• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the Ionic Liquid Additive-[BMIM]HSO4on the Kinetics of Oxygen Evolution during Zinc Electrowinning

    2014-10-14 03:44:00ZHANGQiBoHUAYiXin
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:電積陽極電位

    ZHANG Qi-Bo HUA Yi-Xin

    (Key Laboratory of Ionic Liquids Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)

    Effect of the Ionic Liquid Additive-[BMIM]HSO4on the Kinetics of Oxygen Evolution during Zinc Electrowinning

    ZHANG Qi-Bo*HUA Yi-Xin

    (Key Laboratory of Ionic Liquids Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)

    Abstract:The effect of the ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate([BMIM]HSO4)on the kinetics of oxygen evolution during zinc electrowinning from an acidic sulfate solution was investigated.We used potentiodynamic polarization,electrochemical impedance spectroscopy,scanning electron microscopy,and X-ray diffraction for this study.Potentiodynamic polarization curves and the corresponding kinetic parameter analysis show that[BMIM]HSO4has a catalytic effect on oxygen evolution by stimulating the reaction rate constant.Impedance data reveal that[BMIM]HSO4can markedly reduce the oxygen evolution charge transfer resistance.The addition of 5 mg·L-1[BMIM]HSO4obviously decreased the resistance value by at least 50%over the studied potential range from 1.85 to 2.10 V.In addition,the results of the impedance measurements also suggest an inhibition effect of[BMIM]HSO4on the secondary reactions and this is due to the adsorption of the additive on the anode surface,which decreased the amount of active sites for anion adsorption.All electrochemical results were corroborated with a morphological and orientation analysis of the anodic surface after 120 h of anodic polarization.The addition of[BMIM]HSO4inhibited the generation of the intermediate productβ-PbO2and it promoted the generation of larger,loose,and porousα-PbO2,which benefited the oxygen evolution reaction.

    Key Words:Electrochemical impedance spectroscopy; Zinc electrowinning; Oxygen evolution;Ionic liquid additive; Surface morphology

    Lead and its alloy have been wildly used as permanent anodes for electrowinning and plating of zinc due to their high corrosion-resistance property in the sulfuric acid used in the electrolytic solutions[1].Pure lead is a weak material and it tends to creep and warp during use.In practice,lead alloys are usually used instead of pure lead,since alloying with some amounts of certain metals can significantly improve its corrosion resistance,mechanical characteristics and also castability[1-2].Pb-Ag alloy,typically containing 0.25%to 1.0%(w,mass fraction)silver is the main anode material in the production of anodes for hydrometallurgical electrowinning of zinc[3-6].Silver addition is found to improve the lead corrosion resistance,longer anode life,lower anode potential,and consequently,reduce oxygen overpotential[1,3,7].However,due to the high cost of silver,many attempts have been made to find material which by forming of binary[8-9],ternary[9-13],or quaternary[2,14]lead alloys,would be able to substitute or decrease its quantity in the anodes.

    During the deposition process,oxygen will release at the anode surface as a gas and then oxidize materials in the electrolyte,corrode the anode,or form peroxides at the anode surface.The oxygen corrodes the anode directly by the formation of PbO,PbSO4and then PbO2with different crystalline phases(α and β)on the surface[15-19].The morphology of the PbO2layer plays an important role in inhibiting the spalling and corrosion of anodes which leads to cathode contamination.Alloy additions and anode fabrication techniques can promote a more continuous,adherent PbO2layer,which serves to evolve oxygen as a gas instead of corroding the underlying lead surface.For hydrometallurgical zinc electrowinning,the energy consumption saving improvement is bound up with a reduction in the anodic voltage(oxygen evolution voltage),which represents 50%-60%of cell voltage.An effective way to decrease the oxygen evolution overvoltage and reduce solution ohmic resistance is the use of additives(anodic depolarizers).As is well known,additives are widely used in zinc electrodeposition due to their special functions in deposition process.These additives are found to affect both the deposition and crystal-building processes through their adsorbates at the electrode surface[20].Appropriate addition is necessary for the formation of finegrained,smooth,compact deposits[21].However,most of the literature focuses on the effects of additives on the current efficiency and polarization behavior as well as their effects on deposit morphology and crystallographic orientations of the cathode during the zinc electrodeposition process;scant information is available on the effects of additives on the oxygen evolution on the anode during the deposition process.Afifi et al.[22]studied the effect of some organic agents on the zinc electrodeposition from zinc sulfate acid solution.The results showed that organic substances,such as ethanol,ethylene glycol,or acetic acid,were effective in decreasing the overall cell voltage.Similarly,Chapman and Yen[23]reported that the addition of 0.1 mol·L-1ethylene glycol can reduce the cell voltage by over 5%.In our previous report[24-25],[BMIM]HSO4was found to be an excellent levelling agent in both zinc and copper electrodeposition.The addition of[BMIM]HSO4is observed to increase current efficiency and reduce specific electric energy consumption for zinc electrodeposition and slightly change the reduction mechanism for copper electrodeposition.It is demonstrated that this additive has a pronounced inhibiting effect on both Zn2+and Cu2+electroreduction and leads to more leveled and fine-grained cathodic deposits.

    The present study aims at elucidating the effect of[BMIM]HSO4on the kinetics of the oxygen evolution on the anode during zinc electrodeposition from acidic sulfate solution.To this purpose,various experimental methods,such as potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),scanning electron microscopy(SEM),and X-ray diffraction(XRD)have been used.

    1 Experimental

    1.1 Reagents

    The solution of zinc electrolyte consisted of 55 g·L-1zinc and 150 g·L-1sulfuric acid was prepared by ZnSO4·7H2O and H2SO4and the specific experimental procedures were similar to as described previously[24].The ionic liquid additive[BMIM]HSO4was synthesized by our laboratory and the specific synthetic methods were mentioned elsewhere[26].All the reagents used wereAR grade.

    1.2 Electrolysis

    Small-scale galvanostatic electrolysis was performed in a rectangular flow cell with dimension of 20 cm×10 cm×8 cm made of plexiglass by chronopotentiometric measurements.The flow rate of the electrolyte was maintained at 1.2 dm3·h-1during the deposition process.A pure vertical planar aluminum(>99.95%)sheet and two parallel lead-silver alloy(Ag,0.2%)plates of 12 cm2as effective area were used as the cathode and anode,respectively.The interelectrode distance was 3.0 cm.Zinc was deposited on both sides of the cathode onto a total area of 10 cm2.All electrolysis experiments were run in a constant temperature bath at(40±1)°C.In all cases,the current density was held constant at 400 A·m-2during the deposition time of 120 h with the cathode aluminum sheet changing at 24 h interval.For each experiment,a freshly prepared solution was used and the solution temperature was thermostatically controlled at a desired value.

    1.3 Electrochemical measurements

    Electrochemical studies were based on the analysis of poten-tiodynamic polarization and electrochemical impedance spectroscopy.All the electrochemical measurements were measured by using an electrochemical work station(GAMRY USA,PCl4/300)and carried out at 40°C under atmospheric condition.A conventional three-electrode electrochemical cell was used for these experiments.A lead-silver alloy(Ag,0.2%)disk electrode(Ф4 mm,99.995%)inserted in a Teflon tube with exposed surface of 0.1256 cm2was used as working electrode.A graphite rod and a saturated calomel electrode(SCE)mounted inside a Luggin capillary were used as the counter and reference electrodes,respectively.Prior to each experiment,the electrolyte was deoxygenated by bubbling ultrapure argon for at least 10 min.The working electrode was grinded with 1200 grit silicon carbide paper and polished using 0.5 μm high-purity alumina,and then degreased with anhydrous alcohol in an ultrasonic bath for 1 min,washed with doubly distilled water and finally dried.

    Potentiodynamic polarization measurements were scanned at a constant scan rate of 5 mV·s-1from the initial potential of 1.80 V to the final potential of 2.15 V.In the case of EIS measurements,the working electrode potential was held at a series of constant potentials chosen from the activation controlled region over a frequency range of 100 kHz-6 mHz with a signal amplitude perturbation of 5 mV.

    1.4 Deposit examination

    After electrolysis,the anode was removed from the cell and washed thoroughly with distilled water and dried.A microscope(Tescan Czech,VEGA II XMH)and an X-ray diffractometer(Rigaku Japan,D/max 2200)were used to examine the surface morphology and the orientation of the anodic layers,respectively.

    2 Results and discussion

    2.1 Polarization studies

    The anodic potentiodynamic polarization curves obtained on a clean Pb-Ag anode in the absence and presence of ionic liquid additive[BMIM]HSO4are presented in Fig.1.A significant decrease in anodic polarization is observed with the addition of[BMIM]HSO4in the electrolyte and such an effect is more pronounced with increasing[BMIM]HSO4concentrations.Since the main reaction occurred on the Pb-Ag anode is that of oxygen evolution taking place on a PbO2layer in the case without the presence of Mn2+in the electrolyte,therefore,this depolarizing effect could be attributed to the increase in the rate of oxygen evolution[27-28].However,further work needs to be done on aged industrial anodes having a significant layer of MnO2to establish whether the depolarizing effect is still observed.

    The kinetic parameters Tafel slope,a(mV·decade-1),transfer coefficient,αa,and anodic exchange current density,i0,a(mA·cm-2),for the anodic reaction were calculated from their respective polarization curves.The results are given in Table 1 for unstirred electrolyte which is mixed by the gas evolution.The marked decrease in Tafel slopes with the addition of[BMIM]HSO4indicates that the oxygen evolution reaction is affected strongly by the presence of[BMIM]HSO4in the solution,and this effect becomes more pronounced at higher[BMIM]HSO4concentrations.This is confirmed by the significant increase of the transfer coefficient and exchange current density when[BMIM]HSO4is present in the solution.This change is probably ascribed to the catalytic effect of[BMIM]HSO4on the oxygen evolution by stimulating the reaction rate constant of oxygen evolution on the PbO2layer.

    2.2 Impedance measurement

    Electrochemical impedance measurement was used to investigate the electrochemical reaction occurred on the anode in the absence and presence of[BMIM]HSO4during the zinc electrodeposition process.The electrochemical impedance has been analyzed at different potential domains(the low and high polarization domains,respectively),where different electrode reactions occurred.

    In Fig.2,the impedance plots obtained at the low potential domain(E=1.85 V)on the polarization curves of Fig.1 at points A(without additive)and C(with addition of 5 mg·L-1[BMIM]HSO4)give a high-frequency capacitive loop,corresponding to the charge transfer resistance of the formation of the PbSO4layer on the anode surface.The current for the lead oxidation(generating PbSO4)remains very low(blow 0.5 mA·cm-2)in comparison with the total current.Therefore,it can hardly be detected in the polarization curves(Fig.1).The charge transfer resistance is estimated from the diameter of the high-frequency capacitive loop and the corresponding values obtained at various potential are presented in Table 2.As can be observed from Fig.2,the resistance value is found to decrease in the presence of[BMIM]HSO4,indicating that the ad-ditive can promote the electrode reaction.The similar profile of the complex-plane impedance spectra observed in the absence and presence of additive at points A and C reveals that the electrode reaction mechanism does not change with the addition of[BMIM]HSO4.This promotion effect of additive may be due to these high conductive additive molecules adsorbed on electrode surface,which improves the conductivity of the PbO sublayer and thus promotes the growth of the PbSO4.

    Table 1 Effects of[BMIM]HSO4on the kinetic parameters of oxygen evolution reaction

    Table 2 Variation of the resistance with the anodic polarization of Pb-Ag electrode

    Fig.3 shows the impedance plots obtained at high potential domain(E=2.08 V)for the additive-free electrolyte at point A'and for the electrolytes containing 1,5,10 mg·L-1[BMIM]HSO4at points B',C',D',respectively.As can be seen from Fig.3,for the additive-free electrolyte,the impedance plot exhibits two capacitive features at high frequencies followed by an inductive loop at low frequency values(Fig.3(point A')).The high frequency capacitive loop is usually related to thefrom 4.2 to 0.66 Ω·cm2in comparison to additive-free solution(Table 2),suggesting that the electrode reaction is more ready to occur.These results confirm the catalytic effect of[BMIM]HSO4on the oxygen evolution at electrode surface obtained by anodic polarization studies.In addition,it appears that the iRctproduct can be regarded as potential independent,as shown in Fig.4.As compared to the pure electrolyte,the iRctvalues decrease with the addition of[BMIM]HSO4,which also proves the catalytic effect of the additive on the charge transfer process.charge transfer across the double layer for oxygen evolution which is the main reaction.The second capacitive feature observed at medium frequencies is attributed to the relaxation of the electrode coverage by an absorbed silver salt from a secondary reaction[29]and reflects an inhibition of the main reaction by some adsorbed species resulting from secondary reactions taking place on the alloy electrode surface[30-31].The low frequency inductive loop could be interpreted in terms of relaxations of a slow electrode activation with increasing polarization,which is probably connected to an increase in the PbOnlayer conductivity[32-33].In contrast,for the[BMIM]HSO4containing electrolytes,the medium frequency capacitive loop becomes weak,suggesting an inhibition effect of additive on secondary reactions.In addition,this effect becomes more pronounced at higher additive concentrations.In the case of 10 mg·L-1[BMIM]HSO4containing electrolyte,the medium frequency capacitive loop nearly disappears.This inhibition effect may be explained as follows:there is a general agreement in the literature[28,30-31]that electrolyte anions,such as SO42-ions,can adsorb on the β phase and induce an inhibition of oxygen evolution.Additionally,the absorbed silver salt on the electrode surface is found to facilitate the anions adsorption.With the addition of[BMIM]HSO4,the imidazolium compound molecules can be adsorbed on the active sites of anode surface and compete with silver salt that will reduce the active sites for anion adsorption and thus block secondary reactions from taking place.

    Similar to the case of low polarization domains,the charge transfer resistance,Rct,decreases in the presence of[BMIM]HSO4.With the addition of 5 mg·L-1[BMIM]HSO4at the high potential of 2.08 V,the charge transfer resistance decreases

    2.3 Morphology and orientation studies

    The morphologies of anodic layers after 120 h anodic polarization obtained by small-scale electrolysis from the electrolyte in the absence and presence of 5 mg·L-1[BMIM]HSO4were characterized using scanning electron microscope.Typical SEM photomicrographs are shown in Fig.5.

    As it can be seen from Fig.5(A-C),the investigated additiveshows a marked effect on the surface quality of the anodic layers as compared with those obtained from electrolyte without additive(Fig.5(a-c)),which is porous with relatively large and coarse grains.In the presence of the investigated additive,the oxide layers obtained is more levelling and compact.In both cases,the anodic layers consist of α-PbO2and β-PbO2two crystallites:both oxide layers are tetragonal texture with bigger crystallites α-PbO2surrounding by smaller crystallites β-PbO2.However,with the addition of 5 mg·L-1[BMIM]HSO4the relative content of β-PbO2is found to decrease,which is more evidence by comparing with their backscattering electron images(Fig.5(c,C)).The result indicates an inhibition of the generation of β-PbO2.It is demonstrated that the presence of[BMIM]HSO4in the electrolyte generates two opposite effects:a catalytic effect on polarization curves due to a stimulated rate constant of oxygen evolution on the anodic oxide layer(PbO2),and a transient inhibition of the generation of β-PbO2.These two opposite effects become more pronounced with increasing additive concentration.Since the generation of β-PbO2is inhibited,a relative enhancement of the generation of α-PbO2is induced.In addition,the decrease in the relative content of β phase in the anodic oxide layers leads to a reduction in the active sites for anion adsorption that induce an inhibition of oxygen evolution.This results in a promotion effect on the oxygen evolution at electrode surface.

    The influence of[BMIM]HSO4on the crystallographic structure of the anodic layers was examined by XRD and the diffraction patterns for selected deposits are shown in Fig.6.These patterns indicate that the oxide layers mainly contain α-PbO2and β-PbO2crystallites without preferred crystallographic texture.The primary change in the diffraction patterns with the addition of[BMIM]HSO4is the weakness of the β-PbO2corresponding diffraction peak intensity,which indicates a decrease in the relative content of β-PbO2in the anodic oxide layers.This result is in agreement with the anodic layer morphology observed as discussion above.

    3 Conclusions

    The effect of ionic liquid additive-[BMIM]HSO4on the kinetics of oxygen evolution during zinc electrowinning from acidic sulfate solution has been studied.In the cases of[BMIM]HSO4containing electrolytes,a stimulation of oxygen evolution is observed.This catalytic effect essentially results from the stimulation of the reaction rate constant for oxygen evolution.The impedance data reveal a transient inhibition of[BMIM]HSO4on the secondary reactions apparently under the form of a medium-frequency capacitive feature which becomes more obvious with increasing additive concentrations.It could be concluded that this inhibition is ascribed to the adsorption of the additive on the active sites of anode surface in competition with the silver-salt adsorbate.The morphology of anodic layers and their orientation analysis exhibit an inhibition effect of[BMIM]HSO4on the generation of β-PbO2which provides active sites for the adsorption of these anions.These phenomena consequently appear that the determining effect of the additive lies in the reduction in the active sites for anion adsorption and creates more active sites able to stimulate the reaction rate constant of oxygen evolution.

    1 Petrova,M.;Noncheva,Z.;Dobrev,T.;Rashkov,S.;Kounchev,N.;Petrov,D.;Vlaev,S.;Mihnev,V.;Zarev,S.;Georgieva,L.;Buttinelli,D.Hydrometallurgy,1996,40:293

    2 Ivanov,I.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.;Mirkova,L.;Vermeersch,R.;Demaerel,J.P.Hydrometallurgy,2000,57:109

    3 Felder,A.;Prengaman,R.D.Journal of the Minerals,Metals and Material Society,2006,58:28

    4 Jiang,L.X.;Zhong,S.P.;Lai,Y.Q.;Lü,X.J.;Hong,B.;Peng,H.J.;Zhou,X.Y.;Li,J.;Liu,Y.X.Acta Phys.-Chim.Sin.,2010,26:2369 [蔣良興,衷水平,賴延清,呂曉軍,洪 波,彭紅建,周向陽,李 劼,劉業(yè)翔.物理化學(xué)學(xué)報,2010,26:2369]

    5 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.;Liu,Y.X.Hydrometallurgy,2010,102:73

    6 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.;Liu,Y.X.Hydrometallurgy,2010,102:81

    7 Pavlov,D.;Rogachev,T.Electrochim.Acta,1986,31:241

    8 Rashkov,S.;Dobrev,T.;Noncheva,Z.;Stefanov,Y.;Rashkova,B.;Petrova,M.Hydrometallurgy,1999,52:223

    9 Lupi,C.;Pilone,D.Hydrometallurgy,1997,44:347

    10 Siegmund,A.;Prengaman,R.D.;Dutrizac,J.E.Lead-Zinc 2000//Dutrizac,J.E.Warrendale.PA:TMS,2000:589-597

    11 Newnham,R.H.J.Appl.Electrochem.,1992,22:116

    12 Zhong,S.P.;Lai,Y.Q.;Jiang,L.X.;Tian,Z.L.;Li,J.;Liu,Y.X.Chin.J.Process Eng.,2008,8:289 [衷水平,賴延清,蔣良興,田忠良,李 劼,劉業(yè)翔.過程工程學(xué)報,2008,8:289]

    13 Lai,Y.Q.;Zhong,S.P.;Jiang,L.X.;Lü,X.J.;Chen,P.R.;Li,J.;Liu,Y.X.J.Cent.South Univ.Tech.,2009,16:236

    14 Petrova,M.;Stefanov,Y.;Noncheva,Z.;Dobrev,T.;Rashkov,S.British Corrosion Journal,1999,34:198

    15 Pavlov,D.Electrochim.Acta,1978,23:845

    16 Pavlov,D.;Dinev,Z.J.Electrochem.Soc.,1980,127:855

    17 Yamamoto,Y.;Fumino,K.;Ueda,T.;Nambu,M.Electrochim.Acta,1992,37:199

    18 Ruetchi,P.;Cahan,B.D.J.Electrochem.Soc.,1957,104:406

    19 Burbank,J.J.Electrochem.Soc.,1959,106:369

    20 Paunovic,M.;Schlesinger,M.Fundamental of electrochemical deposition.2nd ed.New York:John Willey&Sons Inc.Publication,2006:177-198

    21 Saba,A.E.;Elsherief,A.E.Hydrometallurgy,2000,54:91

    22 Afifi,S.E.;Ebraid,A.R.Journal of the Minerals,1992,1:32

    23 Chapman,T.W.;Yen,S.C.Anode depolarisation in electrowinning.AIME Meeting,Las Vegas,Nov.,1980

    24 Zhang,Q.B.;Hua,Y.X.J.Appl.Electrochem.,2009,39:261

    25 Zhang,Q.B.;Hua,Y.X.;Wang,Y.T.;Lu,H.J.;Zhang,X.Y.Hydrometallurgy,2009,98:291

    26 Whitehead,J.A.;Lawrance,G.A.;McCluskey,A.Aust.J.Chem.,2004,57:151

    27 Rerolle,C.;Wiart,R.Electrochim.Acta,1995,40:939

    28 Cachet,C.;Rerolle,C.;Wiart,R.Electrochim.Acta,1996,41:83

    29 Cachet,C.;Pape-Rerolle,C.L.E.;Wiart,R.J.Appl.Electrochem.,1999,29:813

    30 Berube,L.P.;Piron,D.J.Electrochem.Soc.,1987,134:562

    31 Katz,E.R.;Stucki,S.J.Electroanal.Chem.,1987,228:407

    32 Ruetschi,P.;Cahan,B.D.J.Electrochem.Soc.,1958,105:369

    33 Lappe,F.J.Phys.Chem.Solids,1962,23:1563

    離子液體添加劑[BMIM]HSO4對鋅電積過程析氧反應(yīng)動力學(xué)的影響

    張啟波*華一新

    (離子液體冶金重點實驗室,昆明理工大學(xué)冶金與能源工程學(xué)院,昆明650093)

    研究了1-丁基-3-甲基咪唑硫酸氫鹽([BMIM]HSO4)離子液體對鋅電積過程析氧反應(yīng)的影響.研究工作借助于動電位極化,電化學(xué)阻抗譜,掃描電鏡和X射線衍射等測試技術(shù).動電位極化曲線及對應(yīng)的動力學(xué)參數(shù)分析表明,[BMIM]HSO4對陽極析氧反應(yīng)具有催化作用,可提高析氧反應(yīng)速率常數(shù).電化學(xué)阻抗譜數(shù)據(jù)表明,[BMIM]HSO4能顯著降低陽極析氧電荷傳遞電阻,在所研究的1.85-2.10 V電位范圍內(nèi)添加5 mg·L-1[BMIM]HSO4,電阻值至少降低50%.此外,添加劑對陽極表面二次反應(yīng)具有抑制作用,其在陽極表面的吸附,阻礙了陰離子的陽極活化位點吸附過程.電化學(xué)測試結(jié)果與長時間(120 h)陽極極化后所得陽極表面形貌和結(jié)晶取向分析結(jié)果相一致.[BMIM]HSO4的添加能有效抑制中間產(chǎn)物β-PbO2的形成,促進鉛銀電極表面大塊且疏松多孔α-PbO2的生成,加速陽極析氧的進行.

    電化學(xué)阻抗譜;鋅電積;析氧;離子液體添加劑;表面形貌

    O646

    Received:September 30,2010;Revised:November 16,2010;Published on Web:December 8,2010.

    ?Corresponding author.Email:qibozhang@yahoo.com.cn;Tel:+86-871-5162008.

    The project was supported by the National Natural Science Foundation of China(50864009,50904031)and Research Fund for the Doctoral Program of Higher Education of China(20070674001).

    國家自然科學(xué)基金(50864009,50904031)及高等學(xué)校博士學(xué)科點專項科研基金(20070674001)資助項目

    猜你喜歡
    電積陽極電位
    降低回轉(zhuǎn)式陽極爐天然氣爐前單耗的生產(chǎn)實踐
    化工管理(2022年14期)2022-12-02 11:44:06
    低濃度溶液中金的旋流電積
    濕法冶金(2022年1期)2022-02-18 08:03:06
    電位滴定法在食品安全檢測中的應(yīng)用
    銅鎘渣酸浸液旋流電積提銅對比分析
    化工進展(2021年5期)2021-05-31 08:00:38
    浸漬涂布法制備陽極支撐型固體氧化物燃料電池的研究
    銅電解電積脫銅生產(chǎn)高純陰極銅的實踐
    電鍍廢水處理中的氧化還原電位控制
    釹在[BMP]Tf2N離子液體中的陽極行為
    淺談等電位聯(lián)結(jié)
    海船犧牲陽極陰極保護設(shè)計計算探討
    国产不卡av网站在线观看| 黑人猛操日本美女一级片| av女优亚洲男人天堂| 只有这里有精品99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 69精品国产乱码久久久| 青春草视频在线免费观看| 91精品伊人久久大香线蕉| 国产精品一国产av| 在线精品无人区一区二区三| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 亚洲精品日本国产第一区| 777米奇影视久久| 国产精品蜜桃在线观看| 一二三四中文在线观看免费高清| 性高湖久久久久久久久免费观看| 亚洲美女搞黄在线观看| 最近手机中文字幕大全| 王馨瑶露胸无遮挡在线观看| √禁漫天堂资源中文www| 少妇的逼好多水| 婷婷色麻豆天堂久久| 制服丝袜香蕉在线| 国产精品久久久久久久电影| 久久毛片免费看一区二区三区| 亚洲精品一区蜜桃| 国产成人aa在线观看| 热re99久久国产66热| 国产综合精华液| 免费久久久久久久精品成人欧美视频 | 国产男女超爽视频在线观看| 精品亚洲成a人片在线观看| 激情视频va一区二区三区| 日日撸夜夜添| 国产成人午夜福利电影在线观看| 国产黄色视频一区二区在线观看| 男男h啪啪无遮挡| av在线播放精品| 91国产中文字幕| 天天操日日干夜夜撸| 国产精品.久久久| 蜜桃在线观看..| 国产在线一区二区三区精| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 丁香六月天网| 欧美日韩亚洲高清精品| 一边摸一边做爽爽视频免费| 丝袜脚勾引网站| 草草在线视频免费看| 香蕉国产在线看| 交换朋友夫妻互换小说| 国产精品久久久久久久电影| 国产精品久久久av美女十八| 日韩制服丝袜自拍偷拍| 丝袜美足系列| 久久国产亚洲av麻豆专区| 中文字幕制服av| 高清欧美精品videossex| 亚洲婷婷狠狠爱综合网| 亚洲国产精品一区三区| 久久久久视频综合| 亚洲精华国产精华液的使用体验| 亚洲国产看品久久| 高清毛片免费看| 成人二区视频| 国内精品宾馆在线| 七月丁香在线播放| 日本色播在线视频| 欧美xxⅹ黑人| 男女无遮挡免费网站观看| 午夜久久久在线观看| 国产av精品麻豆| 久久久国产精品麻豆| 精品一品国产午夜福利视频| 国产精品蜜桃在线观看| 纯流量卡能插随身wifi吗| 久久人人爽人人片av| 国产精品一区www在线观看| 9色porny在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜激情久久久久久久| 大码成人一级视频| 一区二区av电影网| 亚洲精品久久久久久婷婷小说| 午夜福利网站1000一区二区三区| 捣出白浆h1v1| 美女中出高潮动态图| 热re99久久精品国产66热6| 最近手机中文字幕大全| 免费人妻精品一区二区三区视频| 国产又爽黄色视频| 日本av免费视频播放| 久久精品国产鲁丝片午夜精品| 狂野欧美激情性bbbbbb| 亚洲精品av麻豆狂野| 男女高潮啪啪啪动态图| 一本—道久久a久久精品蜜桃钙片| 久久久久久久久久久免费av| 另类亚洲欧美激情| 乱人伦中国视频| 韩国精品一区二区三区 | 三级国产精品片| 精品久久久久久电影网| 免费在线观看黄色视频的| 天天躁夜夜躁狠狠久久av| 亚洲精品美女久久久久99蜜臀 | 欧美xxxx性猛交bbbb| 亚洲 欧美一区二区三区| 大话2 男鬼变身卡| 看十八女毛片水多多多| 赤兔流量卡办理| 亚洲中文av在线| 你懂的网址亚洲精品在线观看| 久久99精品国语久久久| av又黄又爽大尺度在线免费看| 最近中文字幕高清免费大全6| 中文乱码字字幕精品一区二区三区| 国产乱来视频区| 自线自在国产av| 免费看不卡的av| av有码第一页| 亚洲精品视频女| av免费观看日本| 亚洲精品国产色婷婷电影| 国产av国产精品国产| www日本在线高清视频| 中文字幕制服av| 精品人妻在线不人妻| 国产一区二区激情短视频 | 侵犯人妻中文字幕一二三四区| 中文字幕亚洲精品专区| 巨乳人妻的诱惑在线观看| 午夜福利,免费看| 最近最新中文字幕大全免费视频 | 丰满迷人的少妇在线观看| 啦啦啦视频在线资源免费观看| 五月天丁香电影| 精品亚洲乱码少妇综合久久| 尾随美女入室| videosex国产| 色吧在线观看| 一级a做视频免费观看| 综合色丁香网| 亚洲精品日本国产第一区| 国产精品久久久av美女十八| 久久鲁丝午夜福利片| av.在线天堂| 亚洲精品,欧美精品| 欧美精品国产亚洲| 国语对白做爰xxxⅹ性视频网站| 国产亚洲一区二区精品| 国产深夜福利视频在线观看| 精品人妻在线不人妻| 色网站视频免费| 欧美日韩成人在线一区二区| 国产亚洲欧美精品永久| 99九九在线精品视频| 如何舔出高潮| 亚洲精品一二三| 伊人亚洲综合成人网| 日韩大片免费观看网站| 久久97久久精品| 99热6这里只有精品| 在线观看一区二区三区激情| 国产毛片在线视频| 亚洲精品自拍成人| 亚洲国产欧美在线一区| av电影中文网址| 九九爱精品视频在线观看| 免费在线观看完整版高清| 制服丝袜香蕉在线| 久久精品久久久久久噜噜老黄| 久久久久久久精品精品| 国产精品一区www在线观看| 国产成人精品一,二区| 国产成人精品福利久久| 亚洲精品,欧美精品| 丰满乱子伦码专区| 国产精品久久久久成人av| 高清在线视频一区二区三区| 日本黄色日本黄色录像| 男女免费视频国产| 色吧在线观看| 久久久久人妻精品一区果冻| 老司机亚洲免费影院| 久久久精品区二区三区| 久热这里只有精品99| 国产福利在线免费观看视频| 99久久中文字幕三级久久日本| 国产1区2区3区精品| 日韩不卡一区二区三区视频在线| 国产伦理片在线播放av一区| 午夜福利网站1000一区二区三区| 欧美日韩精品成人综合77777| 两个人看的免费小视频| 日韩 亚洲 欧美在线| 国产精品不卡视频一区二区| 亚洲av日韩在线播放| 亚洲内射少妇av| 国产精品熟女久久久久浪| 丝袜喷水一区| 国产有黄有色有爽视频| 国产麻豆69| 亚洲av成人精品一二三区| 国产成人精品婷婷| a级毛片黄视频| 久久久国产欧美日韩av| 在线天堂最新版资源| 女人精品久久久久毛片| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 国产女主播在线喷水免费视频网站| 日本猛色少妇xxxxx猛交久久| 国产 精品1| 久热这里只有精品99| 一级,二级,三级黄色视频| 亚洲欧洲精品一区二区精品久久久 | 久久久久久伊人网av| 久久青草综合色| 久热久热在线精品观看| 国产成人一区二区在线| 只有这里有精品99| 亚洲av电影在线观看一区二区三区| 久久人人爽人人片av| 亚洲精华国产精华液的使用体验| 最新的欧美精品一区二区| 激情五月婷婷亚洲| 高清欧美精品videossex| 少妇精品久久久久久久| 日本-黄色视频高清免费观看| 少妇的丰满在线观看| 国产在视频线精品| 久久精品国产鲁丝片午夜精品| 免费大片黄手机在线观看| 欧美日韩视频精品一区| 啦啦啦中文免费视频观看日本| av线在线观看网站| 夫妻性生交免费视频一级片| 少妇人妻久久综合中文| 卡戴珊不雅视频在线播放| 飞空精品影院首页| 国产毛片在线视频| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| www.色视频.com| 最后的刺客免费高清国语| 国产精品麻豆人妻色哟哟久久| 久久人妻熟女aⅴ| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 丰满饥渴人妻一区二区三| 捣出白浆h1v1| 亚洲美女视频黄频| 亚洲成人手机| av在线老鸭窝| 国产永久视频网站| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| 女人被躁到高潮嗷嗷叫费观| 久久久久国产网址| 香蕉国产在线看| 一二三四中文在线观看免费高清| 欧美日韩亚洲高清精品| 久久女婷五月综合色啪小说| 各种免费的搞黄视频| 日本欧美国产在线视频| 考比视频在线观看| 中文欧美无线码| 卡戴珊不雅视频在线播放| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 国产片内射在线| 晚上一个人看的免费电影| 两个人免费观看高清视频| 国产精品 国内视频| 国产成人av激情在线播放| 纯流量卡能插随身wifi吗| 亚洲第一区二区三区不卡| 97在线视频观看| 亚洲欧美日韩另类电影网站| 捣出白浆h1v1| 亚洲精品乱久久久久久| 老司机亚洲免费影院| 亚洲精华国产精华液的使用体验| av免费观看日本| 婷婷色综合www| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看 | 国产白丝娇喘喷水9色精品| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区国产| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 在线观看一区二区三区激情| 亚洲av中文av极速乱| av天堂久久9| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 国产亚洲最大av| 亚洲av综合色区一区| 国产免费现黄频在线看| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 亚洲精品美女久久av网站| 99热网站在线观看| 久久国内精品自在自线图片| 国产精品人妻久久久久久| 超色免费av| 国精品久久久久久国模美| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 91国产中文字幕| 精品一区在线观看国产| a级毛色黄片| 久久久久久久久久久免费av| 午夜久久久在线观看| 午夜精品国产一区二区电影| 成人免费观看视频高清| 午夜久久久在线观看| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 天堂8中文在线网| 国产成人精品一,二区| 在线观看免费日韩欧美大片| av国产久精品久网站免费入址| 日韩电影二区| 69精品国产乱码久久久| 一本大道久久a久久精品| 深夜精品福利| 国产成人免费观看mmmm| 9191精品国产免费久久| 18+在线观看网站| 哪个播放器可以免费观看大片| 亚洲精品国产av成人精品| 久久精品国产亚洲av天美| 夜夜爽夜夜爽视频| 亚洲国产精品一区二区三区在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 亚洲经典国产精华液单| 夫妻午夜视频| 三上悠亚av全集在线观看| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 亚洲国产精品999| 国产精品国产三级国产av玫瑰| 国产无遮挡羞羞视频在线观看| 大香蕉久久网| 少妇的丰满在线观看| 久久精品久久久久久久性| 黑丝袜美女国产一区| 黑人高潮一二区| 国产爽快片一区二区三区| 亚洲第一区二区三区不卡| 大码成人一级视频| 热re99久久精品国产66热6| 日本-黄色视频高清免费观看| 最近中文字幕高清免费大全6| 男女午夜视频在线观看 | 亚洲欧美一区二区三区国产| 久久女婷五月综合色啪小说| 国产片内射在线| 99热6这里只有精品| 女性生殖器流出的白浆| 九色成人免费人妻av| 国产欧美日韩一区二区三区在线| 亚洲av日韩在线播放| xxxhd国产人妻xxx| 国产又爽黄色视频| 哪个播放器可以免费观看大片| www日本在线高清视频| 岛国毛片在线播放| 免费久久久久久久精品成人欧美视频 | 亚洲精品第二区| 亚洲成人av在线免费| 国产精品一区二区在线不卡| av线在线观看网站| 一区二区三区精品91| 在线 av 中文字幕| 国产欧美亚洲国产| 黑人猛操日本美女一级片| 精品人妻一区二区三区麻豆| 大香蕉久久成人网| 久久精品国产综合久久久 | 亚洲欧洲精品一区二区精品久久久 | 中国美白少妇内射xxxbb| 精品久久蜜臀av无| 女的被弄到高潮叫床怎么办| 亚洲av国产av综合av卡| 夜夜骑夜夜射夜夜干| 国产成人精品福利久久| 国产高清国产精品国产三级| 男女午夜视频在线观看 | 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花| 中国国产av一级| 日韩视频在线欧美| 亚洲国产av新网站| 国产无遮挡羞羞视频在线观看| 国产亚洲精品久久久com| 成年女人在线观看亚洲视频| 亚洲综合色惰| 女的被弄到高潮叫床怎么办| 亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 青春草视频在线免费观看| 99久久中文字幕三级久久日本| av福利片在线| 欧美日本中文国产一区发布| 久久久国产一区二区| 亚洲国产成人一精品久久久| 久久免费观看电影| 久久国内精品自在自线图片| www.av在线官网国产| 国国产精品蜜臀av免费| 国产在线一区二区三区精| av播播在线观看一区| 狂野欧美激情性bbbbbb| 香蕉丝袜av| 在线观看免费高清a一片| 久久久欧美国产精品| 国产精品偷伦视频观看了| 国产激情久久老熟女| 久久99热6这里只有精品| 免费观看在线日韩| 人人澡人人妻人| 国产又色又爽无遮挡免| 国产精品免费大片| 国产色爽女视频免费观看| 视频区图区小说| 久久久久久人人人人人| 国产精品偷伦视频观看了| a级毛片黄视频| 免费观看在线日韩| 精品国产国语对白av| 深夜精品福利| 久久久精品94久久精品| 国产又爽黄色视频| 我的女老师完整版在线观看| 狠狠婷婷综合久久久久久88av| 国产激情久久老熟女| 久久精品国产a三级三级三级| 26uuu在线亚洲综合色| 99热6这里只有精品| 国产有黄有色有爽视频| 一级a做视频免费观看| 在线观看人妻少妇| 国产成人91sexporn| 韩国精品一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 日韩,欧美,国产一区二区三区| 久久ye,这里只有精品| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 黑人巨大精品欧美一区二区蜜桃 | 999精品在线视频| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频 | 久久精品国产综合久久久 | 好男人视频免费观看在线| 成人免费观看视频高清| 亚洲精品久久午夜乱码| 赤兔流量卡办理| 一级a做视频免费观看| 国产精品久久久久久久久免| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩国产mv在线观看视频| 久久久久久久久久久免费av| 亚洲欧美日韩卡通动漫| 国产色婷婷99| 777米奇影视久久| 国产精品久久久av美女十八| 精品久久蜜臀av无| 精品视频人人做人人爽| 成人国产av品久久久| 日韩一区二区视频免费看| 亚洲国产av影院在线观看| 丝瓜视频免费看黄片| 亚洲国产av影院在线观看| 日韩制服丝袜自拍偷拍| 69精品国产乱码久久久| 韩国高清视频一区二区三区| 免费人妻精品一区二区三区视频| 侵犯人妻中文字幕一二三四区| 日韩av在线免费看完整版不卡| 亚洲色图综合在线观看| 男女无遮挡免费网站观看| 亚洲综合色网址| 巨乳人妻的诱惑在线观看| 国产成人精品婷婷| 国产免费又黄又爽又色| 最新中文字幕久久久久| 99久久人妻综合| 最近最新中文字幕免费大全7| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 亚洲人与动物交配视频| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 五月开心婷婷网| 9191精品国产免费久久| 欧美日韩综合久久久久久| 99九九在线精品视频| 九九在线视频观看精品| 亚洲高清免费不卡视频| 亚洲成av片中文字幕在线观看 | 大片电影免费在线观看免费| videos熟女内射| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 香蕉丝袜av| 国产免费视频播放在线视频| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频| 国产精品.久久久| 国精品久久久久久国模美| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 777米奇影视久久| 亚洲精品久久成人aⅴ小说| 久久人人爽人人爽人人片va| 精品一区二区三卡| 亚洲内射少妇av| 两个人免费观看高清视频| 亚洲精品国产色婷婷电影| 人妻一区二区av| 亚洲精品av麻豆狂野| 90打野战视频偷拍视频| 午夜老司机福利剧场| 精品国产一区二区三区久久久樱花| 亚洲综合精品二区| 免费观看在线日韩| 夜夜骑夜夜射夜夜干| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 最新的欧美精品一区二区| 99热这里只有是精品在线观看| av播播在线观看一区| 欧美日韩亚洲高清精品| 日韩伦理黄色片| 内地一区二区视频在线| 最近最新中文字幕免费大全7| 精品人妻一区二区三区麻豆| av免费在线看不卡| 丝袜喷水一区| 久久久国产一区二区| 另类亚洲欧美激情| 久久综合国产亚洲精品| 黄色配什么色好看| 美女内射精品一级片tv| 在线天堂最新版资源| 在线 av 中文字幕| 天天操日日干夜夜撸| 少妇 在线观看| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 最新中文字幕久久久久| 乱人伦中国视频| 我的女老师完整版在线观看| 亚洲国产欧美日韩在线播放| 日本wwww免费看| 国产乱人偷精品视频| 精品一区二区免费观看| 久久久久久久亚洲中文字幕| 精品久久国产蜜桃| 亚洲,欧美精品.| 少妇猛男粗大的猛烈进出视频| 国产有黄有色有爽视频| 男人爽女人下面视频在线观看| 视频在线观看一区二区三区| 超碰97精品在线观看| 国产一区二区三区av在线| 亚洲图色成人| 日韩制服骚丝袜av| 免费少妇av软件| 久久ye,这里只有精品| 免费看光身美女| 最后的刺客免费高清国语| 国产av码专区亚洲av| 久久午夜福利片| 满18在线观看网站| 少妇人妻精品综合一区二区| 91国产中文字幕| 如何舔出高潮| 色吧在线观看| 另类亚洲欧美激情| av在线播放精品| 国产有黄有色有爽视频| 51国产日韩欧美| 一区在线观看完整版| 高清在线视频一区二区三区| 日日撸夜夜添| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 国产在线免费精品| 欧美 亚洲 国产 日韩一| 日韩av在线免费看完整版不卡| 亚洲精品中文字幕在线视频| 少妇人妻久久综合中文| 免费人成在线观看视频色| 免费大片18禁| 精品国产一区二区三区久久久樱花| 亚洲国产色片| 欧美日韩成人在线一区二区| 国产深夜福利视频在线观看| 国产男女内射视频| 99国产精品免费福利视频| 99九九在线精品视频|