• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    原位合成鈷/還原氧化石墨烯納米粒子催化氨硼烷制氫

    2014-09-17 07:00:00楊宇雯盧章輝陳祥樹
    物理化學(xué)學(xué)報(bào) 2014年6期
    關(guān)鍵詞:江西師范大學(xué)劉建華化工學(xué)院

    楊宇雯 馮 剛 盧章輝,* 胡 娜 張 飛 陳祥樹,*

    (1江西師范大學(xué)化學(xué)化工學(xué)院,南昌330022;2中國石化上海石油化工研究院,上海201208)

    1 Introduction

    Secure storage and effective release of hydrogen are very important in the application of hydrogen energy.1,2Various hydrogen storage approaches are currently being investigated,including metal hydrides,3sorbent materials,4and chemical hydride systems.5Boron-nitrogen containing compounds have attracted much attention recently for using as hydrogen storage materials due to their suitable thermodynamic and kinetic properties of hydrogen release.6Among them,ammonia borane(NH3BH3,AB)appears to be an appropriate hydrogen storage material because of its high hydrogen content,high stability at room temperature,and nontoxicity.7-9With appropriate catalyst,hydrolysis of AB can release as many as 3 mol of hydrogen per mol of AB.10-12So far a lot of catalysts have been tested for hydrogen generation from the hydrolysis of AB,13-30among which Pt shows the highest activity.17,22,23However,concerning the element abundance and related economic issues,it is a desired goal to prepare low-cost catalysts with high catalytic activity for the terminal practical application of this reaction system in the fuel cell.

    Reduced graphene oxide(RGO),a new class two-dimensional carbon nanostructure with one-atom thickness,has many merits such as large theoretical specific surface area,31high intrinsic mobility,32and large density of free electrons,33could be an ideal substrate for growing and anchoring metal NPs.34Up to date,modification of RGO sheets with metallic NPs is mainly synthesized through one-step and two-step methods.35,36The metallic ions and graphene oxide(GO)sheets are reduced at the same time in the former method,while in the latter,GO is firstly reduced and then the metallic ions are deposited on RGO sheets.In the latter way,the complicated reaction steps,long reaction time,and stringent reaction conditions(high temperature,high vacuum,microwave,ultrasound,UV irradiation,etc.)are usually unavoidable.37-39Recently,RGO-supported Ru@Ni,Ag@M(M=Co,Ni,Fe)NPs have been prepared by one-step method under ambient condition and the catalysts exhibit superior catalytic activities.18,21,40However,developing an efficient strategy for one-step in situ synthesis of RGO-supported metal NPs with low-cost and high catalytic activities is still desirable.

    Chemical reduction methods provide much greater control over the size and composition,which are widely applied to synthesize metal NPs in solution phase.41This method involves reduction of metal ions in the presence of capping agent using reductant like NaBH4.42When NPs are employed as a catalyst,the capping agent present on the surface diminishes the activity to some extent by blocking some of the active sites.43However,without capping agent,nanoparticles are difficult to synthesize because growth of in situ generated nuclei cannot be halted.Therefore,it is great practical value to synthesis of NPs without using any external capping agent.

    Herein,RGO-supported Co NPs were synthesized by using a simple and low-cost one-step approach without using any external capping agent and assistance of high energy.We employed AB itself(much milder than NaBH4)as the reductant during the reactions.The as-synthesized Co/RGO nanocatalysts were used as catalysts in the dehydrogenation and hydrolysis ofAB at room tempertature.

    2 Experimental

    2.1 Graphite oxide preparation

    Graphite oxide was made by a modified Hummers method.44,45Briefly,natural graphite powder(325 mesh)was placed into an 80°C solution of concentrated H2SO4(30 mL),K2S2O8(2.5 g),and P2O5(2.5 g).The mixture was carefully diluted with distilled water,and filtered using a 0.2 micron Nylon Millipore filter to remove the residual acid.The product was dried at 80°C under ambient condition overnight.The pre-oxidized graphite was put into cold concentrated H2SO4,then KMnO4was added gradually under stirring and the temperature of the mixture was kept below 20 °C for 2.5 h.The mixture was stirred at 35 °C for 4 h.Afterwards,250 mL of de-ionized water was added and the suspension was stirred at 100°C for another 2 h.Subsequently,additional 300 mL of de-ionized water was added.Shortly after that,7 mL of 30%(w)H2O2was added to the mixture to terminate the reaction.The suspension was then repeatedly centrifuged and washed first with 5%(w)HCl solution and then with water.Exfoliation of graphite oxide to GO was achieved by ultrasonication of the dispersion for 30 min.46

    2.2 In situ synthesis of Co/RGO catalysts and their catalytic studies of hydrolytic dehydrogenation of AB

    8 mL aqueous solution containing CoCl2(24.03 mg)and GO solution(1.07 g,containing 0.412%(w)GO)was kept in a 25 mL two-necked round-bottom flask.One neck was connected to a gas burette,and the other was connected to a pressureequalization funnel to introduce 2 mL of aqueous solution con-taining 34.3 mg(1 mmol)AB.The reactions were started when the aqueous AB solution was added to the flask with vigorously stirring.The evolution of gas was monitored using the gas burette.After the hydrogen generation reaction was completed,34.3 mg(1 mmol)AB was added to the flask,the evolution of gas was monitored.A water bath was used to control the temperature of the reaction solution(the amount of AB in the processes of in situ synthesis of Co/RGO catalyst and hydrolytic dehydrogenation are the same,1 mmol AB was used as reductant in the first process and another 1 mmol AB was used for the hydrolytic dehydrogenation test).

    For comparision,GO and Co NPs were synthesized using AB as reductant,RGO and Co/RGO were synthesized using NaBH4as reductant.The as-synthesized catalysts were used for the hydrolysis ofAB.

    2.3 Kinetic studies of hydrolytic dehydrogenation of AB catalyzed by Co/RGO

    In order to establish the rate law for catalytic hydrolysis of AB using Co/RGO as catalyst,three different sets of experiments were performed in the same way described in Section 2.2.In the first set of experiment,the different concentrations of Co(0.04,0.06,0.08,and 0.10 mmol)were performed at room temperature(25°C)while the AB concentration was kept the same(1 mmol).In the second set of experiment,the different concentrations of AB(1.0,1.5,2.0,and 2.5 mmol)were performed at room temperature(25°C)while the Co concentration was kept the same(0.1 mmol).Finally,temperature was varied at 25,30,35,and 40°C while the molar ratio of metal/AB(0.1 mmol Co and 1 mmol AB)was kept constant of 0.1 to obtain the activation energy(Ea).

    2.4 Stability test

    For stability test,catalytic reactions were repeated 5 times by adding other equivalent of AB(1 mmol)into the mixture after the previous cycle.The molar ratio of metal/AB was kept at 0.1.

    2.5 Catalyst characterization

    Transmission electron microscope(TEM),energy-diepersive X-ray spectroscopy(EDS),and selected area electron diffraction(SAED)were observed using FEI Tecnai G20 U-Twin TEM instrument operating at 200 kV.Powder X-ray diffraction(XRD)studies were performed on a Rigaku RINT-22005 X-ray diffractometer with a Cu Kαsource(40 kV,20 mA).X-ray photoelectron spectroscopy(XPS)measurement was performed with a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer.Fourier transform infrared(FTIR)spectra were collected at room temperature by using a Thermo Nicolet 870 instrument using KBr discs in the 500-4000 cm-1region.Raman spectrometer was carried out using a confocal Raman microscope(LabRAM HR).

    3 Results and discussion

    3.1 Synthesis and characterization

    As well known,the Co(II)cations were difficult to reduce to Co by AB(a mild reducing agent)at room temperature,10,14which is also evidenced in the present experiments(Fig.S1(see Supporting Information)).Interestingly,in the presence of GO,the Co(II)cations could be reduced to Co by using AB as a reductant within a short period(Fig.S1).The decrease of induction period may result from the charge transfer across the graphene oxide-cobalt interface due to the graphene oxide-cobalt spacing and Fermi lever difference.21The RGO-supported Co(Co/RGO)NPs were successfully synthesized by reducing a mixture containing CoCl2and GO with AB as the sole reductant.The microstructures of the samples were characterized by TEM,high-resolution TEM(HRTEM),EDS,and SAED(Fig.1).As shown in Fig.1(a),the GO sheets are transparent and corrugated together.The TEM images of Co/RGO(Fig.1(b,c))show that most of the Co NPs lay flat on the RGO.Moreover,the aggregation of Co NPs was found in Co/RGO,which could be due to the magnetic property of Co NPs.The EDS spectrum of the specimen shows the presence of Co(Fig.S2,which was taken from the specially marked area in the TEM image(Fig.1(c)).A close examination of the catalysts by HRTEM(Fig.1(d)),the d-spacing of the particle lattice is~0.204 nm,which is consistent with the SAED pattern(4.9 nm-1in Fig.1(d)inset)and the(111)plane of cubic Co(JCPDS No.15-0806).Moreover,the corresponding SAED pattern demonstrates the low degree of crystallinity of Co.

    Fig.2 shows the powder XRD patterns of GO and Co/RGO.The diffraction peak at around 44.23°attributed to Co(111)is observed in Co/RGO,which is consistent with the HRTEM result(Fig.1(d)).Furthermore,the most intense peak at around 11.5°corresponding to the(001)reflection of GO disappeared,while a new peak at around 24.58°was observed in Co/RGO,indicating that GO is successfully reduced to the RGO.

    Fig.1 (a)TEM images of GO;(b,c)TEM images of Co/RGO nanocatalysts;(d)HRTEM image of Co/RGO nanocatalysts and SAED pattern(inset)

    Fig.2 XRD patterns of GO and Co/RGO nanocatalyst

    Co/RGO was further characterized by XPS to investigate the surface nature of the Co NPs and RGO(Fig.3).Compared with the peaks of GO(Fig.3(A)),the intensities of oxygen containing functional groups(such as―C―O,―C=O,―COO)in Co/RGO(Fig.3(B))decrease significantly,also revealing the reduction of GO to RGO.Fig.3(C)shows the peaks of Co 2p.The peak at 778.5 eV stands for Co0,the two peaks at 780.6 and 786.7 eV stand for oxidized Co.The formation of the oxidized Co most likely occurs during the sample preparation process for XPS measurements.The presence of carbon-oxygen bonding and oxidized Co are also evident in the O 1s spectrum of Co/RGO(Fig.3(D)).The O 1s spectrum shows peaks at 534.0,533.0,531.6,and 530.4 eV,which could be assigned to―COO,―C―O,―C=O,oxidized Co.

    Fig.3 XPS spectra of C 1s of(A)GO and(B)Co/RGO,(C)Co 2p of Co/RGO,and(D)O 1s of Co/RGO

    As shown in Fig.4(a),two peaks centered at 1316.92 and 1584.57 cm-1appear in the Raman spectra of the GO and Co/RGO,corresponding to the D and G bands of the carbon products,respectively.The D band is an indication of disorder of GO originating from defects associated with vacancies,grain boundaries,and amorphous carbon species,while the G band is ascribed to the E2gphonon of C sp2atoms in a 2-dimensional hexagonal lattice.The peak intensity ratio of the D to G band(ID/IG)is generally accepted to reflect the degree of graphitization of carbonaceous materials and defect density.After loading of Co NPs,the ID/IGof GO is increased from 1.2 to 1.6.The relative changes in the D to G peak intensity ratio also confirm the reduction of GO during the in situ fabrication.

    Fig.4(b)shows the FTIR spectra of GO and Co/RGO.As for the FTIR spectrum of GO,the broad and intense band at 3401.9 cm-1is ascribed to the stretching of O―H.The weak band at 1723.6 cm-1is assigned to C=O stretching vibration in carbonyl or carboxylic groups.The peak at 1621.6 cm-1is pertinent to the vibrations of the absorbed water molecules and the skeletal vibration of unoxidized graphitic domains.The bands at 1399.2 and 1074.4 cm-1are associated with the O―H vibration in carboxyl acid and the deformation of the C―O band,respectively.After the formation of Co/RGO,the disappearance of C=O at 1723.6 cm-1,C―OH peak at 1399.2 cm-1,and the C―O peak at 1074.4 cm-1of GO further indicates that GO was reduced to RGO during the process.

    3.2 Catalytic activities for hydrolysis of AB

    As shown in Fig.5,no hydrogen generation was observed for GO and RGO,suggesting that GO and RGO have no catalytic activity for the hydrolysis of AB.The as-synthesized Co/RGO generates a stoichiometric amount of hydrogen(H2/NH3BH3molar ratio:3.0)in 4.37 min with a turnover frequency(TOF)value of 6.86 mol·mol-1·min-1.The as-synthesized Co/RGO nanocatalysts display much better catalytic activities than pure Co NPs.The enhanced catalytic activity of Co/RGO for AB hydrolysis reaction should result from the cooperative effect between RGO and Co NPs,which is mainly caused by the strongly interfacial interaction between RGO and Co NPs during the catalytic process.27Compared with pre-catalysts reduced by NaBH4(Co/RGO(SB)),the as-synthesized nanocatalysts generated by AB(Co/RGO(AB))exhibit a superior catalytic activity(Fig.5 and Fig.S3),indicating that AB can be used as both a potential hydrogen storage material and an efficient reducing agent.

    Fig.4 (a)Raman and(b)FTIR spectra of the GO and Co/RGO

    Fig.5 Plots of hydrogen productivity vs time for hydrolysis of ammonia borane(0.10 mol·L-1,10 mL)catalyzed by Co/RGO reduced byAB and NaBH4(SB)respectively,Co NPs reduced byAB,GO,and RGO

    Fig.S4(a)shows the plots of hydrogen generation from the hydrolysis of AB solution in the presence of different Co/RGO concentration at 25°C.The initial rate of hydrogen generation was determined from the initial nearly linear portion of each plot.Fig.S4(b)shows the plot of hydrogen generation rate versus Co/RGO concentration in a logarithmic scale.A slope of 1.05 in the inset indicates that the hydrolysis reaction catalyzed by Co/RGO is first-order in catalyst concentration.

    The effect of substrate concentration on the hydrogen generation rate was also studied by performing a series of experiments starting with different initial concentrations of AB while keeping the catalyst concentration at 10 mmol·L-1Co at room temperature(Fig.6).It can be clearly concluded by the slope of the line in Fig.6(b)that the hydrogen generation rate from the catalytic hydrolysis of AB is practically independent from AB concentration.In other words,the hydrolysis of AB catalyzed by Co/RGO is zero order with respect to the substrate concentration.

    Fig.6 Plots of(a)volume of hydrogen generated vs time,(b)hydrogen generation rate versus the concentration ofAB(both in logarithmic scale)

    Fig.7 (a)Plots of volume of hydrogen generated vs time for Co/RGO catalyzed hydrolysis ofAB at different temperatures(nCo/nAB=0.1);(b)Arrhenius plot obtained from the data of Fig.7(a)

    In order to get the activation energy(Ea)of the hydrolysis of AB catalyzed by Co/RGO,the hydrolytic reactions at the temperature range of 298-313 K were carried out.The values of rate constant k at different temperatures were calculated from the slope of the linear part of each plot from Fig.7(a).The Arrhenius plot of lnk vs 1/T for the catalyst is plotted in Fig.7(b),from which the apparent activation energy was determined to be approximately 27.10 kJ·mol-1,being lower than most ofthe reported Eavalues(Table 1),indicating the superior catalytic performance of the as-synthesized Co/RGO nanocatalysts.

    Table 1 Values of activation energy(Ea)for hydrolysis ofAB catalyzed by different catalysts

    Fig.8 Plots of hydrogen productivity vs time for Co/RGO catalyzed hydrolysis ofAB(0.10 mol·L-1,10 mL)from 1st to 5th cycles(nCo/nAB=0.1)

    3.3 Reusability and recycle ability

    The reusability is of great importance for the practical application of catalyst.The recyclability of Co/RGO nanocatalyst up to the fifth run for hydrolysis of AB is shown in Fig.8.The complete release of hydrogen is achieved in each of the subsequent catalytic runs in the hydrolysis of AB catalyzed by Co/RGO nanocatalysts.This indicates that Co/RGO can be repeatedly used as active catalyst in the hydrolysis of AB.The observed decrease in catalytic activity in subsequent runs may be attributed to the passivation of nanocatalyst surface by the precipitation of metaborate products.22Moreover,the in situ synthesized Co/RGO nanocatalysts are magnetic and thus can be separated from the reaction solution by an external magnet(inset in Fig.8),which makes the practical recycling application of nanocatalysts more convenient.

    4 Conclusions

    In summary,we have developed a facial in situ one-step method for the synthesis of magnetic RGO-supported Co NPs using AB as the sole reductant.The as-synthesized nanocatalysts exhibit a high catalytic activity for hydrolytic dehydrogenation of AB with the activation energy Eaof 27.10 kJ·mol-1,which is lower than most of the reported data for the same reaction using non-noble metal catalysts and even some noble metal containing catalysts.Moreover,the Co/RGO nanocatalysts show good durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB due to the magnetic property from Co,which makes the practical recycling application of the catalyst more convenient.This simple synthetic method can be extended to the other RGO-based metallic systems for more application.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/35104634

    (2)Grochala,W.;Edwards,P.P.Chem.Rev.2004,104,1283.doi:10.1021/cr030691s

    (3) Graetz,J.Chem.Soc.Rev.2009,38,73.doi:10.1039/b718842k

    (4)Suh,M.P.;Park,H.J.;Prasad,T.K.;Lim,D.W.Chem.Rev.2012,112,782.doi:10.1021/cr200274s

    (5) Staubitz,A.;Robertson,A.P.M.;Manners,I.Chem.Rev.2010,110,4079.doi:10.1021/cr100088b

    (6) Chen,P.;Zhu,M.Mater.Today 2008,11,36.

    (7) Lu,Z.H.;Xu,Q.Funct.Mater.Lett.2012,5,1230001.doi:10.1142/S1793604712300010

    (8)Yadav,M.;Xu,Q.Energy Environ.Sci.2012,5,9698.doi:10.1039/c2ee22937d

    (9)Lu,Z.H.;Yao,Q.L.;Zhang,Z.J.;Yang,Y.W.;Chen,X.S.J.Nanomater.2014,729029.

    (10) Rakap,M.;Kalu,E.E.;?zkar,S.J.Power Sources 2012,210,184.doi:10.1016/j.jpowsour.2012.03.025

    (11)Yan,J.M.;Wang,Z.L.;Wang,H.L.;Jiang,Q.J.Mater.Chem.2012,22,10990.doi:10.1039/c2jm31042b

    (12)Yang,Y.W.;Zhang,F.;Wang,H.L.;Yao,Q.L.;Chen,X.S.;Lu,Z.H.J.Nanomater.2014,294530.

    (13)Cheng,F.Y.;Ma,H.;Li,Y.M.;Chen,J.Inorg.Chem.2007,46,788.doi:10.1021/ic061712e

    (14) Basu,S.;Brockman,A.;Gagare,P.;Zheng,Y.;Ramachandran,P.V.;Delgass,W.N.;Gore,J.P.J.Power Sources 2009,188,238.doi:10.1016/j.jpowsour.2008.11.085

    (15)Du,Y.S.;Cao,N.;Yang,L.;Luo,W.;Cheng,G.Z.New J.Chem.2013,37,3035.doi:10.1039/c3nj00552f

    (16)Xi,P.X.;Chen,F.J.;Xie,G.Q.;Ma,C.;Liu,H.Y.;Shao,C.W.;Wang,J.;Xu,Z.H.;Xu,X.M.;Zeng,Z.Z.Nanoscale 2012,4,5597.doi:10.1039/c2nr31010d

    (17) Chandra,M.;Xu,Q.J.Power Sources 2007,168,135.doi:10.1016/j.jpowsour.2007.03.015

    (18)Yang,L.;Luo,W.;Cheng,G.E.ACS Appl.Mater.Interfaces 2013,5,8231.doi:10.1021/am402373p

    (19) Rachiero,G.P.;Demirci,U.B.;Miele,P.Int.J.Hydrog.Energy 2011,36,7051.doi:10.1016/j.ijhydene.2011.03.009

    (20)Simagia,V.I.;Komova,O.V.;Ozerova,A.M.;Netskina,O.V.;Odegova,G.V.;Kelleman,D.G.;Bulavcheoko,O.V.;Ishchenko,A.V.Appl.Catal.A:Gen.2011,384,86.

    (21)Yan,L.;Su,J.;Meng,X.Y.;Luo,W.;Cheng,G.Z.J.Mater.Chem.A 2013,1,10016.doi:10.1039/c3ta11835e

    (22) Lu,Z.H.;Li,J.P.;Zhu,A.L.;Yao,Q.L.;Huang,W.;Zhou,R.Y.;Zhou,R.F.;Chen,X.S.Int.J.Hydrog.Energy 2013,38,5330.doi:10.1016/j.ijhydene.2013.02.076

    (23)Lu,Z.H.;Jiang,H.L.;Yadav,M.;Aranishi,K.;Xu,Q.J.Mater.Chem.2012,22,5065.doi:10.1039/c2jm14787d

    (24) Rakap,M.;?zkar,S.Int.J.Hydrog.Energy 2010,35,3341.doi:10.1016/j.ijhydene.2010.01.138

    (25) Metin,?.;?zkar,S.Int.J.Hydrog.Energy 2011,36,1424.

    (26)Yao,Q.L.;Shi,W.M.;Feng,G.;Lu,Z.H.;Zhang,X.L.;Tao,D.J.;Kong,D.J.;Chen,X.S.J.Power Sources 2014,257,293.doi:10.1016/j.jpowsour.2014.01.122

    (27)Yang,Y.W.;Lu,Z.H.;Hu,Y.J.;Zhang,Z.J.;Shi,W.M.;Chen,X.S.;Wang,T.T.RSC Advances 2014,4,13749.doi:10.1039/c3ra47023g

    (28) Chandra,M.;Xu,Q.J.Power Sources 2006,156,190.doi:10.1016/j.jpowsour.2005.05.043

    (29) Rakap,M.;Kalu,E.E.;?zkar,S.Int.J.Hydrog.Energy 2011,36,1448.doi:10.1016/j.ijhydene.2010.10.097

    (30)Eom,K.S.;Cho,K.W.;Kwon,H.S.Int.J.Hydrog.Energy 2010,35,181.

    (31) Garaj,S.;Hubbard,W.;Reina,A.;Kong,J.;Branton,D.;Golovchenko,J.A.Nature 2010,467,190.doi:10.1038/nature09379

    (32) Lee,C.;Wei,X.D.;Kysar,J.W.;Hone,J.Science 2008,321,385.doi:10.1126/science.1157996

    (33)Choi,B.G.;Hong,J.;Park,Y.C.;Jung,D.H.;Hong,W.H.;Hammond,P.T.;Park,H.S.ACS Nano 2011,5,5167.doi:10.1021/nn2013113

    (34) Hu,Y.J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26(8),2073.[胡耀娟,金 娟,張 卉,吳 萍,蔡稱心.物理化學(xué)學(xué)報(bào),2010,26(8),2073.]doi:10.3866/PKU.WHXB20100812

    (35)Li,S.M.;Wang,B.;Liu,J.H.;Yu,M.;An,J.W.Acta Phys.-Chim.Sin.2012,28(11),2754.[李松梅,王 博,劉建華,于 美,安軍偉.物理化學(xué)學(xué)報(bào),2012,28(11),2754.]doi:10.3866/PKU.WHXB201208292

    (36)Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S.G.Acta Phys.-Chim.Sin.2011,27(4),858.[李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報(bào),2011,27(4),858.]doi:10.3866/PKU.WHXB20110411

    (37)Mazumder,V.;Chi,M.F.;More,K.L.;Sun,S.H.Angew Chem.Int.Edit.2010,49,9368.doi:10.1002/anie.201003903

    (38) Vinodgopal,K.;Neppolian,B.;Lightcap,I.V.;Grieser,F.;Ashokkumar,M.;Kamat,P.V.J.Am.Chem.Soc.2010,1,1987.

    (39)Liu,C.B.;Wang,K.;Luo,S.L.;Tang,Y.H.;Chen,L.Y.Small 2011,7,1203.doi:10.1002/smll.v7.9

    (40)Cao,N.;Su,J.;Luo,W.;Cheng,G.Z.Int.J.Hydrog.Energy 2014,39,426.doi:10.1016/j.ijhydene.2013.10.059

    (41) Roucoux,A.;Schulz,J.;Patin,H.Chem.Rev.2002,102,3757.doi:10.1021/cr010350j

    (42)Yang,L.;Cao,N.;Du,C.;Dai,H.M.;Hu,K.;Luo,W.;Cheng,G.Z.Materials Letters 2014,115,113.doi:10.1016/j.matlet.2013.10.039

    (43)Astruc,D.;Lu,F.;Aranzaes,J.R.Angew Chem.Int.Edit.2005,44,7852.

    (44)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.doi:10.1021/ja01539a017

    (45) Kovtyukhova,N.I.;Ollivier,P.J.;Martin,B.R.;Mallouk,T.E.;Chizhik,S.A.;Buzaneva,E.V.;Gorchinskiy,A.D.Chem.Mater.1999,11,771.doi:10.1021/cm981085u

    (46) Chen,H.Q.;Müller,M.B.;Gilmore,K.J.;Wallace,G.G.;Li,D.Adv.Mater.2008,20,3557.doi:10.1002/adma.200800757

    猜你喜歡
    江西師范大學(xué)劉建華化工學(xué)院
    勞動贊歌
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    搟面條
    掉鞭炮
    手影
    Identity-based proxy multi-signature applicable to secure E-transaction delegations①
    《化工學(xué)報(bào)》贊助單位
    對旅游專業(yè)外語的理想教學(xué)模式的思考——以江西師范大學(xué)為例
    404 Not Found

    404 Not Found


    nginx
    亚洲欧美日韩卡通动漫| 人人妻人人澡欧美一区二区| 岛国在线观看网站| 看片在线看免费视频| 亚洲人成网站高清观看| 日韩精品中文字幕看吧| 日韩精品青青久久久久久| 欧美黄色片欧美黄色片| 久久精品91无色码中文字幕| 级片在线观看| 在线观看66精品国产| 日韩免费av在线播放| 女人高潮潮喷娇喘18禁视频| 国产主播在线观看一区二区| 精华霜和精华液先用哪个| 观看美女的网站| 精品国产美女av久久久久小说| 久久99热这里只有精品18| 欧美bdsm另类| 高清日韩中文字幕在线| 亚洲av电影在线进入| 欧美在线一区亚洲| 90打野战视频偷拍视频| 少妇高潮的动态图| 一个人看的www免费观看视频| av天堂中文字幕网| 三级男女做爰猛烈吃奶摸视频| 久久久久久久亚洲中文字幕 | 岛国视频午夜一区免费看| 婷婷六月久久综合丁香| 国产蜜桃级精品一区二区三区| 久久久久久久久久黄片| 十八禁网站免费在线| 亚洲av电影在线进入| 免费人成视频x8x8入口观看| 99在线人妻在线中文字幕| 深夜精品福利| 麻豆国产97在线/欧美| 国产私拍福利视频在线观看| 亚洲精品成人久久久久久| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 国产高潮美女av| 久久久久久久久久黄片| 亚洲人与动物交配视频| 天堂av国产一区二区熟女人妻| 亚洲成人久久性| 五月玫瑰六月丁香| 女警被强在线播放| 一本综合久久免费| 精品国产三级普通话版| 99久久无色码亚洲精品果冻| 欧美日韩亚洲国产一区二区在线观看| 波野结衣二区三区在线 | 国产麻豆成人av免费视频| 窝窝影院91人妻| 我的老师免费观看完整版| 天堂动漫精品| 午夜精品在线福利| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 国产精品精品国产色婷婷| 在线观看免费午夜福利视频| 少妇的逼水好多| 亚洲专区中文字幕在线| 深爱激情五月婷婷| 色视频www国产| 国产亚洲精品一区二区www| 欧美日本亚洲视频在线播放| 国产精品精品国产色婷婷| 午夜精品在线福利| 久久九九热精品免费| 99视频精品全部免费 在线| 国产伦在线观看视频一区| 久久精品亚洲精品国产色婷小说| www日本在线高清视频| 小说图片视频综合网站| 伊人久久大香线蕉亚洲五| 啦啦啦免费观看视频1| 免费电影在线观看免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲av一区综合| 亚洲五月天丁香| 男人的好看免费观看在线视频| 51国产日韩欧美| 蜜桃亚洲精品一区二区三区| 成人国产综合亚洲| 久久久久久久久久黄片| 欧美色视频一区免费| 日韩大尺度精品在线看网址| 人人妻,人人澡人人爽秒播| 中文字幕熟女人妻在线| 熟女少妇亚洲综合色aaa.| 婷婷亚洲欧美| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 国产午夜精品论理片| 美女免费视频网站| 18美女黄网站色大片免费观看| 亚洲人成网站在线播| 黄色日韩在线| 国产黄a三级三级三级人| 亚洲成人久久爱视频| 国产亚洲精品av在线| 亚洲国产精品999在线| 女人十人毛片免费观看3o分钟| 成人亚洲精品av一区二区| 欧美日韩精品网址| 天堂√8在线中文| 在线免费观看不下载黄p国产 | 国产97色在线日韩免费| 成年版毛片免费区| 亚洲av美国av| 亚洲一区高清亚洲精品| 变态另类成人亚洲欧美熟女| 国产黄a三级三级三级人| x7x7x7水蜜桃| 又紧又爽又黄一区二区| or卡值多少钱| 亚洲av电影不卡..在线观看| 亚洲 欧美 日韩 在线 免费| 丰满乱子伦码专区| 亚洲avbb在线观看| 免费在线观看影片大全网站| 免费大片18禁| 国产高清三级在线| 国产高清视频在线播放一区| 69av精品久久久久久| 国产综合懂色| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 国产精品野战在线观看| 国产成人系列免费观看| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 亚洲精品色激情综合| 操出白浆在线播放| 婷婷亚洲欧美| 哪里可以看免费的av片| 蜜桃亚洲精品一区二区三区| 一个人看视频在线观看www免费 | 高清在线国产一区| 亚洲精品亚洲一区二区| 搡老熟女国产l中国老女人| 国产高清视频在线播放一区| 18禁在线播放成人免费| 欧美日韩亚洲国产一区二区在线观看| 91久久精品电影网| 色播亚洲综合网| 国产精品一区二区免费欧美| 午夜影院日韩av| 久久亚洲真实| 在线国产一区二区在线| 久久精品国产亚洲av香蕉五月| 毛片女人毛片| 国产精品乱码一区二三区的特点| 亚洲精品美女久久久久99蜜臀| e午夜精品久久久久久久| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 亚洲一区高清亚洲精品| 日本成人三级电影网站| 少妇的逼好多水| 最新在线观看一区二区三区| av福利片在线观看| 亚洲狠狠婷婷综合久久图片| 男女那种视频在线观看| 搡老岳熟女国产| 十八禁人妻一区二区| a级一级毛片免费在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 制服人妻中文乱码| 成人国产一区最新在线观看| 99riav亚洲国产免费| 国产精品野战在线观看| 国产一区二区在线观看日韩 | 一个人看视频在线观看www免费 | 91九色精品人成在线观看| 色噜噜av男人的天堂激情| 国产精华一区二区三区| 国产精品乱码一区二三区的特点| 十八禁网站免费在线| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸| or卡值多少钱| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 国模一区二区三区四区视频| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 午夜福利免费观看在线| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 美女cb高潮喷水在线观看| 国产亚洲精品综合一区在线观看| 色吧在线观看| 免费看日本二区| 中文亚洲av片在线观看爽| 国产一区二区三区在线臀色熟女| 天堂影院成人在线观看| www日本黄色视频网| 久久性视频一级片| 国产精品国产高清国产av| 十八禁网站免费在线| 国产单亲对白刺激| 91久久精品电影网| 久久久久九九精品影院| 看黄色毛片网站| 国产精品av视频在线免费观看| 成人性生交大片免费视频hd| 国产黄片美女视频| 偷拍熟女少妇极品色| 性欧美人与动物交配| 国产精品乱码一区二三区的特点| 97人妻精品一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 久久久国产成人精品二区| 女同久久另类99精品国产91| 国产高清有码在线观看视频| 久久久久久久久中文| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 亚洲国产精品sss在线观看| 国产高清激情床上av| 国产伦人伦偷精品视频| 老司机福利观看| 99国产精品一区二区三区| 国产极品精品免费视频能看的| 男人舔女人下体高潮全视频| 午夜福利免费观看在线| 一进一出抽搐动态| 国产成人av激情在线播放| 国产精品久久久久久久电影 | 欧美成狂野欧美在线观看| 欧美大码av| 日本成人三级电影网站| 男女做爰动态图高潮gif福利片| а√天堂www在线а√下载| 国产日本99.免费观看| 日韩欧美在线乱码| 嫩草影视91久久| 亚洲av成人av| 一级作爱视频免费观看| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 精品国产超薄肉色丝袜足j| av在线天堂中文字幕| 日本一本二区三区精品| 五月伊人婷婷丁香| 午夜激情欧美在线| 欧美日韩黄片免| 亚洲av熟女| 色综合婷婷激情| 88av欧美| 最新美女视频免费是黄的| 日韩欧美精品v在线| 一级作爱视频免费观看| 欧美日韩黄片免| 母亲3免费完整高清在线观看| 欧美高清成人免费视频www| 99热只有精品国产| 亚洲天堂国产精品一区在线| 国产高清激情床上av| 国产淫片久久久久久久久 | 亚洲电影在线观看av| 五月玫瑰六月丁香| 又粗又爽又猛毛片免费看| 香蕉丝袜av| 99热这里只有是精品50| 男女做爰动态图高潮gif福利片| 久99久视频精品免费| 757午夜福利合集在线观看| 国产精品爽爽va在线观看网站| 男女那种视频在线观看| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 久9热在线精品视频| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 国产精品日韩av在线免费观看| 99久久成人亚洲精品观看| 午夜影院日韩av| 国产精品美女特级片免费视频播放器| 国产99白浆流出| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 69人妻影院| 人人妻人人看人人澡| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件 | 亚洲精品一卡2卡三卡4卡5卡| 天美传媒精品一区二区| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站 | 免费无遮挡裸体视频| 极品教师在线免费播放| 久久久久免费精品人妻一区二区| 听说在线观看完整版免费高清| 国产欧美日韩精品一区二区| 男女床上黄色一级片免费看| 九色国产91popny在线| 久久这里只有精品中国| 成人亚洲精品av一区二区| 日韩欧美精品v在线| 在线免费观看不下载黄p国产 | 欧美日韩精品网址| 久久久久久久精品吃奶| 手机成人av网站| 日韩欧美免费精品| 国产亚洲精品av在线| 国产精品三级大全| 丁香六月欧美| 变态另类丝袜制服| 99精品在免费线老司机午夜| 女生性感内裤真人,穿戴方法视频| 夜夜躁狠狠躁天天躁| 色综合亚洲欧美另类图片| 91麻豆av在线| 久久精品国产自在天天线| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 国产成人欧美在线观看| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 波野结衣二区三区在线 | 午夜老司机福利剧场| 亚洲中文日韩欧美视频| 色在线成人网| 18美女黄网站色大片免费观看| 日日夜夜操网爽| 最好的美女福利视频网| 18美女黄网站色大片免费观看| 国产激情偷乱视频一区二区| 欧美av亚洲av综合av国产av| 午夜老司机福利剧场| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 国产成人av教育| 婷婷亚洲欧美| 哪里可以看免费的av片| 欧美成人免费av一区二区三区| 精品一区二区三区人妻视频| 少妇裸体淫交视频免费看高清| 国产在线精品亚洲第一网站| 精品久久久久久,| 欧美色视频一区免费| 黄色成人免费大全| 嫁个100分男人电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 成年版毛片免费区| 久久久久国内视频| 999久久久精品免费观看国产| 免费观看的影片在线观看| 一级黄色大片毛片| 高清毛片免费观看视频网站| 国产一级毛片七仙女欲春2| 桃红色精品国产亚洲av| 精品一区二区三区人妻视频| 可以在线观看的亚洲视频| 两个人的视频大全免费| 18禁黄网站禁片午夜丰满| 欧美一区二区精品小视频在线| 日韩亚洲欧美综合| 久久精品人妻少妇| 美女高潮的动态| 日韩欧美精品v在线| 亚洲精品456在线播放app | 欧美日韩黄片免| 日韩亚洲欧美综合| 亚洲精品亚洲一区二区| 97超级碰碰碰精品色视频在线观看| 人人妻人人澡欧美一区二区| 欧美成人免费av一区二区三区| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 欧美在线黄色| 久久伊人香网站| 国产精品av视频在线免费观看| 国内久久婷婷六月综合欲色啪| 久久这里只有精品中国| 最新美女视频免费是黄的| 88av欧美| 真人做人爱边吃奶动态| 日韩欧美免费精品| 99久久九九国产精品国产免费| 久久亚洲真实| 动漫黄色视频在线观看| 18禁黄网站禁片午夜丰满| 久久久久亚洲av毛片大全| 最新在线观看一区二区三区| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三| 久久性视频一级片| 中文字幕av成人在线电影| 一级黄片播放器| 中文字幕av成人在线电影| 免费在线观看亚洲国产| 18禁黄网站禁片免费观看直播| 精品99又大又爽又粗少妇毛片 | 在线观看av片永久免费下载| 国产亚洲欧美98| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆 | 亚洲国产精品久久男人天堂| 日韩欧美三级三区| 精品久久久久久久人妻蜜臀av| 亚洲狠狠婷婷综合久久图片| 岛国在线观看网站| 国产成人影院久久av| 老汉色∧v一级毛片| 国产成人av教育| 日本五十路高清| 桃色一区二区三区在线观看| 久久久久久人人人人人| 国产精华一区二区三区| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 欧美国产日韩亚洲一区| 搡老岳熟女国产| 三级毛片av免费| 亚洲 欧美 日韩 在线 免费| 欧美成人a在线观看| 在线观看免费视频日本深夜| 亚洲人成电影免费在线| 国产男靠女视频免费网站| 婷婷丁香在线五月| 久久久成人免费电影| xxx96com| 亚洲av电影在线进入| 伊人久久精品亚洲午夜| 在线观看午夜福利视频| 亚洲专区国产一区二区| 亚洲精华国产精华精| 亚洲中文字幕一区二区三区有码在线看| 精品欧美国产一区二区三| 97碰自拍视频| 欧美极品一区二区三区四区| 午夜免费观看网址| a级一级毛片免费在线观看| 免费大片18禁| 又紧又爽又黄一区二区| 熟女人妻精品中文字幕| av国产免费在线观看| 黄色丝袜av网址大全| 亚洲18禁久久av| 日韩欧美在线乱码| 99久久无色码亚洲精品果冻| 老汉色∧v一级毛片| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 天堂影院成人在线观看| 琪琪午夜伦伦电影理论片6080| 成人永久免费在线观看视频| 亚洲五月天丁香| 国产免费一级a男人的天堂| 99热6这里只有精品| www日本黄色视频网| 最新美女视频免费是黄的| 久久久久久国产a免费观看| 特级一级黄色大片| 18美女黄网站色大片免费观看| 亚洲成人久久性| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| 中文字幕高清在线视频| 国产黄色小视频在线观看| 国产精品99久久99久久久不卡| 日韩亚洲欧美综合| 国产真实伦视频高清在线观看 | 亚洲欧美激情综合另类| 一区福利在线观看| 淫妇啪啪啪对白视频| 黄色视频,在线免费观看| h日本视频在线播放| 99在线视频只有这里精品首页| 日本与韩国留学比较| 色尼玛亚洲综合影院| 亚洲精品粉嫩美女一区| 国内精品一区二区在线观看| 国产成人影院久久av| 嫩草影视91久久| 色av中文字幕| 哪里可以看免费的av片| 欧美精品啪啪一区二区三区| 精品欧美国产一区二区三| 亚洲乱码一区二区免费版| 亚洲不卡免费看| 亚洲内射少妇av| 亚洲va日本ⅴa欧美va伊人久久| 十八禁人妻一区二区| 欧美又色又爽又黄视频| svipshipincom国产片| 长腿黑丝高跟| 日本熟妇午夜| 欧美色视频一区免费| 国产真实伦视频高清在线观看 | 亚洲男人的天堂狠狠| 深夜精品福利| 老司机深夜福利视频在线观看| 最后的刺客免费高清国语| 亚洲专区中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区激情短视频| 成人国产综合亚洲| 精品熟女少妇八av免费久了| 最新中文字幕久久久久| 窝窝影院91人妻| 欧美激情在线99| 成人av一区二区三区在线看| 精品日产1卡2卡| 久久精品影院6| 欧美精品啪啪一区二区三区| 99在线视频只有这里精品首页| 美女免费视频网站| 免费观看精品视频网站| 亚洲av熟女| 日韩欧美 国产精品| 国产精品久久久久久久久免 | 免费观看人在逋| 动漫黄色视频在线观看| 成年女人毛片免费观看观看9| 在线免费观看的www视频| 国产亚洲精品一区二区www| 俺也久久电影网| 亚洲真实伦在线观看| 国产aⅴ精品一区二区三区波| 俄罗斯特黄特色一大片| 动漫黄色视频在线观看| 国产精品久久久久久久久免 | 国产伦人伦偷精品视频| 三级国产精品欧美在线观看| 91麻豆av在线| 亚洲精品国产精品久久久不卡| 白带黄色成豆腐渣| 在线观看免费午夜福利视频| 久久这里只有精品中国| 在线国产一区二区在线| 十八禁人妻一区二区| 亚洲美女黄片视频| 淫妇啪啪啪对白视频| 狠狠狠狠99中文字幕| 悠悠久久av| 午夜福利成人在线免费观看| 久久精品综合一区二区三区| 国产乱人伦免费视频| 中文字幕精品亚洲无线码一区| 一进一出好大好爽视频| 一本综合久久免费| 亚洲欧美日韩高清专用| 五月伊人婷婷丁香| a级一级毛片免费在线观看| 中亚洲国语对白在线视频| 午夜免费成人在线视频| 观看免费一级毛片| 51午夜福利影视在线观看| 亚洲一区二区三区色噜噜| 性欧美人与动物交配| 久久精品影院6| 99久久九九国产精品国产免费| 好男人在线观看高清免费视频| 在线观看一区二区三区| 成人精品一区二区免费| 高清毛片免费观看视频网站| 一级a爱片免费观看的视频| 国产探花在线观看一区二区| 成人午夜高清在线视频| 我的老师免费观看完整版| 亚洲男人的天堂狠狠| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av| 热99re8久久精品国产| 18禁国产床啪视频网站| 在线十欧美十亚洲十日本专区| 国产成人aa在线观看| 精品国产美女av久久久久小说| 一本综合久久免费| 国产真实乱freesex| 丰满的人妻完整版| 国产亚洲精品一区二区www| 精品欧美国产一区二区三| 国产主播在线观看一区二区| 亚洲国产日韩欧美精品在线观看 | 嫩草影视91久久| 国产色爽女视频免费观看| 岛国在线免费视频观看| 亚洲av成人不卡在线观看播放网| 一本精品99久久精品77| а√天堂www在线а√下载| 欧美+亚洲+日韩+国产| 男女那种视频在线观看| 色播亚洲综合网| 2021天堂中文幕一二区在线观| 精品国内亚洲2022精品成人| 啪啪无遮挡十八禁网站| 国产av在哪里看| 免费在线观看日本一区| 免费看十八禁软件| 一级a爱片免费观看的视频| 午夜免费男女啪啪视频观看 |