• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    第一性原理研究由金屬鎳和釔穩(wěn)定的氧化鋯所形成的三相邊界微觀結(jié)構(gòu)

    2014-09-17 06:59:56付召明王明陽張巖星楊宗獻(xiàn)
    物理化學(xué)學(xué)報(bào) 2014年6期
    關(guān)鍵詞:物理化學(xué)學(xué)報(bào)

    付召明 王明陽 張巖星 張 娜 楊宗獻(xiàn)

    (河南師范大學(xué)物理與電子工程學(xué)院,河南新鄉(xiāng)453007)

    1 Introduction

    Solid-oxide fuel cells(SOFCs)1,2have emerged as one of the promising technologies for efficient electrochemical energy conversion because a wide variety of hydrocarbon fuels can be used.The anode is an important constituent part of the SOFC and has been intensively investigated.3-5In recent years,lots of experimental6-8and theoretical studies9-18have focused on understanding the mechanism and kinetics of hydrogen oxidation at the anode of nickel supported on yttria-stabilized zirconia(Ni/YSZ).Although it is well-known that the triple-phase boundary(TPB)between Ni,YSZ,and gas plays a vital role in the SOFCs,the underlying mechanism details are still ambigu-ous and remain a matter of debate.By employing ab initio calculations,it is possible to elucidate the mechanisms of the electronic charge transfer and current generation as a result of the electrochemical oxidation of fuel at the anode.

    As shown in the previous works,15-17,19the mechanisms proposed for the electrochemical oxidation of fuel at the anode are directly related to the different Ni/YSZ models constructed by the authors.Therefore,it is important to propose a way to construct a reasonable TPB model of the Ni/YSZ.Generally,for the interface of the oxide and metal,the lattice mismatch brings many difficulties for the density function theory(DFT)modeling.For example,in order to construct the TPB within a small supercell,Shishkin and Ziegler15modeled the Ni/YSZ system with a supported Ni nanowire on the YSZ surface.In this model,although the dimension(length)of the initial Ni nanowire(0.75 nm)is very close to that of the YSZ slab(0.725 nm),the Ni nanowire is destroyed after the geometry optimization,and the(100)surface transforms to the distorted(111)surface with the atom rearrangement.To overcome the defects arising from the lattice mismatch between the Ni nanowire and YSZ substrate,the anode model with an isolated Ni cluster on YSZ is a reasonable choice,in which a bigger Ni cluster and a larger YSZ surface cell have to be adopted in order to obtain a realistic TPB.For the adsorption of a large metal cluster on a large oxide substrate surface,it is conceivable that determining the most stable interfacial structure is an extremely challenging task.Obviously,determination of the stable interfacial geometry requires a search through a large parameter space,spanning the rotational and translational degrees of freedom.This is beyond the capacities of the present DFT calculations,and is especially difficult for the YSZ surface with the Y dopants and intrinsic oxygen vacancies.Therefore,the recent Ni/YSZ models used by Cucinotta16or Ammal17et al.seemingly ignored searching for the most stable interfacial structure.

    The electrochemical reaction at the anode of SOFC can be described by the following equation:

    In this paper,we combine the classical Monte Carlo(MC)method with DFT calculations to search for various stable adhesion configurations of the Ni46cluster on the YSZ surface adopted in Cucinottaet al.′work,16and evaluate the inaccuracy due to the structural instability.We do find more stable adsorption structures,including new TPBs with the active interface O,which would give the new mechanisms on the electrochemical reactions at the SOFCs.In addition,using the Bader charge analysis that has been adopted in Cucinottaet al.′work,16we systematically investigate the electron transfer in the various Ni/YSZ models(including Cucinottaet al.′model)as removing a surface or bulk O,and explain why the previous DFT simulation can not give the correct number of the transferred charge.

    2 Model and computation method

    Spin-polarized calculations presented in this work were performed employing the periodic DFT method implemented in the Vienna Ab-Initio Simulation Package(VASP).21The exchange-correlation interactions were treated with the Perdew-Burke-Ernzerhof(PBE)functional.22The electron-ion interactions were treated using the projector augmented wave(PAW)method.23,24The wave functions were expanded in plane waves with a cut off energy of 408 eV.The Monkhorst-Pack k-point mesh of 1×1×1 was used for the Brillouin zone(BZ)sampling.The atoms in the bottom multilayers were kept fixed for all calculations.Structural optimization of all systems was performed until the atomic forces drop below 0.2 eV·nm-1.The Bader charge analysis scheme25was applied to determine the atomic charges and charge transfer.A Ni cluster with 46 atoms(Ni46)was placed on the YSZ surface that consists of 144 O,63 Zr,12 Y atoms,and six constitutional vacancies,which corresponds to 8.7%(molar fraction)of Y2O3in the YSZ model.The YSZ(111)surface was modeled by a(5×5)supercell with a slab of finite thickness(0.75 nm,9 atomic layers)separated by a vacuum layer of 1.5 nm,which is sufficiently large to eliminate slab-slab interactions perpendicular to the surface,and the bottom 3 atomic layers were fixed to mimic the bulk.The positions of the ions in the remaining layers were fully optimized in X,Y,and Z coordinates(under the restriction of fixed cell parameters).Test calculations with a thicker vacuum layer(1.8 nm)showed that the calculated results are actually converged with respect to the vacuum thickness,e.g.,the total energies of adsorption systems(Ni46/YSZ)are almost the same.

    For the Ni46/YSZ(111)system,various possible matching patterns at the interface should be taken into account,and each matching pattern corresponds to one adsorption configuration.The classical Monte Carlo(MC)method was used to search for the stable adhesion configurations through the conformational parameter space of the Ni/YSZ adsorption system,spanned by rotating and moving the Ni cluster on the YSZ surface.A set of conformational parameters(θ,ΔX,ΔY,and H)in a four-dimensional sample space were used to depict the different matching patterns,where ΔX(ΔY)was used to depict the relative moving of cluster along X-axis(Y-axis);θ was used to depict the relative rotation of cluster about the Z-axis through the cluster center;H is the distance between two surfaces constructing the interface.For each matching pattern determined by one set of conformational parameters,the number of O―Ni bonds at the interface can be calculated by judging whether the distances of Ni atoms and surface O atoms are close to standard O―Ni bond length.The interfacial O―Ni bond lengths between Ni(111)and YSZ(111)were set to 0.2 nm,26,27and the maximum allowable deviation was set to 0.02 nm in our bonding criterions.In the previous image simulations of high-resolution transmission electron microscopy(HRTEM),28the interlayer distances(dinter)between the Ni and YSZ were set to be 0.195 nm for the O-terminated YSZ(111)model.Here the dintervalues were sampled in the range from 0.185 to 0.205.Thus,we can screen out the Ni/YSZ adsorption configurations that have large number of O―Ni bonds.In this work we considered the configurations with the maximum number of bonds.Significantly,the constitutional vacancies in YSZ adjacent to the surface would have effects on the adsorptions of Ni atoms,so the relative positions between the constitutional vacancies and Ni cluster were taken into account,which can be divided into three cases:the constitutional vacancies lie under the cluster,at the edges of the cluster,and far away from the cluster.By random sampling to the adsorption configurations,the maximum bonding numbers can be calculated according to the mentioned criterions for the three cases,respectively.In this way,we can get a small number of possible stable configurations by omitting the equivalent and similar configurations.Then we performed the DFT optimization to obtain the accurate energies of these systems and get the most stable Ni46/YSZ configuration from them.Fig.1 displays the Ni/YSZ model,with the translational and rotational operations on the Ni46cluster.In this work,we ignored the influence of fuel gas on the TPB structures,and used an ideal model with Ni,YSZ,and vacuum to simulate the actual TPB.

    3 Results and discussion

    3.1 Energy level

    Fig.1 Ni/YSZ model with the translational and rotational operations on the Ni46cluster to go through the conformational space of the Ni/YSZ adsorption system

    For the Ni46/YSZ(111)adsorption configuration with Ni46(111)bonded to YSZ(111)surface(shown in Fig.1),we employ a classical MC method to search for the possible stable structures in the special phase space,which are then checked through density functional theory calculations using the VASP.21We find that the Ni/YSZ structure adopted by Cucinotta et al.16is just one of the stable configurations,corresponding to system 1 in Fig.2a.In their work,the adsorption configurations were determined using the DFT method with the PBE exchange correlation functional and norm-conserving pseudopotentials;the Kohn-Sham orbitals were expanded in a triple-zeta valence plus polarization Gaussian-type basis set16.However,more stable configurations(systems 2 and 3)are left out in reference16.Comparedwith the system 1,the most stable configuration(system 3)found by us is lower in energy by 0.7 eV.The relative energies of the three systems are shown in Fig.2b(black line).These results validate our methods in searching for the more stable con-figurations.

    Fig.2 Model of the Ni/YSZ triple-phase boundary

    3.2 Structure information

    The configurations of TPBs have an important influence on the electrochemical reaction for the hydrogen oxidation at the Ni/YSZ anode.The different Ni/YSZ adsorption structures can present different TPBs.So the structural differences of three adsorption systems are presented.The two newly found stable structures(systems 2 and 3)shown in Fig.2(a)have one and two constitutional oxygen vacancies(COVs)close to the vertexes of the Ni46cluster,respectively.This differs from the model used in reference16(system 1),where no COV adjoins the vertexes.We have also tested the single Ni atom adsorption on YSZ surface and found that the most stable adsorption site is just above the intrinsic vacancy site.It might be general that the Ni cluster vertexes favor to locate near the COV.

    More importantly,a new type of TPB is formed in the most stable configuration compared with that of the system 1.The TPB in system 1 is shown in Fig.3(a),and the new type of TPB is shown in Fig.3(b).The special interface oxygen atoms are found at the new TPBs,marked by the circle of Fig.3(b).The oxygen atom of this kind only binds to one Zr atom and two Ni atoms with the bond lengths of 0.210 nm(Zr―O)and 0.187 nm(Ni―O),respectively,which is much different from the other interface O atoms.While in the previous work,16,17this kind of special oxygen atom is not observed.In their proposed mechanism,the interface oxygen should overcome a barrier to break one of the two Zr―O bonds and form the oxygen atoms of this type.Interestingly,in our most stable configuration,the active interface oxygen exists directly at the interface.Therefore the active interfacial oxygen in reference16appears as an intermediate states by breaking one of the Zr―O bond intentionally,which is not equivalent to our most stable system because the energy of the latter is lower than that of the former by 1.1 eV.

    3.3 Charge transfer

    Fig.3 Comparison between the new TPB and the old one

    In previous work,researchers found that the adsorbed Ni cluster on YSZ nearly remains electrically neutral.15,26We calculate the charge transfer between the Ni cluster and YSZ for systems 1,2,and 3 by the Bader charge analysis scheme.25It is found that for the more stable systems 2,3,the Ni46clusters only transfer around 0.1e to the substrate,which is in agreement with previous results.15While for the least stable system 1 used in reference,16the Ni46cluster transfers around 0.9e to the substrate.These results indicate that,in the least stable Ni-YSZ configuration,the strong mismatch between the adsorbate Ni46and the substrate YSZ surface results in the excess charge transfer.

    In addition,under removing a neutral bulk O atom of YSZ(YSZ-O),the charge transfer from the YSZ to the Ni cluster is critical to understand the mechanism of the electrochemical oxidation of fuel in the anode,and is also regarded as the key point for the simulations of reaction described in Eq.(1).Therefore we focus on three different stable Ni46/YSZ adsorption configurations and calculate the number of electrons transferred(Ntran)with removing a neutral oxygen atom in the YSZ bulk.The Ntranis defined by:

    where the NNiis the number of the charge on the Ni cluster.Our main results are summarized in Fig.2b(red dashed line),which suggests that,(1)for different systems the values of Ntranvary in a wide range in responding to the removal of a bulk O;(2)the more stable of a system,the smaller the Ntranis.Particularly,Ntranfor the most stable system is only 0.67e,a value which is in good agreement with some of recent results(0.66).15However,it is far fewer than that in reference16.Furthermore,we have also tested the case with an interface O removed,values of Ntranfor these three systems become 1.0,1.1,and 1.0,which are also in line with Shishkin andZiegler′sresult(1.0)15and Ammal andHeyden′sresult(1.2).17

    In fact,as a neutral O is removed from system to form an O vacancy,the distance of the Ni46and this O vacancy(VO)would also affect the charge transfer from YSZ to Ni cluster.Therefore,we investigate the charge transfer in the system 3 for the different Ni-VOdistances.Fig.4 shows that the number of transferred electrons decreases as the distance between the Ni46center and the O vacancy(DV-Ni)increases.Hence the DV-Niis important to exactly describe the charge transfer.It is expected that,with the O vacancy being further away from the Ni part,the fewer electrons would transfer to the Ni part,and the extra electrons under removing O atom would be mainly localized nearby the vacancy.The results will not support the mechanism of electrochemical reaction presented in references.15-17,19

    Fig.4 Changes of the transferred charge along with the distance of the Ni46center and the O vacancy for the most stable Ni/YSZ model(system 3)found in this paper

    These results suggest that,for a neutral system of the Ni/YSZ with an O vacancy,the Ni/YSZ anode model can not give a rational number of charge transfer,which is also evidenced in the previously published results.15,17,19A possible reason is that the entire electrochemical process depends on the overall system of SOFCs,not just on anodes.And in these theoretical works,only an anode model of Ni/YSZ is simulated.Under the SOFC working conditions,though the whole cell remains electrically neutral,the anode(Ni/YSZ)is negatively charged,and the cathode is positively charged,as shown in Fig.5(a,b).The charge distribution on the anode would be affected by the whole cell system including anode,electrolyte,and cathode.Therefore,it would be inappropriate to use the Ni/(YSZ-O)model to calculate the electron transition in Eq.(1).In addition,the limitations of the conventional DFT to depict electronic exciting should also be taken into account.The sketch in Fig.5 can help to understand the above discussion.

    In the Ni/(YSZ-O)model,the extra electrons on Ni are the shared electrons that form the covalent bonds between Ni and reduced YSZ substrate.So they are only localized at the interfacial Ni atoms,as confirmed by the analysis of Bader charges in Fig.6.

    The net charge on the interfacial Ni atom layer is 0.64e,which is much close to the transferred charge toward the Ni cluster(0.67e),indicating that the transferred electrons are localized on the interfacial Ni atoms which form covalent bonding with the substrate YSZ-O.In addition,it is also found that the Ni layers away from the interface will remain electrically neutral,as shown in Fig.6.In the case with surface O vacancy,the identical results are given.So these extra electrons will not contribute to the formation of the electromotive force in the SOFCs.According to the foregoing discussion in Fig.4,the shared electrons will disappear as the O vacancy is far away from the Ni cluster.So the charged Ni turns back into the neutral Ni naturally when the O vacancy becomes deeper,which is equivalent to the Ni/YSZ without O vacancy.Just as discussed at the beginning of this part,the Ni is almost neutral in the adsorption system of Ni/YSZ without O vacancy.

    Fig.5 Asketch depicting the neutral and charged electrodes in SOFCs

    Fig.6 Distribution of the net charge(Nnet)on each Ni atom along the Z axis upon removing a bulk O from the most stable Ni/YSZ system

    In fact,for the metal/oxide systems,it is an extremely common phenomenon that the extra charge is transferred to the metal as an O atom in the oxide is removed,such as the cases in the metal/MgO systems(metal=Cu,Ag,Au),29where there exists a very pronounced transfer of electrons from the vacancy to the metal cluster adsorbates:1.00e,0.99e,and 0.97e on Cu4,Ag4,and Au4,respectively.Therefore this sort of electron transfer is a universal phenomenon of the adsorption systems with the metals on the reduced substrates,which can not be taken as the electrochemical process depicted by Eq.(1).The corresponding transferred number of electrons is of course not 2e.

    4 Conclusions

    In conclusion,the electrochemical oxidation of fuel is known to occur in a small area close to the anode TPB of Ni,YSZ,and vacuum.16,30The different Ni/YSZ adsorption configu-rations would generate quite different TPBs.Therefore,it is necessary to search for the possible stable adsorption structures in the vast phase space,and investigate the effects of different TPBs on the electrochemical oxidation of fuel.Here,we develop a classical MC method to search for the best way for the modeling of the Ni cluster adhesion on the complex YSZ surface.The most stable configuration presents a new TPB including a special kind of interface oxygen,which was expected to be active to the electrochemical reactions in the previously proposed mechanism.16In addition,the extensive DFT simulations suggest that,for the electrochemical reaction on the Ni/YSZ,it would be inappropriate to use the electronic structure given by DFT to depict the electron transfer based on the Ni/YSZ-O model.Therefore,the detailed mechanism of the electrochemical reaction at Ni/YSZ anode of SOFC should be investigated further.

    (1) Ormerod,R.M.Chem.Soc.Rev.2003,32,17.doi:10.1039/b105764m

    (2)Williams,M.C.;Strakey,J.P.;Surdoval,W.A.;Wilson,L.C.Solid State Ionics 2006,177,2039.doi:10.1016/j.ssi.2006.02.051

    (3)Meng,X.X.;Gong,X.;Yang,N.T.;Tan,X.Y.;Ma,Z.F.Acta Phys.-Chim.Sin.2013,29,1719.[孟秀霞,宮 勛,楊乃濤,譚小耀,馬紫峰.物理化學(xué)學(xué)報(bào),2013,29,1719.]doi:10.3866/PKU.WHXB201305151

    (4) Liu,D.D.;Xie,Y.M.;Liu,J.;Wang,J.X.Acta Phys.-Chim.Sin.2014,30,331.[劉丹丹,謝永敏,劉 江,王金霞.物理化學(xué)學(xué)報(bào),2014,30,331.]doi:10.3866/PKU.WHXB201312241

    (5) Lei,Z.;Zhu,Q.S.;Han,M.F.Acta Phys.-Chim.Sin.2010,26,583.[雷 澤,朱慶山,韓敏芳.物理化學(xué)學(xué)報(bào),2010,26,583.]doi:10.3866/PKU.WHXB20100323

    (6)Hansen,K.V.;Norrman,K.;Mogensen,M.J.Am.Chem.Soc.2004,151,A1436.

    (7) Sukeshini,A.M.;Habibzadeh,B.;Becker,B.P.;Stoltz,C.A.;Eichhorn,B.W.;Jackson,G.S.J.Am.Chem.Soc.2006,153,A705.

    (8) Grgicak,C.M.;Giorgi,J.B.J.Phys.Chem.C 2007,111,15446.doi:10.1021/jp073525n

    (9) Bieberle,A.Gauckler,L.Solid State Ionics 2002,146,23.doi:10.1016/S0167-2738(01)01004-9

    (10) Bessler,W.G.Solid State Ionics 2005,176,997.doi:10.1016/j.ssi.2005.01.002

    (11) Vogler,M.;Bieberle-Hütter,A.;Gauckler,L.;Warnatz,J.;Bessler,W.G.J.Am.Chem.Soc.2009,156,B663.

    (12)Goodwin,D.G.;Zhu,H.;Colclasure,A.M.;Kee,R.J.J.Am.Chem.Soc.2009,156,1004.

    (13) Anderson,A.B.;Vayner,E.Solid State Ionics 2006,17,1355.

    (14) Ingram,D.B.;Linic,S.J.Am.Chem.Soc.2009,156,B1457.

    (15) Shishkin,M.;Ziegler,T.J.Phys.Chem.C 2009,113,21667.doi:10.1021/jp905615c

    (16) Cucinotta,C.S.;Bernasconi,M.;Parrinello,M.Phys.Rev.Lett.2011,107,206103.doi:10.1103/PhysRevLett.107.206103

    (17)Ammal,S.C.;Heyden,A.J.Phys.Chem.Lett.2012,3,2767.doi:10.1021/jz301132b

    (18) Rossmeisl,J.;Bessler,W.G.Solid State Ionics 2008,178,1694.doi:10.1016/j.ssi.2007.10.016

    (19) Shishkin,M.;Ziegler,T.J.Phys.Chem.C 2010,114,11209.doi:10.1021/jp1030575

    (20)Xia,X.;Oldman,R.J.;Catlow,C.R.A.J.Mater.Chem.2012,22,8594.doi:10.1039/c2jm16604f

    (21) Kresse,G.;Furthmüller,J.Phys.Rev.B 1996,54,11169.

    (22) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77,3865.doi:10.1103/PhysRevLett.77.3865

    (23) Bl?chl,P.E.Phys.Rev.B 1994,50,17953.doi:10.1103/PhysRevB.50.17953

    (24) Kresse,G.;Joubert,D.Phys.Rev.B 1999,59,1758.

    (25) Henkelman,G.;Arnaldsson,A.;Jónsson,H.Comput.Mater.Sci.2006,36,354.doi:10.1016/j.commatsci.2005.04.010

    (26) Christensen,A.;Carter,E.A.J.Chem.Phys.2001,114,5816.doi:10.1063/1.1352079

    (27) Jarvis,E.A.;Carter,E.A.J.Am.Ceram.Soc.2003,86,373.

    (28)Sasaki,T.;Matsunaga,K.;Ohta,H.;Hosono,H.;Yamamoto,T.;Ikuhara,Y.Mater.Trans.2004,45,2137.doi:10.2320/matertrans.45.2137

    (29)Neyman,K.M.;Inntam,C.;Moskaleva,L.V.;R?sch,N.Chem.Eur.J.2007,13,277.doi:10.1002/chem.200600545

    (30) Sun,C.;Stimming,U.J.Power Sources 2007,171,247.doi:10.1016/j.jpowsour.2007.06.086

    猜你喜歡
    物理化學(xué)學(xué)報(bào)
    提高物理化學(xué)實(shí)驗(yàn)技能的探討
    云南化工(2021年11期)2022-01-12 06:06:56
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    《深空探測學(xué)報(bào)》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    国产免费一级a男人的天堂| 美女xxoo啪啪120秒动态图| 国产高清激情床上av| 国产精品人妻久久久久久| 如何舔出高潮| 欧美国产日韩亚洲一区| 99热6这里只有精品| 亚洲国产精品成人久久小说 | 天天躁夜夜躁狠狠久久av| 欧美+日韩+精品| 亚洲欧美日韩东京热| 人妻制服诱惑在线中文字幕| 免费无遮挡裸体视频| 成人特级黄色片久久久久久久| 免费看光身美女| 欧美一区二区国产精品久久精品| 亚洲国产精品sss在线观看| 男人舔女人下体高潮全视频| 欧美+亚洲+日韩+国产| 欧美zozozo另类| 少妇裸体淫交视频免费看高清| 欧美成人a在线观看| 久久午夜亚洲精品久久| 国产视频内射| 亚洲在线观看片| 国产毛片a区久久久久| ponron亚洲| 亚洲欧美成人综合另类久久久 | 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频| 国产精品乱码一区二三区的特点| 夜夜看夜夜爽夜夜摸| 22中文网久久字幕| 国产毛片a区久久久久| 亚洲电影在线观看av| 一进一出抽搐gif免费好疼| 91午夜精品亚洲一区二区三区| 黄片wwwwww| 最近中文字幕高清免费大全6| 波多野结衣高清作品| 国产av不卡久久| 色5月婷婷丁香| 午夜视频国产福利| 伦精品一区二区三区| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清在线视频| 欧美高清性xxxxhd video| 一本精品99久久精品77| 蜜桃久久精品国产亚洲av| 中文字幕人妻熟人妻熟丝袜美| 黄色欧美视频在线观看| 国产在线男女| 午夜日韩欧美国产| 亚洲无线观看免费| 黄色配什么色好看| 黄色日韩在线| 国产老妇女一区| 永久网站在线| 日韩精品青青久久久久久| 久久精品国产清高在天天线| 日本免费a在线| 搡老妇女老女人老熟妇| 人妻制服诱惑在线中文字幕| 久久鲁丝午夜福利片| 色哟哟哟哟哟哟| 亚洲真实伦在线观看| 色噜噜av男人的天堂激情| 在线免费观看的www视频| 波多野结衣高清作品| 18禁在线播放成人免费| 午夜老司机福利剧场| 最近2019中文字幕mv第一页| 好男人在线观看高清免费视频| 人妻少妇偷人精品九色| 麻豆av噜噜一区二区三区| 如何舔出高潮| 久久久久久久久久久丰满| 国产av麻豆久久久久久久| 看免费成人av毛片| 国产成人freesex在线 | 欧美精品国产亚洲| 国产精品一区二区三区四区久久| 夜夜爽天天搞| a级毛色黄片| 人妻丰满熟妇av一区二区三区| 午夜视频国产福利| 免费在线观看影片大全网站| 日韩中字成人| 精品乱码久久久久久99久播| 欧美成人a在线观看| 给我免费播放毛片高清在线观看| 熟女人妻精品中文字幕| 色av中文字幕| 成人美女网站在线观看视频| 插逼视频在线观看| 日韩欧美一区二区三区在线观看| 中文字幕熟女人妻在线| 观看美女的网站| 欧美xxxx性猛交bbbb| 亚洲在线观看片| 精品熟女少妇av免费看| 亚洲成人精品中文字幕电影| 欧美一区二区国产精品久久精品| 日日撸夜夜添| 亚洲三级黄色毛片| 男人狂女人下面高潮的视频| 亚洲成a人片在线一区二区| 日本三级黄在线观看| 国产精品野战在线观看| a级一级毛片免费在线观看| 尾随美女入室| 亚洲中文字幕一区二区三区有码在线看| 一进一出抽搐gif免费好疼| 搡女人真爽免费视频火全软件 | 成年女人永久免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 三级男女做爰猛烈吃奶摸视频| 日日撸夜夜添| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲美女久久久| 美女免费视频网站| 99久国产av精品国产电影| 国产av麻豆久久久久久久| 人人妻人人澡欧美一区二区| 成人无遮挡网站| 淫妇啪啪啪对白视频| 22中文网久久字幕| 男女视频在线观看网站免费| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 日韩欧美精品v在线| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| ponron亚洲| 少妇裸体淫交视频免费看高清| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 99热这里只有是精品50| 日韩欧美精品v在线| 六月丁香七月| 99久久精品一区二区三区| 国产一区二区三区av在线 | 国产精品永久免费网站| 久久精品人妻少妇| 男女视频在线观看网站免费| 午夜免费男女啪啪视频观看 | 国产又黄又爽又无遮挡在线| 久久欧美精品欧美久久欧美| 丝袜喷水一区| 久久人人精品亚洲av| 色播亚洲综合网| 日本一本二区三区精品| 美女免费视频网站| 简卡轻食公司| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 亚洲成av人片在线播放无| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 99久久精品一区二区三区| 美女大奶头视频| 高清毛片免费观看视频网站| 久久久久免费精品人妻一区二区| 日本精品一区二区三区蜜桃| 欧美成人免费av一区二区三区| 国产亚洲精品久久久久久毛片| 色哟哟·www| 成人二区视频| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 老司机午夜福利在线观看视频| 精品不卡国产一区二区三区| 一级毛片久久久久久久久女| 欧美最黄视频在线播放免费| 久久亚洲精品不卡| 在线看三级毛片| 人人妻人人澡人人爽人人夜夜 | 国产 一区 欧美 日韩| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 精品久久久久久久久久免费视频| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 最近的中文字幕免费完整| 久久久久国产网址| 一级毛片电影观看 | 一边摸一边抽搐一进一小说| 亚洲无线观看免费| 99在线人妻在线中文字幕| 一级av片app| 中文亚洲av片在线观看爽| 亚洲无线在线观看| 国产高清三级在线| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 永久网站在线| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 亚洲精品一区av在线观看| 国产精品久久视频播放| 国产精品亚洲美女久久久| 国产精品国产三级国产av玫瑰| 在线看三级毛片| 国产视频一区二区在线看| or卡值多少钱| 国产在视频线在精品| 久久欧美精品欧美久久欧美| 久久久色成人| av天堂中文字幕网| 69人妻影院| 大又大粗又爽又黄少妇毛片口| 搡老岳熟女国产| 午夜精品在线福利| 免费av不卡在线播放| 噜噜噜噜噜久久久久久91| 亚洲第一电影网av| 精品久久久久久久久亚洲| 1024手机看黄色片| 国语自产精品视频在线第100页| 精品久久国产蜜桃| 天堂影院成人在线观看| 久久精品国产自在天天线| 国产成人aa在线观看| 欧美不卡视频在线免费观看| 国产精品精品国产色婷婷| 观看免费一级毛片| 亚洲欧美成人综合另类久久久 | 久久久国产成人免费| 亚洲最大成人中文| 听说在线观看完整版免费高清| av在线老鸭窝| 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| ponron亚洲| 午夜福利在线观看吧| 人人妻人人看人人澡| 亚洲综合色惰| 美女高潮的动态| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件| 成人精品一区二区免费| 国产亚洲91精品色在线| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 欧美成人精品欧美一级黄| 22中文网久久字幕| 国产精品嫩草影院av在线观看| 国产毛片a区久久久久| 亚洲无线在线观看| av专区在线播放| 99久久精品热视频| 亚洲人成网站在线播| 日韩av不卡免费在线播放| videossex国产| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 亚洲天堂国产精品一区在线| 国产精品福利在线免费观看| 一夜夜www| 日本黄色片子视频| 免费一级毛片在线播放高清视频| 寂寞人妻少妇视频99o| av中文乱码字幕在线| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| 久久久久国产精品人妻aⅴ院| av中文乱码字幕在线| 久久久精品94久久精品| 能在线免费观看的黄片| 观看免费一级毛片| 精品福利观看| 草草在线视频免费看| 性插视频无遮挡在线免费观看| 欧美另类亚洲清纯唯美| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| 久久午夜福利片| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 天美传媒精品一区二区| 亚洲美女搞黄在线观看 | 日本在线视频免费播放| 亚洲成人精品中文字幕电影| 国产精品一二三区在线看| 亚洲成人久久性| 中国美女看黄片| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 亚洲中文日韩欧美视频| 久久久久久久午夜电影| 国产精品电影一区二区三区| 少妇的逼好多水| 久久久a久久爽久久v久久| 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 男人舔奶头视频| 国产欧美日韩一区二区精品| 成年女人看的毛片在线观看| 久久欧美精品欧美久久欧美| 精品欧美国产一区二区三| 精品不卡国产一区二区三区| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久| 亚洲七黄色美女视频| 亚洲欧美成人精品一区二区| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 色综合亚洲欧美另类图片| 老司机福利观看| 午夜影院日韩av| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱 | 超碰av人人做人人爽久久| 在线免费观看不下载黄p国产| 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 插逼视频在线观看| 俄罗斯特黄特色一大片| 日本一本二区三区精品| 黄片wwwwww| 可以在线观看的亚洲视频| 伦精品一区二区三区| 日韩精品有码人妻一区| 日韩亚洲欧美综合| 免费观看精品视频网站| 自拍偷自拍亚洲精品老妇| 少妇猛男粗大的猛烈进出视频 | 日韩av在线大香蕉| 日本在线视频免费播放| 精品一区二区三区人妻视频| 久久久久久大精品| 成年女人毛片免费观看观看9| 高清午夜精品一区二区三区 | а√天堂www在线а√下载| av黄色大香蕉| 欧美+亚洲+日韩+国产| 久久6这里有精品| 亚洲在线自拍视频| 日本与韩国留学比较| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 天天一区二区日本电影三级| 欧美不卡视频在线免费观看| 午夜a级毛片| 免费大片18禁| 久久久久九九精品影院| 中文字幕av在线有码专区| 97碰自拍视频| 亚洲五月天丁香| 国产精品久久久久久久久免| 免费看光身美女| 大型黄色视频在线免费观看| 精品国产三级普通话版| 禁无遮挡网站| 亚洲性久久影院| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 不卡视频在线观看欧美| 久久久久久久久久黄片| 亚洲成a人片在线一区二区| 网址你懂的国产日韩在线| 色哟哟·www| 午夜福利成人在线免费观看| 三级国产精品欧美在线观看| 日本免费a在线| 国内精品久久久久精免费| 国产三级在线视频| 欧美成人一区二区免费高清观看| 亚洲欧美成人精品一区二区| 久久久久久伊人网av| aaaaa片日本免费| 全区人妻精品视频| 日韩成人av中文字幕在线观看 | 日韩精品有码人妻一区| 免费黄网站久久成人精品| 久久精品国产自在天天线| 亚洲av电影不卡..在线观看| 精品国产三级普通话版| 国产又黄又爽又无遮挡在线| 久久人人爽人人爽人人片va| 亚洲人成网站在线观看播放| 一级毛片久久久久久久久女| 大香蕉久久网| 性色avwww在线观看| 成人特级黄色片久久久久久久| 免费观看的影片在线观看| 高清午夜精品一区二区三区 | 午夜精品一区二区三区免费看| 亚州av有码| 国产色婷婷99| 丰满乱子伦码专区| 国产免费男女视频| 夜夜爽天天搞| 亚洲电影在线观看av| 日韩亚洲欧美综合| 国产精品久久久久久亚洲av鲁大| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 久久人人爽人人爽人人片va| 国产亚洲精品综合一区在线观看| 最近中文字幕高清免费大全6| 少妇高潮的动态图| 99riav亚洲国产免费| 精品一区二区三区视频在线观看免费| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 亚洲成人精品中文字幕电影| 日本三级黄在线观看| 我的女老师完整版在线观看| 亚洲丝袜综合中文字幕| 日韩强制内射视频| 一个人看视频在线观看www免费| 日韩av在线大香蕉| 欧美三级亚洲精品| 美女 人体艺术 gogo| 亚洲美女黄片视频| 亚洲久久久久久中文字幕| 99热网站在线观看| 欧美潮喷喷水| 一级毛片久久久久久久久女| 人人妻人人澡人人爽人人夜夜 | 亚洲色图av天堂| 嫩草影院入口| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 亚洲美女黄片视频| 日本在线视频免费播放| 亚洲熟妇中文字幕五十中出| 91在线观看av| 欧美在线一区亚洲| 永久网站在线| 国产日本99.免费观看| 国产 一区精品| 亚洲精品乱码久久久v下载方式| av免费在线看不卡| 精品久久久久久久人妻蜜臀av| 国产精品人妻久久久影院| 国产大屁股一区二区在线视频| 亚洲美女黄片视频| 搡女人真爽免费视频火全软件 | 老司机福利观看| 久久久久久九九精品二区国产| 极品教师在线视频| 国产精品99久久久久久久久| 亚洲内射少妇av| 精品久久久久久成人av| 国产精品福利在线免费观看| 亚洲人与动物交配视频| 99视频精品全部免费 在线| 少妇裸体淫交视频免费看高清| 可以在线观看毛片的网站| 久久久久久伊人网av| 精品日产1卡2卡| 亚洲真实伦在线观看| 久久久色成人| 高清午夜精品一区二区三区 | 久久久久国内视频| 黄色配什么色好看| 乱人视频在线观看| 国产av麻豆久久久久久久| 国产成年人精品一区二区| 国产乱人偷精品视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 在线观看av片永久免费下载| 精品欧美国产一区二区三| 在线观看免费视频日本深夜| 国产成人a∨麻豆精品| 国产精品国产高清国产av| 亚洲va在线va天堂va国产| 日韩人妻高清精品专区| 成熟少妇高潮喷水视频| 国产一区亚洲一区在线观看| 中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 一区二区三区高清视频在线| 男人狂女人下面高潮的视频| 97超视频在线观看视频| 久久亚洲国产成人精品v| 69av精品久久久久久| 午夜福利在线观看免费完整高清在 | 1024手机看黄色片| 色在线成人网| 久久久a久久爽久久v久久| 淫秽高清视频在线观看| 亚洲经典国产精华液单| 熟女人妻精品中文字幕| 色噜噜av男人的天堂激情| 精品一区二区三区av网在线观看| 最近视频中文字幕2019在线8| 欧美不卡视频在线免费观看| 99在线视频只有这里精品首页| 人人妻人人澡欧美一区二区| 天堂影院成人在线观看| 狂野欧美激情性xxxx在线观看| 亚洲av五月六月丁香网| 久久久色成人| 久久国产乱子免费精品| 久久久a久久爽久久v久久| 嫩草影院精品99| 欧美最新免费一区二区三区| 乱系列少妇在线播放| 国产一区二区在线观看日韩| 成人综合一区亚洲| 超碰av人人做人人爽久久| 九九在线视频观看精品| 秋霞在线观看毛片| 国产精品久久久久久精品电影| 麻豆一二三区av精品| 色播亚洲综合网| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 亚洲熟妇熟女久久| 久久久久国产网址| av女优亚洲男人天堂| 日韩中字成人| 欧美潮喷喷水| 久久韩国三级中文字幕| 大型黄色视频在线免费观看| 久久精品国产亚洲av天美| 色哟哟·www| 亚洲av五月六月丁香网| 一进一出抽搐动态| 久久精品国产亚洲av香蕉五月| 亚洲av中文字字幕乱码综合| 亚洲五月天丁香| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 一区二区三区高清视频在线| 久久国产乱子免费精品| 午夜激情福利司机影院| 成人毛片a级毛片在线播放| 免费观看的影片在线观看| 欧美日韩综合久久久久久| 亚洲国产精品成人综合色| 国产精品野战在线观看| 久久久久久久午夜电影| 亚洲精华国产精华液的使用体验 | 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| 亚洲自偷自拍三级| 国产色婷婷99| 成年女人永久免费观看视频| 日韩在线高清观看一区二区三区| 欧美性感艳星| 精品少妇黑人巨大在线播放 | 精品无人区乱码1区二区| 久久精品人妻少妇| 又爽又黄a免费视频| 狂野欧美激情性xxxx在线观看| 日本成人三级电影网站| 欧美色欧美亚洲另类二区| 日日撸夜夜添| 国产免费男女视频| 别揉我奶头~嗯~啊~动态视频| 午夜a级毛片| 小蜜桃在线观看免费完整版高清| 成人无遮挡网站| 亚洲乱码一区二区免费版| 成人美女网站在线观看视频| 亚洲欧美日韩卡通动漫| 又粗又爽又猛毛片免费看| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 亚洲国产高清在线一区二区三| 女人被狂操c到高潮| 长腿黑丝高跟| 白带黄色成豆腐渣| 麻豆乱淫一区二区| 国产成年人精品一区二区| 人妻制服诱惑在线中文字幕| av女优亚洲男人天堂| 婷婷六月久久综合丁香| 亚洲无线观看免费| 欧美色视频一区免费| 久久亚洲精品不卡| 久久亚洲国产成人精品v| 久久九九热精品免费| 少妇丰满av| 国产精品人妻久久久久久| 禁无遮挡网站| 久久精品久久久久久噜噜老黄 | 亚洲人成网站高清观看| 亚洲欧美日韩卡通动漫| 欧美又色又爽又黄视频| 亚洲在线自拍视频| 色播亚洲综合网| 婷婷精品国产亚洲av在线| 天堂网av新在线| 天天躁日日操中文字幕| 久久人人精品亚洲av| 啦啦啦韩国在线观看视频| 中国美女看黄片| 成人三级黄色视频| 可以在线观看毛片的网站| 日韩高清综合在线| 亚洲精品成人久久久久久| 久久久久久久久中文| 国内精品宾馆在线| 久久这里只有精品中国| av在线亚洲专区| 人妻少妇偷人精品九色| 99久久中文字幕三级久久日本| 亚洲中文日韩欧美视频| 日韩av在线大香蕉|