• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells

    2014-10-14 03:44:40LAOChunFengCHUZengZeZOUDeChun
    物理化學學報 2014年5期
    關鍵詞:敏化丙基二氧化鈦

    LAO Chun-Feng CHU Zeng-Ze ZOU De-Chun,*

    (1Researchand Development Center of Haier Group,Qingdao 266103,Shandong Province,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells

    LAO Chun-Feng1CHU Zeng-Ze2ZOU De-Chun2,*

    (1Researchand Development Center of Haier Group,Qingdao 266103,Shandong Province,P.R.China;2College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China)

    Abstract: A dye-sensitized solar cell(DSSC)based on a 3-aminopropyltrimethoxysilane(APTS)-modified TiO2electrode was fabricated.This cell generated a short current of 18.32 mA·cm-2,an open voltage of 775.9 mV,and its overall photo-to-electricity conversion efficiency was 9.15%under 100 mW·cm-2white light irradiation from a xenon lamp.The three DSSC parameters for the bare TiO2electrode were found to be 18.08 mA·cm-2,749.9 mV,and 7.70%.Compared with the unmodified solar cell,the overall conversion efficiency improved by 18.8%and the fill factor improved from 0.57 to 0.64.This improvement is attributed to the inhibition of the back reaction at the interface between the semiconductor and the electrolyte.The dark current-applied voltage curve shows that the onset voltage shifts from-0.30 to-0.40 V,which indicates a reduction in defects and surface states on the TiO2surface because of the presence of APTS.Furthermore,special experiments were conducted to investigate the interaction among TiO2,APTS,and the cis-Ru(dcpyH2)2(SCN)2dye.In these experiments,APTS and the dye were self-assembled onto a TiO2electrode in layers.The interaction was characterized by X-ray photoelectron spectroscopy(XPS).Qualitative and quantitative results showed that the―OCH2CH3was partially removed and it formed mono-bridge or bi-bridge Si―O―Ti bonds.The cis-Ru(dcpyH2)2(SCN)2dye adsorbed onto APTS through an electrostatic interaction between―COOH and―NH2from the dye.FT-IR spectra further confirmed this inner interaction.

    Key Words:Dye-sensitized solar cell;3-Aminopropyltrimethoxysilane;Self-assembly;TiO2;X-ray photoelectron spectroscopy

    1 Introduction

    Dye-sensitized solar cells(DSSCs)have attracted much attention ever since power conversion efficiency reached the high value of 10%.1,2In a Gr?tzel solar cell,a nano-crystalline semiconductor plays an important role.Several oxides,such as TiO2,1ZnO,3SnO2,4Fe2O3,5Nb2O5,6ZrO2,7Al2O3,8etc.,have been studied for photoelectrical conversion.Among them,TiO2has shown the best performance when using cis-Ru(dcpyH2)2(SCN)2as the sensitiser.In DSSCs,for the lack of space charge layer,9the charge transport from the excited dye to the back contactbecomesakeyproblemthatinfluencestheoverallphototo-current efficiency(η).The charge lost may come from two aspects:one is the photo-injected electron back reaction with triodide ions in the electrolyte,10and the other is the presence of an electron acceptor,such as oxygen and iodine,which leads to the loss of the photo-generated electron at the interface between the nanocrystal of TiO2and the electrolyte layer during the transport of electrons to the back contact.11

    Traditionally,an inorganic semiconductor or insulating metal oxides which act as a blocking layer were employed to modify TiO2.12-14They act as shells to protect the electron from back reaction.The reported organic material that modifies the TiO2electrode is the 4-tert-butylpyridine.2After treatment for 15 min,the electrode showed better light-to-electricity conversion efficiency as the fill factor and open voltage improved.This mechanism proposes that the state of Ti(IV)ions at the surface of TiO2interacts with the pyridine derivative.And also,there are reports that using La3+15and Ho3+16to optimize the electron injection process.

    Self-assembly(SA)has been widely used since 1997.17In SA,3-aminopropyltrimethoxysilane(APTS)is often used to functionalize the surface of silica,18zeolite,19Pt,Au particle,etc.In these works,APTS usually serves as the source of the amino group(―NH2),which is the most significant component in electrostatic self-assembly.APTS-modified titania has a good performance in catalysis.20The effect of APTS on DSSCs has already been reported.21In this study,we employed APTS as a blocking layer to modify TiO2photoelectrode and further fabricated the dye-sensitized solar cell.The design idea is not only to separate dye layer and TiO2film using APTS layer to retard electron recombination at interface,but also to improve the surface properties of TiO2film.We also noticed that a similar work was reported very recently.22In contrast to their post-modification using APTS after N3-sensitization of TiO2photoanode,our method is to directly functionalize the surface of TiO2film with APTS,and then coat dye molecules onto APTS-modified TiO2electrode,as illustrated in Scheme 1.

    2 Experimental

    2.1 Materials

    Titanium tetra-isopropoxide(Ti(i-OC3H7)4),4-tert-butylpyridine,propylene carbonate(PC),3-aminopropyltrimethoxysilane(APTS),and poly(ethylene glycol)(PEG,MW=20000)were purchased from Acros.An optically transparent conducting glass(CTO,F-doped SnO2)was obtained from Asahi Glass Co.Ltd.,Japan.cis-Ru(dcpyH2)2(SCN)2(Ru535)was taken from solaronix SA.Other chemicals and solvents used in the experiment were at least reagent grade(crc-bj.com Inc.,China)and were used without further purification.Tetrabutylammonium perchlorate(TBAP),lithium perchlorate,and acetonitrile were dried before using them in electrochemical measurement.

    2.2 TiO2and modified TiO2electrode

    The TiO2colloid was prepared following the procedure indicated in the literature.2The TiO2electrode was prepared in the same manner as we reported before23but with some modifications this time.The TiO2colloid was cast on the CTO by means of the doctor-blade method.The as-cast films were heated at 450°C for 30 min in air.This procedure was repeated for five times until the thickness reached 10 μm.After washing with 0.1 mol·L-1TiCl4for four times,the films were rinsed with deionised water and were heated at 450°C for another 30 min.

    The prepared-TiO2electrode was immersed in the solution of APTS(dissolved in dichloromethane,6.625×10-3mol·L-1)when it was still hot(ca 80°C),and it was kept in this solution for 20 min.Then it was washed with dichloromethane for five times and dried at 80°C in an oven for 10 min.The APTS-modified and unmodified TiO2electrode were immersed in 3×10-4mol·L-1cis-Ru(dcbpyH2)2(SCN)2for 24 h,and then they were used to assemble the DSSCs.The counter electrode,a 2-μm thick Pt on CTO glass,was placed directly on top of the TiO2electrode,and together,they were clipped tightly.The electrolyte,which was composed of 0.5 mol·L-1LiI,0.1 mol·L-14-tert-butylpyridine,and 0.05 mol·L-1I2in acetonitrile/PC(volume ratio 1/1),was attracted into the space by capillary force.

    2.3 Equipments and methods

    The UV absorption spectra were measured by means of a UV-Vis spectrophotometer V-550(JASCO,Japan).The prepared TiO2nano-particle was analyzed by X-ray diffraction(XRD)using CuKαradiation at 40 kV and 100 mA,and a graphite monochromator.In addition,it was scanned at a 2θof 2(°)·min-1with a diffractometer(Model Dmax-2000,Rigaku Co.,Tokyo,Japan)to determine the phase of the crystalline products.The morphology of the products was observed using transmission electron microscopy(TEM,Model JEM-200CX,JEOL,Ltd.,Tokyo,Japan).The thickness of films was determined with a DEKTAK 3 profilometer(Vecco,USA).The APTS-modified TiO2electrodes and the self-assembly of Ru535 on them were characterized with X-ray photoelecton spectrameter(XPS).The XPS data were taken on an AXISUltra instrument from Kratos Analytical(England)using monochromatic AlKαradiation(225 W,15 mA,15 kV)and lowenergy electron flooding for charge compensation.To compensate for surface charges effects,binding energies were calibrated using C 1shydrocarbon peak at 284.80 eV.

    The chemical structures of the dye and the dye on APTS were measured on a FT-IR microscope(Nicolet Magna-IR 750,Nicolet NicPlan IR Microscope,UK)with the detector of MCT/A.

    AM1.5 solar light was simulated by a 500-W Xe lamp,with the L-42(Toshiba,Japan)filter to cut off the light with a wavelength of less than 420 nm,while IRA-25S(Toshiba,Japan)removed the infrared radiation.The intensity of the light was determined by the Multi function optical Meter Mode 1835-C(Newport,USA).

    The photocurrent density-voltage curve was measured by Multimeter 2000(Keithley,USA)which was controlled by a computer system.The effect of the applied voltage on the dark current-voltage was measured in a three-electrode system.TiO2or APTS-modified TiO2,platinum wire,and Ag/AgCl functioned as the working electrode,counter electrode,and reference electrode,respectively.The electrolyte solution was 0.2 mol·L-1TBAP in CH3CN containing 0.1 mol·L-1LiClO4.Potential control was carried out on a model 600 voltammetric analyser(CH Instruments,USA).The amount of adsorbed dye was determined by means of desorption in a 0.01 mol·L-1NaOH solution with methanol as the solvent.

    3 Results and discussion

    3.1 Current-voltage characteristics

    Fig.1 shows the photocurrent density-voltage curve.After treatment with APTS,the fill factor(FF)greatly improved from 0.57 to 0.64.Also,the open-circuit voltage(Voc)increased from 749.9 to 775.9 mV,while there was a little shift from 18.08 to 18.32 mA·cm-2in short current density(Isc).As a result,the photo-to-electricity conversion efficiency(η)improved by 18.8%from 7.70%to 9.15%,as shown in Table 1.

    The fill factor(FF)is defined as

    where,VoptandIoptcorrespond to the voltage and current density when the output power efficiency is in the maximum.

    The photo-to-electricity conversion efficiency is defined as

    where,Pinis the light intensity.

    It shoud be pointed out that all the data related to fill factor and conversion efficiency were not corrected by the absorption and reflection of the CTO(F-doped SnO2)substrate glass to the light in the range of 420-800 nm.

    In Fig.1,the inset shows the light transmittance(TL)-wavelength(λ)curve of the CTO glass in the range of 420-800 nm.The CTO glass used here was more opaque than others(usually>90%in the visible region).Photo flux(P(W·m-2))was obtained through the following expression:

    where,F(λ)is the incident photo flux density at wavelengthλ,andTL(λ)is the transmittance of the CTO glass at wavelengthλ.According to equation(3),at the irradiation of 100 mW·cm-2,the intensity of light that reaches the interface of the TiO2and the CTO glass is only 71.4 mW·cm-2.Because short-circuit current density is almost linear to light intensity,2,12if the transmittance could reach the value of 90%,the short-circuit current density will reach the value of 23.08 and 22.78 mA·cm-2for the APTS-modified and unmodified TiO2electrode,respectively.If there is not muches change in the open voltageand fill factor,the conversion efficiency of the solar cells made from the TiO2electrode will reach as high as 9.7%,and the ATPS-modified solar cells will reach an efficiency as high as 11.5%.

    Table 1 Performance parameters of the cells based on the TiO2electrode and theAPTS-modified TiO2electrode

    The high short-circuit current densities could be partly attributed to the spectrum of the Xe lamp we used.Fig.2 illustrates the spectral comparison of Xe lamp and AM1.5 solar emission.The wavelength range of Xe lamp is mainly from 450 to 700 nm,and this region matches properly with the spectral region in which our solar cells can harvest sun flux more efficiently and perform better,which can be seen from monochromatic incident photon-to-electron conversion efficiency(IPCE)-wavelength curve.This probably contributes to the high short-circuit current densities.

    3.2 Self-assembly ofAPTStosuppress back reaction

    A little decrease in dye adsorption of the ATPS-modified TiO2film(1.013×10-7mol·cm-2)was found when it was compared to the unmodified TiO2film(1.368×10-7mol·cm-2).However,there is a little shift in short-circuit photocurrent,fill factor,open-circuit voltage,and overall conversion efficiency.This suggests that the decrease in dye adsorption is compensated by the fact that APTS makes the TiO2film favourable in the electron transport,12and restrains back reaction at the semiconductor electrolyte junction.The back reaction mainly arises from the reduction of triiodide by the conduction band electron despite the existence of the monolayer of Ru535.

    This occurs when the small-size triiodide penetrates the nanosized pores that the dye cannot cover.As can be seen in Fig.3,after being modified with APTS,the onset of dark current was shifted by-0.10 V from-0.30 to-0.40 V,which means that the dark current from the combination of the electron in the conduction band of TiO2with triiodide or other surface state has been suppressed.APTS is smaller in size as compared to Ru535,so it can be easily filled into the pores.As a result,the back reaction caused by triiodide and the conduction band electron could be partly avoided.For general regenerative photoelectrochemical systems,the following relation holds:24,25

    where,Iinjis the flux of charge resulting from sensitized injection,ncbis the concentration of electrons at the TiO2surface,[I-3]represents the concentration of the I-3ions and ketis the rate constant for triiodide reduction.After being covered by APTS,the product of ncb,ket,and[I-3]was reduced,which led to the increase of the open-circuit photovoltage according to Eq.(5).The surface states of Ti(IV)are more active in charge transfer.2,26After being partly covered by APTS,these surface states were mostly blocked.The fill factor and short-circuit photocurrent density were consequently improved for the suppression of back reaction.Just as Kay et al.reported,13in metal oxide functionalised mesoporous SnO2solar cells,the insulating layer has an optimum thickness of only a few angstroms.If the concentration of APTS in dichloromethane is too dense,or if the TiO2film is treated for an excessively long time,the short-circuit photocurrent decreases greatly.Therefore,the concentration and treatment time in our experiment were optimised.This can be contributed to the much higher conducting band in APTS.If the APTS layer is too thick,the electron will not be able to penetrate this layer and be injected into the conduction band of TiO2.Also,too much APTS will block the adsorption of the dye,which is the most important for a higher photocurrent.

    3.3 Characteristics of a dye-sensitized APTS-modified TiO2electrode

    In APTS-modified DSSCs,the interaction among the dye,APTS,and TiO2film is the most important.In unmodified DSSCs,however,the dye coordinates with the TiO2surface through the carboxylate group in bridging the badentate mode in F type,27-29and it uses two of its four carboxylic acid groups.In previous study,the interaction between APTS and TiO2was thoroughly investigated.20,30After slightly being heated,APTS was inclined to lose methoxy and interacted with TiO2to form the covalent bond of Si―O―Ti.In water solution,APTS acted with carboxylic acid in electrostatic force,17,31,32as also provenin this system.After immersing in APTS,the interaction among the dye,APTS,and TiO2surface is demonstrated,as shown in Scheme2.

    XPS proved to be an efficient method to characterize APTS-modified multi-layer films.33,34Under anhydrous condition,APTS can act with inorganic oxide in three possible modes,35such as mono-bridge,bi-bridge,and tri-bridge modes.Because APTS and the dye have a monolayer self-assembly,the signals are not big enough to be distinguished from each other in a dye-sensitized TiO2electrode.It is even difficult to analyze the element with ICP.In order to investigate the interaction by XPS,new experiments were conducted.Thin films of TiO2(10 nm)were prepared by means of spin-coating on CTO substrate,36and then immersing them in the solution of APTS in dichloromethane with the concentration of 6.625×10-3mol·L-1for 5 min.After which,the films were dried at 80°C in an oven for 10 min.Dye sensitising for 20 min was carried out in the same concentration just as described above.

    The XPS spectra of the APTS-modified TiO2film and dyesensitized APTS-modified TiO2film are shown in Fig.4.In the ATS-modified TiO2film,the signals of Si 2p,N 1s,and C 1sappeared.The atomic concentration ratio(in Table 2)of C,O to Si(or N)revealed that the―OCH2CH3was partially removed,and APTS was adsorbed onto the TiO2surface by the Si―O―Ti bond.The bottom part shows the XPS spectrum of the dye-sensitized APTS-modified TiO2film,with peaks of 280.71,284.81,and 162.35 eV which correspond to the binding energy of Ru 3d5,Ru 3d3,and S 2p,respectively.Also,the atomic concentration in Table 1 reveals that the dye was adsorbed ontoAPTS by part of its―COOH.

    Table 2 XPS atomic percentages(x)forAPTS-modified TiO2and dye-sensitizedAPTS-TiO2

    As illuminated in Scheme 2,the dye acted with APTS by means of electrostatic force.Fig.5 shows the FT-IR spectra of Ru535,and the mixture of Ru535 and APTS.A band with intense peak centered at 1728 cm-1corresponded toνC=Oof carboxylic acid in Ru535.After acting with APTS,the peak moved to 1599 cm-1,which corresponded to the asymmetric―COO-stretch.Moreover,the broad band with the peaks of 2490 and 2606 cm-1almost disappeared after acting with APTS,which is another characteristic of carboxylic acid.APTS can also be identified(by order of descending energy)as Si―O―C stretch(intense peaks centred at 1117 and 1071 cm-1),Ti―O―Si stretch(centred at 912 cm-1),and N―H bend(786 cm-1).

    4 Conclusions

    In summary,it was found that APTS acted with the TiO2film in the form of covalence,and with the dye of Ru535 by means of electrostatic force.This self-assembly APTS layer reduced the defects and surface states of TiO2.It also inhibited the back reaction at the semiconductor electrolyte junction.As a result,modifying the TiO2electrode with APTS increased the short-circuit photocurrent,the open-circuit photovoltage,and the fill factor.All of these caused the overall power conversionefficiency to increase by 18.8%.

    APTS acts as insulating layer in DSSCs,it may improve cell stability under UV irradiation.The band gap of anatase TiO2is 3.2 eV,and it can absorb light below 388 nm,which leads to the formation of strongly oxidised valence band holes that can oxidise the solvent irreversibly and result in an unrecoverable loss of.The APTS-modified TiO2film reduces the chance of valence band holes′reaction with I-ions and may be used to fabricate UV-resisted DSSCs.

    The electrostatic force between Ru535 and APTS is not so stable as the covalent interaction of Ru535 and TiO2film in liquid-state DSSCs.The experiments show that the APTS-modified solar cell is not so stable as the unmodified solar cell.However,further research work may be done to change the weak leakage to the covalence bond.Also,when used in solidstate dye-sensitized solar cells,the APTS-modified TiO2electrode may show a more outstanding performance.

    (1) O′Regan,B.;Gr?tzel,M.Nature 1991,353,737.

    (2) Nazeeruddin,M.K.;Rodicio,I.;Humphry-Baker,R.;Muller,E.;Liska,P.;Vlachopoulos,N.;Gr?tzel,M.J.Am.Chem.Soc.1993,115,6382.

    (3)Keis,K.;Bauer,C.;Boschloo,G.;Hagfeldt,A.;Westermark,K.;Rensmo,H.;Siegbahn,H.J.Photochem.Photobio.A 2002,148,57.

    (4) Stergiopoulos,T.;Arabatzis,I.M.;Cachet,H.;Falaras,P.J.Photochem.Photobio.A 2003,155,163.

    (5) Fitzmaurice,D.J.;Frei,H.Langmuir 1991,7,1129.

    (6) Hara,K.;Horiguchi,T.;Kinoshita,T.;Sayama,K.;Sugihara,H.;Arakawa,H.Sol.Energy Mater.Sol.Cells 2000,64,115.

    (7) Heimer,T.A.;D′Arcangelis,S.T.;Farzad,F.;Stipkala,J.M.;Meyer,G.J.Inorg.Chem.1996,35,5319.

    (8) Nüesch,F.;Moser,J.E.;Shklover,V.;Gr?tzel,M.J.Am.Chem.Soc.1996,118,5420.

    (9)Hagfeldt,A.;Gr?tzel,M.Chem.Rev.1995,95,49.

    (10)Peter,L.M.;Wijayantha,K.G.U.Electrochem.Commun.1999,1,576.

    (11) Rensmo,H.;Lindstrom,H.;Sodergren,S.;Willstedt,A.K.;Solbrand,A.;Hagfeldt,A.;Lindquist,S.E.J.Electrochem.Soc.1996,143,3173.

    (12)Wang,Z.S.;Huang,C.H.;Huang,Y.Y.;Hou,Y.J.;Xie,P.H.;Zhang,B.W.;Cheng,H.M.Chem.Mater.2001,13,678.

    (13)Kay,A.;Gr?tzel,M.Chem.Mater.2002,14,2930.

    (14) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.J.Am.Chem.Soc.2003,125,475.

    (15) Zhang,L.;Ren,Y.J.;Cai,S.M.Electrochemistry 2002,8,27.[張 莉,任焱杰,蔡生民.電化學,2002,8,27.]

    (16)Yang,S.M.;Kou,H.Z.;Wang,L.;Wang,H.J.;Fu,W.H.Acta Phys.-Chim.Sin.2009,25,1219.[楊術明,寇慧芝,汪 玲,王紅軍,付文紅.物理化學學報,2009,25,1219.]

    (17) Decher,G.Science 1997,277,1232.

    (18) Lee,C.H.;Lin,T.S.;Mou,C.Y.J.Phys.Chem.B 2003,107,2543.

    (19) Mukhopadhyay,K.;Phadtare,S.;Vinod,V.P.;Kumar,A.;Rao,M.;Chaudhari,R.V.;Sastry,M.Langmuir 2003,19,3858.

    (20)Kominami,H.;Itonaga,M.;Shinonaga,A.;Kagawa,S.;Konishi,S.;Kera,Y.Stu.Sur.Sci.Cat.2002,143,1089.

    (21) Lao.C.F.Researches on the Efficiency of Dye-Sensitized Solar Cells.Ph.D.Dissertation,Peking University,Beijing,2006. [勞春峰.染料敏化太陽能電池效率問題的研究[D].北京:北京大學,2006.]

    (22) Zhang,J.;Yang,G.T.;Sun,Q.;Zheng J.;Wang,P.Q.;Zhu,Y.J.;Zhao,X.Z.J.Ren.Sust.Energy 2010,013104.

    (23) Lao,C.F.;Chuai,Y.T.;Su,L.;Liu,X.;Huang,L.;Cheng,H.M.;Zou,D.C.Sol.Energy Mater.Sol.Cells 2004,85,457.

    (24) Rosenblut,M.L.;Lewis,N.S.J.Phys.Chem.1989,93,3735.

    (25)Kumer,A.;Santangelo,P.G.;Lewis,N.S.J.Phys.Chem.1992,96,835.

    (26) Moser,J.;Punchihewa,S.;Infelta,P.P.;Gr?tzel,M.Langmuir 1991,7,3012.

    (27) Nazeruddin,M.K.;Humphry-Baker,R.;Liska,P.;Gr?tzel,M.J.Phys.Chem.B 2003,107,8981.

    (28)Rensmo,H.;Westermark,K.;S?dergren,S.;Kohle,O.;Persson,P.;Lunell,S.;Siegbahn,H.J.Chem.Phys.1999,111,2744.

    (29)Westermark,K.;Rensmo,H.;Lees,A.C.;Vos,J.G.;Siegbahn,H.J.Phys.Chem.B 2002,106,10108.

    (30)Chang,C.C.;Chen,W.C.J.Polym.Sci.A:Polym.Chem.2001,39,3419.

    (31) Bertrand,P.T.;Jonas,A.;Laschewsky,A.;Legras,R.Macromol.Rapid.Commun.2000,21,319.

    (32) Kumar,A.;Mandale,A.B.;Sastry,M.Langmuir 2000,16,6921.

    (33) Jarrais,B.;Silva,A.R.;Freire,C.Eur.J.Inorg.Chem.2005,4582.

    (34) Noh,J.;Ito,E.;Nakajima,K.;Kim,J.;Lee,H.;Hara,M.J.Phys.Chem.B 2002,106,7139.

    (35) Lin,J.;Siddiqui,J.A.;Ottenbrite,R.M.Polym.Adv.Technol.2001,12,285.

    (36)Arago,A.C.;Johnson,L.R.;Bliznyuk,V.N.;Schlesinger,Z.;Carter,S.A.;H?rhold,H.H.Adv.Mater.2000,12,1689.

    3-氨基丙基三甲氧基硅烷自組裝提高染料敏化太陽能電池的效率

    勞春峰1初增澤2鄒德春2,*

    (1海爾集團技術研發(fā)中心,山東青島266103;2北京大學化學與分子工程學院,北京100871)

    以3-氨基丙基三甲氧基硅烷(APTS)修飾的二氧化鈦為負極制備的染料敏化太陽能電池在100 mW·cm-2的模擬太陽光照下的短路電流、開路電壓、光電轉換效率分別為18.32 mA·cm-2、775.9 mV、9.15%.而沒有經(jīng)過ATPS修飾的電池三項性能參數(shù)分別為18.08 mA·cm-2、749.9 mV、7.70%,修飾后電池的光電轉換效率提高了18.8%,同時填充因子由0.57提高為0.64.暗電流-電壓曲線顯示起始電壓從-0.30 V變化到-0.40 V,表明二氧化鈦電極和電解液之間的暗反應得到了有效抑制,APTS作為阻擋層減少了二氧化鈦電極表面的缺陷與表面態(tài).另外,通過實驗設計,將APTS與染料層-層自組裝于二氧化鈦電極上,通過X射線光電子能譜(XPS)研究了二氧化鈦層、APTS、染料的作用形式.定性與定量結果表明:APTS中的乙氧基部分脫除后形成了Si―O―Ti單橋或者雙橋鍵,釕染料cis-Ru(dcpyH2)2(SCN)2通過分子中的部分―COOH與APTS中的―NH2形成的靜電作用力吸附在TiO2電極上.傅里葉變換紅外(FT-IR)光譜的結果進一步證明了這種分子間作用.

    染料敏化太陽能電池;3-氨基丙基三甲氧基硅烷; 自組裝; 二氧化鈦;X射線光電子能譜

    O649

    Received:September 13,2010;Revised:November 24,2010;Published on Web:December 22,2010.

    ?Corresponding author.Email:dczou@pku.edu.cn;Tel:+86-10-62759799.

    The project was supported by the National Natural Science Foundation of China(50125310,90401028)and National Key Basic Research Program of China(973)(2002CB613405).

    國家自然科學基金(50125310,90401028)及國家重點基礎研究發(fā)展規(guī)劃項目(973)(2002CB613405)資助

    猜你喜歡
    敏化丙基二氧化鈦
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關元穴臨床主治規(guī)律的文獻計量學分析
    石榴鞣花酸-羥丙基-β-環(huán)糊精包合物的制備
    中成藥(2018年6期)2018-07-11 03:01:28
    N-丁氧基丙基-S-[2-(肟基)丙基]二硫代氨基甲酸酯浮選孔雀石的疏水機理
    魚腥草揮發(fā)油羥丙基-β環(huán)糊精包合物的制備
    中成藥(2017年5期)2017-06-13 13:01:12
    亞砷酸鹽提高藻與蚤培養(yǎng)基下納米二氧化鈦的穩(wěn)定性
    鐵摻雜二氧化鈦的結構及其可見或紫外光下對有機物催化降解的行為探析
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進
    合成化學(2015年9期)2016-01-17 08:57:14
    耦聯(lián)劑輔助吸附法制備CuInS2量子點敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    電源技術(2015年7期)2015-08-22 08:48:30
    黄色视频不卡| 亚洲精品美女久久久久99蜜臀| 国产免费av片在线观看野外av| 宅男免费午夜| 国产精品,欧美在线| 精品一品国产午夜福利视频| 无遮挡黄片免费观看| 99热只有精品国产| 视频在线观看一区二区三区| 久久影院123| 国产乱人伦免费视频| 亚洲国产精品sss在线观看| 国产精品二区激情视频| 黄片大片在线免费观看| 日本在线视频免费播放| 久久青草综合色| 亚洲熟女毛片儿| 亚洲片人在线观看| 久久精品国产亚洲av高清一级| 国内精品久久久久久久电影| 午夜福利影视在线免费观看| 纯流量卡能插随身wifi吗| 日本精品一区二区三区蜜桃| 久久久久九九精品影院| 一级毛片女人18水好多| 日本免费一区二区三区高清不卡 | 久99久视频精品免费| www.精华液| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人的私密视频| 亚洲av电影在线进入| av福利片在线| 丝袜美足系列| 男人舔女人的私密视频| 制服丝袜大香蕉在线| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 中文字幕人成人乱码亚洲影| 亚洲精华国产精华精| 午夜福利成人在线免费观看| 又黄又爽又免费观看的视频| 色综合亚洲欧美另类图片| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 精品少妇一区二区三区视频日本电影| 亚洲av美国av| 久99久视频精品免费| 窝窝影院91人妻| 国产一区二区三区视频了| 在线免费观看的www视频| 免费看十八禁软件| 啦啦啦观看免费观看视频高清 | 国产麻豆成人av免费视频| 久久 成人 亚洲| 每晚都被弄得嗷嗷叫到高潮| 99精品欧美一区二区三区四区| www.www免费av| 国产av一区在线观看免费| 成年版毛片免费区| 久久婷婷人人爽人人干人人爱 | 妹子高潮喷水视频| 啦啦啦 在线观看视频| 一区在线观看完整版| 一级毛片女人18水好多| 人人妻人人澡欧美一区二区 | 午夜激情av网站| 国产一区在线观看成人免费| 在线观看午夜福利视频| 看免费av毛片| 免费看a级黄色片| 成在线人永久免费视频| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 免费在线观看完整版高清| 欧美黄色片欧美黄色片| 免费看美女性在线毛片视频| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片 | 欧美激情久久久久久爽电影 | 亚洲精品国产色婷婷电影| 手机成人av网站| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产在线观看| 久久久久久人人人人人| 成人亚洲精品一区在线观看| 欧美日韩亚洲国产一区二区在线观看| 色婷婷久久久亚洲欧美| 久久婷婷人人爽人人干人人爱 | 韩国精品一区二区三区| 亚洲av日韩精品久久久久久密| 极品人妻少妇av视频| 欧美日本视频| 两个人免费观看高清视频| 日韩大码丰满熟妇| 国内精品久久久久精免费| 国产高清视频在线播放一区| 黑丝袜美女国产一区| 国产亚洲欧美98| 欧美 亚洲 国产 日韩一| 啦啦啦免费观看视频1| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 国产精品av久久久久免费| 欧美丝袜亚洲另类 | 搡老岳熟女国产| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| www日本在线高清视频| 国产在线观看jvid| 1024视频免费在线观看| 国产1区2区3区精品| 亚洲av五月六月丁香网| 脱女人内裤的视频| 国内精品久久久久精免费| 超碰成人久久| 国产精品综合久久久久久久免费 | 母亲3免费完整高清在线观看| 日本一区二区免费在线视频| 国产精品永久免费网站| 精品电影一区二区在线| 国产av一区二区精品久久| videosex国产| 禁无遮挡网站| 亚洲成国产人片在线观看| 窝窝影院91人妻| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕日韩| 亚洲国产毛片av蜜桃av| 亚洲中文av在线| 免费看十八禁软件| 正在播放国产对白刺激| 亚洲一区二区三区色噜噜| 啦啦啦 在线观看视频| 亚洲成a人片在线一区二区| 熟妇人妻久久中文字幕3abv| 亚洲激情在线av| tocl精华| 又黄又粗又硬又大视频| 午夜福利,免费看| 欧美日韩一级在线毛片| 超碰成人久久| 天堂√8在线中文| 国产亚洲欧美98| 97人妻天天添夜夜摸| 在线免费观看的www视频| 99香蕉大伊视频| 欧美日本视频| 黄片小视频在线播放| av福利片在线| 国产精品1区2区在线观看.| 亚洲成人国产一区在线观看| 女人精品久久久久毛片| 一级a爱视频在线免费观看| 国产精品免费一区二区三区在线| 很黄的视频免费| 757午夜福利合集在线观看| 一进一出好大好爽视频| 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 亚洲男人天堂网一区| 久久久国产成人免费| 精品久久久精品久久久| 国产精品二区激情视频| 精品午夜福利视频在线观看一区| 老汉色∧v一级毛片| 一个人免费在线观看的高清视频| www.精华液| 丝袜在线中文字幕| 满18在线观看网站| 中文字幕久久专区| 在线观看一区二区三区| 99精品久久久久人妻精品| 亚洲专区字幕在线| www.999成人在线观看| 亚洲人成伊人成综合网2020| 国产亚洲精品久久久久久毛片| 亚洲精品粉嫩美女一区| 日韩欧美在线二视频| 亚洲一区二区三区色噜噜| 国产精品av久久久久免费| 伦理电影免费视频| 日韩成人在线观看一区二区三区| 高清毛片免费观看视频网站| 香蕉久久夜色| 天堂动漫精品| 午夜久久久在线观看| 12—13女人毛片做爰片一| 叶爱在线成人免费视频播放| 我的亚洲天堂| 欧美av亚洲av综合av国产av| 好男人在线观看高清免费视频 | 久久久国产欧美日韩av| 久久午夜亚洲精品久久| 无限看片的www在线观看| 国产91精品成人一区二区三区| 精品一区二区三区四区五区乱码| 成人特级黄色片久久久久久久| 国产一区二区三区在线臀色熟女| 91大片在线观看| 最好的美女福利视频网| tocl精华| 9热在线视频观看99| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 日韩成人在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 国产亚洲精品综合一区在线观看 | 夜夜躁狠狠躁天天躁| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 亚洲欧美激情在线| 午夜福利欧美成人| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 国产亚洲精品久久久久久毛片| АⅤ资源中文在线天堂| 亚洲一区高清亚洲精品| 国产亚洲av高清不卡| 欧美黑人欧美精品刺激| 无人区码免费观看不卡| 国产亚洲精品一区二区www| 亚洲精品在线美女| 亚洲av成人av| 操出白浆在线播放| 成人精品一区二区免费| 午夜福利高清视频| 琪琪午夜伦伦电影理论片6080| 一区在线观看完整版| 久久 成人 亚洲| 久久久久亚洲av毛片大全| 国产精品免费一区二区三区在线| 大香蕉久久成人网| 欧美一级毛片孕妇| 一级毛片高清免费大全| 男女午夜视频在线观看| а√天堂www在线а√下载| 午夜久久久久精精品| 国产高清视频在线播放一区| 国产精品av久久久久免费| 狂野欧美激情性xxxx| 亚洲最大成人中文| 日韩精品青青久久久久久| 嫩草影院精品99| 久99久视频精品免费| 亚洲一区高清亚洲精品| 久久精品亚洲熟妇少妇任你| 精品一品国产午夜福利视频| 日日干狠狠操夜夜爽| 三级毛片av免费| 色综合婷婷激情| 国产男靠女视频免费网站| 欧美日韩中文字幕国产精品一区二区三区 | 9色porny在线观看| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕在线视频| 欧美激情 高清一区二区三区| 18美女黄网站色大片免费观看| 日本在线视频免费播放| 久久国产精品影院| 国产在线观看jvid| 日韩欧美免费精品| 久99久视频精品免费| 国产在线精品亚洲第一网站| 在线观看66精品国产| 在线视频色国产色| 长腿黑丝高跟| 欧美成狂野欧美在线观看| 免费久久久久久久精品成人欧美视频| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| 日本免费a在线| 国产精品亚洲av一区麻豆| 久久久久久久久中文| ponron亚洲| 久久久水蜜桃国产精品网| 又大又爽又粗| 日韩欧美国产在线观看| 国产熟女xx| 成人av一区二区三区在线看| 亚洲av美国av| 真人一进一出gif抽搐免费| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| videosex国产| 女人被狂操c到高潮| 成年版毛片免费区| 岛国视频午夜一区免费看| 国产av又大| 国产1区2区3区精品| 波多野结衣av一区二区av| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 黑人巨大精品欧美一区二区mp4| av视频免费观看在线观看| 一级片免费观看大全| 一卡2卡三卡四卡精品乱码亚洲| 女性被躁到高潮视频| 丁香欧美五月| 中文字幕另类日韩欧美亚洲嫩草| 操美女的视频在线观看| 韩国av一区二区三区四区| 国产精品影院久久| 免费看美女性在线毛片视频| www.精华液| 国产精品一区二区精品视频观看| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| av电影中文网址| 18禁国产床啪视频网站| 午夜精品在线福利| 50天的宝宝边吃奶边哭怎么回事| 黄色 视频免费看| 淫秽高清视频在线观看| 国产亚洲欧美98| 手机成人av网站| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| 久久草成人影院| 午夜激情av网站| 亚洲精品粉嫩美女一区| 精品日产1卡2卡| 亚洲成人免费电影在线观看| 91成年电影在线观看| 欧美中文综合在线视频| 12—13女人毛片做爰片一| 久久久久久久精品吃奶| 可以免费在线观看a视频的电影网站| 亚洲熟女毛片儿| 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| а√天堂www在线а√下载| 韩国av一区二区三区四区| 久久香蕉国产精品| 久久国产亚洲av麻豆专区| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 亚洲精品美女久久久久99蜜臀| 国产精品美女特级片免费视频播放器 | 999久久久国产精品视频| 久久九九热精品免费| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 亚洲自偷自拍图片 自拍| 久久中文字幕一级| 不卡av一区二区三区| 久久中文字幕人妻熟女| 国产伦一二天堂av在线观看| 日本a在线网址| 咕卡用的链子| 免费看美女性在线毛片视频| 欧美国产精品va在线观看不卡| 少妇裸体淫交视频免费看高清 | 99久久精品国产亚洲精品| 天天躁夜夜躁狠狠躁躁| 日本vs欧美在线观看视频| 免费在线观看影片大全网站| 一级作爱视频免费观看| 国产成人欧美| 69精品国产乱码久久久| 天天躁夜夜躁狠狠躁躁| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| x7x7x7水蜜桃| 91成人精品电影| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 久久久精品国产亚洲av高清涩受| av中文乱码字幕在线| 夜夜夜夜夜久久久久| 人人妻人人澡欧美一区二区 | 色综合亚洲欧美另类图片| 亚洲第一电影网av| 88av欧美| 免费一级毛片在线播放高清视频 | 久久久久国产精品人妻aⅴ院| 国产高清有码在线观看视频 | 女人精品久久久久毛片| 啦啦啦免费观看视频1| 久9热在线精品视频| 九色亚洲精品在线播放| 嫁个100分男人电影在线观看| 麻豆成人av在线观看| 一级,二级,三级黄色视频| 一二三四在线观看免费中文在| 老鸭窝网址在线观看| 一级a爱视频在线免费观看| 久久精品成人免费网站| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 亚洲全国av大片| bbb黄色大片| 亚洲 国产 在线| 老司机午夜十八禁免费视频| 一级a爱片免费观看的视频| 成人三级做爰电影| 黄色女人牲交| 午夜免费鲁丝| 一个人免费在线观看的高清视频| 免费在线观看视频国产中文字幕亚洲| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| 亚洲成av人片免费观看| 国产成人精品久久二区二区91| 欧美乱色亚洲激情| 电影成人av| 欧美成人午夜精品| 99香蕉大伊视频| 日韩欧美国产一区二区入口| 亚洲一区高清亚洲精品| 欧美黑人精品巨大| 91老司机精品| 一个人免费在线观看的高清视频| 免费在线观看视频国产中文字幕亚洲| 国产精品 国内视频| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | 日本 欧美在线| 亚洲人成网站在线播放欧美日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av在哪里看| 精品欧美一区二区三区在线| 久久精品国产亚洲av香蕉五月| 欧美国产日韩亚洲一区| 88av欧美| 亚洲午夜理论影院| av视频在线观看入口| 777久久人妻少妇嫩草av网站| 十八禁人妻一区二区| 999久久久精品免费观看国产| 好男人在线观看高清免费视频 | 精品久久久久久久毛片微露脸| 中文字幕精品免费在线观看视频| 亚洲精华国产精华精| 动漫黄色视频在线观看| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 在线观看免费午夜福利视频| 91成人精品电影| 免费久久久久久久精品成人欧美视频| 88av欧美| 亚洲国产日韩欧美精品在线观看 | 久久草成人影院| 两个人免费观看高清视频| 人人澡人人妻人| 色综合站精品国产| 亚洲自偷自拍图片 自拍| 国产精品 国内视频| 国产午夜福利久久久久久| 国产成人av教育| 97人妻精品一区二区三区麻豆 | 高潮久久久久久久久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 神马国产精品三级电影在线观看 | 女警被强在线播放| 啦啦啦免费观看视频1| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看 | 一a级毛片在线观看| 国产日韩一区二区三区精品不卡| 90打野战视频偷拍视频| 成年版毛片免费区| 99在线视频只有这里精品首页| 女人高潮潮喷娇喘18禁视频| 色尼玛亚洲综合影院| 亚洲精品美女久久久久99蜜臀| 韩国av一区二区三区四区| 亚洲黑人精品在线| 亚洲精品国产区一区二| 一区二区三区精品91| 精品不卡国产一区二区三区| 亚洲五月天丁香| 久久国产精品影院| 国产精品 国内视频| 天天一区二区日本电影三级 | 久久精品亚洲熟妇少妇任你| 91国产中文字幕| 国产精品久久久久久亚洲av鲁大| 法律面前人人平等表现在哪些方面| 国产成年人精品一区二区| 久久精品国产综合久久久| 男女下面插进去视频免费观看| 久久香蕉精品热| 精品国产一区二区久久| 一a级毛片在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久人妻福利社区极品人妻图片| 亚洲专区国产一区二区| 国产成人av教育| 一a级毛片在线观看| 高潮久久久久久久久久久不卡| 国产精品av久久久久免费| 久热爱精品视频在线9| 久9热在线精品视频| 欧美av亚洲av综合av国产av| 国产在线精品亚洲第一网站| 久久中文字幕一级| 亚洲三区欧美一区| 两人在一起打扑克的视频| av视频免费观看在线观看| 久久 成人 亚洲| 男女下面插进去视频免费观看| 亚洲一区二区三区色噜噜| 欧美丝袜亚洲另类 | 中文字幕久久专区| 51午夜福利影视在线观看| 中文亚洲av片在线观看爽| 老司机午夜十八禁免费视频| 国产精品久久久久久精品电影 | 乱人伦中国视频| svipshipincom国产片| 亚洲精品粉嫩美女一区| 激情在线观看视频在线高清| 69精品国产乱码久久久| 午夜福利欧美成人| 成人欧美大片| 两个人视频免费观看高清| 久久婷婷成人综合色麻豆| 久久草成人影院| 天堂动漫精品| 国产精品电影一区二区三区| 国产精品爽爽va在线观看网站 | 在线观看免费视频日本深夜| aaaaa片日本免费| 精品国产美女av久久久久小说| 国产成人精品久久二区二区免费| 一级,二级,三级黄色视频| 伊人久久大香线蕉亚洲五| 国产精品 欧美亚洲| 国产精品日韩av在线免费观看 | 后天国语完整版免费观看| 丁香欧美五月| 99精品在免费线老司机午夜| 亚洲国产精品成人综合色| 999久久久国产精品视频| 亚洲国产中文字幕在线视频| av有码第一页| 亚洲专区国产一区二区| 免费不卡黄色视频| 88av欧美| 757午夜福利合集在线观看| 午夜精品久久久久久毛片777| 国产又色又爽无遮挡免费看| 国产1区2区3区精品| 亚洲精华国产精华精| 亚洲精品在线观看二区| 久久影院123| 国产亚洲精品久久久久5区| 999久久久精品免费观看国产| 久久久久国产一级毛片高清牌| 长腿黑丝高跟| 午夜激情av网站| 免费在线观看亚洲国产| 精品乱码久久久久久99久播| 日韩国内少妇激情av| 精品欧美国产一区二区三| 久久狼人影院| 国产1区2区3区精品| 午夜福利在线观看吧| 最好的美女福利视频网| 国产成人av激情在线播放| 亚洲av熟女| 好男人电影高清在线观看| 高清在线国产一区| 丝袜美腿诱惑在线| 久久婷婷成人综合色麻豆| 免费久久久久久久精品成人欧美视频| 久久久久久大精品| 在线观看66精品国产| 亚洲一区高清亚洲精品| 亚洲精品美女久久av网站| 午夜激情av网站| 日本撒尿小便嘘嘘汇集6| 深夜精品福利| 亚洲最大成人中文| 国产成人av教育| 久久中文看片网| 在线十欧美十亚洲十日本专区| 欧美人与性动交α欧美精品济南到| 午夜a级毛片| 波多野结衣巨乳人妻| 午夜免费激情av| 在线视频色国产色| 窝窝影院91人妻| 亚洲精品久久国产高清桃花| 亚洲成人精品中文字幕电影| 一级毛片女人18水好多| 国产精品久久视频播放| 精品久久久久久,| 成人欧美大片| 99riav亚洲国产免费| 亚洲欧美日韩无卡精品| 丁香六月欧美| 1024视频免费在线观看| 亚洲国产精品sss在线观看| 国产成人免费无遮挡视频| 麻豆av在线久日| 国产成人系列免费观看| 国产激情欧美一区二区| 日本 欧美在线| 波多野结衣av一区二区av| 中文字幕av电影在线播放| 亚洲人成电影观看| 精品国产一区二区三区四区第35|