曹文貴,唐旖旎,王江營
(湖南大學(xué) 巖土工程研究所,湖南 長沙 410082)
散體材料樁(如碎石樁、砂石樁等)加固軟土地基或路基是一種廣泛應(yīng)用的地基加固處理技術(shù),且散體材料樁復(fù)合地基沉降分析是地基加固處理與基礎(chǔ)工程設(shè)計(jì)的重要依據(jù).但是,由于這種地基的明顯不均勻性和應(yīng)力-應(yīng)變關(guān)系復(fù)雜性,使得其沉降分析理論及方法研究還需要深化和完善,有必要對此進(jìn)行更深入地研究.
目前,復(fù)合模量法[1-3]是最為廣泛的復(fù)合地基沉降分析方法之一,其基本思路是采用樁土復(fù)合模量代替天然地基壓縮模量,再以分層總和法來計(jì)算復(fù)合地基的沉降,為此,盛崇文[1]利用樁土復(fù)合地基的面積置換率,將載荷試驗(yàn)確定的樁土模量進(jìn)行簡單的加權(quán)平均處理以獲得復(fù)合模量;Omine[2]建立了雙重介質(zhì)模型,在考慮樁與土各向異性基礎(chǔ)上,利用樁土復(fù)合地基面積置換率來確定復(fù)合模量,王鳳池等[3]考慮了樁長、樁端土性質(zhì)對復(fù)合模量的影響,并利用復(fù)合地基樁體承載機(jī)理來修正復(fù)合模量面積比公式,從而對復(fù)合模量進(jìn)行修正.另外,張定[4]基于碎石樁復(fù)合地基變形是豎向變形和橫向變形的疊加,提出了一種樁土復(fù)合地基沉降分析方法.雖然上述各種方法獲得了一定的成果,但是,均未體現(xiàn)附加應(yīng)力和應(yīng)力歷史對復(fù)合地基變形力學(xué)參數(shù)的影響,而且,須采用壓縮試驗(yàn)曲線或靜載試驗(yàn)曲線來描述樁土模量的變化,這給實(shí)際工程計(jì)算帶來了不便.于是,曹文貴和劉海濤等[5]基于樁土復(fù)合地基沉降變形機(jī)理及其非線性特征,考慮荷載作用下樁土變形力學(xué)參數(shù)的變化,建立了剛性基礎(chǔ)下散體材料樁復(fù)合地基沉降計(jì)算新方法.該方法反映了樁土變形力學(xué)參數(shù)的變化對復(fù)合地基沉降的影響,并且在沉降分析中避免了使用壓縮試驗(yàn)曲線或靜載試驗(yàn)曲線來描述模量的變化,使沉降計(jì)算過程更公式化.但是,這種方法并未反映樁土泊松比變化對復(fù)合地基沉降分析的影響,而且,在研究樁土模量變化規(guī)律時(shí)忽略了高階變形微量的影響,存在明顯的缺陷.如果在此方法的基礎(chǔ)上合理地解決樁土模量和泊松比變化對沉降分析的影響,必將獲得更為合理的散體材料樁復(fù)合地基沉降計(jì)算方法,這正是本文研究的核心內(nèi)容.
為此,本文將考慮散體材料樁復(fù)合地基樁與土的孔隙特點(diǎn),從其變形微觀力學(xué)機(jī)理研究入手,采用孔隙介質(zhì)力學(xué)理論,通過分別研究樁與土變形力學(xué)參數(shù)(包括模量和泊松比)的變化規(guī)律,來探討散體材料樁復(fù)合地基沉降分析新方法,以期完善散體材料樁復(fù)合地基沉降分析的理論方法.
為了建立散體材料樁復(fù)合地基沉降分析模型,首先做如下假定:
1)建筑結(jié)構(gòu)基礎(chǔ)為理想剛性基礎(chǔ),因此,樁與土的豎向變形是協(xié)調(diào)相等的.
2)樁與土界面水平或側(cè)向變形連續(xù).
3)考慮到散體材料樁具有較強(qiáng)的透水性,孔隙水極易排出,因此,不考慮孔隙水壓力對地基沉降的影響.
因此,為了分析復(fù)合地基沉降,只需求出土體的沉降量.于是,基于文獻(xiàn)[5]的研究思路,將散體材料樁復(fù)合地基壓縮層分為M1層,設(shè)第i壓縮分層產(chǎn)生的豎向變形為Si,于是,總沉降S可視為各壓縮分層豎向變形量之和,即:
(1)
將第i壓縮分層所受附加應(yīng)力分為M2i級,則該層土體豎向變形Si可視為各級附加應(yīng)力作用產(chǎn)生的豎向變形量的總和,即:
(2)
式中:dsi為第i壓縮分層厚度;εszij為第i壓縮分層在第j級荷載作用下產(chǎn)生的豎向應(yīng)變.于是,式(1)亦可改寫為:
(3)
散體材料樁復(fù)合地基的樁和土均為孔隙介質(zhì)體,在荷載作用下,其中孔隙可以被壓縮,即樁或土的體積會發(fā)生變化,從而,導(dǎo)致其變形力學(xué)參數(shù)也會隨之而變化,但是,散體材料樁和土顆粒骨架可視為傳統(tǒng)固體力學(xué)研究對象,其變形力學(xué)參數(shù)為常數(shù)[6],因此,從孔隙介質(zhì)微觀分析入手,就有可能建立孔隙介質(zhì)變形力學(xué)參數(shù)與孔隙介質(zhì)骨架變形力學(xué)參數(shù)之間的關(guān)系.為此,必須探討孔隙介質(zhì)體應(yīng)力與變形分別與顆粒骨架的應(yīng)力和變形的關(guān)系,前者稱為孔隙介質(zhì)的表觀應(yīng)力和表觀變形(文獻(xiàn)[6]中稱為視應(yīng)力和視應(yīng)變),后者稱為孔隙介質(zhì)骨架的實(shí)際應(yīng)力和實(shí)際變形,然后據(jù)此可建立孔隙介質(zhì)力學(xué)模型,詳細(xì)內(nèi)容如下.
設(shè)孔隙介質(zhì)體(包括樁體與土體)的視應(yīng)力為σ,孔隙率為n,其顆粒骨架實(shí)際應(yīng)力為σs,由文獻(xiàn)[6]可得它們之間的關(guān)系為:
(4)
Lsx=(1-n)Lx,
(5)
(6)
如果令:
(7)
(8)
Δn=n-n′.
(9)
(10)
(11)
(12)
Vs=(1-n)V,
(13)
(14)
如果令:
ΔV=V-V′,
(15)
(16)
(17)
式(17)亦可改寫為:
(18)
Δn=εV(1-n)/(1-εV).
(19)
將其代入式(10)~(12)可得:
(20)
(21)
(22)
同時(shí),根據(jù)彈性力學(xué)理論[7],孔隙介質(zhì)表觀體應(yīng)變εV可按式(23)進(jìn)行計(jì)算:
(23)
忽略其中的三階微量,則式(23)亦可改寫為:
(24)
上述即為散體材料樁復(fù)合地基孔隙介質(zhì)力學(xué)分析模型,下面將在此基礎(chǔ)上探討樁或土體變形力學(xué)參數(shù)變化規(guī)律.
1)樁和土泊松比的變化規(guī)律
μsij=-εsxij/εszij或μsij=-εsyij/εszij,
(25)
(26)
將式(20)~(22)代入式(26)得:
(27)
再將式(24)及(25)代入式(27)并結(jié)合式(26)可得出μsij與νsij之間的關(guān)系,即:
(28)
其與文獻(xiàn)[6]結(jié)果存在較大差別,文獻(xiàn)[6]認(rèn)為土體與其顆粒骨架泊松比是相同的即νsij=μsij,顯然不合理,因?yàn)樗鼪]有反映土體變形力學(xué)參數(shù)隨土體變形而變化的特點(diǎn),而本文得到的相應(yīng)關(guān)系正反映了變形對土體泊松比的影響,因此,本文得到的相應(yīng)關(guān)系更具合理性.
仿照上述推導(dǎo)過程,可得到在第j-1級附加應(yīng)力增量的作用下該層土體視泊松比μsi(j-1)與土顆粒骨架實(shí)際泊松比νsi(j-1)之間的關(guān)系,即:
νsi(j-1)=
(29)
由于在第j級附加應(yīng)力增量作用下該層土體變形分析中采用遞推方法,故式(29)右端各參量均為已知,于是,νsi(j-1)為已知,另外,認(rèn)為顆粒骨架變形力學(xué)參數(shù)不變即νsij=νsi(j-1),則利用式(28)可得:
(30)
式(30)可轉(zhuǎn)化為關(guān)于μsij的一元二次方程,求解該方程并取其合理解可得:
(31)
式中νsi(j-1)采用式(29)計(jì)算.式(31)即為附加應(yīng)力增量作用下第i壓縮分層土體視泊松比變化規(guī)律,其為一個(gè)遞推公式,因此,必須用到第i壓縮分層土體在附加應(yīng)力作用之前的初始泊松比μsi0,這將在本文3.2節(jié)討論.
仿照土體視泊松比變化規(guī)律的研究過程,設(shè)第i壓縮分層樁體在第j級附加應(yīng)力增量作用下產(chǎn)生的豎向和水平向應(yīng)力增量為σPzij和σPxij,σPyij,相應(yīng)視應(yīng)變分別為εPzij和εPxij,εPyij,可推得相應(yīng)樁體視泊松比μPij的變化規(guī)律,即:
μPij=
(32)
其中νPi(j-1)為在第j-1級附加應(yīng)力增量作用下該層樁體散體材料骨架顆粒實(shí)際泊松比,可按式(33)計(jì)算:
(33)
式(32)同樣為一個(gè)遞推計(jì)算公式,遞推計(jì)算過程需要的第i壓縮分層樁體在附加應(yīng)力作用之前的樁體視泊松比μPi0,同樣將在本文3.2節(jié)討論.
2)樁或土視模量的變化規(guī)律
仿照前述方法,首先對第i地基壓縮分層土體在第j級豎向附加應(yīng)力增量作用下進(jìn)行分析,那么采用增量虎克定律描述其應(yīng)力應(yīng)變關(guān)系為[7]:
(34)
(35)
(36)
式中:Esij和μsij分別為第i壓縮分層土體在第j級豎向附加應(yīng)力增量作用過程中變形模量和泊松比的平均值.針對土顆粒骨架采用增量虎克定律[7]得:
(37)
(38)
(39)
(40)
(41)
(42)
利用式(34)~(42)可得式(43):
(43)
將式(22),(25)及(26)代入式(43),則式(43)可改寫為:
(44)
由于假設(shè)土顆粒骨架變形模量為常數(shù),可利用式(44)得到第i地基壓縮分層土體在第j-1級附加應(yīng)力增量作用下的變形模量Esi(j-1)的計(jì)算公式,即:
(45)
令式(44)和(45)中等式右端分別用符號αsij與αsi(j-1)代替,結(jié)合兩式可得:
(46)
式(46)即為在附加應(yīng)力作用下第i壓縮分層土體視變形模量的變化規(guī)律.可以看出式(46)同樣要采用遞推方法計(jì)算,且需知道視變形模量在附加應(yīng)力作用之前的初始值Esi0,這將在本文3.2節(jié)討論.
另外,由式(44)和(45)可知,第i壓縮分層土體視變形模量的變化會受到土體孔隙率變化的影響,必須討論該層土體在附加應(yīng)力增量作用下孔隙率變化規(guī)律.為此,結(jié)合式(24)與(25)可得第j級豎向附加應(yīng)力增量作用下該層土體視體積應(yīng)變的另一個(gè)表達(dá)形式,即:
(47)
將式(47)代入式(19)可得土體孔隙率變化量,即:
(48)
將式(48)代入式(9)可得第i壓縮分層土體在第j級豎向增量附加應(yīng)力作用后的孔隙率表達(dá)式,即:
nsij=
(49)
式(49)也為一個(gè)遞推計(jì)算公式,須用到第i壓縮分層土體在附加應(yīng)力作用之前的孔隙率nsi0,這將在本文3.2節(jié)討論.
(50)
(51)
式中:nPij為第i壓縮分層樁體在第j級豎向附加應(yīng)力增量作用下的孔隙率.令式(50)及(51)中等號右端項(xiàng)分別用符號αPij和αPi(j-1)代替,可得附加應(yīng)力作用下第i壓縮分層樁體變形模量變化規(guī)律,即:
(52)
式(52)同樣需采用遞推方法進(jìn)行計(jì)算,其初始值EPi0的取值也將在本文3.2節(jié)討論.
附加應(yīng)力作用下樁體變形模量的變化同樣受其孔隙率變化的影響,仿照式(49)方法可得第i壓縮分層樁體在第j級豎向附加應(yīng)力增量作用下孔隙率的變化規(guī)律,即:
nPij=nPi(j-1)-
(53)
樁體孔隙率的變化同樣需采用遞推方法進(jìn)行計(jì)算,其初始值nPi0的取值也將在本文3.2節(jié)進(jìn)一步討論.
3)樁和土附加應(yīng)力確定方法
由散體材料樁復(fù)合地基沉降分析模型可知,要求得散體材料樁復(fù)合地基沉降值,須知道土體所受的應(yīng)力增量.因?yàn)樯Ⅲw材料復(fù)合地基中樁與土相互影響,因此,必須從這一力學(xué)特點(diǎn)入手,對樁或土體進(jìn)行受力分析,以求得散體材料樁復(fù)合地基的樁土應(yīng)力比,從而建立散體材料樁復(fù)合地基土體所受附加應(yīng)力的確定方法,具體過程如下.
以土體單元為例探討樁或土的受力情況.本文參考文獻(xiàn)[4,5,8,9]的方法,在第i地基壓縮分層取一個(gè)土體單元,在第j級附加應(yīng)力增量作用下,考慮水平向?qū)ΨQ的情況,即σsxij=σsyij,并且為了分析方便,將土體單元受力變形分解為只發(fā)生水平向應(yīng)變或豎向應(yīng)變的兩種模型[4,5,8,9],如圖1所示,于是,各模型應(yīng)力應(yīng)變關(guān)系如下:
σszij=σszija+σszijb,
(54)
σsxij=σsxija+σsxijb,
(55)
εszij=εszija+εszijb,
(56)
εsxij=εsxija+εsxijb.
(57)
圖1 土體單元受力分析
利用兩種模型分別結(jié)合增量虎克定律對土體單元進(jìn)行分析,根據(jù)式(54),(55)可得土體單元豎向及水平向應(yīng)力與應(yīng)變的關(guān)系[5],即:
σszij=Esij[2μsijεsxij+(1-μsij)εszij]/[(1+
μsij)(1-2μsij)],
(58)
σsxij=Esij(εsxij+μsijεszij)/[(1+μsij)(1-2μsij)].
(59)
取相應(yīng)樁體單元進(jìn)行分析,利用上述方法可得樁體單元豎向及水平向應(yīng)力與應(yīng)變關(guān)系為[5]:
σPzij=EPij[2μPijεPxij+(1-μPij)εPzij]/[(1+
μPij)(1-2μPij)]
(60)
σPxij=EPij(εPxij+μPijεPzij)/[(1+μPij)(1-
2μPij)].
(61)
由于散體材料樁復(fù)合地基土體所受應(yīng)力必須考慮樁土相互作用,因此,下面將考慮樁與土所分擔(dān)應(yīng)力的不同,討論土體附加應(yīng)力的確定方法.設(shè)散體材料樁復(fù)合地基面積置換率為m,第i壓縮分層在第j級附加應(yīng)力增量作用下樁與土應(yīng)力比為Nij(即σPzij/σszij),根據(jù)文獻(xiàn)[4]可得:
εsxij=[m/(m-1)]εPxij.
(62)
剛性基礎(chǔ)下樁與土豎向變形協(xié)調(diào)相等,即
εPzij=εszij.
(63)
利用式(63)和文獻(xiàn)[4]中樁體橫向變形系數(shù)kεij(即-εPxij/εPzij),式(62)可變?yōu)椋?/p>
εsxij=-kεijεszijm/(m-1).
(64)
根據(jù)文獻(xiàn)[5]結(jié)果可推算出土體豎向應(yīng)變εszij及水平向應(yīng)變εsxij分別與地基豎向附加應(yīng)力增量σzij之間的關(guān)系,即:
εszij=
(65)
εszij=
(66)
式中:σzij可利用布辛奈斯克解[10]計(jì)算得到.由式(65)與(66)可知,散體材料樁復(fù)合地基沉降與樁土應(yīng)力比Nij及樁體橫向變形系數(shù)kεij有關(guān),因此,有必要探討Nij與kεij的確定方法.
首先,根據(jù)樁土邊界水平向應(yīng)力連續(xù)性可得:
σPxij=σsxij.
(67)
基于樁土模量比KEij(即EPij/Esij)的物理意義[4],可利用式(46)及(52)求得:
KEij=KEi(j-1)αPijαsi(j-1)/[αsijαPi(j-1)].
(68)
然后,將式(59)及(61)代入式(67),并結(jié)合KEij的定義,可得:
Fij/KEij=(εPxij+μPijεPzij)/(εsxij+μsijεszij).
(69)
式中:
Fij=(1+μPij)(1-2μPij)/[(1+μsij)(1-
2μsij)].
(70)
將式(64)代入式(69),并考慮kεij定義可得:
kεij=(1-m)(KEijμPij-μsijFij)/[KEij(1-m)
+Fijm].
(71)
再根據(jù)樁土應(yīng)力比Nij的定義,并利用式(58)和(60)可得:
Nij=KEi(j-1)[2μPijεPxij+(1-
μPij)εPzij]/{Fij[2μsijεsxij+(1-μsij)εszij]}.
(72)
利用式(66)和(67)并考慮kεij定義,化簡式(72)可得:
1-μsij)].
(73)
可見,利用式(73)可求得相應(yīng)的樁土附加應(yīng)力比.
由前述可知,計(jì)算復(fù)合地基沉降必須求解一系列非線性方程,且須進(jìn)行反復(fù)迭代,下面介紹具體迭代方法.
4)變形參數(shù)及最終沉降的求解方法
(ⅰ)首先,設(shè)定第i地基壓縮層樁與土在第j級增量荷載作用下的變形力學(xué)參數(shù)的初始值,其為該層樁土體在第j-1級增量荷載作用下的變形力學(xué)參數(shù),同時(shí),樁體橫向變形系數(shù)kεij及樁土應(yīng)力比Nij取該層樁土體在第j-1級增量荷載作用下的kεi(j-1)及Ni(j-1),即:
(74)
(75)
(76)
(77)
(ⅳ)散體材料樁復(fù)合地基沉降計(jì)算
確定第i地基壓縮分層在第j級荷載作用下豎向增量應(yīng)變εszij之后,即可根據(jù)式(65)及沉降分析模型求得最終沉降,計(jì)算公式為:
(78)
一般情況下,散體材料樁復(fù)合地基中樁或土的初始變形力學(xué)參數(shù)可通過室內(nèi)試驗(yàn)確定[10],但是,此時(shí)的變形力學(xué)參數(shù)未考慮不同壓縮分層已完成固結(jié)變形的不同,即未考慮地基應(yīng)力歷史或初始地應(yīng)力對變形力學(xué)參數(shù)的影響,因此,必須建立散體材料樁復(fù)合地基樁或土初始變形力學(xué)參數(shù)的確定方法.
(79)
(80)
(81)
(82)
(83)
式中,
(84)
(85)
(86)
由式(81)~(86)可以看出,計(jì)算初始變形力學(xué)參數(shù)是一個(gè)遞推計(jì)算過程,這里可參照本文3.1節(jié)求解方法得到第i地基壓縮分層土體所受初始地應(yīng)力加載完畢時(shí)初始變形力學(xué)參數(shù),即:
(87)
(88)
(89)
按照上述思路,同樣可得到考慮初始地應(yīng)力影響下各壓縮分層樁體初始變形力學(xué)參數(shù)的確定方法.
天津塘沽長蘆鹽廠載荷板試驗(yàn)資料[11]:載荷板面積為3 m×3 m,下壓四根碎石樁,樁徑0.8 m,樁長9 m,面積置換率m=0.223,樁和土體變形模量分別為4.528 MPa,0.716 8 MPa,樁體泊松比與孔隙率分別為0.25,0.07,土體泊松比與孔隙率分別為0.4,0.58,樁體重度為25 kN/m3,土體重度為18 kN/m3.試驗(yàn)荷載為88.2 kPa時(shí)壓板實(shí)測最大沉降為82.0 mm.
計(jì)算深度按照規(guī)范[12]要求取7 m,可將地基壓縮層分為7層,每層厚度為1 m,將附加荷載及自重荷載均分為20級加載.按3.2節(jié)方法計(jì)算考慮應(yīng)力歷史影響后的初始模量Esi0,EPi0,初始泊松比μsi0,μPi0,初始孔隙率nsi0,nPi0,計(jì)算結(jié)果見表1.將表1中初始變形力學(xué)參數(shù)代入3.1節(jié),按3.1節(jié)方法和式(78)計(jì)算地基最終沉降量,同時(shí)采用現(xiàn)有其他方法計(jì)算,計(jì)算結(jié)果見表2.
表1 樁土變形模量初始值(1)
表2 復(fù)合地基沉降計(jì)算結(jié)果的比較(1)
某水庫攔河大壩[13]所在的河床有較深的第4紀(jì)沖擊層分布,用振沖碎石樁對地基加固.選取現(xiàn)場試驗(yàn)中BC-1組載荷試驗(yàn)曲線進(jìn)行計(jì)算,該載荷板尺寸為1.8 m×1.8 m,樁體直徑為1 m,長度為9 m,按正三角形布樁,面積置換率m=0.24.樁和土變形模量分別為3.5 MPa,1.5 MPa,重度分別為25 kN/m3,20 kN/m3.樁泊松比與孔隙率分別為0.25,0.07,土泊松比與孔隙率分別為0.40,0.52.試驗(yàn)荷載為108 kPa時(shí)壓板實(shí)測最大沉降為42.0 mm.
計(jì)算深度按照規(guī)范[12]要求取9 m,將地基壓縮層分為9層,每層厚度為1 m,將附加荷載及自重荷載均分為20級加載.按實(shí)例一計(jì)算過程,得樁土變形力學(xué)參數(shù)初始值見表3,沉降計(jì)算結(jié)果見表4.
表3 樁土變形模量初始值(2)
表4 復(fù)合地基沉降計(jì)算結(jié)果的比較(2)
從上述工程實(shí)例分析的過程和結(jié)果可以看出,采用本文方法計(jì)算的沉降值更接近地基沉降的實(shí)際觀測值,表明本文方法具有較強(qiáng)的合理性和可行性.雖然本文方法與其他方法相比,計(jì)算精度雖然沒有明顯提高,但避免了地基土壓縮試驗(yàn)曲線和經(jīng)驗(yàn)系數(shù)的使用,還全面考慮了樁土變形力學(xué)參數(shù)變化對沉降的影響,因而具有明顯的優(yōu)越性.
1)從樁土受力與微觀變形研究入手,建立了反映樁土表觀變形力學(xué)參數(shù)與顆粒骨架實(shí)際變形力學(xué)參數(shù)之間關(guān)系的孔隙介質(zhì)模型,較現(xiàn)有相關(guān)模型具有更廣泛地應(yīng)用范圍.
2)考慮剛性基礎(chǔ)下散體材料樁復(fù)合地基沉降特點(diǎn),運(yùn)用上述孔隙介質(zhì)分析模型,引進(jìn)分級加載思想,建立了附加應(yīng)力和初始地應(yīng)力對樁土變形力學(xué)參數(shù)的影響模型.
3)建立了反映樁土變形力學(xué)參數(shù)非線性變化特征的改進(jìn)分層總和分析方法,其不僅反映了樁土變形力學(xué)參數(shù)隨埋深和附加應(yīng)力變化的特征,而且還能避免壓縮試驗(yàn)曲線的使用.
[1] 盛崇文. 碎石樁復(fù)合地基的沉降計(jì)算[J]. 土木工程學(xué)報(bào),1986,19(1):72-80.
SHENG Chong-wen. Estimation of settlement of composite ground reinforced by stone golunns [J]. China Civil Engneering Jounal, 1986,19(1): 72-80. (In Chinese)
[2] OMINE K, OHNO S. Deformation analysis of composite ground by homogenization method [C]//Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering.Rotterdam: Balkema A A,1997:719-722.
[3] 王鳳池,朱浮聲,王曉初. 復(fù)合地基復(fù)合模量的理論修正[J].東北大學(xué)學(xué)報(bào),2003,24(5):491-494.
WANG Feng-chi,ZHU Fu-sheng,WANG Xiao-chu. Theoretical analysis of the modulus of construction composite foundation[J]. Journal of Northeastern University,2003,24(5):491-494.(In Chinese)
[4] 張定. 碎石樁復(fù)合地基的作用機(jī)理分析及沉降計(jì)算[J]. 巖土力學(xué),1999,20(2):81-86.
ZHANG Ding. Functional mechanism analysis and settlement computation on composite foundation of gravel pile [J].Rock and Soil Mechanics, 1999,20(2):81-86 .(In Chinese)
[5] 曹文貴, 劉海濤, 張永杰. 散體材料樁復(fù)合地基沉降計(jì)算的分層總和法探討[J]. 水利學(xué)報(bào), 2010, 41(8): 984-990.
CAO Wen-gui, LIU Hai-tao ,ZHANG Yong-jie. Study on layer-wise summation method of settlement computation for composite foundation with friable material piles[J]. Journal of Hydraulic Engineering, 2010, 41(8): 984-990. (In Chinese)
[6] 卲龍?zhí)?孫益振. 考慮孔隙變形的孔隙介質(zhì)本構(gòu)關(guān)系初探[J].巖土力學(xué),2006,27(4):561-565.
SHAO Long-tan, SUN Yi-zhen. Primary tudy of stress-strain constitutive relation for porous media[J]. Rock and SoilMechanics,2006,27(4):561-565.(In Chinese)
[7] 徐芝綸.彈性力學(xué)[M].北京:高等教育出版社,2006:197-204.
XU Zhi-lun. Elastic mechanics [M]. Beijing: Higher Education Press, 2006:197-204.(In Chinese)
[8] 曹文貴,劉海濤, 張永杰.散體材料樁復(fù)合地基樁土應(yīng)力比計(jì)算新方法[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2009, 36(7): 1-5.
CAO Wen-gui, LIU Hai-tao, ZHANG Yong-jie. A new pile-soil stress ratio calculation method of composite foundation with friable material piles[J]. Journal of Hunan University:Natural Sciences, 2009, 36 (7): 1-5. (In Chinese)
[9] 劉杰,趙明華,何杰. 碎石樁復(fù)合地基承載及變形性狀研究[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2007, 34(5): 15-19.
LIU Jie, ZHAO Ming-hua, HE Jie. Research on bearing and deformation characters of composite foundation with granular columns[J]. Journal of Hunan University:Natural Sciences, 2007,34(5):15-19.(In Chinese)
[10]趙明華,俞曉,王怡蓀. 土力學(xué)與基礎(chǔ)工程[M]. 武漢: 武漢理工大學(xué)出版社, 2003:50-66.
ZHAO Ming-hua, YU Xiao, WANG Yi-sun. Soil mechanics and foundation engineering[M]. Wuhan: Wuhan University of Technology Press, 2003:50-66(In Chinese)
[11]方永凱,張魯年,孟廣訓(xùn),等.振沖法加固塘沽軟粘土地基[C]//軟基加固新技術(shù)——振動水沖法.北京:水利電力出版社,1986.158-174.
FANG Yong-kai, ZHANG Lu-nian,MENG Guang-xun,etal. Vibrapunehing method reinforcement of soft clay foundation in Tanggu [C]//Soft Soil of New Technology-Vibration Jetting. Beijing: Water Power Press, 1986.158 -174. (In Chinese)
[12]GB 50007-2011建筑地基基礎(chǔ)設(shè)計(jì)規(guī)范 [S].北京:中國建筑工業(yè)出版社,2011:54-55.
GB 50007-2011 Code for design of building foundation [S].Beijing: China Architecture and Building Press, 2011:54-55.(In Chinese)
[13]頓志林,高家美.彈性力學(xué)及其在巖土工程中的應(yīng)用[M].北京:煤炭工業(yè)出版社,2003:295-370.
DUN Zhi-lin , GAO Jia-mei. Elastic mechanics and its application in the geotechnical engineering [M]. Beijing: Coal Industry Press, 2003:295-370.(In Chinese)