• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the Ionic Liquid Additive-[BMIM]HSO4on the Kinetics of Oxygen Evolution during Zinc Electrowinning

    2014-10-14 03:44:00ZHANGQiBoHUAYiXin
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:電積陽極電位

    ZHANG Qi-Bo HUA Yi-Xin

    (Key Laboratory of Ionic Liquids Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)

    Effect of the Ionic Liquid Additive-[BMIM]HSO4on the Kinetics of Oxygen Evolution during Zinc Electrowinning

    ZHANG Qi-Bo*HUA Yi-Xin

    (Key Laboratory of Ionic Liquids Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)

    Abstract:The effect of the ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate([BMIM]HSO4)on the kinetics of oxygen evolution during zinc electrowinning from an acidic sulfate solution was investigated.We used potentiodynamic polarization,electrochemical impedance spectroscopy,scanning electron microscopy,and X-ray diffraction for this study.Potentiodynamic polarization curves and the corresponding kinetic parameter analysis show that[BMIM]HSO4has a catalytic effect on oxygen evolution by stimulating the reaction rate constant.Impedance data reveal that[BMIM]HSO4can markedly reduce the oxygen evolution charge transfer resistance.The addition of 5 mg·L-1[BMIM]HSO4obviously decreased the resistance value by at least 50%over the studied potential range from 1.85 to 2.10 V.In addition,the results of the impedance measurements also suggest an inhibition effect of[BMIM]HSO4on the secondary reactions and this is due to the adsorption of the additive on the anode surface,which decreased the amount of active sites for anion adsorption.All electrochemical results were corroborated with a morphological and orientation analysis of the anodic surface after 120 h of anodic polarization.The addition of[BMIM]HSO4inhibited the generation of the intermediate productβ-PbO2and it promoted the generation of larger,loose,and porousα-PbO2,which benefited the oxygen evolution reaction.

    Key Words:Electrochemical impedance spectroscopy; Zinc electrowinning; Oxygen evolution;Ionic liquid additive; Surface morphology

    Lead and its alloy have been wildly used as permanent anodes for electrowinning and plating of zinc due to their high corrosion-resistance property in the sulfuric acid used in the electrolytic solutions[1].Pure lead is a weak material and it tends to creep and warp during use.In practice,lead alloys are usually used instead of pure lead,since alloying with some amounts of certain metals can significantly improve its corrosion resistance,mechanical characteristics and also castability[1-2].Pb-Ag alloy,typically containing 0.25%to 1.0%(w,mass fraction)silver is the main anode material in the production of anodes for hydrometallurgical electrowinning of zinc[3-6].Silver addition is found to improve the lead corrosion resistance,longer anode life,lower anode potential,and consequently,reduce oxygen overpotential[1,3,7].However,due to the high cost of silver,many attempts have been made to find material which by forming of binary[8-9],ternary[9-13],or quaternary[2,14]lead alloys,would be able to substitute or decrease its quantity in the anodes.

    During the deposition process,oxygen will release at the anode surface as a gas and then oxidize materials in the electrolyte,corrode the anode,or form peroxides at the anode surface.The oxygen corrodes the anode directly by the formation of PbO,PbSO4and then PbO2with different crystalline phases(α and β)on the surface[15-19].The morphology of the PbO2layer plays an important role in inhibiting the spalling and corrosion of anodes which leads to cathode contamination.Alloy additions and anode fabrication techniques can promote a more continuous,adherent PbO2layer,which serves to evolve oxygen as a gas instead of corroding the underlying lead surface.For hydrometallurgical zinc electrowinning,the energy consumption saving improvement is bound up with a reduction in the anodic voltage(oxygen evolution voltage),which represents 50%-60%of cell voltage.An effective way to decrease the oxygen evolution overvoltage and reduce solution ohmic resistance is the use of additives(anodic depolarizers).As is well known,additives are widely used in zinc electrodeposition due to their special functions in deposition process.These additives are found to affect both the deposition and crystal-building processes through their adsorbates at the electrode surface[20].Appropriate addition is necessary for the formation of finegrained,smooth,compact deposits[21].However,most of the literature focuses on the effects of additives on the current efficiency and polarization behavior as well as their effects on deposit morphology and crystallographic orientations of the cathode during the zinc electrodeposition process;scant information is available on the effects of additives on the oxygen evolution on the anode during the deposition process.Afifi et al.[22]studied the effect of some organic agents on the zinc electrodeposition from zinc sulfate acid solution.The results showed that organic substances,such as ethanol,ethylene glycol,or acetic acid,were effective in decreasing the overall cell voltage.Similarly,Chapman and Yen[23]reported that the addition of 0.1 mol·L-1ethylene glycol can reduce the cell voltage by over 5%.In our previous report[24-25],[BMIM]HSO4was found to be an excellent levelling agent in both zinc and copper electrodeposition.The addition of[BMIM]HSO4is observed to increase current efficiency and reduce specific electric energy consumption for zinc electrodeposition and slightly change the reduction mechanism for copper electrodeposition.It is demonstrated that this additive has a pronounced inhibiting effect on both Zn2+and Cu2+electroreduction and leads to more leveled and fine-grained cathodic deposits.

    The present study aims at elucidating the effect of[BMIM]HSO4on the kinetics of the oxygen evolution on the anode during zinc electrodeposition from acidic sulfate solution.To this purpose,various experimental methods,such as potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),scanning electron microscopy(SEM),and X-ray diffraction(XRD)have been used.

    1 Experimental

    1.1 Reagents

    The solution of zinc electrolyte consisted of 55 g·L-1zinc and 150 g·L-1sulfuric acid was prepared by ZnSO4·7H2O and H2SO4and the specific experimental procedures were similar to as described previously[24].The ionic liquid additive[BMIM]HSO4was synthesized by our laboratory and the specific synthetic methods were mentioned elsewhere[26].All the reagents used wereAR grade.

    1.2 Electrolysis

    Small-scale galvanostatic electrolysis was performed in a rectangular flow cell with dimension of 20 cm×10 cm×8 cm made of plexiglass by chronopotentiometric measurements.The flow rate of the electrolyte was maintained at 1.2 dm3·h-1during the deposition process.A pure vertical planar aluminum(>99.95%)sheet and two parallel lead-silver alloy(Ag,0.2%)plates of 12 cm2as effective area were used as the cathode and anode,respectively.The interelectrode distance was 3.0 cm.Zinc was deposited on both sides of the cathode onto a total area of 10 cm2.All electrolysis experiments were run in a constant temperature bath at(40±1)°C.In all cases,the current density was held constant at 400 A·m-2during the deposition time of 120 h with the cathode aluminum sheet changing at 24 h interval.For each experiment,a freshly prepared solution was used and the solution temperature was thermostatically controlled at a desired value.

    1.3 Electrochemical measurements

    Electrochemical studies were based on the analysis of poten-tiodynamic polarization and electrochemical impedance spectroscopy.All the electrochemical measurements were measured by using an electrochemical work station(GAMRY USA,PCl4/300)and carried out at 40°C under atmospheric condition.A conventional three-electrode electrochemical cell was used for these experiments.A lead-silver alloy(Ag,0.2%)disk electrode(Ф4 mm,99.995%)inserted in a Teflon tube with exposed surface of 0.1256 cm2was used as working electrode.A graphite rod and a saturated calomel electrode(SCE)mounted inside a Luggin capillary were used as the counter and reference electrodes,respectively.Prior to each experiment,the electrolyte was deoxygenated by bubbling ultrapure argon for at least 10 min.The working electrode was grinded with 1200 grit silicon carbide paper and polished using 0.5 μm high-purity alumina,and then degreased with anhydrous alcohol in an ultrasonic bath for 1 min,washed with doubly distilled water and finally dried.

    Potentiodynamic polarization measurements were scanned at a constant scan rate of 5 mV·s-1from the initial potential of 1.80 V to the final potential of 2.15 V.In the case of EIS measurements,the working electrode potential was held at a series of constant potentials chosen from the activation controlled region over a frequency range of 100 kHz-6 mHz with a signal amplitude perturbation of 5 mV.

    1.4 Deposit examination

    After electrolysis,the anode was removed from the cell and washed thoroughly with distilled water and dried.A microscope(Tescan Czech,VEGA II XMH)and an X-ray diffractometer(Rigaku Japan,D/max 2200)were used to examine the surface morphology and the orientation of the anodic layers,respectively.

    2 Results and discussion

    2.1 Polarization studies

    The anodic potentiodynamic polarization curves obtained on a clean Pb-Ag anode in the absence and presence of ionic liquid additive[BMIM]HSO4are presented in Fig.1.A significant decrease in anodic polarization is observed with the addition of[BMIM]HSO4in the electrolyte and such an effect is more pronounced with increasing[BMIM]HSO4concentrations.Since the main reaction occurred on the Pb-Ag anode is that of oxygen evolution taking place on a PbO2layer in the case without the presence of Mn2+in the electrolyte,therefore,this depolarizing effect could be attributed to the increase in the rate of oxygen evolution[27-28].However,further work needs to be done on aged industrial anodes having a significant layer of MnO2to establish whether the depolarizing effect is still observed.

    The kinetic parameters Tafel slope,a(mV·decade-1),transfer coefficient,αa,and anodic exchange current density,i0,a(mA·cm-2),for the anodic reaction were calculated from their respective polarization curves.The results are given in Table 1 for unstirred electrolyte which is mixed by the gas evolution.The marked decrease in Tafel slopes with the addition of[BMIM]HSO4indicates that the oxygen evolution reaction is affected strongly by the presence of[BMIM]HSO4in the solution,and this effect becomes more pronounced at higher[BMIM]HSO4concentrations.This is confirmed by the significant increase of the transfer coefficient and exchange current density when[BMIM]HSO4is present in the solution.This change is probably ascribed to the catalytic effect of[BMIM]HSO4on the oxygen evolution by stimulating the reaction rate constant of oxygen evolution on the PbO2layer.

    2.2 Impedance measurement

    Electrochemical impedance measurement was used to investigate the electrochemical reaction occurred on the anode in the absence and presence of[BMIM]HSO4during the zinc electrodeposition process.The electrochemical impedance has been analyzed at different potential domains(the low and high polarization domains,respectively),where different electrode reactions occurred.

    In Fig.2,the impedance plots obtained at the low potential domain(E=1.85 V)on the polarization curves of Fig.1 at points A(without additive)and C(with addition of 5 mg·L-1[BMIM]HSO4)give a high-frequency capacitive loop,corresponding to the charge transfer resistance of the formation of the PbSO4layer on the anode surface.The current for the lead oxidation(generating PbSO4)remains very low(blow 0.5 mA·cm-2)in comparison with the total current.Therefore,it can hardly be detected in the polarization curves(Fig.1).The charge transfer resistance is estimated from the diameter of the high-frequency capacitive loop and the corresponding values obtained at various potential are presented in Table 2.As can be observed from Fig.2,the resistance value is found to decrease in the presence of[BMIM]HSO4,indicating that the ad-ditive can promote the electrode reaction.The similar profile of the complex-plane impedance spectra observed in the absence and presence of additive at points A and C reveals that the electrode reaction mechanism does not change with the addition of[BMIM]HSO4.This promotion effect of additive may be due to these high conductive additive molecules adsorbed on electrode surface,which improves the conductivity of the PbO sublayer and thus promotes the growth of the PbSO4.

    Table 1 Effects of[BMIM]HSO4on the kinetic parameters of oxygen evolution reaction

    Table 2 Variation of the resistance with the anodic polarization of Pb-Ag electrode

    Fig.3 shows the impedance plots obtained at high potential domain(E=2.08 V)for the additive-free electrolyte at point A'and for the electrolytes containing 1,5,10 mg·L-1[BMIM]HSO4at points B',C',D',respectively.As can be seen from Fig.3,for the additive-free electrolyte,the impedance plot exhibits two capacitive features at high frequencies followed by an inductive loop at low frequency values(Fig.3(point A')).The high frequency capacitive loop is usually related to thefrom 4.2 to 0.66 Ω·cm2in comparison to additive-free solution(Table 2),suggesting that the electrode reaction is more ready to occur.These results confirm the catalytic effect of[BMIM]HSO4on the oxygen evolution at electrode surface obtained by anodic polarization studies.In addition,it appears that the iRctproduct can be regarded as potential independent,as shown in Fig.4.As compared to the pure electrolyte,the iRctvalues decrease with the addition of[BMIM]HSO4,which also proves the catalytic effect of the additive on the charge transfer process.charge transfer across the double layer for oxygen evolution which is the main reaction.The second capacitive feature observed at medium frequencies is attributed to the relaxation of the electrode coverage by an absorbed silver salt from a secondary reaction[29]and reflects an inhibition of the main reaction by some adsorbed species resulting from secondary reactions taking place on the alloy electrode surface[30-31].The low frequency inductive loop could be interpreted in terms of relaxations of a slow electrode activation with increasing polarization,which is probably connected to an increase in the PbOnlayer conductivity[32-33].In contrast,for the[BMIM]HSO4containing electrolytes,the medium frequency capacitive loop becomes weak,suggesting an inhibition effect of additive on secondary reactions.In addition,this effect becomes more pronounced at higher additive concentrations.In the case of 10 mg·L-1[BMIM]HSO4containing electrolyte,the medium frequency capacitive loop nearly disappears.This inhibition effect may be explained as follows:there is a general agreement in the literature[28,30-31]that electrolyte anions,such as SO42-ions,can adsorb on the β phase and induce an inhibition of oxygen evolution.Additionally,the absorbed silver salt on the electrode surface is found to facilitate the anions adsorption.With the addition of[BMIM]HSO4,the imidazolium compound molecules can be adsorbed on the active sites of anode surface and compete with silver salt that will reduce the active sites for anion adsorption and thus block secondary reactions from taking place.

    Similar to the case of low polarization domains,the charge transfer resistance,Rct,decreases in the presence of[BMIM]HSO4.With the addition of 5 mg·L-1[BMIM]HSO4at the high potential of 2.08 V,the charge transfer resistance decreases

    2.3 Morphology and orientation studies

    The morphologies of anodic layers after 120 h anodic polarization obtained by small-scale electrolysis from the electrolyte in the absence and presence of 5 mg·L-1[BMIM]HSO4were characterized using scanning electron microscope.Typical SEM photomicrographs are shown in Fig.5.

    As it can be seen from Fig.5(A-C),the investigated additiveshows a marked effect on the surface quality of the anodic layers as compared with those obtained from electrolyte without additive(Fig.5(a-c)),which is porous with relatively large and coarse grains.In the presence of the investigated additive,the oxide layers obtained is more levelling and compact.In both cases,the anodic layers consist of α-PbO2and β-PbO2two crystallites:both oxide layers are tetragonal texture with bigger crystallites α-PbO2surrounding by smaller crystallites β-PbO2.However,with the addition of 5 mg·L-1[BMIM]HSO4the relative content of β-PbO2is found to decrease,which is more evidence by comparing with their backscattering electron images(Fig.5(c,C)).The result indicates an inhibition of the generation of β-PbO2.It is demonstrated that the presence of[BMIM]HSO4in the electrolyte generates two opposite effects:a catalytic effect on polarization curves due to a stimulated rate constant of oxygen evolution on the anodic oxide layer(PbO2),and a transient inhibition of the generation of β-PbO2.These two opposite effects become more pronounced with increasing additive concentration.Since the generation of β-PbO2is inhibited,a relative enhancement of the generation of α-PbO2is induced.In addition,the decrease in the relative content of β phase in the anodic oxide layers leads to a reduction in the active sites for anion adsorption that induce an inhibition of oxygen evolution.This results in a promotion effect on the oxygen evolution at electrode surface.

    The influence of[BMIM]HSO4on the crystallographic structure of the anodic layers was examined by XRD and the diffraction patterns for selected deposits are shown in Fig.6.These patterns indicate that the oxide layers mainly contain α-PbO2and β-PbO2crystallites without preferred crystallographic texture.The primary change in the diffraction patterns with the addition of[BMIM]HSO4is the weakness of the β-PbO2corresponding diffraction peak intensity,which indicates a decrease in the relative content of β-PbO2in the anodic oxide layers.This result is in agreement with the anodic layer morphology observed as discussion above.

    3 Conclusions

    The effect of ionic liquid additive-[BMIM]HSO4on the kinetics of oxygen evolution during zinc electrowinning from acidic sulfate solution has been studied.In the cases of[BMIM]HSO4containing electrolytes,a stimulation of oxygen evolution is observed.This catalytic effect essentially results from the stimulation of the reaction rate constant for oxygen evolution.The impedance data reveal a transient inhibition of[BMIM]HSO4on the secondary reactions apparently under the form of a medium-frequency capacitive feature which becomes more obvious with increasing additive concentrations.It could be concluded that this inhibition is ascribed to the adsorption of the additive on the active sites of anode surface in competition with the silver-salt adsorbate.The morphology of anodic layers and their orientation analysis exhibit an inhibition effect of[BMIM]HSO4on the generation of β-PbO2which provides active sites for the adsorption of these anions.These phenomena consequently appear that the determining effect of the additive lies in the reduction in the active sites for anion adsorption and creates more active sites able to stimulate the reaction rate constant of oxygen evolution.

    1 Petrova,M.;Noncheva,Z.;Dobrev,T.;Rashkov,S.;Kounchev,N.;Petrov,D.;Vlaev,S.;Mihnev,V.;Zarev,S.;Georgieva,L.;Buttinelli,D.Hydrometallurgy,1996,40:293

    2 Ivanov,I.;Stefanov,Y.;Noncheva,Z.;Petrova,M.;Dobrev,T.;Mirkova,L.;Vermeersch,R.;Demaerel,J.P.Hydrometallurgy,2000,57:109

    3 Felder,A.;Prengaman,R.D.Journal of the Minerals,Metals and Material Society,2006,58:28

    4 Jiang,L.X.;Zhong,S.P.;Lai,Y.Q.;Lü,X.J.;Hong,B.;Peng,H.J.;Zhou,X.Y.;Li,J.;Liu,Y.X.Acta Phys.-Chim.Sin.,2010,26:2369 [蔣良興,衷水平,賴延清,呂曉軍,洪 波,彭紅建,周向陽,李 劼,劉業(yè)翔.物理化學(xué)學(xué)報,2010,26:2369]

    5 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.;Liu,Y.X.Hydrometallurgy,2010,102:73

    6 Lai,Y.Q.;Jiang,L.X.;Li,J.;Zhong,S.P.;Lü,X.J.;Peng,H.J.;Liu,Y.X.Hydrometallurgy,2010,102:81

    7 Pavlov,D.;Rogachev,T.Electrochim.Acta,1986,31:241

    8 Rashkov,S.;Dobrev,T.;Noncheva,Z.;Stefanov,Y.;Rashkova,B.;Petrova,M.Hydrometallurgy,1999,52:223

    9 Lupi,C.;Pilone,D.Hydrometallurgy,1997,44:347

    10 Siegmund,A.;Prengaman,R.D.;Dutrizac,J.E.Lead-Zinc 2000//Dutrizac,J.E.Warrendale.PA:TMS,2000:589-597

    11 Newnham,R.H.J.Appl.Electrochem.,1992,22:116

    12 Zhong,S.P.;Lai,Y.Q.;Jiang,L.X.;Tian,Z.L.;Li,J.;Liu,Y.X.Chin.J.Process Eng.,2008,8:289 [衷水平,賴延清,蔣良興,田忠良,李 劼,劉業(yè)翔.過程工程學(xué)報,2008,8:289]

    13 Lai,Y.Q.;Zhong,S.P.;Jiang,L.X.;Lü,X.J.;Chen,P.R.;Li,J.;Liu,Y.X.J.Cent.South Univ.Tech.,2009,16:236

    14 Petrova,M.;Stefanov,Y.;Noncheva,Z.;Dobrev,T.;Rashkov,S.British Corrosion Journal,1999,34:198

    15 Pavlov,D.Electrochim.Acta,1978,23:845

    16 Pavlov,D.;Dinev,Z.J.Electrochem.Soc.,1980,127:855

    17 Yamamoto,Y.;Fumino,K.;Ueda,T.;Nambu,M.Electrochim.Acta,1992,37:199

    18 Ruetchi,P.;Cahan,B.D.J.Electrochem.Soc.,1957,104:406

    19 Burbank,J.J.Electrochem.Soc.,1959,106:369

    20 Paunovic,M.;Schlesinger,M.Fundamental of electrochemical deposition.2nd ed.New York:John Willey&Sons Inc.Publication,2006:177-198

    21 Saba,A.E.;Elsherief,A.E.Hydrometallurgy,2000,54:91

    22 Afifi,S.E.;Ebraid,A.R.Journal of the Minerals,1992,1:32

    23 Chapman,T.W.;Yen,S.C.Anode depolarisation in electrowinning.AIME Meeting,Las Vegas,Nov.,1980

    24 Zhang,Q.B.;Hua,Y.X.J.Appl.Electrochem.,2009,39:261

    25 Zhang,Q.B.;Hua,Y.X.;Wang,Y.T.;Lu,H.J.;Zhang,X.Y.Hydrometallurgy,2009,98:291

    26 Whitehead,J.A.;Lawrance,G.A.;McCluskey,A.Aust.J.Chem.,2004,57:151

    27 Rerolle,C.;Wiart,R.Electrochim.Acta,1995,40:939

    28 Cachet,C.;Rerolle,C.;Wiart,R.Electrochim.Acta,1996,41:83

    29 Cachet,C.;Pape-Rerolle,C.L.E.;Wiart,R.J.Appl.Electrochem.,1999,29:813

    30 Berube,L.P.;Piron,D.J.Electrochem.Soc.,1987,134:562

    31 Katz,E.R.;Stucki,S.J.Electroanal.Chem.,1987,228:407

    32 Ruetschi,P.;Cahan,B.D.J.Electrochem.Soc.,1958,105:369

    33 Lappe,F.J.Phys.Chem.Solids,1962,23:1563

    離子液體添加劑[BMIM]HSO4對鋅電積過程析氧反應(yīng)動力學(xué)的影響

    張啟波*華一新

    (離子液體冶金重點實驗室,昆明理工大學(xué)冶金與能源工程學(xué)院,昆明650093)

    研究了1-丁基-3-甲基咪唑硫酸氫鹽([BMIM]HSO4)離子液體對鋅電積過程析氧反應(yīng)的影響.研究工作借助于動電位極化,電化學(xué)阻抗譜,掃描電鏡和X射線衍射等測試技術(shù).動電位極化曲線及對應(yīng)的動力學(xué)參數(shù)分析表明,[BMIM]HSO4對陽極析氧反應(yīng)具有催化作用,可提高析氧反應(yīng)速率常數(shù).電化學(xué)阻抗譜數(shù)據(jù)表明,[BMIM]HSO4能顯著降低陽極析氧電荷傳遞電阻,在所研究的1.85-2.10 V電位范圍內(nèi)添加5 mg·L-1[BMIM]HSO4,電阻值至少降低50%.此外,添加劑對陽極表面二次反應(yīng)具有抑制作用,其在陽極表面的吸附,阻礙了陰離子的陽極活化位點吸附過程.電化學(xué)測試結(jié)果與長時間(120 h)陽極極化后所得陽極表面形貌和結(jié)晶取向分析結(jié)果相一致.[BMIM]HSO4的添加能有效抑制中間產(chǎn)物β-PbO2的形成,促進鉛銀電極表面大塊且疏松多孔α-PbO2的生成,加速陽極析氧的進行.

    電化學(xué)阻抗譜;鋅電積;析氧;離子液體添加劑;表面形貌

    O646

    Received:September 30,2010;Revised:November 16,2010;Published on Web:December 8,2010.

    ?Corresponding author.Email:qibozhang@yahoo.com.cn;Tel:+86-871-5162008.

    The project was supported by the National Natural Science Foundation of China(50864009,50904031)and Research Fund for the Doctoral Program of Higher Education of China(20070674001).

    國家自然科學(xué)基金(50864009,50904031)及高等學(xué)校博士學(xué)科點專項科研基金(20070674001)資助項目

    猜你喜歡
    電積陽極電位
    降低回轉(zhuǎn)式陽極爐天然氣爐前單耗的生產(chǎn)實踐
    化工管理(2022年14期)2022-12-02 11:44:06
    低濃度溶液中金的旋流電積
    濕法冶金(2022年1期)2022-02-18 08:03:06
    電位滴定法在食品安全檢測中的應(yīng)用
    銅鎘渣酸浸液旋流電積提銅對比分析
    化工進展(2021年5期)2021-05-31 08:00:38
    浸漬涂布法制備陽極支撐型固體氧化物燃料電池的研究
    銅電解電積脫銅生產(chǎn)高純陰極銅的實踐
    電鍍廢水處理中的氧化還原電位控制
    釹在[BMP]Tf2N離子液體中的陽極行為
    淺談等電位聯(lián)結(jié)
    海船犧牲陽極陰極保護設(shè)計計算探討
    精品少妇久久久久久888优播| 人妻 亚洲 视频| 99热全是精品| 特大巨黑吊av在线直播| 久久久久久久大尺度免费视频| 久久人人爽人人片av| 国产视频内射| 最近手机中文字幕大全| 性色avwww在线观看| 久久韩国三级中文字幕| 夜夜骑夜夜射夜夜干| 在线免费十八禁| 亚洲欧美日韩另类电影网站 | 午夜精品国产一区二区电影| 国产伦理片在线播放av一区| 亚洲欧美精品专区久久| 色视频在线一区二区三区| 少妇熟女欧美另类| 高清视频免费观看一区二区| 五月伊人婷婷丁香| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 九九在线视频观看精品| 亚洲自偷自拍三级| 亚洲精品国产av成人精品| 麻豆精品久久久久久蜜桃| 狂野欧美激情性xxxx在线观看| 国产精品一及| 18禁裸乳无遮挡动漫免费视频| 夫妻午夜视频| 视频中文字幕在线观看| 欧美成人a在线观看| 久久久久网色| 99热6这里只有精品| 国产精品一区www在线观看| 国产成人aa在线观看| 99久久精品国产国产毛片| 免费大片18禁| 深爱激情五月婷婷| 最近中文字幕高清免费大全6| 久久午夜福利片| 美女cb高潮喷水在线观看| 韩国高清视频一区二区三区| 直男gayav资源| 国产精品一区二区三区四区免费观看| 成人黄色视频免费在线看| 免费大片18禁| 九九爱精品视频在线观看| 免费大片黄手机在线观看| av国产免费在线观看| 免费大片18禁| a 毛片基地| 男人和女人高潮做爰伦理| 日本爱情动作片www.在线观看| 国产黄片视频在线免费观看| 97热精品久久久久久| 日本欧美国产在线视频| 欧美xxxx性猛交bbbb| 美女高潮的动态| videos熟女内射| 精品视频人人做人人爽| kizo精华| 黄色配什么色好看| 欧美三级亚洲精品| 插逼视频在线观看| 成人毛片60女人毛片免费| 久久99蜜桃精品久久| 久久久久久久久大av| 国产亚洲最大av| 精品久久久久久久末码| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 国产黄色免费在线视频| av国产精品久久久久影院| 欧美极品一区二区三区四区| 在线天堂最新版资源| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 色视频www国产| 久热久热在线精品观看| 嘟嘟电影网在线观看| 国产 精品1| 欧美3d第一页| 丝袜喷水一区| 小蜜桃在线观看免费完整版高清| 日韩,欧美,国产一区二区三区| 三级经典国产精品| 亚洲av欧美aⅴ国产| 国产精品偷伦视频观看了| 精品久久久久久电影网| 五月玫瑰六月丁香| 日本av手机在线免费观看| 大香蕉97超碰在线| 亚洲国产色片| 欧美日韩亚洲高清精品| 伊人久久精品亚洲午夜| 国产精品福利在线免费观看| 国产精品一区二区性色av| 天堂中文最新版在线下载| 欧美精品一区二区免费开放| 在线观看国产h片| av不卡在线播放| videos熟女内射| 欧美人与善性xxx| 国产av码专区亚洲av| 国产精品一区二区性色av| 国产亚洲91精品色在线| 成人综合一区亚洲| 纯流量卡能插随身wifi吗| 久久久久久久久久久丰满| www.av在线官网国产| 国产精品成人在线| 99热国产这里只有精品6| a级毛片免费高清观看在线播放| 热99国产精品久久久久久7| videos熟女内射| 亚洲成色77777| 国产永久视频网站| 亚洲自偷自拍三级| 99久久中文字幕三级久久日本| 精品一区在线观看国产| 夜夜骑夜夜射夜夜干| 国产爽快片一区二区三区| 人人妻人人看人人澡| 不卡视频在线观看欧美| 婷婷色麻豆天堂久久| 国产男人的电影天堂91| 国产国拍精品亚洲av在线观看| 久久影院123| 日韩免费高清中文字幕av| 午夜精品国产一区二区电影| 欧美日本视频| 亚洲精品,欧美精品| 97超视频在线观看视频| av一本久久久久| 久久久久网色| 日韩电影二区| 欧美激情极品国产一区二区三区 | 狂野欧美激情性bbbbbb| 一区二区三区免费毛片| 嘟嘟电影网在线观看| 日韩在线高清观看一区二区三区| 亚洲真实伦在线观看| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 国产成人精品一,二区| 日本-黄色视频高清免费观看| 黑人高潮一二区| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 国产 一区 欧美 日韩| 日韩国内少妇激情av| 22中文网久久字幕| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 亚洲国产最新在线播放| av线在线观看网站| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 国产精品欧美亚洲77777| 一二三四中文在线观看免费高清| 97热精品久久久久久| 18禁动态无遮挡网站| 熟女av电影| 日韩av不卡免费在线播放| 国产精品免费大片| 国产人妻一区二区三区在| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 国产成人freesex在线| 身体一侧抽搐| 久久久午夜欧美精品| 亚洲av.av天堂| 青春草亚洲视频在线观看| 成年人午夜在线观看视频| 嘟嘟电影网在线观看| tube8黄色片| 久久鲁丝午夜福利片| 免费高清在线观看视频在线观看| 国产成人精品婷婷| 中文字幕精品免费在线观看视频 | 久久国产乱子免费精品| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 看十八女毛片水多多多| 日本vs欧美在线观看视频 | 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 亚洲最大成人中文| 久久99精品国语久久久| 国产精品三级大全| 国产淫片久久久久久久久| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频 | 三级经典国产精品| 日韩伦理黄色片| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一av免费看| 国产真实伦视频高清在线观看| 97热精品久久久久久| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 嫩草影院入口| 亚洲av不卡在线观看| 美女福利国产在线 | 精品一品国产午夜福利视频| 边亲边吃奶的免费视频| 大片电影免费在线观看免费| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 中国美白少妇内射xxxbb| 久久热精品热| 日本wwww免费看| 精品少妇久久久久久888优播| 国产精品99久久99久久久不卡 | 男人舔奶头视频| 女人十人毛片免费观看3o分钟| 欧美97在线视频| 国产黄频视频在线观看| 热99国产精品久久久久久7| 久久久久久久久久成人| 国产男女内射视频| 亚洲精品乱码久久久v下载方式| av网站免费在线观看视频| 嫩草影院新地址| 最近最新中文字幕大全电影3| 亚洲精品亚洲一区二区| 国产精品熟女久久久久浪| 赤兔流量卡办理| 亚洲av国产av综合av卡| 亚洲av中文av极速乱| 爱豆传媒免费全集在线观看| 亚洲精品久久午夜乱码| 麻豆成人午夜福利视频| 久久久a久久爽久久v久久| 十八禁网站网址无遮挡 | 在线观看av片永久免费下载| 大片电影免费在线观看免费| 婷婷色综合www| 又爽又黄a免费视频| 性高湖久久久久久久久免费观看| 天天躁夜夜躁狠狠久久av| 国产亚洲91精品色在线| 精品久久久久久久末码| 国产爽快片一区二区三区| 色综合色国产| 国产精品成人在线| 日本av手机在线免费观看| 国产人妻一区二区三区在| 国产精品国产av在线观看| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 51国产日韩欧美| 国产在线一区二区三区精| 免费观看在线日韩| 久久韩国三级中文字幕| 国产成人freesex在线| 国国产精品蜜臀av免费| 久久精品国产亚洲av天美| 欧美亚洲 丝袜 人妻 在线| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看| 少妇的逼好多水| 欧美 日韩 精品 国产| 久久久久久久久久人人人人人人| 亚洲精品日韩在线中文字幕| 少妇人妻 视频| 激情 狠狠 欧美| 我要看黄色一级片免费的| 老师上课跳d突然被开到最大视频| 成人免费观看视频高清| 婷婷色综合大香蕉| 大片免费播放器 马上看| 色视频www国产| 老司机影院毛片| 国产精品免费大片| 婷婷色av中文字幕| 看十八女毛片水多多多| 亚洲自偷自拍三级| 在线免费观看不下载黄p国产| 小蜜桃在线观看免费完整版高清| 美女主播在线视频| 春色校园在线视频观看| 在线观看一区二区三区激情| 在线精品无人区一区二区三 | 偷拍熟女少妇极品色| 免费观看的影片在线观看| 99热这里只有是精品50| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 国产国拍精品亚洲av在线观看| a级毛色黄片| 久久久欧美国产精品| 纵有疾风起免费观看全集完整版| 国产成人91sexporn| 女人十人毛片免费观看3o分钟| 日本黄色片子视频| 国产精品国产av在线观看| 纵有疾风起免费观看全集完整版| 久久精品久久久久久噜噜老黄| 亚洲av国产av综合av卡| xxx大片免费视频| 日韩欧美精品免费久久| 老熟女久久久| 五月开心婷婷网| 少妇被粗大猛烈的视频| 超碰av人人做人人爽久久| 国产在视频线精品| 飞空精品影院首页| kizo精华| 久久人妻熟女aⅴ| 亚洲欧洲国产日韩| 久久 成人 亚洲| 黄色 视频免费看| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 一级毛片 在线播放| 精品高清国产在线一区| 女人被躁到高潮嗷嗷叫费观| 欧美老熟妇乱子伦牲交| 久久99精品国语久久久| 中文字幕最新亚洲高清| 日韩 亚洲 欧美在线| 久久精品熟女亚洲av麻豆精品| 久久国产精品大桥未久av| 日韩伦理黄色片| 欧美日韩视频高清一区二区三区二| 亚洲精品第二区| 精品一品国产午夜福利视频| 男的添女的下面高潮视频| 国产精品三级大全| 9热在线视频观看99| 久久国产精品男人的天堂亚洲| 黄色 视频免费看| 18禁国产床啪视频网站| 久久精品成人免费网站| 成人影院久久| 一本—道久久a久久精品蜜桃钙片| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区国产| 亚洲精品久久成人aⅴ小说| 精品福利永久在线观看| 777米奇影视久久| 在线 av 中文字幕| 精品一区二区三卡| 伊人亚洲综合成人网| 啦啦啦在线观看免费高清www| 一本综合久久免费| 18禁观看日本| 五月开心婷婷网| 亚洲伊人久久精品综合| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 国产av一区二区精品久久| 日韩av不卡免费在线播放| 国产高清国产精品国产三级| 久久久久国产精品人妻一区二区| 午夜福利一区二区在线看| 亚洲av国产av综合av卡| 成人影院久久| 蜜桃国产av成人99| 在线天堂中文资源库| 别揉我奶头~嗯~啊~动态视频 | 成人影院久久| 久久精品久久久久久久性| 国产在线视频一区二区| 人人妻人人澡人人看| 国产在视频线精品| h视频一区二区三区| 18在线观看网站| 脱女人内裤的视频| 亚洲图色成人| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一出视频| 一区福利在线观看| 高清黄色对白视频在线免费看| 免费在线观看黄色视频的| 精品少妇久久久久久888优播| 黄色 视频免费看| 女人久久www免费人成看片| 国产精品偷伦视频观看了| 9色porny在线观看| 国产片特级美女逼逼视频| 久久狼人影院| 交换朋友夫妻互换小说| 2018国产大陆天天弄谢| 97精品久久久久久久久久精品| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| 国产黄色免费在线视频| 我的亚洲天堂| 精品亚洲乱码少妇综合久久| 丝袜美腿诱惑在线| 美女扒开内裤让男人捅视频| 又紧又爽又黄一区二区| 国产欧美亚洲国产| 成人国语在线视频| 777久久人妻少妇嫩草av网站| 国产91精品成人一区二区三区 | 久久久久久久大尺度免费视频| 老司机影院毛片| 少妇的丰满在线观看| 少妇 在线观看| 啦啦啦 在线观看视频| 两人在一起打扑克的视频| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 精品免费久久久久久久清纯 | 欧美黄色淫秽网站| 国产精品免费视频内射| 99国产精品免费福利视频| 99久久精品国产亚洲精品| 777久久人妻少妇嫩草av网站| 国产av一区二区精品久久| 日本午夜av视频| 免费一级毛片在线播放高清视频 | 午夜影院在线不卡| 婷婷色麻豆天堂久久| 制服人妻中文乱码| 在线亚洲精品国产二区图片欧美| 国产有黄有色有爽视频| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三区在线| 性色av乱码一区二区三区2| 国产高清videossex| 亚洲av成人不卡在线观看播放网 | 国产成人精品无人区| 国产精品一区二区在线不卡| 飞空精品影院首页| 国产伦人伦偷精品视频| 国产视频首页在线观看| 在线观看www视频免费| 老司机影院毛片| 国产视频首页在线观看| 乱人伦中国视频| 天天躁夜夜躁狠狠久久av| 黄色毛片三级朝国网站| 国产主播在线观看一区二区 | 另类精品久久| 男的添女的下面高潮视频| 午夜91福利影院| 亚洲中文av在线| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 视频区图区小说| 欧美成人精品欧美一级黄| 久久精品亚洲av国产电影网| 亚洲专区国产一区二区| 永久免费av网站大全| 欧美人与性动交α欧美软件| 国产男女超爽视频在线观看| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 国产高清videossex| 午夜免费观看性视频| 国产精品人妻久久久影院| 黑人巨大精品欧美一区二区蜜桃| 免费人妻精品一区二区三区视频| 亚洲国产精品成人久久小说| 欧美激情高清一区二区三区| 校园人妻丝袜中文字幕| kizo精华| 丰满人妻熟妇乱又伦精品不卡| 国产xxxxx性猛交| 亚洲av男天堂| 亚洲国产欧美日韩在线播放| 成年女人毛片免费观看观看9 | 国产97色在线日韩免费| 热re99久久精品国产66热6| 欧美xxⅹ黑人| 日日爽夜夜爽网站| 久久久欧美国产精品| 中文字幕色久视频| 久久久久久久大尺度免费视频| 色视频在线一区二区三区| 亚洲国产毛片av蜜桃av| 男人操女人黄网站| 国产精品一区二区精品视频观看| 人人妻人人澡人人爽人人夜夜| √禁漫天堂资源中文www| 亚洲国产成人一精品久久久| 美女大奶头黄色视频| 亚洲,一卡二卡三卡| 两个人免费观看高清视频| av片东京热男人的天堂| 欧美日韩黄片免| 亚洲欧美一区二区三区黑人| 亚洲精品av麻豆狂野| 国产又色又爽无遮挡免| 亚洲成国产人片在线观看| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品| 日韩免费高清中文字幕av| 国产一区二区激情短视频 | 黄色视频在线播放观看不卡| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 少妇裸体淫交视频免费看高清 | 9热在线视频观看99| 免费观看av网站的网址| 国产免费视频播放在线视频| 亚洲av美国av| 搡老乐熟女国产| 久久毛片免费看一区二区三区| 成年女人毛片免费观看观看9 | 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 99久久99久久久精品蜜桃| 精品人妻熟女毛片av久久网站| 一级毛片电影观看| 日韩视频在线欧美| 国产精品亚洲av一区麻豆| 自线自在国产av| 婷婷色综合大香蕉| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 免费日韩欧美在线观看| 午夜福利免费观看在线| 免费在线观看日本一区| 熟女av电影| 男女国产视频网站| 精品视频人人做人人爽| 一级毛片 在线播放| 好男人电影高清在线观看| 亚洲美女黄色视频免费看| 一级黄色大片毛片| 欧美精品人与动牲交sv欧美| 老司机亚洲免费影院| 少妇裸体淫交视频免费看高清 | 久久久久久久精品精品| 国产91精品成人一区二区三区 | 中文乱码字字幕精品一区二区三区| 宅男免费午夜| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 亚洲欧美成人综合另类久久久| 午夜视频精品福利| 男人操女人黄网站| 婷婷色av中文字幕| 日本午夜av视频| 亚洲精品国产区一区二| 汤姆久久久久久久影院中文字幕| 老司机在亚洲福利影院| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 成在线人永久免费视频| 美女福利国产在线| 黄色一级大片看看| 一区二区三区四区激情视频| 一本一本久久a久久精品综合妖精| 久久久久精品国产欧美久久久 | 亚洲欧美中文字幕日韩二区| 男女免费视频国产| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 99国产精品99久久久久| 欧美激情极品国产一区二区三区| 久久精品久久精品一区二区三区| 99re6热这里在线精品视频| 精品第一国产精品| 熟女av电影| 久久综合国产亚洲精品| 1024香蕉在线观看| 欧美另类一区| 国产av一区二区精品久久| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 精品一品国产午夜福利视频| 一边亲一边摸免费视频| 久久亚洲精品不卡| 久久亚洲国产成人精品v| 成人影院久久| 黄片小视频在线播放| 久久国产精品人妻蜜桃| 人妻一区二区av| 人人澡人人妻人| 国产精品二区激情视频| 黄色怎么调成土黄色| 亚洲精品美女久久av网站| 我的亚洲天堂| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看| 真人做人爱边吃奶动态| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 亚洲九九香蕉| 一本大道久久a久久精品| 国产免费福利视频在线观看| 欧美性长视频在线观看| 高清黄色对白视频在线免费看| 亚洲一区中文字幕在线| 国产精品 国内视频| 国产视频一区二区在线看| 中文欧美无线码| 亚洲av在线观看美女高潮| 一边亲一边摸免费视频| 高清视频免费观看一区二区| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 久久人人爽人人片av| 黄色片一级片一级黄色片| 亚洲第一av免费看| 成人影院久久| 90打野战视频偷拍视频| 一边摸一边抽搐一进一出视频| 亚洲美女黄色视频免费看| 人人妻,人人澡人人爽秒播 | 亚洲成人免费电影在线观看 |