• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    脫質(zhì)子化1,3環(huán)加成石墨烯外在固定位上的貴金屬納米線

    2014-09-17 06:59:42蔡秋霞莊桂林王新德李小年王建國
    物理化學(xué)學(xué)報(bào) 2014年4期
    關(guān)鍵詞:質(zhì)子化王建國納米線

    蔡 潛 蔡秋霞 莊桂林 鐘 興 王新德 李小年 王建國

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地,杭州310032)

    1 Introduction

    Noble metal nanoparticles/nanowires supported on graphene have attracted much research attention because of their unique optical,electrical,magnetic,and mechanical properties.1-7However,the weak interaction between metal nanoparticles and graphene has become a vital problem.Different methods are adopted to modify the inert properties of pristine graphene.

    The modification methods can be divided into two types,which are internal modification and external modification.The internal modification mainly includes the creation of carbon vacancies8-14and the substitution of the lattice carbon with foreign elements.15-18Density functional theory(DFT)calculations studied by Wilcox et al.12showed that the graphene vacancies act as anchoring points for pure metal nanoparticles,the strong binding of Fe13and Al13nanoparticles on defective graphene is due to the strong hybridization of metal nanoparticles with the sp2dangling bonds of neighboring carbons near the vacancy.Ramaprabhu et al.18prepared the N-doped graphene as a catalyst support material for Pt particles in oxygen reduction reaction(ORR)by plasma treatment.It indicates that the improved performance of Pt/N-G(Pt adsorbed on graphene doped with nitrogen)compared to Pt/G is due to the improved carbon-catalyst binding and increased electrical conductivity induced by nitrogen doping.Our previous study20also showed that point defects can enhance the bonding of noble metal atoms on the graphene with the sequence of vacancy defect>>B-doping>N-doping.The external modification method is to introduce surface functional groups on the graphene.21-26Among the various surface functional groups,1,3-dipolar cycloaddition becomes a hot topic because it has been successfully applied in the organic functionalization of carbon nanotubes27-29and fullerenes30,31for many applications,like biotechnology,electrooptical devices,and solar energy conversion.32,33In addition,Trapalis et al.25confirmed that graphene can be effectively functionalized through 1,3-dipolar cycloaddition.Recently,Prato et al.34prepared 1,3-dipolar cycloaddition graphene experimentally,demonstrating that gold nanorods can distribute uniformly over the modified graphene surface.Among the noble metals,Pt is commonly used as catalyst material.However,the mechanism for the adsorption properties of Pt nanoparticles over external anchoring carbon carries is still unclear.

    In this study,we identify the anchoring site for small Pt cluster and the formation of Pt nanowires on deprotonated 1,3-dipolar cycloaddition(DDC)graphene by means of DFT calculations.A series of electronic structure analysis(Bader charge,charge density,band structure,and density of states)were used to rationalize the mechanism of external anchoring for Pt clusters or nanowires on the modified graphene.

    2 Computational section

    All calculations were performed using the Vienna ab initio Simulation Package(VASP)code35,36based on density functional theory.The projector augmented wave(PAW)potentials were used to describe the interaction between ions and electrons.37,38The nonlocal exchange correlation energy was evaluated using the Perdew-Burke-Ernzehof(PBE)functional.The electron wave function was expanded using plane waves with an energy cutoff of 400 eV.A 4×4×1 Monkhorst-Pack k-point mesh was used.In this study,every 32-atom graphene slab was modified by one 1,3-dipolar cycloaddition,which derived from experimental literature reported.34The supercell was chosen to be 0.9880 nm×0.8556 nm×2 nm.The adsorption energy(Ead)of noble metal clusters or nanowires on DDC graphene is calculated as follows:

    where EMn+G,EMn,and EGrepresent the energies of the combined systems of Mn(n denotes the number of metal atoms)and modified graphene,the most stable gas phase of metal cluster or nanowire,and the modified graphene,respectively.

    3 Results and discussion

    3.1 Deprotonation of 1,3-dipolar cycloaddition graphene

    We firstly investigated the adsorption of Pt monomer and dimer on 1,3-dipolar cycloaddition(DC)graphene.It is found that the most stable site for Pt monomer is ortho-carbon of nitrogen in 1,3-dipolar cycloaddition graphene,20with the hydrogen atom transfer from ortho-carbon to the platinum atom(Fig.1).Several different initial configurations had been optimized,we always found that hydrogen transfers from carbon to Pt once Pt adsorbed.The only stable geometry in which hydrogen does not transfer is Pt bonding with nitrogen.The adsorption energies of Pt monomer on ortho-carbon and nitrogen are-2.16 and-1.21 eV,respectively.Similarly,the most stable structure of Pt dimer is both of Pt located at atop sites of the two ortho-carbons of nitrogen,leading to the hydrogen atoms transfering from carbon to platinum.The adsorption energy of Pt dimer on the ortho-carbons is-1.68 eV,which is much more stable than that on the nitrogen atoms(-0.68 eV).It indicates that the hydrogen transfer is easily occurred after one or two Pt atoms adsorption.Therefore,in the following section,the DDC graphene is served as the model to investigate the adsorption of small Pt clusters/nanowires.

    3.2 Formation of small Pt clusters on deprotonated 1,3-dipolar cycloaddition graphene

    Fig.1 Optimized geometries of Ptn(n=1-2),Ptn(n=3-6)on 1,3-dipolar cycloaddition graphene,deprotonated 1,3-dipolar cycloaddition graphene

    The adsorption of small noble metal clusters(Ptn(n=3-6))on DDC graphene is investigated(Fig.1).For Pt3configurations,the triangle Pt structures are suspended via two Pt atoms adsorbing on the top sites of ortho-carbons or one Pt adsorbing on bridge site of the two neighboring ortho-carbons,the adsorption energies are-2.67 and-2.26 eV,respectively.For Ptn(n=4-6)clusters,the same rule is found,in which the orthocarbon acts as anchoring sites via bonding with one or two Pt atoms.Different from internal anchoring site of carbon vacancy,in which more than two or three Pt bond with vacancy even for Pt3or Pt4clusters,39while the ortho-carbon of nitrogen acts as external anchoring sites only bound with one or two Pt atoms for these small clusters Ptn(n=3-6).

    3.3 Formation of Pt nanowires on deprotonated 1,3-dipolar cycloaddition graphene

    From the above analysis,the anchoring site of DDC graphene for small Pt clusters is the ortho-carbon of nitrogen by bonding with one or two Pt atoms.It is very interesting to investigate the growth of noble metal nanowires between two neighboring deprotonated pyridine alkyne units.Inspired by one recent experimental study,it reported that gold binding to the graphene can easily form nanorods on 1,3-dipolar cycloaddition graphene34,we investigate Pt nanowires grown on DDC graphene,as shown in Fig.2.

    Pt3is used as the"bridge"to connect two neighboring deprotonated pyridine alkyne(PY)units,which form the PY-Pt3-PY one-dimensional nanowire.Ptn(n=4-6)nanowires can form based on the Pt3nanowire adsorption configuration.Compared with Pt3nanowire,Pt4forms an integrated zigzag nanowire.For Pt5and Pt6nanowires,whole configuration appears flat growth trend.The adsorption energies for Ptn(n=4-6)nanowire are-4.11,-4.02,and-4.83 eV,respectively.The adsorption strengths for them are much stronger than the corresponding most stable Ptn(n=4-6)clusters by more than 1.5 eV,while the adsorption strength of Pt3nanowire is just a little stronger than Pt3cluster.The Pt―C bond distances vary from 0.204 to 0.215 nm,and Pt―Pt bond distances vary from 0.245 to 0.265 nm depending on the nanowire size and shape.It is seen that the orthocarbon of nitrogen in DDC graphene again acts as the anchoring site for nanowires via bonding with one or two metal atoms,which provides another explanation why gold nanorods are easily formed on 1,3-dipolar cycloaddition graphene.34

    3.4 Electronic properties modification of deprotonated 1,3-dipolar cycloaddition graphene by clusters and nanowires

    In order to rationalize the above mentioned results,the average bader charge of carbon,nitrogen,and Pt in different systems were analyzed,as summarized in Table 1.We can find that in DDCG,the charges of nitrogen and ortho-carbon are-2.674e and 1.000e,respectively.While in C-DCG,the charge of carbon that replaces nitrogen is 0.277e,and the“ortho-carbon”is-0.155e.It indicates that nitrogen induces huge charge changes in ortho-carbon and makes these ortho-carbons act as adsorption sites for noble metal clusters and nanowires.

    Fig.2 Pt nanowires on deprotonated 1,3-dipolar cycloaddition graphene

    Charge density difference is another important electronic property for analyzing local bonding process or charge transfer.Generally,we calculate the required charge density difference according to the following equation:

    where Δρrepresents charge density difference,ρMn+G,ρMn,and ρGare the charge densities of noble metal on DDC graphene,pure noble metal,and pure DDC graphene,respectively.For DDC graphene,the more electronegative N atom(electronegativityof 3.04)leads the ortho-carbons of nitrogen to be obviously electropositive(Fig.3(b)).According to the studies of N-doped graphene,the active site locates at the atoms with high charge density.40Therefore,ortho-carbons of nitrogen act as active sites,which is in agreement with the configurations mentioned above.As comparison,the charge density of DC graphene distributes rather average(Fig.3(a)).From Fig.3(c,d),we can easily find that the metal atom bonding to the modified graphene mainly shows charge depletion,while other metal atoms show slight charge accumulation.The bonding property of metal on DDC graphene coincides with average Bader charge analysis and work function.The work functions of Pt6and DDC graphene are 5.55 and 3.96 eV,respectively.It is seen that the adsorbed metal clusters or nanowires induce charge redistribution again(Table 1 and Fig.3).For Pt cluster,the electrons of nitrogen transfer to carbon and the adsorbed metal,which leads to the charge reduction of nitrogen and carbon atoms and negative charge of whole metal clusters(Table 1).While for Pt nanowire,in addition to the electron of nitrogen transfering to carbon and the adsorbed metal,the electrons also transfer from bonding Pt to carbon,which explains the positive charge of bonding metal.For Pt clusters adsorbed on carbon vacancy graphene20or CNTs,39the positive charge is also identified.The unique electronic properties of DDC graphene lead to the negative charge of metal clusters or nanowires.

    Table 1 Average Bader charge(e)anaysis of 1,3-dipolar cycloaddition graphene with or without Pt6adsorption

    Fig.3 Calculated charge density difference of(a)DC graphene,(b)DDC graphene,(c)Pt6cluster/DDC graphene,and(d)Pt6nanowire/DDC graphene

    Fig.4 Band structures and DOS of(a)graphene,(b)DC graphene,(c)DDC graphene,(d)Pt6cluster/DDC graphene,(e)Pt6nanowire/DDC graphene,and(f)the highest occupied molecular orbit(HOMO)of DDC graphene

    To further investigate the electronic structure of the materials,density of states(DOS)and band structure calculations are performed.The result of DFT calculation reveals that pristine graphene and DDC graphene are semimetallic(Fig.4(a-c)).Detailed difference between them can be concluded:(a)disappearance of dirac point and one strong DOS peak at about 2.4 eV below Fermi level in DDC graphene;(b)emergence of new remarkable DOS peak of DDC graphene at the vicinity of Fermi level;(c)reducing of the dispersion degrees of bands both in valance band(VB)and conduction band(CB)in DDC graphene.Generally,the phenomenon may be due to the slightly broken conjugated system of graphene induced by deprotonated 1,3-dipolar cycloaddition.In this regard,particular attention must be drawn on the new DOS peak of DDC graphene at the vicinity of Fermi level,which plays an important role in anchoring effect of DDC graphene.To further understand it,an orbit analysis at the Gamma point was performed for deprotonated 1,3-dipolar cycloaddition graphene(Fig.4(f)).Noticeably,the highest occupied molecular orbital(HOMO)mainly involves the localized bond of the two ortho-carbons of nitrogen in the deprotonated 1,3-dipolar cycloaddition and the bonding orbits of graphene.Therefore,it is observed that the two orthocarbons of nitrogen in the DDC graphene serve as anchoring sites.As displayed in Fig.4(d,e),the band structures show that Pt metal adsorptions never essentially change the electronic characteristic of DDC graphene substrate and only mix with some impurity bands of doped metals,consisting of d and s bands.Furthermore,the doped states differently influence the electronic properties of Pt/DDC graphene.Pt6cluster makes the composite be metallic,while Pt6nanowire adsorption composite keeps semimetallic,which might have new applications in the electronic or photovoltaic devices of such composite materials.

    4 Conclusions

    From our study,several important issues concerning the adsorption of noble metal Pt on deprotonated 1,3-dipolar cycloaddition graphene are clear:(1)Pt atom adsorption leads to deprotonation of 1,3-dipolar cycloaddition graphene;(2)ortho-carbon of nitrogen acts as anchoring site of the DDC graphene for noble metals,with the average Bader charge as high as 1.0e.(3)Ptn(n=3-6)nanowire adsorption configurations are more stable than the corresponding Ptn(n=3-6)clusters on the DDC graphene;(4)electronic structure analysis shows that the electronic characteristics of DDC graphene is not essentially changed by the Pt metal adsorptions,the doped states introduced by Pt metal differently influence the electronic properties of Pt/DDC graphene,Pt6nanowire adsorption composites keep semimetallic,while Pt6cluster adsorption composite is metallic.

    (1) Chan,K.T.;Neaton,J.B.;Cohen,M.L.Phys.Rev.B 2008,77,235430.doi:10.1103/PhysRevB.77.235430

    (2) Chang,S.W.;Nair,A.K.;Buehler,M.J.J.Phys.-Condes.Matter 2012,24,245301.doi:10.1088/0953-8984/24/24/245301

    (3) Wang,S.Y.;Jiang,S.P.;Wang,X.Electrochim.Acta 2011,56,3338.doi:10.1016/j.electacta.2011.01.016

    (4)Xu,C.;Wang,X.;Zhu,J.W.J.Phys.Chem.C 2008,112,19841.doi:10.1021/jp807989b

    (5) Muszynski,R.;Seger,B.;Kamat,P.V.J.Phys.Chem.C 2008,112,5263.doi:10.1021/jp800977b

    (6) Entani,S.;Sakai,S.;Matsumoto,Y.;Naramoto,H.;Hao,T.;Maeda,Y.J.Phys.Chem.C 2010,114,20042.doi:10.1021/jp106188w

    (7)Wang,W.L.;Ma,Z.F.Acta Phys.-Chim.Sin.2012,28,2879.[王萬麗,馬紫峰.物理化學(xué)學(xué)報(bào),2012,28,2879.]doi:10.3866/PKU.WHXB201209252

    (8) Palacios,J.J.;Fernandez-Rossier,J.;Brey,L.Phys.Rev.B 2008,77,195428.10.1103/PhysRevB.77.195428

    (9) Boukhvalov,D.W.;Katsnelson,M.I.Nano Lett.2008,8,4373.doi:10.1021/nl802234n

    (10) Cretu,O.;Krasheninnikov,A.V.;Rodriguez-Manzo,J.A.;Sun,L.T.;Nieminen,R.M.;Banhart,F.Phys.Rev.Lett.2010,105,196102.doi:10.1103/PhysRevLett.105.196102

    (11) Lahiri,J.;Lin,Y.;Bozkurt,P.;Oleynik,I.I.;Batzill,M.Nat.Nanotechnol.2010,5,326.

    (12) Lim,D.H.;Negreira,A.S.;Wilcox,J.J.Phys.Chem.C 2011,115,8961.doi:10.1038/nnano.2010.53

    (13)Srivastava,M.K.;Wang,Y.;Kemper,A.F.;Cheng,H.P.Phys.Rev.B 2012,85,165444.doi:10.1103/PhysRevB.85.165444

    (14)Dai,X.Q.;Li,Y.H.;Zhao,J.H.;Tang,Y.N.Acta Phys.-Chim.Sin.2011,27,369.[戴憲起,李艷慧,趙建華,唐亞楠.物理化學(xué)學(xué)報(bào),2011,27,369.]doi:10.3866/PKU.WHXB20110224

    (15) Liu,H.T.;Liu,Y.Q.;Zhu,D.B.J.Mater.Chem.2011,21,3335.doi:10.1039/c0jm02922j

    (16)Muhich,C.L.;Westcott,J.Y.;Morris,T.C.;Weimer,A.W.;Musgrave,C.B.J.Phys.Chem.C 2013,117,10523.

    (17)Wei,D.C.;Liu,Y.Q.;Wang,Y.;Zhang,H.L.;Huang,L.P.;Yu,G.Nano Lett.2009,9,1752.

    (18) Jafri,R.I.;Rajalakshmi,N.;Ramaprabhu,S.J.Mater.Chem.2010,20,7114.doi:10.1021/nl803279t

    (19)Wu,X.Q.;Zong,R.L.;Mu,H.J.;Zhu,Y.F.Acta Phys.-Chim.Sin.2010,26,3002.[吳小琴,宗瑞隆,牟豪杰,朱永法.物理化學(xué)學(xué)報(bào),2010,26,3002.]doi:10.3866/PKU.WHXB20101010

    (20) Xie,P.Y.;Zhuang,G.L.;Lü,Y.A.;Wang,J.G.;Li,X.N.Acta Phys.-Chim.Sin.2012,28,331.[解鵬洋,莊桂林,呂永安,王建國,李小年.物理化學(xué)學(xué)報(bào),2012,28,331.]doi:10.3866/PKU.WHXB201111021

    (21)Wehling,T.O.;Novoselov,K.S.;Morozov,S.V.;Vdovin,E.E.;Katsnelson,M.I.;Geim,A.K.;Lichtenstein,A.I.Nano Lett.2008,8,173.doi:10.1021/nl072364w

    (22) Boukhvalov,D.W.;Katsnelson,M.I.Phys.Rev.B 2008,78,085413.doi:10.1103/PhysRevB.78.085413

    (23) Medeiros,P.V.C.;Mascarenhas,A.J.S.;Mota,F.D.;de Castilho,C.M.C.Nanotechnology 2010,21,485701.doi:10.1088/0957-4484/21/48/485701

    (24) Xu,Y.F.;Liu,Z.B.;Zhang,X.L.;Wang,Y.;Tian,J.G.;Huang,Y.;Ma,Y.F.;Zhang,X.Y.;Chen,Y.S.Adv.Mater.2009,21,1275.doi:10.1002/adma.v21:12

    (25) Georgakilas,V.;Bourlinos,A.B.;Zboril,R.;Steriotis,T.A.;Dallas,P.;Stubos,A.K.;Trapalis,C.Chem.Commun.2010,46,1766.doi:10.1039/b922081j

    (26) Bosch-Navarro,C.;Coronado,E.;Marti-Gastaldo,C.Carbon 2013,54,201.doi:10.1016/j.carbon.2012.11.027

    (27) Georgakilas,V.;Kordatos,K.;Prato,M.;Guldi,D.M.;Holzinger,M.;Hirsch,A.J.Am.Chem.Soc.2002,124,760.doi:10.1021/ja016954m

    (28)Tasis,D.;Tagmatarchis,N.;Bianco,A.;Prato,M.Chem.Rev.2006,106,1105.doi:10.1021/cr050569o

    (29) Singh,P.;Campidelli,S.;Giordani,S.;Bonifazi,D.;Bianco,A.;Prato,M.Chem.Soc.Rev.2009,38,2214.doi:10.1039/b518111a

    (30)Maggini,M.;Scorrano,G.;Prato,M.J.Am.Chem.Soc.1993,115,9798.doi:10.1021/ja00074a056

    (31) Tagmatarchis,N.;Prato,M.Synlett 2003,6,768.

    (32) Tagmatarchis,N.;Prato,M.J.Mater.Chem.2004,14,437.doi:10.1039/b314039c

    (33) Prato,M.J.Mater.Chem.1997,7,1097.doi:10.1039/a700080d

    (34)Quintana,M.;Spyrou,K.;Grzelczak,M.;Browne,W.R.;Rudolf,P.;Prato,M.ACS Nano 2010,4,3527.doi:10.1021/nn100883p

    (35) Kresse,G.;Furthmüller,J.Comput.Mater.Sci.1996,6,15.doi:10.1016/0927-0256(96)00008-0

    (36) Kresse,G.;Furthmüller,J.Phys.Rev.B 1996,54,11169.doi:10.1103/PhysRevB.54.11169

    (37) Bl?CHL,P.E.Phys.Rev.B 1994,50,17953.doi:10.1103/PhysRevB.50.17953

    (38) Kresse,G.;Joubert,D.Phys.Rev.B 1999,59,1758.

    (39)Wang,J.G.;Lv,Y.A.;Li,X.N.;Dong,M.D.J.Phys.Chem.C 2009,113,890.doi:10.1021/jp810277b

    (40) Zhang,L.P.;Xia,Z.H.J.Phys.Chem.C 2011,115,11170.

    猜你喜歡
    質(zhì)子化王建國納米線
    例談初中數(shù)學(xué)幾何圖形求證中輔助線的添加與使用
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    城里·城外——王建國油畫作品展
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    5-羥甲基胞嘧啶pKa值的理論研究
    New Situation in the Economic and Trade Cooperation and Competition between China and the US
    質(zhì)子化胞嘧啶碰撞誘導(dǎo)解離的實(shí)驗(yàn)和理論研究
    質(zhì)子化與氮雜環(huán)類離子液體的研究及應(yīng)用
    科技資訊(2013年7期)2013-04-29 00:44:03
    观看免费一级毛片| 国产精品永久免费网站| 脱女人内裤的视频| 天堂网av新在线| 男女床上黄色一级片免费看| 国产伦人伦偷精品视频| 亚洲成av人片免费观看| 欧美丝袜亚洲另类 | 欧美日韩国产亚洲二区| 熟妇人妻久久中文字幕3abv| 日本黄色视频三级网站网址| www日本黄色视频网| 美女黄网站色视频| 狠狠狠狠99中文字幕| 国产亚洲av嫩草精品影院| 我要搜黄色片| 成人特级av手机在线观看| 国产黄a三级三级三级人| www日本黄色视频网| 久久亚洲精品不卡| 久久久国产欧美日韩av| 熟女电影av网| 国产成人精品久久二区二区免费| 在线观看舔阴道视频| 亚洲无线观看免费| 香蕉久久夜色| 免费在线观看视频国产中文字幕亚洲| 欧美色欧美亚洲另类二区| 色精品久久人妻99蜜桃| 亚洲av免费在线观看| av欧美777| 好男人电影高清在线观看| 97碰自拍视频| 国产精品,欧美在线| 久久国产精品影院| 国产高清videossex| 色精品久久人妻99蜜桃| 欧美极品一区二区三区四区| 国产午夜精品论理片| 亚洲国产高清在线一区二区三| 日本黄色视频三级网站网址| 丰满的人妻完整版| 欧美zozozo另类| 亚洲人与动物交配视频| 亚洲 欧美一区二区三区| 手机成人av网站| 一区二区三区激情视频| 国产精品亚洲一级av第二区| 男女下面进入的视频免费午夜| 欧美一区二区国产精品久久精品| 好男人在线观看高清免费视频| 精品久久久久久成人av| 国产欧美日韩精品一区二区| 亚洲精品在线美女| 丰满的人妻完整版| 男女床上黄色一级片免费看| 91麻豆精品激情在线观看国产| 欧美黄色片欧美黄色片| 精品熟女少妇八av免费久了| 黑人欧美特级aaaaaa片| 一个人看的www免费观看视频| av天堂在线播放| 久久久成人免费电影| 亚洲精品国产精品久久久不卡| 成人无遮挡网站| 香蕉丝袜av| 1024手机看黄色片| 久久久久精品国产欧美久久久| 丰满人妻熟妇乱又伦精品不卡| 三级毛片av免费| 久久99热这里只有精品18| 婷婷六月久久综合丁香| 亚洲av成人av| 黄频高清免费视频| 日韩高清综合在线| 日本撒尿小便嘘嘘汇集6| 99久久精品国产亚洲精品| 国产成人欧美在线观看| 成熟少妇高潮喷水视频| 男女视频在线观看网站免费| 一夜夜www| 91麻豆av在线| 久久草成人影院| 99久久综合精品五月天人人| 免费看日本二区| 女人被狂操c到高潮| 丰满人妻熟妇乱又伦精品不卡| 好看av亚洲va欧美ⅴa在| av在线蜜桃| 国产精品久久久人人做人人爽| 黄片小视频在线播放| 美女免费视频网站| 午夜激情欧美在线| 亚洲欧美激情综合另类| 三级毛片av免费| 美女 人体艺术 gogo| 一级作爱视频免费观看| 午夜激情欧美在线| 欧美最黄视频在线播放免费| 欧美三级亚洲精品| 变态另类丝袜制服| or卡值多少钱| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 不卡一级毛片| 变态另类丝袜制服| 亚洲人与动物交配视频| 国产激情欧美一区二区| 老司机午夜福利在线观看视频| a在线观看视频网站| 亚洲精品国产精品久久久不卡| 日韩欧美 国产精品| 天天一区二区日本电影三级| 波多野结衣巨乳人妻| 国产 一区 欧美 日韩| 美女被艹到高潮喷水动态| 夜夜看夜夜爽夜夜摸| 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 狂野欧美白嫩少妇大欣赏| 一级毛片女人18水好多| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩无卡精品| 欧美性猛交╳xxx乱大交人| 女警被强在线播放| 美女被艹到高潮喷水动态| 色哟哟哟哟哟哟| 久久久久久久久久黄片| 国产淫片久久久久久久久 | 老汉色∧v一级毛片| 丰满的人妻完整版| 亚洲成av人片免费观看| 精品国内亚洲2022精品成人| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 两人在一起打扑克的视频| 小蜜桃在线观看免费完整版高清| 国产精品影院久久| а√天堂www在线а√下载| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 色噜噜av男人的天堂激情| 两个人视频免费观看高清| 精品午夜福利视频在线观看一区| 不卡av一区二区三区| 亚洲乱码一区二区免费版| 天天添夜夜摸| 国产美女午夜福利| 黑人操中国人逼视频| 国产一级毛片七仙女欲春2| 久久天堂一区二区三区四区| 亚洲av熟女| 国产综合懂色| 一进一出抽搐gif免费好疼| 国产av不卡久久| 久久久色成人| 国产伦精品一区二区三区四那| 成人av一区二区三区在线看| 久久久久久大精品| 在线看三级毛片| 国产精品亚洲美女久久久| 国产亚洲精品久久久久久毛片| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片| 日本在线视频免费播放| 国产午夜福利久久久久久| 美女高潮喷水抽搐中文字幕| 黄片大片在线免费观看| 级片在线观看| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 午夜日韩欧美国产| 亚洲国产精品sss在线观看| 丰满人妻一区二区三区视频av | 精品人妻1区二区| 亚洲无线在线观看| 久久精品91无色码中文字幕| 欧美一级a爱片免费观看看| 精品国产超薄肉色丝袜足j| 88av欧美| 真人一进一出gif抽搐免费| 国产成人av激情在线播放| 黄色 视频免费看| 九色成人免费人妻av| 女警被强在线播放| 国产精品1区2区在线观看.| 久久天堂一区二区三区四区| 午夜精品久久久久久毛片777| 亚洲av成人精品一区久久| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| 黄片大片在线免费观看| 欧美乱码精品一区二区三区| av国产免费在线观看| 免费观看人在逋| 99久久国产精品久久久| 日本在线视频免费播放| 亚洲av日韩精品久久久久久密| 性色avwww在线观看| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| 黄色日韩在线| 日本 av在线| 一边摸一边抽搐一进一小说| 日本一本二区三区精品| 国产黄片美女视频| 婷婷六月久久综合丁香| 后天国语完整版免费观看| 亚洲avbb在线观看| 亚洲av成人精品一区久久| 亚洲在线自拍视频| 搞女人的毛片| 婷婷精品国产亚洲av| 99久久久亚洲精品蜜臀av| 日韩欧美精品v在线| 久久亚洲精品不卡| 精品乱码久久久久久99久播| 视频区欧美日本亚洲| 国产日本99.免费观看| 国产亚洲精品一区二区www| 国产真人三级小视频在线观看| 18禁美女被吸乳视频| www.熟女人妻精品国产| 亚洲av片天天在线观看| 国产av不卡久久| 午夜激情欧美在线| 动漫黄色视频在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| 免费av不卡在线播放| 中文字幕人妻丝袜一区二区| 国产精品亚洲av一区麻豆| 超碰成人久久| 欧美性猛交黑人性爽| 国产成人欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 日本精品一区二区三区蜜桃| e午夜精品久久久久久久| 国内精品一区二区在线观看| 国产伦精品一区二区三区视频9 | 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 午夜a级毛片| 18美女黄网站色大片免费观看| 国产又黄又爽又无遮挡在线| 亚洲国产高清在线一区二区三| 男女之事视频高清在线观看| 在线播放国产精品三级| 亚洲一区二区三区色噜噜| 综合色av麻豆| 成人三级做爰电影| 全区人妻精品视频| 综合色av麻豆| 精品久久久久久成人av| 国产99白浆流出| 嫩草影院精品99| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影| 久久精品国产清高在天天线| 很黄的视频免费| 岛国在线观看网站| 国产精品久久久人人做人人爽| 黄片大片在线免费观看| 国产精品亚洲美女久久久| 久久99热这里只有精品18| 最近在线观看免费完整版| 国产熟女xx| avwww免费| 香蕉国产在线看| 久久伊人香网站| 亚洲成人久久性| 99国产综合亚洲精品| 日韩欧美在线二视频| 亚洲一区二区三区色噜噜| 偷拍熟女少妇极品色| 成人18禁在线播放| 久久欧美精品欧美久久欧美| 亚洲国产精品成人综合色| 人妻丰满熟妇av一区二区三区| 99国产极品粉嫩在线观看| 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻| 搡老岳熟女国产| 丝袜人妻中文字幕| 国产精品99久久久久久久久| 国产精品自产拍在线观看55亚洲| 精品久久久久久成人av| 亚洲美女黄片视频| 亚洲精品久久国产高清桃花| 中文资源天堂在线| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久国产a免费观看| 少妇的丰满在线观看| 精品不卡国产一区二区三区| 精品久久久久久久毛片微露脸| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美一区二区三区黑人| 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 老鸭窝网址在线观看| 中文在线观看免费www的网站| 欧美+亚洲+日韩+国产| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| www日本黄色视频网| 后天国语完整版免费观看| 婷婷亚洲欧美| 哪里可以看免费的av片| 成熟少妇高潮喷水视频| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站 | 一边摸一边抽搐一进一小说| 国产精品99久久久久久久久| 19禁男女啪啪无遮挡网站| 中出人妻视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片午夜丰满| 一个人看的www免费观看视频| 国产一区二区在线av高清观看| 丝袜人妻中文字幕| 男女那种视频在线观看| 亚洲成人免费电影在线观看| av视频在线观看入口| 日日夜夜操网爽| 精华霜和精华液先用哪个| tocl精华| 我的老师免费观看完整版| 午夜免费激情av| 黑人巨大精品欧美一区二区mp4| 久久亚洲真实| 亚洲精品一卡2卡三卡4卡5卡| 偷拍熟女少妇极品色| 少妇的逼水好多| 国产三级黄色录像| 国产精品野战在线观看| 琪琪午夜伦伦电影理论片6080| 啦啦啦观看免费观看视频高清| 亚洲,欧美精品.| 制服人妻中文乱码| 岛国视频午夜一区免费看| 最新美女视频免费是黄的| 婷婷六月久久综合丁香| 级片在线观看| 国产成年人精品一区二区| 最新美女视频免费是黄的| 亚洲激情在线av| 亚洲第一电影网av| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频| 亚洲男人的天堂狠狠| 九色国产91popny在线| 婷婷亚洲欧美| 精品人妻1区二区| 亚洲av电影在线进入| av片东京热男人的天堂| 亚洲午夜理论影院| 国内少妇人妻偷人精品xxx网站 | 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 九九在线视频观看精品| 久久中文看片网| 青草久久国产| 99热精品在线国产| 老熟妇仑乱视频hdxx| 欧美一区二区国产精品久久精品| 老司机午夜十八禁免费视频| 欧美乱码精品一区二区三区| 18禁黄网站禁片免费观看直播| 两个人视频免费观看高清| 99热精品在线国产| 欧美午夜高清在线| 国产成人欧美在线观看| 国产精品99久久99久久久不卡| 久久久久久久午夜电影| 观看免费一级毛片| 午夜福利欧美成人| 精品无人区乱码1区二区| 国产极品精品免费视频能看的| 少妇裸体淫交视频免费看高清| 一级毛片女人18水好多| 国产伦精品一区二区三区视频9 | av欧美777| 最新在线观看一区二区三区| 日本黄大片高清| 老鸭窝网址在线观看| 91九色精品人成在线观看| 波多野结衣高清作品| 亚洲男人的天堂狠狠| 国产男靠女视频免费网站| 后天国语完整版免费观看| 白带黄色成豆腐渣| 久久中文字幕人妻熟女| 国产伦精品一区二区三区四那| 美女黄网站色视频| 日本三级黄在线观看| 人人妻,人人澡人人爽秒播| 久久性视频一级片| 国产精品亚洲一级av第二区| 毛片女人毛片| 99视频精品全部免费 在线 | av福利片在线观看| 亚洲av熟女| 国产午夜精品论理片| 国产亚洲欧美在线一区二区| 欧美最黄视频在线播放免费| 中文字幕人妻丝袜一区二区| 国产久久久一区二区三区| 国产精品影院久久| 在线观看免费午夜福利视频| 成人国产综合亚洲| 亚洲av熟女| 国产午夜精品论理片| 色综合站精品国产| 日日夜夜操网爽| 美女高潮喷水抽搐中文字幕| 国产又黄又爽又无遮挡在线| 香蕉av资源在线| 色视频www国产| 人人妻,人人澡人人爽秒播| 亚洲国产色片| 999久久久精品免费观看国产| 免费看十八禁软件| 国产精品一区二区三区四区免费观看 | 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 中文字幕久久专区| 岛国视频午夜一区免费看| 欧美一级毛片孕妇| 亚洲自拍偷在线| 久久久久性生活片| 男人舔女人的私密视频| 两性夫妻黄色片| 亚洲欧美精品综合一区二区三区| 欧美激情在线99| 免费看光身美女| 99国产综合亚洲精品| 在线国产一区二区在线| 黄色女人牲交| 日韩大尺度精品在线看网址| 亚洲精品美女久久久久99蜜臀| 午夜久久久久精精品| 久久亚洲精品不卡| 欧美中文综合在线视频| 最新中文字幕久久久久 | 手机成人av网站| 黄频高清免费视频| 超碰成人久久| 欧美成人性av电影在线观看| 老司机深夜福利视频在线观看| 亚洲九九香蕉| 国内精品一区二区在线观看| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 男人舔女人下体高潮全视频| 亚洲精品中文字幕一二三四区| 午夜精品一区二区三区免费看| 亚洲自拍偷在线| 亚洲国产色片| 精品不卡国产一区二区三区| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 国产精品.久久久| 国产一区二区亚洲精品在线观看| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 男女视频在线观看网站免费| 成人欧美大片| 亚洲怡红院男人天堂| 在线免费观看不下载黄p国产| 亚洲色图av天堂| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 国产高潮美女av| 卡戴珊不雅视频在线播放| 成人欧美大片| 草草在线视频免费看| 秋霞在线观看毛片| av在线天堂中文字幕| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| 国产黄片视频在线免费观看| 成人美女网站在线观看视频| 五月伊人婷婷丁香| 99久久精品国产国产毛片| 麻豆成人av视频| 日韩大片免费观看网站 | 美女cb高潮喷水在线观看| 精品人妻熟女av久视频| 国产免费男女视频| 亚洲国产精品专区欧美| 国产美女午夜福利| 亚洲精品自拍成人| 久久久久性生活片| 国产黄片美女视频| 亚洲精品日韩av片在线观看| 午夜爱爱视频在线播放| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 亚洲欧美日韩东京热| 美女xxoo啪啪120秒动态图| 国产大屁股一区二区在线视频| www日本黄色视频网| 女人被狂操c到高潮| 日产精品乱码卡一卡2卡三| 国产片特级美女逼逼视频| 身体一侧抽搐| 在现免费观看毛片| 成年女人看的毛片在线观看| 亚洲精品影视一区二区三区av| 精品酒店卫生间| 91精品伊人久久大香线蕉| 免费无遮挡裸体视频| 性插视频无遮挡在线免费观看| 久久久久久久久久久免费av| av卡一久久| 亚洲av二区三区四区| 69av精品久久久久久| av在线亚洲专区| 深爱激情五月婷婷| 国产激情偷乱视频一区二区| 男女国产视频网站| 97超碰精品成人国产| 听说在线观看完整版免费高清| 亚洲,欧美,日韩| av视频在线观看入口| .国产精品久久| 99久国产av精品国产电影| 中文天堂在线官网| 午夜激情欧美在线| 国产av在哪里看| 欧美丝袜亚洲另类| 成人综合一区亚洲| 永久免费av网站大全| 麻豆成人午夜福利视频| 91久久精品电影网| 精品欧美国产一区二区三| 天堂中文最新版在线下载 | 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 久久99热6这里只有精品| 91av网一区二区| 国产精品蜜桃在线观看| 草草在线视频免费看| 国产大屁股一区二区在线视频| 精品午夜福利在线看| 国产伦精品一区二区三区四那| 最近视频中文字幕2019在线8| 国产探花极品一区二区| 99久久无色码亚洲精品果冻| 成年版毛片免费区| 国产在视频线精品| 亚洲第一区二区三区不卡| 99久久精品国产国产毛片| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 日韩欧美精品v在线| 成年av动漫网址| 在线免费观看的www视频| 亚洲三级黄色毛片| or卡值多少钱| 少妇熟女aⅴ在线视频| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 成人性生交大片免费视频hd| 日本与韩国留学比较| 久久精品国产鲁丝片午夜精品| 有码 亚洲区| 看免费成人av毛片| 日韩高清综合在线| 久久久久久九九精品二区国产| 久久人人爽人人片av| 少妇被粗大猛烈的视频| 国产成人a区在线观看| 国产精品爽爽va在线观看网站| 内射极品少妇av片p| 亚洲精品国产av成人精品| 国产三级中文精品| 久久精品国产99精品国产亚洲性色| 国产精品av视频在线免费观看| 联通29元200g的流量卡| 午夜亚洲福利在线播放| 插逼视频在线观看| 一级黄片播放器| 国产精品av视频在线免费观看| 亚洲三级黄色毛片| 观看美女的网站| 熟女电影av网| 三级毛片av免费| 亚洲精品,欧美精品| 极品教师在线视频| 七月丁香在线播放| 美女被艹到高潮喷水动态| 国产av不卡久久| 国产又色又爽无遮挡免| 日本av手机在线免费观看| 色网站视频免费| 欧美色视频一区免费| 日本与韩国留学比较| 直男gayav资源| 国产黄a三级三级三级人| 国产成人freesex在线| 午夜免费激情av| 国产爱豆传媒在线观看|