APTS can act with inorganic oxide in three possible modes,35such as mono-bridge,bi-bridge,and tri-bridge modes.Because APTS and the dye have a monolayer self-assembly,the signals are not big enough to be distinguished from each other in a dye-sensitized TiO2electrode.It is even difficult to analyze the element with ICP.In order to investigate the interaction by XPS,new experiments were conducted.Thin films of TiO2(10 nm)were prepared by means of spin-coating on CTO substrate,36and then immersing them in the solution of APTS in dichloromethane with the concentration of 6.625×10-3mol·L-1for 5 min.After which,the films were dried at 80°C in an oven for 10 min.Dye sensitising for 20 min was carried out in the same concentration just as described above.

    The XPS spectra of the APTS-modified TiO2film and dyesensitized APTS-modified TiO2film are shown in Fig.4.In the ATS-modified TiO2film,the signals of Si 2p,N 1s,and C 1sappeared.The atomic concentration ratio(in Table 2)of C,O to Si(or N)revealed that the―OCH2CH3was partially removed,and APTS was adsorbed onto the TiO2surface by the Si―O―Ti bond.The bottom part shows the XPS spectrum of the dye-sensitized APTS-modified TiO2film,with peaks of 280.71,284.81,and 162.35 eV which correspond to the binding energy of Ru 3d5,Ru 3d3,and S 2p,respectively.Also,the atomic concentration in Table 1 reveals that the dye was adsorbed ontoAPTS by part of its―COOH.

    Table 2 XPS atomic percentages(x)forAPTS-modified TiO2and dye-sensitizedAPTS-TiO2

    As illuminated in Scheme 2,the dye acted with APTS by means of electrostatic force.Fig.5 shows the FT-IR spectra of Ru535,and the mixture of Ru535 and APTS.A band with intense peak centered at 1728 cm-1corresponded toνC=Oof carboxylic acid in Ru535.After acting with APTS,the peak moved to 1599 cm-1,which corresponded to the asymmetric―COO-stretch.Moreover,the broad band with the peaks of 2490 and 2606 cm-1almost disappeared after acting with APTS,which is another characteristic of carboxylic acid.APTS can also be identified(by order of descending energy)as Si―O―C stretch(intense peaks centred at 1117 and 1071 cm-1),Ti―O―Si stretch(centred at 912 cm-1),and N―H bend(786 cm-1).

    4 Conclusions

    In summary,it was found that APTS acted with the TiO2film in the form of covalence,and with the dye of Ru535 by means of electrostatic force.This self-assembly APTS layer reduced the defects and surface states of TiO2.It also inhibited the back reaction at the semiconductor electrolyte junction.As a result,modifying the TiO2electrode with APTS increased the short-circuit photocurrent,the open-circuit photovoltage,and the fill factor.All of these caused the overall power conversionefficiency to increase by 18.8%.

    APTS acts as insulating layer in DSSCs,it may improve cell stability under UV irradiation.The band gap of anatase TiO2is 3.2 eV,and it can absorb light below 388 nm,which leads to the formation of strongly oxidised valence band holes that can oxidise the solvent irreversibly and result in an unrecoverable loss of.The APTS-modified TiO2film reduces the chance of valence band holes′reaction with I-ions and may be used to fabricate UV-resisted DSSCs.

    The electrostatic force between Ru535 and APTS is not so stable as the covalent interaction of Ru535 and TiO2film in liquid-state DSSCs.The experiments show that the APTS-modified solar cell is not so stable as the unmodified solar cell.However,further research work may be done to change the weak leakage to the covalence bond.Also,when used in solidstate dye-sensitized solar cells,the APTS-modified TiO2electrode may show a more outstanding performance.

    (1) O′Regan,B.;Gr?tzel,M.Nature 1991,353,737.

    (2) Nazeeruddin,M.K.;Rodicio,I.;Humphry-Baker,R.;Muller,E.;Liska,P.;Vlachopoulos,N.;Gr?tzel,M.J.Am.Chem.Soc.1993,115,6382.

    (3)Keis,K.;Bauer,C.;Boschloo,G.;Hagfeldt,A.;Westermark,K.;Rensmo,H.;Siegbahn,H.J.Photochem.Photobio.A 2002,148,57.

    (4) Stergiopoulos,T.;Arabatzis,I.M.;Cachet,H.;Falaras,P.J.Photochem.Photobio.A 2003,155,163.

    (5) Fitzmaurice,D.J.;Frei,H.Langmuir 1991,7,1129.

    (6) Hara,K.;Horiguchi,T.;Kinoshita,T.;Sayama,K.;Sugihara,H.;Arakawa,H.Sol.Energy Mater.Sol.Cells 2000,64,115.

    (7) Heimer,T.A.;D′Arcangelis,S.T.;Farzad,F.;Stipkala,J.M.;Meyer,G.J.Inorg.Chem.1996,35,5319.

    (8) Nüesch,F.;Moser,J.E.;Shklover,V.;Gr?tzel,M.J.Am.Chem.Soc.1996,118,5420.

    (9)Hagfeldt,A.;Gr?tzel,M.Chem.Rev.1995,95,49.

    (10)Peter,L.M.;Wijayantha,K.G.U.Electrochem.Commun.1999,1,576.

    (11) Rensmo,H.;Lindstrom,H.;Sodergren,S.;Willstedt,A.K.;Solbrand,A.;Hagfeldt,A.;Lindquist,S.E.J.Electrochem.Soc.1996,143,3173.

    (12)Wang,Z.S.;Huang,C.H.;Huang,Y.Y.;Hou,Y.J.;Xie,P.H.;Zhang,B.W.;Cheng,H.M.Chem.Mater.2001,13,678.

    (13)Kay,A.;Gr?tzel,M.Chem.Mater.2002,14,2930.

    (14) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.J.Am.Chem.Soc.2003,125,475.

    (15) Zhang,L.;Ren,Y.J.;Cai,S.M.Electrochemistry 2002,8,27.[張 莉,任焱杰,蔡生民.電化學,2002,8,27.]

    (16)Yang,S.M.;Kou,H.Z.;Wang,L.;Wang,H.J.;Fu,W.H.Acta Phys.-Chim.Sin.2009,25,1219.[楊術明,寇慧芝,汪 玲,王紅軍,付文紅.物理化學學報,2009,25,1219.]

    (17) Decher,G.Science 1997,277,1232.

    (18) Lee,C.H.;Lin,T.S.;Mou,C.Y.J.Phys.Chem.B 2003,107,2543.

    (19) Mukhopadhyay,K.;Phadtare,S.;Vinod,V.P.;Kumar,A.;Rao,M.;Chaudhari,R.V.;Sastry,M.Langmuir 2003,19,3858.

    (20)Kominami,H.;Itonaga,M.;Shinonaga,A.;Kagawa,S.;Konishi,S.;Kera,Y.Stu.Sur.Sci.Cat.2002,143,1089.

    (21) Lao.C.F.Researches on the Efficiency of Dye-Sensitized Solar Cells.Ph.D.Dissertation,Peking University,Beijing,2006. [勞春峰.染料敏化太陽能電池效率問題的研究[D].北京:北京大學,2006.]

    (22) Zhang,J.;Yang,G.T.;Sun,Q.;Zheng J.;Wang,P.Q.;Zhu,Y.J.;Zhao,X.Z.J.Ren.Sust.Energy 2010,013104.

    (23) Lao,C.F.;Chuai,Y.T.;Su,L.;Liu,X.;Huang,L.;Cheng,H.M.;Zou,D.C.Sol.Energy Mater.Sol.Cells 2004,85,457.

    (24) Rosenblut,M.L.;Lewis,N.S.J.Phys.Chem.1989,93,3735.

    (25)Kumer,A.;Santangelo,P.G.;Lewis,N.S.J.Phys.Chem.1992,96,835.

    (26) Moser,J.;Punchihewa,S.;Infelta,P.P.;Gr?tzel,M.Langmuir 1991,7,3012.

    (27) Nazeruddin,M.K.;Humphry-Baker,R.;Liska,P.;Gr?tzel,M.J.Phys.Chem.B 2003,107,8981.

    (28)Rensmo,H.;Westermark,K.;S?dergren,S.;Kohle,O.;Persson,P.;Lunell,S.;Siegbahn,H.J.Chem.Phys.1999,111,2744.

    (29)Westermark,K.;Rensmo,H.;Lees,A.C.;Vos,J.G.;Siegbahn,H.J.Phys.Chem.B 2002,106,10108.

    (30)Chang,C.C.;Chen,W.C.J.Polym.Sci.A:Polym.Chem.2001,39,3419.

    (31) Bertrand,P.T.;Jonas,A.;Laschewsky,A.;Legras,R.Macromol.Rapid.Commun.2000,21,319.

    (32) Kumar,A.;Mandale,A.B.;Sastry,M.Langmuir 2000,16,6921.

    (33) Jarrais,B.;Silva,A.R.;Freire,C.Eur.J.Inorg.Chem.2005,4582.

    (34) Noh,J.;Ito,E.;Nakajima,K.;Kim,J.;Lee,H.;Hara,M.J.Phys.Chem.B 2002,106,7139.

    (35) Lin,J.;Siddiqui,J.A.;Ottenbrite,R.M.Polym.Adv.Technol.2001,12,285.

    (36)Arago,A.C.;Johnson,L.R.;Bliznyuk,V.N.;Schlesinger,Z.;Carter,S.A.;H?rhold,H.H.Adv.Mater.2000,12,1689.

    3-氨基丙基三甲氧基硅烷自組裝提高染料敏化太陽能電池的效率

    勞春峰1初增澤2鄒德春2,*

    (1海爾集團技術研發(fā)中心,山東青島266103;2北京大學化學與分子工程學院,北京100871)

    以3-氨基丙基三甲氧基硅烷(APTS)修飾的二氧化鈦為負極制備的染料敏化太陽能電池在100 mW·cm-2的模擬太陽光照下的短路電流、開路電壓、光電轉換效率分別為18.32 mA·cm-2、775.9 mV、9.15%.而沒有經(jīng)過ATPS修飾的電池三項性能參數(shù)分別為18.08 mA·cm-2、749.9 mV、7.70%,修飾后電池的光電轉換效率提高了18.8%,同時填充因子由0.57提高為0.64.暗電流-電壓曲線顯示起始電壓從-0.30 V變化到-0.40 V,表明二氧化鈦電極和電解液之間的暗反應得到了有效抑制,APTS作為阻擋層減少了二氧化鈦電極表面的缺陷與表面態(tài).另外,通過實驗設計,將APTS與染料層-層自組裝于二氧化鈦電極上,通過X射線光電子能譜(XPS)研究了二氧化鈦層、APTS、染料的作用形式.定性與定量結果表明:APTS中的乙氧基部分脫除后形成了Si―O―Ti單橋或者雙橋鍵,釕染料cis-Ru(dcpyH2)2(SCN)2通過分子中的部分―COOH與APTS中的―NH2形成的靜電作用力吸附在TiO2電極上.傅里葉變換紅外(FT-IR)光譜的結果進一步證明了這種分子間作用.

    染料敏化太陽能電池;3-氨基丙基三甲氧基硅烷; 自組裝; 二氧化鈦;X射線光電子能譜

    O649

    Received:September 13,2010;Revised:November 24,2010;Published on Web:December 22,2010.

    ?Corresponding author.Email:dczou@pku.edu.cn;Tel:+86-10-62759799.

    The project was supported by the National Natural Science Foundation of China(50125310,90401028)and National Key Basic Research Program of China(973)(2002CB613405).

    國家自然科學基金(50125310,90401028)及國家重點基礎研究發(fā)展規(guī)劃項目(973)(2002CB613405)資助

    猜你喜歡
    敏化丙基二氧化鈦
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關元穴臨床主治規(guī)律的文獻計量學分析
    石榴鞣花酸-羥丙基-β-環(huán)糊精包合物的制備
    中成藥(2018年6期)2018-07-11 03:01:28
    N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯浮選孔雀石的疏水機理
    魚腥草揮發(fā)油羥丙基-β環(huán)糊精包合物的制備
    中成藥(2017年5期)2017-06-13 13:01:12
    亞砷酸鹽提高藻與蚤培養(yǎng)基下納米二氧化鈦的穩(wěn)定性
    鐵摻雜二氧化鈦的結構及其可見或紫外光下對有機物催化降解的行為探析
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    耦聯(lián)劑輔助吸附法制備CuInS2量子點敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    電源技術(2015年7期)2015-08-22 08:48:30
    一边摸一边抽搐一进一小说| 黄色女人牲交| 日韩欧美精品v在线| 亚洲熟妇中文字幕五十中出| 一夜夜www| 99久久国产精品久久久| 亚洲av成人精品一区久久| 国产伦在线观看视频一区| 欧美成人午夜精品| 国产av在哪里看| 亚洲国产欧美人成| 禁无遮挡网站| 蜜桃久久精品国产亚洲av| 久久久久久久久中文| 国产午夜福利久久久久久| 久久婷婷人人爽人人干人人爱| 香蕉丝袜av| 热99re8久久精品国产| 国内精品久久久久精免费| 五月玫瑰六月丁香| 午夜免费激情av| 一卡2卡三卡四卡精品乱码亚洲| 午夜日韩欧美国产| 欧美又色又爽又黄视频| 亚洲人成77777在线视频| 国产真实乱freesex| 正在播放国产对白刺激| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| videosex国产| 女警被强在线播放| 中文字幕高清在线视频| 男人舔奶头视频| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 麻豆一二三区av精品| 中文亚洲av片在线观看爽| 国产蜜桃级精品一区二区三区| 亚洲精品美女久久av网站| 亚洲精品久久国产高清桃花| 久久午夜综合久久蜜桃| 全区人妻精品视频| 18禁国产床啪视频网站| 亚洲国产欧美一区二区综合| 国产单亲对白刺激| 国产免费男女视频| 叶爱在线成人免费视频播放| 他把我摸到了高潮在线观看| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 精品日产1卡2卡| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看 | 亚洲免费av在线视频| 可以在线观看毛片的网站| 国产1区2区3区精品| 老司机午夜十八禁免费视频| 少妇人妻一区二区三区视频| 欧美精品亚洲一区二区| 婷婷精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看 | 国产熟女午夜一区二区三区| 国产成人aa在线观看| 中出人妻视频一区二区| 老司机深夜福利视频在线观看| 国产野战对白在线观看| 成人午夜高清在线视频| 免费看日本二区| 亚洲一区二区三区不卡视频| 国产野战对白在线观看| 两个人视频免费观看高清| 99久久综合精品五月天人人| 757午夜福利合集在线观看| 在线视频色国产色| 国产一区二区三区在线臀色熟女| 又爽又黄无遮挡网站| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 亚洲中文av在线| tocl精华| 日日爽夜夜爽网站| 国产精品久久久久久亚洲av鲁大| 久久中文字幕人妻熟女| 精品久久蜜臀av无| 国产熟女xx| 伊人久久大香线蕉亚洲五| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 亚洲午夜理论影院| 色在线成人网| 成在线人永久免费视频| 中文字幕精品亚洲无线码一区| 国产探花在线观看一区二区| 久久精品91蜜桃| 国产免费av片在线观看野外av| 人成视频在线观看免费观看| 中文在线观看免费www的网站 | 久99久视频精品免费| 怎么达到女性高潮| 亚洲全国av大片| 久久香蕉国产精品| 国产成人一区二区三区免费视频网站| 欧美 亚洲 国产 日韩一| 在线视频色国产色| 在线观看午夜福利视频| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 欧美一区二区国产精品久久精品 | 久久精品91蜜桃| 午夜a级毛片| 亚洲av日韩精品久久久久久密| 长腿黑丝高跟| 国产伦在线观看视频一区| 天天一区二区日本电影三级| 白带黄色成豆腐渣| 老汉色∧v一级毛片| 村上凉子中文字幕在线| 国产精品,欧美在线| 久久久久国产一级毛片高清牌| 一进一出抽搐动态| 免费在线观看视频国产中文字幕亚洲| 国产av一区二区精品久久| 久久精品成人免费网站| 黄色毛片三级朝国网站| 国产精品久久久av美女十八| 日韩大码丰满熟妇| 怎么达到女性高潮| 亚洲欧美日韩无卡精品| 1024视频免费在线观看| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 欧美日韩亚洲国产一区二区在线观看| 国产午夜福利久久久久久| 19禁男女啪啪无遮挡网站| bbb黄色大片| 在线观看舔阴道视频| 免费看a级黄色片| 丝袜美腿诱惑在线| 伦理电影免费视频| 久久婷婷成人综合色麻豆| 亚洲熟妇熟女久久| 成人国语在线视频| 又紧又爽又黄一区二区| av有码第一页| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| а√天堂www在线а√下载| 老司机福利观看| 白带黄色成豆腐渣| 国产精品一及| 日韩高清综合在线| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美网| 精品少妇一区二区三区视频日本电影| 少妇粗大呻吟视频| 国产精品香港三级国产av潘金莲| 视频区欧美日本亚洲| 啪啪无遮挡十八禁网站| 国产成人一区二区三区免费视频网站| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩高清在线视频| 韩国av一区二区三区四区| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av | 成人av一区二区三区在线看| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看 | 丰满人妻一区二区三区视频av | 在线观看免费视频日本深夜| 熟女电影av网| 欧美一区二区精品小视频在线| 国产精品日韩av在线免费观看| 国内精品久久久久久久电影| 欧美一级a爱片免费观看看 | aaaaa片日本免费| 欧美国产日韩亚洲一区| 亚洲精品在线美女| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 麻豆成人av在线观看| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 老汉色av国产亚洲站长工具| 熟女少妇亚洲综合色aaa.| 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 亚洲七黄色美女视频| 午夜久久久久精精品| 久久精品人妻少妇| 久久久久国内视频| 欧美高清成人免费视频www| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 757午夜福利合集在线观看| 18禁国产床啪视频网站| 亚洲免费av在线视频| 老司机在亚洲福利影院| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站 | 日本在线视频免费播放| 日本五十路高清| 久久亚洲真实| 成人精品一区二区免费| 99re在线观看精品视频| 国产麻豆成人av免费视频| 中文资源天堂在线| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 搞女人的毛片| 亚洲精品美女久久久久99蜜臀| 国产成人av教育| 欧美性长视频在线观看| 国产午夜精品久久久久久| 欧美中文日本在线观看视频| 欧美绝顶高潮抽搐喷水| 男女做爰动态图高潮gif福利片| 日韩大码丰满熟妇| 亚洲欧美日韩东京热| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 最近视频中文字幕2019在线8| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品av在线| 黄色片一级片一级黄色片| 亚洲人成伊人成综合网2020| 久久久精品大字幕| 一二三四在线观看免费中文在| 久久久久亚洲av毛片大全| 床上黄色一级片| 在线免费观看的www视频| 琪琪午夜伦伦电影理论片6080| 精品欧美国产一区二区三| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 久久久久九九精品影院| 99国产精品一区二区三区| 久久这里只有精品中国| 亚洲一区高清亚洲精品| 久久久久久人人人人人| 久久精品成人免费网站| 激情在线观看视频在线高清| 露出奶头的视频| 正在播放国产对白刺激| 中文字幕人成人乱码亚洲影| 亚洲人成伊人成综合网2020| 人妻夜夜爽99麻豆av| 日本a在线网址| 国内精品久久久久精免费| 亚洲乱码一区二区免费版| 午夜福利在线观看吧| 色噜噜av男人的天堂激情| 久99久视频精品免费| 欧美精品亚洲一区二区| 69av精品久久久久久| 国产av麻豆久久久久久久| 亚洲美女视频黄频| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 日本免费a在线| 亚洲av成人精品一区久久| 国产一区在线观看成人免费| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 18禁美女被吸乳视频| 中文字幕久久专区| 免费av毛片视频| av片东京热男人的天堂| 国产精品综合久久久久久久免费| a在线观看视频网站| 国产成+人综合+亚洲专区| 亚洲国产欧洲综合997久久,| 国产av一区在线观看免费| 国产高清视频在线播放一区| 91av网站免费观看| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 99热6这里只有精品| 特级一级黄色大片| 欧美黑人精品巨大| 亚洲精品久久国产高清桃花| 麻豆一二三区av精品| 国产真人三级小视频在线观看| 国产熟女午夜一区二区三区| 熟女电影av网| 中亚洲国语对白在线视频| 欧美日韩国产亚洲二区| 久久精品综合一区二区三区| 日日夜夜操网爽| 一进一出好大好爽视频| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| bbb黄色大片| 中文亚洲av片在线观看爽| а√天堂www在线а√下载| 国产亚洲精品综合一区在线观看 | 一边摸一边抽搐一进一小说| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| 亚洲成人久久爱视频| 全区人妻精品视频| 麻豆av在线久日| 特级一级黄色大片| 99国产综合亚洲精品| 一级毛片女人18水好多| 久久久久久久久久黄片| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 亚洲免费av在线视频| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 国产精品免费视频内射| 婷婷精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 看片在线看免费视频| 久久久久久久久久黄片| 午夜久久久久精精品| 国产不卡一卡二| 成年免费大片在线观看| 日本五十路高清| 成人av在线播放网站| 国产视频一区二区在线看| 亚洲精品中文字幕一二三四区| 麻豆一二三区av精品| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免费看| 亚洲欧美精品综合久久99| 日韩欧美国产一区二区入口| 日本一区二区免费在线视频| 国产爱豆传媒在线观看 | 亚洲精品一区av在线观看| 别揉我奶头~嗯~啊~动态视频| 精品少妇一区二区三区视频日本电影| av视频在线观看入口| 国产成+人综合+亚洲专区| 午夜福利免费观看在线| 看免费av毛片| 哪里可以看免费的av片| 99热这里只有是精品50| 美女高潮喷水抽搐中文字幕| 日本一本二区三区精品| 日本精品一区二区三区蜜桃| 淫妇啪啪啪对白视频| 免费av毛片视频| 亚洲avbb在线观看| 色噜噜av男人的天堂激情| 久久这里只有精品19| 999精品在线视频| 桃红色精品国产亚洲av| 亚洲精品在线美女| 欧美乱妇无乱码| 国产亚洲av高清不卡| av超薄肉色丝袜交足视频| 在线十欧美十亚洲十日本专区| 亚洲人成77777在线视频| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 日日夜夜操网爽| 亚洲av成人av| 亚洲欧洲精品一区二区精品久久久| 999久久久国产精品视频| 国产成人精品久久二区二区91| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 全区人妻精品视频| 亚洲性夜色夜夜综合| 久久久精品大字幕| 老汉色av国产亚洲站长工具| 日日夜夜操网爽| 亚洲精品美女久久av网站| 啦啦啦观看免费观看视频高清| 欧美黄色片欧美黄色片| 黑人欧美特级aaaaaa片| 国产精品,欧美在线| 亚洲第一电影网av| 国产私拍福利视频在线观看| 中文字幕最新亚洲高清| 美女高潮喷水抽搐中文字幕| 中文字幕久久专区| 国产三级黄色录像| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 国产午夜精品论理片| 久久中文字幕人妻熟女| 国产免费男女视频| 一个人免费在线观看电影 | 最好的美女福利视频网| 很黄的视频免费| 一进一出抽搐gif免费好疼| 国产真实乱freesex| 每晚都被弄得嗷嗷叫到高潮| 日本一区二区免费在线视频| 国产精品影院久久| 女人被狂操c到高潮| 丁香欧美五月| www.精华液| 午夜a级毛片| 精品久久久久久成人av| 草草在线视频免费看| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 国产成人av激情在线播放| 深夜精品福利| 日日爽夜夜爽网站| 极品教师在线免费播放| 又黄又爽又免费观看的视频| 国产精品久久视频播放| 在线观看www视频免费| 成年人黄色毛片网站| 99久久久亚洲精品蜜臀av| 成人av在线播放网站| 亚洲全国av大片| 精品无人区乱码1区二区| 亚洲精品一区av在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 国产人伦9x9x在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲 欧美一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产精品野战在线观看| 午夜激情福利司机影院| 成人国产一区最新在线观看| 国产成人av教育| 国产精品98久久久久久宅男小说| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 窝窝影院91人妻| 18禁黄网站禁片免费观看直播| 亚洲成a人片在线一区二区| 午夜视频精品福利| 日韩高清综合在线| 变态另类成人亚洲欧美熟女| 母亲3免费完整高清在线观看| 国产精品亚洲美女久久久| 香蕉丝袜av| 香蕉久久夜色| 久久久久久久午夜电影| 黄色a级毛片大全视频| 老汉色∧v一级毛片| 大型av网站在线播放| 日韩国内少妇激情av| 国产高清视频在线观看网站| 老司机福利观看| av欧美777| 国产精品永久免费网站| 国产私拍福利视频在线观看| 级片在线观看| 丰满的人妻完整版| 久久午夜综合久久蜜桃| 天堂动漫精品| 国产99久久九九免费精品| 国产黄a三级三级三级人| 久久伊人香网站| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 色在线成人网| av片东京热男人的天堂| 18禁观看日本| 成人手机av| 国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 中文字幕av在线有码专区| 亚洲熟妇熟女久久| 日韩大尺度精品在线看网址| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 精品国产美女av久久久久小说| 亚洲精品国产一区二区精华液| 成人三级黄色视频| e午夜精品久久久久久久| www.自偷自拍.com| 久99久视频精品免费| 久久久久久人人人人人| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 两性夫妻黄色片| 国产亚洲精品第一综合不卡| 午夜久久久久精精品| 亚洲无线在线观看| 亚洲国产精品合色在线| 一本一本综合久久| 国产精品久久久av美女十八| 淫妇啪啪啪对白视频| 久久人妻福利社区极品人妻图片| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 国产精品久久久久久精品电影| 真人做人爱边吃奶动态| 啪啪无遮挡十八禁网站| 精品电影一区二区在线| 亚洲国产中文字幕在线视频| 久久精品影院6| 日本熟妇午夜| 精品欧美国产一区二区三| 久久国产乱子伦精品免费另类| 中文字幕最新亚洲高清| av在线天堂中文字幕| 欧美成人午夜精品| 亚洲免费av在线视频| 亚洲成人国产一区在线观看| 亚洲一区二区三区不卡视频| 中亚洲国语对白在线视频| 久久婷婷成人综合色麻豆| 成年女人毛片免费观看观看9| 亚洲av美国av| 99精品在免费线老司机午夜| 天天添夜夜摸| 一本精品99久久精品77| 美女黄网站色视频| 久久国产乱子伦精品免费另类| 一个人免费在线观看电影 | 精品国产乱子伦一区二区三区| 免费观看人在逋| 亚洲熟女毛片儿| 一边摸一边抽搐一进一小说| 亚洲真实伦在线观看| 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 一区二区三区国产精品乱码| 国产精品 国内视频| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品19| 免费av毛片视频| xxx96com| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| 国产成年人精品一区二区| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 亚洲av五月六月丁香网| 热99re8久久精品国产| 亚洲精品在线观看二区| 两个人看的免费小视频| 国内毛片毛片毛片毛片毛片| 亚洲专区字幕在线| 给我免费播放毛片高清在线观看| 伊人久久大香线蕉亚洲五| 欧美丝袜亚洲另类 | 日韩精品中文字幕看吧| 一级作爱视频免费观看| 国产午夜福利久久久久久| 特大巨黑吊av在线直播| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 18美女黄网站色大片免费观看| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 99re在线观看精品视频| 中文字幕高清在线视频| 丝袜美腿诱惑在线| 色哟哟哟哟哟哟| 亚洲欧美精品综合久久99| 久久这里只有精品中国| 搡老熟女国产l中国老女人| 给我免费播放毛片高清在线观看| 国产高清视频在线播放一区| 成人18禁在线播放| 欧美日韩亚洲综合一区二区三区_| 欧美乱色亚洲激情| 99精品久久久久人妻精品| avwww免费| 99热这里只有是精品50| 久久久久久久精品吃奶| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 五月玫瑰六月丁香| 老熟妇乱子伦视频在线观看| 亚洲五月天丁香| 久久久久亚洲av毛片大全| 久久久久久久久免费视频了| 亚洲中文av在线| 午夜两性在线视频| 亚洲七黄色美女视频| 熟女电影av网| 成熟少妇高潮喷水视频| 国产一区二区三区在线臀色熟女| 久久久国产成人精品二区| 18禁国产床啪视频网站| www日本在线高清视频| 一级片免费观看大全| 亚洲美女黄片视频| 可以在线观看毛片的网站| 久久久久久大精品| 日本黄色视频三级网站网址| 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 黄色a级毛片大全视频| 99久久无色码亚洲精品果冻| 国产精品乱码一区二三区的特点| 女警被强在线播放| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 久久九九热精品免费| 久久这里只有精品中国|