• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    原位合成鈷/還原氧化石墨烯納米粒子催化氨硼烷制氫

    2014-09-17 07:00:00楊宇雯盧章輝陳祥樹
    物理化學(xué)學(xué)報(bào) 2014年6期
    關(guān)鍵詞:江西師范大學(xué)劉建華化工學(xué)院

    楊宇雯 馮 剛 盧章輝,* 胡 娜 張 飛 陳祥樹,*

    (1江西師范大學(xué)化學(xué)化工學(xué)院,南昌330022;2中國石化上海石油化工研究院,上海201208)

    1 Introduction

    Secure storage and effective release of hydrogen are very important in the application of hydrogen energy.1,2Various hydrogen storage approaches are currently being investigated,including metal hydrides,3sorbent materials,4and chemical hydride systems.5Boron-nitrogen containing compounds have attracted much attention recently for using as hydrogen storage materials due to their suitable thermodynamic and kinetic properties of hydrogen release.6Among them,ammonia borane(NH3BH3,AB)appears to be an appropriate hydrogen storage material because of its high hydrogen content,high stability at room temperature,and nontoxicity.7-9With appropriate catalyst,hydrolysis of AB can release as many as 3 mol of hydrogen per mol of AB.10-12So far a lot of catalysts have been tested for hydrogen generation from the hydrolysis of AB,13-30among which Pt shows the highest activity.17,22,23However,concerning the element abundance and related economic issues,it is a desired goal to prepare low-cost catalysts with high catalytic activity for the terminal practical application of this reaction system in the fuel cell.

    Reduced graphene oxide(RGO),a new class two-dimensional carbon nanostructure with one-atom thickness,has many merits such as large theoretical specific surface area,31high intrinsic mobility,32and large density of free electrons,33could be an ideal substrate for growing and anchoring metal NPs.34Up to date,modification of RGO sheets with metallic NPs is mainly synthesized through one-step and two-step methods.35,36The metallic ions and graphene oxide(GO)sheets are reduced at the same time in the former method,while in the latter,GO is firstly reduced and then the metallic ions are deposited on RGO sheets.In the latter way,the complicated reaction steps,long reaction time,and stringent reaction conditions(high temperature,high vacuum,microwave,ultrasound,UV irradiation,etc.)are usually unavoidable.37-39Recently,RGO-supported Ru@Ni,Ag@M(M=Co,Ni,Fe)NPs have been prepared by one-step method under ambient condition and the catalysts exhibit superior catalytic activities.18,21,40However,developing an efficient strategy for one-step in situ synthesis of RGO-supported metal NPs with low-cost and high catalytic activities is still desirable.

    Chemical reduction methods provide much greater control over the size and composition,which are widely applied to synthesize metal NPs in solution phase.41This method involves reduction of metal ions in the presence of capping agent using reductant like NaBH4.42When NPs are employed as a catalyst,the capping agent present on the surface diminishes the activity to some extent by blocking some of the active sites.43However,without capping agent,nanoparticles are difficult to synthesize because growth of in situ generated nuclei cannot be halted.Therefore,it is great practical value to synthesis of NPs without using any external capping agent.

    Herein,RGO-supported Co NPs were synthesized by using a simple and low-cost one-step approach without using any external capping agent and assistance of high energy.We employed AB itself(much milder than NaBH4)as the reductant during the reactions.The as-synthesized Co/RGO nanocatalysts were used as catalysts in the dehydrogenation and hydrolysis ofAB at room tempertature.

    2 Experimental

    2.1 Graphite oxide preparation

    Graphite oxide was made by a modified Hummers method.44,45Briefly,natural graphite powder(325 mesh)was placed into an 80°C solution of concentrated H2SO4(30 mL),K2S2O8(2.5 g),and P2O5(2.5 g).The mixture was carefully diluted with distilled water,and filtered using a 0.2 micron Nylon Millipore filter to remove the residual acid.The product was dried at 80°C under ambient condition overnight.The pre-oxidized graphite was put into cold concentrated H2SO4,then KMnO4was added gradually under stirring and the temperature of the mixture was kept below 20 °C for 2.5 h.The mixture was stirred at 35 °C for 4 h.Afterwards,250 mL of de-ionized water was added and the suspension was stirred at 100°C for another 2 h.Subsequently,additional 300 mL of de-ionized water was added.Shortly after that,7 mL of 30%(w)H2O2was added to the mixture to terminate the reaction.The suspension was then repeatedly centrifuged and washed first with 5%(w)HCl solution and then with water.Exfoliation of graphite oxide to GO was achieved by ultrasonication of the dispersion for 30 min.46

    2.2 In situ synthesis of Co/RGO catalysts and their catalytic studies of hydrolytic dehydrogenation of AB

    8 mL aqueous solution containing CoCl2(24.03 mg)and GO solution(1.07 g,containing 0.412%(w)GO)was kept in a 25 mL two-necked round-bottom flask.One neck was connected to a gas burette,and the other was connected to a pressureequalization funnel to introduce 2 mL of aqueous solution con-taining 34.3 mg(1 mmol)AB.The reactions were started when the aqueous AB solution was added to the flask with vigorously stirring.The evolution of gas was monitored using the gas burette.After the hydrogen generation reaction was completed,34.3 mg(1 mmol)AB was added to the flask,the evolution of gas was monitored.A water bath was used to control the temperature of the reaction solution(the amount of AB in the processes of in situ synthesis of Co/RGO catalyst and hydrolytic dehydrogenation are the same,1 mmol AB was used as reductant in the first process and another 1 mmol AB was used for the hydrolytic dehydrogenation test).

    For comparision,GO and Co NPs were synthesized using AB as reductant,RGO and Co/RGO were synthesized using NaBH4as reductant.The as-synthesized catalysts were used for the hydrolysis ofAB.

    2.3 Kinetic studies of hydrolytic dehydrogenation of AB catalyzed by Co/RGO

    In order to establish the rate law for catalytic hydrolysis of AB using Co/RGO as catalyst,three different sets of experiments were performed in the same way described in Section 2.2.In the first set of experiment,the different concentrations of Co(0.04,0.06,0.08,and 0.10 mmol)were performed at room temperature(25°C)while the AB concentration was kept the same(1 mmol).In the second set of experiment,the different concentrations of AB(1.0,1.5,2.0,and 2.5 mmol)were performed at room temperature(25°C)while the Co concentration was kept the same(0.1 mmol).Finally,temperature was varied at 25,30,35,and 40°C while the molar ratio of metal/AB(0.1 mmol Co and 1 mmol AB)was kept constant of 0.1 to obtain the activation energy(Ea).

    2.4 Stability test

    For stability test,catalytic reactions were repeated 5 times by adding other equivalent of AB(1 mmol)into the mixture after the previous cycle.The molar ratio of metal/AB was kept at 0.1.

    2.5 Catalyst characterization

    Transmission electron microscope(TEM),energy-diepersive X-ray spectroscopy(EDS),and selected area electron diffraction(SAED)were observed using FEI Tecnai G20 U-Twin TEM instrument operating at 200 kV.Powder X-ray diffraction(XRD)studies were performed on a Rigaku RINT-22005 X-ray diffractometer with a Cu Kαsource(40 kV,20 mA).X-ray photoelectron spectroscopy(XPS)measurement was performed with a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer.Fourier transform infrared(FTIR)spectra were collected at room temperature by using a Thermo Nicolet 870 instrument using KBr discs in the 500-4000 cm-1region.Raman spectrometer was carried out using a confocal Raman microscope(LabRAM HR).

    3 Results and discussion

    3.1 Synthesis and characterization

    As well known,the Co(II)cations were difficult to reduce to Co by AB(a mild reducing agent)at room temperature,10,14which is also evidenced in the present experiments(Fig.S1(see Supporting Information)).Interestingly,in the presence of GO,the Co(II)cations could be reduced to Co by using AB as a reductant within a short period(Fig.S1).The decrease of induction period may result from the charge transfer across the graphene oxide-cobalt interface due to the graphene oxide-cobalt spacing and Fermi lever difference.21The RGO-supported Co(Co/RGO)NPs were successfully synthesized by reducing a mixture containing CoCl2and GO with AB as the sole reductant.The microstructures of the samples were characterized by TEM,high-resolution TEM(HRTEM),EDS,and SAED(Fig.1).As shown in Fig.1(a),the GO sheets are transparent and corrugated together.The TEM images of Co/RGO(Fig.1(b,c))show that most of the Co NPs lay flat on the RGO.Moreover,the aggregation of Co NPs was found in Co/RGO,which could be due to the magnetic property of Co NPs.The EDS spectrum of the specimen shows the presence of Co(Fig.S2,which was taken from the specially marked area in the TEM image(Fig.1(c)).A close examination of the catalysts by HRTEM(Fig.1(d)),the d-spacing of the particle lattice is~0.204 nm,which is consistent with the SAED pattern(4.9 nm-1in Fig.1(d)inset)and the(111)plane of cubic Co(JCPDS No.15-0806).Moreover,the corresponding SAED pattern demonstrates the low degree of crystallinity of Co.

    Fig.2 shows the powder XRD patterns of GO and Co/RGO.The diffraction peak at around 44.23°attributed to Co(111)is observed in Co/RGO,which is consistent with the HRTEM result(Fig.1(d)).Furthermore,the most intense peak at around 11.5°corresponding to the(001)reflection of GO disappeared,while a new peak at around 24.58°was observed in Co/RGO,indicating that GO is successfully reduced to the RGO.

    Fig.1 (a)TEM images of GO;(b,c)TEM images of Co/RGO nanocatalysts;(d)HRTEM image of Co/RGO nanocatalysts and SAED pattern(inset)

    Fig.2 XRD patterns of GO and Co/RGO nanocatalyst

    Co/RGO was further characterized by XPS to investigate the surface nature of the Co NPs and RGO(Fig.3).Compared with the peaks of GO(Fig.3(A)),the intensities of oxygen containing functional groups(such as―C―O,―C=O,―COO)in Co/RGO(Fig.3(B))decrease significantly,also revealing the reduction of GO to RGO.Fig.3(C)shows the peaks of Co 2p.The peak at 778.5 eV stands for Co0,the two peaks at 780.6 and 786.7 eV stand for oxidized Co.The formation of the oxidized Co most likely occurs during the sample preparation process for XPS measurements.The presence of carbon-oxygen bonding and oxidized Co are also evident in the O 1s spectrum of Co/RGO(Fig.3(D)).The O 1s spectrum shows peaks at 534.0,533.0,531.6,and 530.4 eV,which could be assigned to―COO,―C―O,―C=O,oxidized Co.

    Fig.3 XPS spectra of C 1s of(A)GO and(B)Co/RGO,(C)Co 2p of Co/RGO,and(D)O 1s of Co/RGO

    As shown in Fig.4(a),two peaks centered at 1316.92 and 1584.57 cm-1appear in the Raman spectra of the GO and Co/RGO,corresponding to the D and G bands of the carbon products,respectively.The D band is an indication of disorder of GO originating from defects associated with vacancies,grain boundaries,and amorphous carbon species,while the G band is ascribed to the E2gphonon of C sp2atoms in a 2-dimensional hexagonal lattice.The peak intensity ratio of the D to G band(ID/IG)is generally accepted to reflect the degree of graphitization of carbonaceous materials and defect density.After loading of Co NPs,the ID/IGof GO is increased from 1.2 to 1.6.The relative changes in the D to G peak intensity ratio also confirm the reduction of GO during the in situ fabrication.

    Fig.4(b)shows the FTIR spectra of GO and Co/RGO.As for the FTIR spectrum of GO,the broad and intense band at 3401.9 cm-1is ascribed to the stretching of O―H.The weak band at 1723.6 cm-1is assigned to C=O stretching vibration in carbonyl or carboxylic groups.The peak at 1621.6 cm-1is pertinent to the vibrations of the absorbed water molecules and the skeletal vibration of unoxidized graphitic domains.The bands at 1399.2 and 1074.4 cm-1are associated with the O―H vibration in carboxyl acid and the deformation of the C―O band,respectively.After the formation of Co/RGO,the disappearance of C=O at 1723.6 cm-1,C―OH peak at 1399.2 cm-1,and the C―O peak at 1074.4 cm-1of GO further indicates that GO was reduced to RGO during the process.

    3.2 Catalytic activities for hydrolysis of AB

    As shown in Fig.5,no hydrogen generation was observed for GO and RGO,suggesting that GO and RGO have no catalytic activity for the hydrolysis of AB.The as-synthesized Co/RGO generates a stoichiometric amount of hydrogen(H2/NH3BH3molar ratio:3.0)in 4.37 min with a turnover frequency(TOF)value of 6.86 mol·mol-1·min-1.The as-synthesized Co/RGO nanocatalysts display much better catalytic activities than pure Co NPs.The enhanced catalytic activity of Co/RGO for AB hydrolysis reaction should result from the cooperative effect between RGO and Co NPs,which is mainly caused by the strongly interfacial interaction between RGO and Co NPs during the catalytic process.27Compared with pre-catalysts reduced by NaBH4(Co/RGO(SB)),the as-synthesized nanocatalysts generated by AB(Co/RGO(AB))exhibit a superior catalytic activity(Fig.5 and Fig.S3),indicating that AB can be used as both a potential hydrogen storage material and an efficient reducing agent.

    Fig.4 (a)Raman and(b)FTIR spectra of the GO and Co/RGO

    Fig.5 Plots of hydrogen productivity vs time for hydrolysis of ammonia borane(0.10 mol·L-1,10 mL)catalyzed by Co/RGO reduced byAB and NaBH4(SB)respectively,Co NPs reduced byAB,GO,and RGO

    Fig.S4(a)shows the plots of hydrogen generation from the hydrolysis of AB solution in the presence of different Co/RGO concentration at 25°C.The initial rate of hydrogen generation was determined from the initial nearly linear portion of each plot.Fig.S4(b)shows the plot of hydrogen generation rate versus Co/RGO concentration in a logarithmic scale.A slope of 1.05 in the inset indicates that the hydrolysis reaction catalyzed by Co/RGO is first-order in catalyst concentration.

    The effect of substrate concentration on the hydrogen generation rate was also studied by performing a series of experiments starting with different initial concentrations of AB while keeping the catalyst concentration at 10 mmol·L-1Co at room temperature(Fig.6).It can be clearly concluded by the slope of the line in Fig.6(b)that the hydrogen generation rate from the catalytic hydrolysis of AB is practically independent from AB concentration.In other words,the hydrolysis of AB catalyzed by Co/RGO is zero order with respect to the substrate concentration.

    Fig.6 Plots of(a)volume of hydrogen generated vs time,(b)hydrogen generation rate versus the concentration ofAB(both in logarithmic scale)

    Fig.7 (a)Plots of volume of hydrogen generated vs time for Co/RGO catalyzed hydrolysis ofAB at different temperatures(nCo/nAB=0.1);(b)Arrhenius plot obtained from the data of Fig.7(a)

    In order to get the activation energy(Ea)of the hydrolysis of AB catalyzed by Co/RGO,the hydrolytic reactions at the temperature range of 298-313 K were carried out.The values of rate constant k at different temperatures were calculated from the slope of the linear part of each plot from Fig.7(a).The Arrhenius plot of lnk vs 1/T for the catalyst is plotted in Fig.7(b),from which the apparent activation energy was determined to be approximately 27.10 kJ·mol-1,being lower than most ofthe reported Eavalues(Table 1),indicating the superior catalytic performance of the as-synthesized Co/RGO nanocatalysts.

    Table 1 Values of activation energy(Ea)for hydrolysis ofAB catalyzed by different catalysts

    Fig.8 Plots of hydrogen productivity vs time for Co/RGO catalyzed hydrolysis ofAB(0.10 mol·L-1,10 mL)from 1st to 5th cycles(nCo/nAB=0.1)

    3.3 Reusability and recycle ability

    The reusability is of great importance for the practical application of catalyst.The recyclability of Co/RGO nanocatalyst up to the fifth run for hydrolysis of AB is shown in Fig.8.The complete release of hydrogen is achieved in each of the subsequent catalytic runs in the hydrolysis of AB catalyzed by Co/RGO nanocatalysts.This indicates that Co/RGO can be repeatedly used as active catalyst in the hydrolysis of AB.The observed decrease in catalytic activity in subsequent runs may be attributed to the passivation of nanocatalyst surface by the precipitation of metaborate products.22Moreover,the in situ synthesized Co/RGO nanocatalysts are magnetic and thus can be separated from the reaction solution by an external magnet(inset in Fig.8),which makes the practical recycling application of nanocatalysts more convenient.

    4 Conclusions

    In summary,we have developed a facial in situ one-step method for the synthesis of magnetic RGO-supported Co NPs using AB as the sole reductant.The as-synthesized nanocatalysts exhibit a high catalytic activity for hydrolytic dehydrogenation of AB with the activation energy Eaof 27.10 kJ·mol-1,which is lower than most of the reported data for the same reaction using non-noble metal catalysts and even some noble metal containing catalysts.Moreover,the Co/RGO nanocatalysts show good durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB due to the magnetic property from Co,which makes the practical recycling application of the catalyst more convenient.This simple synthetic method can be extended to the other RGO-based metallic systems for more application.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/35104634

    (2)Grochala,W.;Edwards,P.P.Chem.Rev.2004,104,1283.doi:10.1021/cr030691s

    (3) Graetz,J.Chem.Soc.Rev.2009,38,73.doi:10.1039/b718842k

    (4)Suh,M.P.;Park,H.J.;Prasad,T.K.;Lim,D.W.Chem.Rev.2012,112,782.doi:10.1021/cr200274s

    (5) Staubitz,A.;Robertson,A.P.M.;Manners,I.Chem.Rev.2010,110,4079.doi:10.1021/cr100088b

    (6) Chen,P.;Zhu,M.Mater.Today 2008,11,36.

    (7) Lu,Z.H.;Xu,Q.Funct.Mater.Lett.2012,5,1230001.doi:10.1142/S1793604712300010

    (8)Yadav,M.;Xu,Q.Energy Environ.Sci.2012,5,9698.doi:10.1039/c2ee22937d

    (9)Lu,Z.H.;Yao,Q.L.;Zhang,Z.J.;Yang,Y.W.;Chen,X.S.J.Nanomater.2014,729029.

    (10) Rakap,M.;Kalu,E.E.;?zkar,S.J.Power Sources 2012,210,184.doi:10.1016/j.jpowsour.2012.03.025

    (11)Yan,J.M.;Wang,Z.L.;Wang,H.L.;Jiang,Q.J.Mater.Chem.2012,22,10990.doi:10.1039/c2jm31042b

    (12)Yang,Y.W.;Zhang,F.;Wang,H.L.;Yao,Q.L.;Chen,X.S.;Lu,Z.H.J.Nanomater.2014,294530.

    (13)Cheng,F.Y.;Ma,H.;Li,Y.M.;Chen,J.Inorg.Chem.2007,46,788.doi:10.1021/ic061712e

    (14) Basu,S.;Brockman,A.;Gagare,P.;Zheng,Y.;Ramachandran,P.V.;Delgass,W.N.;Gore,J.P.J.Power Sources 2009,188,238.doi:10.1016/j.jpowsour.2008.11.085

    (15)Du,Y.S.;Cao,N.;Yang,L.;Luo,W.;Cheng,G.Z.New J.Chem.2013,37,3035.doi:10.1039/c3nj00552f

    (16)Xi,P.X.;Chen,F.J.;Xie,G.Q.;Ma,C.;Liu,H.Y.;Shao,C.W.;Wang,J.;Xu,Z.H.;Xu,X.M.;Zeng,Z.Z.Nanoscale 2012,4,5597.doi:10.1039/c2nr31010d

    (17) Chandra,M.;Xu,Q.J.Power Sources 2007,168,135.doi:10.1016/j.jpowsour.2007.03.015

    (18)Yang,L.;Luo,W.;Cheng,G.E.ACS Appl.Mater.Interfaces 2013,5,8231.doi:10.1021/am402373p

    (19) Rachiero,G.P.;Demirci,U.B.;Miele,P.Int.J.Hydrog.Energy 2011,36,7051.doi:10.1016/j.ijhydene.2011.03.009

    (20)Simagia,V.I.;Komova,O.V.;Ozerova,A.M.;Netskina,O.V.;Odegova,G.V.;Kelleman,D.G.;Bulavcheoko,O.V.;Ishchenko,A.V.Appl.Catal.A:Gen.2011,384,86.

    (21)Yan,L.;Su,J.;Meng,X.Y.;Luo,W.;Cheng,G.Z.J.Mater.Chem.A 2013,1,10016.doi:10.1039/c3ta11835e

    (22) Lu,Z.H.;Li,J.P.;Zhu,A.L.;Yao,Q.L.;Huang,W.;Zhou,R.Y.;Zhou,R.F.;Chen,X.S.Int.J.Hydrog.Energy 2013,38,5330.doi:10.1016/j.ijhydene.2013.02.076

    (23)Lu,Z.H.;Jiang,H.L.;Yadav,M.;Aranishi,K.;Xu,Q.J.Mater.Chem.2012,22,5065.doi:10.1039/c2jm14787d

    (24) Rakap,M.;?zkar,S.Int.J.Hydrog.Energy 2010,35,3341.doi:10.1016/j.ijhydene.2010.01.138

    (25) Metin,?.;?zkar,S.Int.J.Hydrog.Energy 2011,36,1424.

    (26)Yao,Q.L.;Shi,W.M.;Feng,G.;Lu,Z.H.;Zhang,X.L.;Tao,D.J.;Kong,D.J.;Chen,X.S.J.Power Sources 2014,257,293.doi:10.1016/j.jpowsour.2014.01.122

    (27)Yang,Y.W.;Lu,Z.H.;Hu,Y.J.;Zhang,Z.J.;Shi,W.M.;Chen,X.S.;Wang,T.T.RSC Advances 2014,4,13749.doi:10.1039/c3ra47023g

    (28) Chandra,M.;Xu,Q.J.Power Sources 2006,156,190.doi:10.1016/j.jpowsour.2005.05.043

    (29) Rakap,M.;Kalu,E.E.;?zkar,S.Int.J.Hydrog.Energy 2011,36,1448.doi:10.1016/j.ijhydene.2010.10.097

    (30)Eom,K.S.;Cho,K.W.;Kwon,H.S.Int.J.Hydrog.Energy 2010,35,181.

    (31) Garaj,S.;Hubbard,W.;Reina,A.;Kong,J.;Branton,D.;Golovchenko,J.A.Nature 2010,467,190.doi:10.1038/nature09379

    (32) Lee,C.;Wei,X.D.;Kysar,J.W.;Hone,J.Science 2008,321,385.doi:10.1126/science.1157996

    (33)Choi,B.G.;Hong,J.;Park,Y.C.;Jung,D.H.;Hong,W.H.;Hammond,P.T.;Park,H.S.ACS Nano 2011,5,5167.doi:10.1021/nn2013113

    (34) Hu,Y.J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26(8),2073.[胡耀娟,金 娟,張 卉,吳 萍,蔡稱心.物理化學(xué)學(xué)報(bào),2010,26(8),2073.]doi:10.3866/PKU.WHXB20100812

    (35)Li,S.M.;Wang,B.;Liu,J.H.;Yu,M.;An,J.W.Acta Phys.-Chim.Sin.2012,28(11),2754.[李松梅,王 博,劉建華,于 美,安軍偉.物理化學(xué)學(xué)報(bào),2012,28(11),2754.]doi:10.3866/PKU.WHXB201208292

    (36)Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S.G.Acta Phys.-Chim.Sin.2011,27(4),858.[李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報(bào),2011,27(4),858.]doi:10.3866/PKU.WHXB20110411

    (37)Mazumder,V.;Chi,M.F.;More,K.L.;Sun,S.H.Angew Chem.Int.Edit.2010,49,9368.doi:10.1002/anie.201003903

    (38) Vinodgopal,K.;Neppolian,B.;Lightcap,I.V.;Grieser,F.;Ashokkumar,M.;Kamat,P.V.J.Am.Chem.Soc.2010,1,1987.

    (39)Liu,C.B.;Wang,K.;Luo,S.L.;Tang,Y.H.;Chen,L.Y.Small 2011,7,1203.doi:10.1002/smll.v7.9

    (40)Cao,N.;Su,J.;Luo,W.;Cheng,G.Z.Int.J.Hydrog.Energy 2014,39,426.doi:10.1016/j.ijhydene.2013.10.059

    (41) Roucoux,A.;Schulz,J.;Patin,H.Chem.Rev.2002,102,3757.doi:10.1021/cr010350j

    (42)Yang,L.;Cao,N.;Du,C.;Dai,H.M.;Hu,K.;Luo,W.;Cheng,G.Z.Materials Letters 2014,115,113.doi:10.1016/j.matlet.2013.10.039

    (43)Astruc,D.;Lu,F.;Aranzaes,J.R.Angew Chem.Int.Edit.2005,44,7852.

    (44)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.doi:10.1021/ja01539a017

    (45) Kovtyukhova,N.I.;Ollivier,P.J.;Martin,B.R.;Mallouk,T.E.;Chizhik,S.A.;Buzaneva,E.V.;Gorchinskiy,A.D.Chem.Mater.1999,11,771.doi:10.1021/cm981085u

    (46) Chen,H.Q.;Müller,M.B.;Gilmore,K.J.;Wallace,G.G.;Li,D.Adv.Mater.2008,20,3557.doi:10.1002/adma.200800757

    猜你喜歡
    江西師范大學(xué)劉建華化工學(xué)院
    勞動贊歌
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    搟面條
    掉鞭炮
    手影
    Identity-based proxy multi-signature applicable to secure E-transaction delegations①
    《化工學(xué)報(bào)》贊助單位
    對旅游專業(yè)外語的理想教學(xué)模式的思考——以江西師范大學(xué)為例
    404 Not Found

    404 Not Found


    nginx
    非洲黑人性xxxx精品又粗又长| 小蜜桃在线观看免费完整版高清| 国产精品98久久久久久宅男小说| 少妇人妻一区二区三区视频| 国产成人福利小说| 99久久精品国产国产毛片| 日本黄色片子视频| 国产欧美日韩精品一区二区| h日本视频在线播放| 久久热精品热| 免费电影在线观看免费观看| 一区二区三区免费毛片| 亚洲av电影不卡..在线观看| 亚洲在线自拍视频| 久久香蕉精品热| 五月伊人婷婷丁香| 少妇裸体淫交视频免费看高清| 久99久视频精品免费| 在线播放国产精品三级| 国产乱人伦免费视频| 日本a在线网址| 午夜激情欧美在线| 中文字幕av在线有码专区| 99视频精品全部免费 在线| 两个人的视频大全免费| 一区福利在线观看| 国产伦人伦偷精品视频| 国产日本99.免费观看| 淫妇啪啪啪对白视频| 尾随美女入室| 成人毛片a级毛片在线播放| 久久久成人免费电影| 超碰av人人做人人爽久久| 麻豆成人午夜福利视频| 中文字幕久久专区| 精品不卡国产一区二区三区| 男女做爰动态图高潮gif福利片| 精品免费久久久久久久清纯| 性欧美人与动物交配| 欧美潮喷喷水| 国产免费一级a男人的天堂| 黄片wwwwww| 噜噜噜噜噜久久久久久91| 99久久精品国产国产毛片| 内地一区二区视频在线| 99久久九九国产精品国产免费| av在线观看视频网站免费| 欧美精品国产亚洲| 亚洲欧美清纯卡通| 国产色爽女视频免费观看| 成年版毛片免费区| avwww免费| 99九九线精品视频在线观看视频| 女人被狂操c到高潮| 色综合婷婷激情| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 国产69精品久久久久777片| 国产精品亚洲美女久久久| 国产av在哪里看| 国产精品爽爽va在线观看网站| 一进一出抽搐动态| 国产伦在线观看视频一区| 日本五十路高清| 露出奶头的视频| 热99re8久久精品国产| 国产色婷婷99| 久久热精品热| 在线免费观看的www视频| 一级毛片久久久久久久久女| 久久久久性生活片| 日韩欧美在线二视频| 婷婷亚洲欧美| 美女高潮喷水抽搐中文字幕| 国产麻豆成人av免费视频| 午夜视频国产福利| 免费看a级黄色片| 又爽又黄a免费视频| 小说图片视频综合网站| 有码 亚洲区| 国产成人aa在线观看| 色综合婷婷激情| 日本与韩国留学比较| 偷拍熟女少妇极品色| 国产单亲对白刺激| 日韩精品中文字幕看吧| 亚洲自偷自拍三级| 午夜激情福利司机影院| av在线亚洲专区| 精品人妻视频免费看| а√天堂www在线а√下载| 欧美3d第一页| 一级黄色大片毛片| 精品久久久久久久久av| 夜夜夜夜夜久久久久| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 久久精品国产鲁丝片午夜精品 | 亚洲自偷自拍三级| 国产成人aa在线观看| 午夜日韩欧美国产| 深夜a级毛片| 精品免费久久久久久久清纯| 一本精品99久久精品77| 亚洲第一区二区三区不卡| 国产欧美日韩精品亚洲av| 麻豆成人午夜福利视频| 色5月婷婷丁香| 亚洲乱码一区二区免费版| 日韩欧美免费精品| 蜜桃久久精品国产亚洲av| 国产乱人伦免费视频| 国产精品免费一区二区三区在线| bbb黄色大片| 久久久久久久久中文| 国产精品无大码| 两个人视频免费观看高清| 久久草成人影院| 久久精品国产亚洲av涩爱 | 日韩一本色道免费dvd| 欧美一区二区国产精品久久精品| 国产单亲对白刺激| 欧美最新免费一区二区三区| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 91在线观看av| 丰满的人妻完整版| 真人一进一出gif抽搐免费| 国产伦精品一区二区三区四那| 国产高清视频在线播放一区| 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 色综合色国产| 99久久中文字幕三级久久日本| 国产精华一区二区三区| 中文字幕av在线有码专区| 国产三级在线视频| 欧美成人性av电影在线观看| 成人美女网站在线观看视频| 亚洲 国产 在线| 国产精品爽爽va在线观看网站| 久久草成人影院| 麻豆成人av在线观看| 国产亚洲91精品色在线| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 国产免费av片在线观看野外av| 毛片女人毛片| 日韩国内少妇激情av| 极品教师在线免费播放| 欧美国产日韩亚洲一区| 男女啪啪激烈高潮av片| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 国产精品国产高清国产av| 我的女老师完整版在线观看| 在线免费观看不下载黄p国产 | 亚洲精品久久国产高清桃花| netflix在线观看网站| 国产不卡一卡二| 一本久久中文字幕| 亚洲中文日韩欧美视频| 久久精品国产清高在天天线| xxxwww97欧美| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 欧美丝袜亚洲另类 | 毛片女人毛片| 亚洲va日本ⅴa欧美va伊人久久| 精品国产三级普通话版| 久久精品国产亚洲网站| 中文亚洲av片在线观看爽| 国产一区二区激情短视频| 国产精品伦人一区二区| 国产精品一区二区性色av| 最近视频中文字幕2019在线8| 国产精品伦人一区二区| 亚洲国产精品合色在线| 欧美又色又爽又黄视频| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品一区二区| 久久香蕉精品热| 久久精品夜夜夜夜夜久久蜜豆| 毛片一级片免费看久久久久 | 99久久精品一区二区三区| av.在线天堂| 最新中文字幕久久久久| 亚洲va在线va天堂va国产| 国产精品久久电影中文字幕| 成年版毛片免费区| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 免费看av在线观看网站| 久久久久免费精品人妻一区二区| 久久精品人妻少妇| 波多野结衣高清作品| a在线观看视频网站| 蜜桃亚洲精品一区二区三区| 在线观看66精品国产| 色吧在线观看| 岛国在线免费视频观看| 夜夜夜夜夜久久久久| 天天一区二区日本电影三级| 精品久久久久久久久亚洲 | 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| 精品久久久久久久久av| a级毛片免费高清观看在线播放| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 此物有八面人人有两片| 丰满乱子伦码专区| 丝袜美腿在线中文| 精品99又大又爽又粗少妇毛片 | 18禁在线播放成人免费| 久久精品国产亚洲网站| 久久精品国产亚洲av天美| 久久久久免费精品人妻一区二区| 婷婷精品国产亚洲av在线| 有码 亚洲区| 亚洲欧美激情综合另类| 亚洲男人的天堂狠狠| 欧美高清成人免费视频www| 最好的美女福利视频网| 一夜夜www| 桃色一区二区三区在线观看| 欧美不卡视频在线免费观看| 日本色播在线视频| 搡老妇女老女人老熟妇| 久9热在线精品视频| 国产亚洲精品av在线| 人人妻,人人澡人人爽秒播| 九色成人免费人妻av| 日本一二三区视频观看| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| 88av欧美| 日韩亚洲欧美综合| 精品一区二区三区av网在线观看| 亚洲成人久久性| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区精品| 九九爱精品视频在线观看| 美女被艹到高潮喷水动态| 国产高潮美女av| 亚洲狠狠婷婷综合久久图片| 男人狂女人下面高潮的视频| 亚洲国产日韩欧美精品在线观看| 精品人妻1区二区| a级毛片免费高清观看在线播放| 色视频www国产| 欧美人与善性xxx| 美女大奶头视频| 欧美zozozo另类| 男人狂女人下面高潮的视频| 日本一本二区三区精品| 亚洲精华国产精华液的使用体验 | 亚洲国产精品成人综合色| 日韩欧美在线二视频| 国产精品亚洲一级av第二区| 男人舔女人下体高潮全视频| 观看美女的网站| 如何舔出高潮| 变态另类成人亚洲欧美熟女| 亚洲av中文字字幕乱码综合| 一级黄色大片毛片| 欧美bdsm另类| 69人妻影院| 如何舔出高潮| 国产毛片a区久久久久| 在线免费观看的www视频| 亚洲av免费高清在线观看| 午夜日韩欧美国产| 色在线成人网| 日本爱情动作片www.在线观看 | 欧美成人一区二区免费高清观看| 人妻丰满熟妇av一区二区三区| 身体一侧抽搐| 我要看日韩黄色一级片| 婷婷丁香在线五月| h日本视频在线播放| 免费不卡的大黄色大毛片视频在线观看 | 最后的刺客免费高清国语| 国产亚洲91精品色在线| 亚洲欧美日韩高清专用| 欧美最黄视频在线播放免费| 亚洲 国产 在线| 女人十人毛片免费观看3o分钟| 中文字幕精品亚洲无线码一区| 中国美女看黄片| 久久精品国产鲁丝片午夜精品 | 国产精品久久久久久精品电影| 久久久久九九精品影院| 联通29元200g的流量卡| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 国产大屁股一区二区在线视频| 22中文网久久字幕| 国内毛片毛片毛片毛片毛片| 中文字幕免费在线视频6| 999久久久精品免费观看国产| 久久久久久大精品| 如何舔出高潮| 全区人妻精品视频| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 成人特级av手机在线观看| 成人二区视频| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线av高清观看| 老司机午夜福利在线观看视频| 九九在线视频观看精品| 久久久久久国产a免费观看| 欧美极品一区二区三区四区| 美女大奶头视频| aaaaa片日本免费| 一区二区三区高清视频在线| 人妻少妇偷人精品九色| 99久久久亚洲精品蜜臀av| 春色校园在线视频观看| av福利片在线观看| 最后的刺客免费高清国语| 免费无遮挡裸体视频| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| av在线天堂中文字幕| a级一级毛片免费在线观看| 亚洲av成人av| 欧美最黄视频在线播放免费| 国产成人福利小说| 国产精品野战在线观看| 丰满乱子伦码专区| 欧美潮喷喷水| a级毛片免费高清观看在线播放| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 级片在线观看| 99热只有精品国产| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 亚洲三级黄色毛片| 女生性感内裤真人,穿戴方法视频| 亚洲在线观看片| 免费不卡的大黄色大毛片视频在线观看 | 尤物成人国产欧美一区二区三区| 他把我摸到了高潮在线观看| 又爽又黄a免费视频| 午夜a级毛片| 色av中文字幕| avwww免费| aaaaa片日本免费| 欧美又色又爽又黄视频| 夜夜夜夜夜久久久久| 日日啪夜夜撸| 99热这里只有是精品在线观看| 中文字幕av成人在线电影| 久久久国产成人免费| 日本-黄色视频高清免费观看| 午夜免费激情av| 小说图片视频综合网站| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 午夜老司机福利剧场| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 黄色日韩在线| www.www免费av| 欧美区成人在线视频| 午夜老司机福利剧场| 国产视频一区二区在线看| 最后的刺客免费高清国语| 国产精品亚洲一级av第二区| 日本欧美国产在线视频| 亚洲成人久久性| 久久久国产成人免费| 成人av一区二区三区在线看| 能在线免费观看的黄片| 婷婷精品国产亚洲av在线| 欧美色欧美亚洲另类二区| 日日啪夜夜撸| 91精品国产九色| www日本黄色视频网| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲 | 亚洲av成人av| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 国产精品人妻久久久久久| 成年女人永久免费观看视频| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| 内地一区二区视频在线| 国产精品无大码| 亚洲欧美清纯卡通| 国产午夜精品论理片| 97超视频在线观看视频| 亚洲精品456在线播放app | 日本爱情动作片www.在线观看 | 国产伦一二天堂av在线观看| 五月玫瑰六月丁香| 蜜桃亚洲精品一区二区三区| 欧美高清成人免费视频www| 久久久久久伊人网av| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 午夜福利在线观看吧| 伦精品一区二区三区| 免费高清视频大片| 精品久久久久久成人av| 亚洲精品亚洲一区二区| 春色校园在线视频观看| 亚洲av五月六月丁香网| av在线天堂中文字幕| 免费在线观看日本一区| 一区福利在线观看| 18禁黄网站禁片午夜丰满| 日韩在线高清观看一区二区三区 | 久久久久久久久久成人| 黄色女人牲交| 成人二区视频| 日韩欧美国产一区二区入口| 中国美女看黄片| 一个人看视频在线观看www免费| 国产黄a三级三级三级人| 成年免费大片在线观看| 久久香蕉精品热| 成人午夜高清在线视频| 看黄色毛片网站| 亚洲18禁久久av| 亚洲精品456在线播放app | 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽| 欧美激情在线99| 亚洲成av人片在线播放无| 哪里可以看免费的av片| 一本精品99久久精品77| 亚洲精品成人久久久久久| 99热6这里只有精品| av在线蜜桃| 一本久久中文字幕| 国产乱人伦免费视频| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 九色成人免费人妻av| 国产高清三级在线| 色综合亚洲欧美另类图片| 亚洲人成网站在线播| 2021天堂中文幕一二区在线观| 国产欧美日韩一区二区精品| 又紧又爽又黄一区二区| 99九九线精品视频在线观看视频| 日韩大尺度精品在线看网址| 久久精品国产自在天天线| 少妇人妻精品综合一区二区 | 久久久精品欧美日韩精品| 免费观看在线日韩| 国产91精品成人一区二区三区| 亚洲avbb在线观看| 亚洲精品日韩av片在线观看| 日本撒尿小便嘘嘘汇集6| 久久热精品热| 1024手机看黄色片| 婷婷亚洲欧美| 日本a在线网址| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 乱码一卡2卡4卡精品| 亚洲熟妇熟女久久| 搞女人的毛片| 久久午夜福利片| 不卡一级毛片| 欧美3d第一页| 99久久中文字幕三级久久日本| 99久久精品一区二区三区| 天美传媒精品一区二区| 亚洲中文字幕日韩| xxxwww97欧美| 免费av毛片视频| 99热精品在线国产| 精品免费久久久久久久清纯| 亚洲电影在线观看av| 在线免费观看不下载黄p国产 | 国产高清三级在线| 极品教师在线免费播放| 一级黄色大片毛片| 无人区码免费观看不卡| 午夜福利欧美成人| 免费在线观看日本一区| 日本爱情动作片www.在线观看 | 欧美黑人欧美精品刺激| 亚洲性久久影院| 99久久无色码亚洲精品果冻| 日韩欧美 国产精品| 又爽又黄无遮挡网站| 99久久中文字幕三级久久日本| 成人精品一区二区免费| 亚洲av熟女| 日本黄色视频三级网站网址| xxxwww97欧美| 久久久久久久久大av| 美女被艹到高潮喷水动态| 狠狠狠狠99中文字幕| 精品一区二区三区视频在线观看免费| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影| 天堂av国产一区二区熟女人妻| 亚洲欧美日韩卡通动漫| 亚洲第一区二区三区不卡| 桃色一区二区三区在线观看| 亚洲av.av天堂| 天堂av国产一区二区熟女人妻| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 久久久久九九精品影院| 亚洲中文字幕一区二区三区有码在线看| 别揉我奶头~嗯~啊~动态视频| 久久久午夜欧美精品| 国产精品伦人一区二区| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3| 精品午夜福利在线看| 成人精品一区二区免费| 黄色视频,在线免费观看| 国产亚洲精品av在线| 我要搜黄色片| 亚洲经典国产精华液单| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 春色校园在线视频观看| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 人妻少妇偷人精品九色| 国产三级中文精品| 国内精品久久久久久久电影| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 国产 一区精品| 校园春色视频在线观看| 久久这里只有精品中国| 黄色丝袜av网址大全| 在线免费观看的www视频| 黄色欧美视频在线观看| 国产一区二区激情短视频| 国产精品人妻久久久久久| 超碰av人人做人人爽久久| 亚洲国产精品合色在线| 久久午夜福利片| 亚洲一区二区三区色噜噜| 国产麻豆成人av免费视频| 99国产极品粉嫩在线观看| 免费看av在线观看网站| 国产高清视频在线观看网站| 人妻制服诱惑在线中文字幕| 国产人妻一区二区三区在| 日本 av在线| 国产av麻豆久久久久久久| 欧美黑人巨大hd| 欧美又色又爽又黄视频| 国产又黄又爽又无遮挡在线| 我要搜黄色片| 99久久久亚洲精品蜜臀av| 国产精品久久电影中文字幕| 露出奶头的视频| 国产老妇女一区| 两人在一起打扑克的视频| 日韩欧美三级三区| 欧美日韩瑟瑟在线播放| 成人性生交大片免费视频hd| 九九久久精品国产亚洲av麻豆| 午夜免费男女啪啪视频观看 | 真实男女啪啪啪动态图| 天美传媒精品一区二区| 成人毛片a级毛片在线播放| 九九爱精品视频在线观看| 久久久精品欧美日韩精品| 18禁裸乳无遮挡免费网站照片| 免费看a级黄色片| 男女那种视频在线观看| 狠狠狠狠99中文字幕| 在线观看av片永久免费下载| 尤物成人国产欧美一区二区三区| 免费大片18禁| 色哟哟哟哟哟哟| 亚洲美女搞黄在线观看 | 18禁黄网站禁片午夜丰满| 久久久久久伊人网av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产色片| 免费av毛片视频| 人人妻人人看人人澡| a在线观看视频网站| 一级a爱片免费观看的视频| a级一级毛片免费在线观看| 18禁裸乳无遮挡免费网站照片| 91av网一区二区| 啦啦啦韩国在线观看视频| 国模一区二区三区四区视频| 亚洲自拍偷在线| 联通29元200g的流量卡| 天天躁日日操中文字幕| 91午夜精品亚洲一区二区三区 | 国产精品自产拍在线观看55亚洲| 永久网站在线| 日本三级黄在线观看| 在线观看美女被高潮喷水网站| 一进一出抽搐gif免费好疼| 高清在线国产一区| 嫩草影院新地址|