• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    采用系統(tǒng)的方法自動構(gòu)建鏈烷烴高溫燃燒反應機理

    2014-09-17 06:59:54郭俊江華曉筱談寧馨李象遠
    物理化學學報 2014年6期
    關(guān)鍵詞:全德四川大學物理化學

    郭俊江 華曉筱 王 繁 談寧馨,* 李象遠

    (1四川大學化學工程學院,成都610065; 2四川大學化學學院,成都610065)

    1 Introduction

    In recent years,great efforts have been invested to explore combustion processes of practical fuels for clean energy and engine design.However,it is difficult to investigate combustion of fuels by experiment alone.Combustion mechanisms play a critical role in elucidating the complex behavior and phe-nomena in combustion.A basic understanding of the combustion kinetics of practical fuels is also crucial in optimal design of engine.Practical fuels such as gasoline,diesel,jet fuel or kerosene are composed of thousands of different hydrocarbon compounds.A direct kinetic simulation of their chemical and physical properties is not feasible because of the complexity of practical fuels,and a viable method is to develop surrogate mixtures containing several kinds of representative pure compounds to simulate combustion behaviors.Surrogates for practical fuels are usually classified based on molecular structure,i.e.,normal alkanes,branched or iso-alkanes,cycloalkanes,olefins,aromatics,and oxygenated hydrocarbons.1-8To date,nalkane is always chosen as a representative in almost all suggested surrogate mixtures.n-Heptane is a primary reference fuel(PRF)used to define a research octane number of 0 and it is a common n-alkane representative for gasoline surrogates,9while iso-octane is used as a model compound for branched alkane components found particularly in gasoline and diesel.10,11n-Decane and n-dodecane are frequently chosen as surrogate components in different studies.12-17

    Extensive experimental and kinetic modeling studies on combustion properties of alkanes have been reported.Shen and coworkers18,19investigated the ignition of n-alkane/air mixtures and iso-octane/air mixtures at elevated pressures.Beerer and McDonell20measured auto-ignition delay time of individual alkanes and mixtures of alkanes.More recently,Liu et al.21reported the ignition temperatures of non-premixed C3and C5-C12n-alkane flame.The ignition delay time of n-decane/oxidizer mixtures were studied by Zhukov,22Olchanski,23and,Kumar24et al..Laminar flame speed of C1-C12alkanes and various PRF mixtures were measured at atmospheric pressure.25-28Kelley et al.29reported laminar flame speed for iso-octane at pressures up to 1.0×106Pa and C5-C8n-alkanes up to 2.0×106Pa.

    There have been substantial previous efforts aimed at kinetic modeling of alkanes.30-44Battin-Leclerc and coworkers32,33carried out a detailed modeling of the oxidation of n-octane and ndecane.Ranzi et al.16developed a lumped mechanism for investigating the combustion of n-decane,n-dodecane,and n-hexadecane,and the mechanism lumping reduces the size of each mechanism.A comprehensive detailed chemical reaction mechanism describing the oxidation of n-alkanes from n-octane to nhexadecane was developed by Westbrook group.1The mechanism for these n-alkanes is presented in a single detailed mechanism containing 2116 species and 8130 reactions.A high-temperature chemical kinetic model of n-alkane oxidation(JetSurF version 1.0,194 species,1459 reactions)was proposed by Wang group.34You et al.35proposed a high-temperature detailed kinetic model for the combustion of n-alkanes up to n-dodecane.Curran and coworkers36,37developed the detailed mechanisms for n-heptane and iso-octane oxidation,respectively.Computational fluid dynamics(CFD)plays a key role in designing the combustor.However,the use of CFD simulations requires accurately predictive and highly reduced models of the combustion of fuels.38These mechanisms are much too complicated to be used in CFD simulations.Some reduced mechanisms for n-alkane computation have been developed using various reduction techniques.31,39-47For example,a new skeletal mechanism which includes 36 species and 128 reactions was developed by Chang et al.48to describe the oxidation of n-alkanes from n-octane to n-hexadecane.This small-size mechanism can be easily integrated into the CFD simulation.

    Although lots of mechanisms for the combustion of alkanes have been reported,a systematic approach which combines constructing,simplifying,validating,and analyzing the hightemperature combustion mechanisms of alkanes has not been proposed.In this paper,we develop such a systematic approach to construct reliable and reduced high-temperature combustion mechanisms of alkanes which would be helpful to CFD for engine design.Detailed mechanisms of combustion of alkanes usually contain numerous elementary reactions in addition to kinetic and thermodynamic parameters.Such comprehensive chemical kinetic mechanisms are very difficult to be composed manually and the use of an automatic program of mechanisms could facilitate this step significantly.Battin-Leclerc et al.49developed an automatic mechanism generation system EXGAS.Ranzi et al.50developed a computer code named MAMOX.Muharam and Warnatz51developed MOLEC to generate mechanisms for the combustion of large hydrocarbons.These mechanism generators are based on the reaction classes.Based on this rule,a mechanism generation program(named ReaxGen)7,17for the high and low temperature oxidation mechanism construction of alkanes and cycloalkanes has been developed in our research group.Detailed mechanisms of several alkanes,i.e.,n-heptane,iso-octane,n-decane,and n-dodecane,were constructed automatically using ReaxGen.These mechanisms were reduced using rate-of-production(ROP)analysis to obtain semi-detailed mechanisms,and skeletal mechanisms were achieved from the semi-detailed mechanisms based on path flux analysis(PFA)52.In order to verify the mechanisms,simulation results were compared with available experimental data on ignition delay time,laminar flame speed,and the concentration profile of important species.Reaction path analysis and sensitivity analysis were also employed to elucidate reaction pathways in the high-temperature oxidation of alkanes and reactions which are most important to ignition delay time,respectively.In the further study,this systematic approach will be adopted to construct oxidation mechanisms of other hydrocarbon fuels such as cycloalkanes,aromatic hydrocarbons,and alternative fuels.

    2 Mechanism construction

    2.1 Semi-detailed mechanism

    Fig.1 Primary flow chart of ReaxGen

    In this work,all detailed mechanisms for the high-temperature combustion of alkanes consist of two parts,a validated core mechanism53and a sub-mechanism produced by ReaxGen.The fundamental concept in generating mechanism is the reaction class.Reaction classes are related to the species reactivity which is based solely on structural features around the reaction center.Whenever these structures are found in reactants,products can be generated.54ReaxGen mainly services for Cn(n≥5)species.In ReaxGen,the generation of a mechanism is achieved by iteratively applying a list of reaction classes to a set of molecules.First,a new set of species are obtained according to the reaction classes related to a set of initial reactant molecules.Secondly,a produced species is checked whether it is new.If this species is new,it and the reactions involved in this species are added in the reaction mechanism.If this species is not new,it is not added,and the reactions involved in this species are judged whether they are new.Then,new reactions will be added in the mechanism,while the symmetry factors of the existed reactions will be modified.In the iterative application,the reaction rules are applied to all the species until no new species are formed.Thermochemical data of species and kinetic data of reactions are automatically obtained from the databases in ReaxGen.The primary flow chart of ReaxGen is depicted in Fig.1.

    The main reaction classes for the high-temperature combustion of alkanes include the following:1,36

    (1)unimolecular decomposition of alkanes;

    (2)H-abstraction from C atoms in alkanes by O,H,OH,O2,CH3,and HO2;

    (3)mutual isomerization of the alkyl radical;

    (4)decomposition of alkyl radical;

    (5)oxidation of alkyl radical to form alkene;

    (6)H-abstraction from the alkenes;

    (7)decomposition of alkene;

    (8)addition of alkenes to O,CH3,H,H2O2,and OH;

    (9)decomposition of alkenyl radical.

    The core mechanism(C0-C4)is very important in constructing the mechanisms of high carbon hydrocarbons.In this study,the updated USC-Mech II53,55with 111 species and 784 reactions was used as the core mechanism,which has been validated against a wide range of experimental data.53The sub-mechanisms for high carbon species Cn(n≥5)generated by ReaxGen were coupled with the C0-C4core mechanism53to construct the detailed chemical kinetic mechanisms for the high-temperature oxidation of n-heptane(271 species taking part in 1374 reactions),n-decane(615 species taking part in 2637 reactions),isooctane(432 species taking part in 1918 reactions),and n-dodecane(1008 species taking part in 4105 reactions).Thermodynamic parameters of species in sub-mechanisms were estimated based on the group additivity method,56,57while corresponding data in core mechanism were obtained from the reference.53Transport data of species were calculated through the diffusion coefficients using the approach similar to that in the reference.58In order to improve the computational efficiency,reactions and species that have negligible effect in combustion process were removed from the mechanism based on the method of ROP analysis.This method was carried out as the following:in Chemkin 2.0 output file,ROP data are the normalized contributions of each reaction to the production and consumption of each species at every time step.For obtaining the contributions of each reaction to the production and consumption of each species during the whole reaction process,ROP data were taken time to integrate over the whole reaction time through a program written by ourselves.Those reactions whose contributions to all species are less than a given threshold will be deleted.In the meantime,those species which are not involved in any reaction of the mechanism will be removed from the mechanism.This method can also be used to analyse the overall reaction path.Thus the semi-detailed mechanisms with a reasonable size can be obtained:135 species and 552 reactions for nheptane(threshold:1×10-4mol· m-3),169 species and 535 reactions for n-decane(threshold:5.5×10-4mol·m-3),202 species and 738 reactions for n-dodecane(threshold:1×10-5mol·m-3),and 115 species and 328 reactions for iso-octane(threshold:8.5×10-3mol·m-3).Our calculations show that simulation results using the semi-detailed mechanisms are almost the same as those with the detailed mechanisms.

    2.2 Skeletal mechanism

    Semi-detailed mechanisms were reduced to achieve skeletal mechanisms using the PFA approach.52As proposed by Lu and Law,59a two-stage reduction strategy is adequate for the reduction of large mechanisms.So in this study,a two-stage PFA reduction was implemented in order to obtain skeletal mechanisms with minimum number of species.The more details of PFA approach can be found in the reference.52rABwhich shows importance of species B to species A in PFA approach is calculated based on production and consumption of species A via B as the following:52

    where the interaction coefficientsaredefined as:

    In Eqs.(2)-(3),I is the total number of elementary reactions,ωiis the reaction rate of the ith reaction,νA,iis the stoichiometric coefficient of species A in the ith reaction.If the reaction involved species B,equals to 1,otherwiseBequals to 0.PABand DABare the production and consumption rates of species A due to species B,respectively.PAand DAdenote,respectively,production and consumption fluxes of speciesA.

    The interaction coefficientsoandof the second generation in Eq.(1)are the measures of flux ratios between A and B via a third reactant(Mi)for the second generation and are defined as:

    Here the summation includes all possible reaction paths(fluxes)relatingAand B.To carry out mechanism reduction using PFA,a threshold value ε and a set of preselected species(e.g.,A)need to be specified.If rAB<ε,species B will be removed from the mechanism.On the other hand,species B is selected when rAB≥ ε.After deleting unimportant species and involved reactions,the skeletal mechanism can be obtained.52,60The PFA program has been implemented through an interface to Chemkin-SENKIN.61,62

    In mechanism reduction,ignition delay time was chosen as the target parameter.The ignition delay time was defined as the time with the maximum value of(dxOH/dt),where xOHis the concentration(mole fraction)of the radical OH.To achieve skeletal mechanisms with wide applicability,reaction rates at points around ignition delay time under conditions of high-temperatures(1000-1600 K),high pressures(1.0×105,5.0×105,1.0×106Pa),and equivalence ratios(?=0.5,1.0,2.0)from simulations using Chemkin-SENKIN61,62were used in PFA.The fuel,oxygen,and nitrogen were chosen as initial components in mechanism reduction,and numbers of species and reactions in the obtained skeletal mechanisms for these alkanes are listed in Table 1.Because adequate threshold values selected for four alkanes were different for obtaining the smallest error in reduction process,numbers of species and reactions of reduced mechanisms do not increase as the number of carbon atoms in alkanes increases.

    According to our simulations,ignition delay times calculated using final skeletal mechanisms are consistent with thosebased on semi-detailed mechanisms for these alkanes.Results for n-decane are illustrated in Fig.2.One can see that simulation results of skeletal mechanisms are in good agreement with those using semi-detailed mechanisms over a wide range of parameters.

    Table 1 Numbers of species and reactions in skeletal mechanisms for combustion of n-heptane,iso-octane,n-decane,and n-dodecane

    3 Validation of the mechanism

    Mechanism validation was fulfilled by comparing calculation results with available experimental data on ignition delay time,laminar flame speed,and the concentration profile of important species in the literature,which are highly important parameters describing global combustion properties.In this work,semi-detailed and skeletal mechanisms of n-heptane,iso-octane,n-decane,and n-dodecane were validated against ignition delay time behind reflected shock wave,laminar flame speed,and the concentration profile of important species in a jetstirred reactor(JSR).

    Fig.2 Igniton delay times calculated using semi-detailed and skeletal mechanisms for n-decane

    3.1 Ignition delay time

    The semi-detailed and skeletal mechanisms of these alkanes were employed to simulate the ignition delay times under the same experimental conditions reported by Shen and coworkers18,19using Chemkin 2.0 software package.61In addition,our results were also compared with those based on mechanisms developed by Wang34and Curran36,37et al.to demonstrate reliability of our mechanisms.Both the Curran′s n-heptane model(550 species and 2450 reactions)and iso-octane model(860 species and 3600 reactions)can be used over a wide range of temperature from 550-1700 K.Experimental ignition delay times together with the calculated ones are presented in Fig.3.Ignition delay times of n-dodecane at 1.4×106Pa versus the inverse of initial temperatures at 0.5 equivalence ratio are illustrated in Fig.3(a).Experimentally derived and numerically predicted ignition delay times for n-decane and n-heptane at 1.0 equivalence ratio and high pressures(1.2×106and 5.0×106Pa)are shown in Figs.3(b)and 3(c),respectively.The ignition delay times of iso-octane at 1.0×106Pa pressure and 1.0 equivalence ratio are given in Fig.3(d).As can be seen from Fig.3,results based on skeletal mechanisms closely resemble those using semi-detailed mechanisms,which show reliability of the skeletal mechanisms.In addition,ignition delay times for hightemperature oxidation of four kinds of alkanes obtained with our mechanisms agree reasonably well with experimental data except for those at 5.0×106Pa pressure.It can also be seen from this figure that ignition delay times from our mechanisms are generally smaller than those with other mechanisms and our results are in better agreement with experimental data.It should be noted that only high-temperature chemical reaction classes are included in our mechanisms,so they can only be applied to simulate combustions at a relatively high temperature.Moreover,compared with experimental data,ignition delay times at 5.0×106Pa pressure with our mechanisms are overestimated.This indicates that influence of pressure on kinetic and thermodynamic parameters may be important and it is also possible that alternative pathways which are not described properly in our mechanism could play a role under high pressure.

    3.2 Laminar flame speed

    Laminar flame speeds at 1.0×105Pa and different equivalence ratios for combustion of n-heptane,n-decane,iso-octane,and n-dodecane were calculated using the PREMIX code63coupled with the Chemkin 2.0.61Besides our models,JetSurF 1.0 developed by Wang et al.34and the model of iso-octane from Blanquart et al.64were also adopted in simulations.The Blanquart′s model including 149 species and 1651 reactions is aimed at the formation of soot precursors for fuel surrogates for premixed and diffusion.Calculated results together with available experimental data are demonstrated in Fig.4(a)for ndodecane,Fig.4(b)for n-decane,Fig.4(c)for n-heptane,and Fig.4(d)for iso-octane.Experimental values of laminar flame speeds were taken from the literature by Ji,28Kumar,26,27Kelley,29and Davis25et al.

    Fig.3 Ignition delay times for the high-temperature combustion of(a)n-dodecane,(b)n-decane,(c)n-heptane,(d)iso-octane

    Fig.4 Laminar flame speeds of(a)n-dodecane,(b)n-decane,(c)n-heptane,(d)iso-octane versus equivalence ratio at fresh gas temperatures 403,400,and 298 K and 1.0×105Pa pressure

    According to Fig.4,laminar flame speeds in present work are generally in reasonable agreement with experimental data at various equivalence ratios,and calculated results using semidetailed mechanisms agree better with experimental values than those using skeletal mechanisms.Difference in laminar flame speeds between semi-detailed mechanism and skeletal mechanism shows up and reaches 5 cm·s-1for fuel-lean mixtures,while this difference is much smaller for richest mixtures.It has been discussed previously35that flame propagation is sensitive to the rates of H2/CO/C1-C2reaction,so this difference could be a result of an oversimplification of the core mechanism.It can be seen from Fig.4 that our results are in good agreement with the experimental data of Kumar and coworkers26,27and the fuel-lean data from Ji et al.28On the other hand,laminar flame speeds using JetSurF 1.0 reaction model are smaller than our results and are more close to experimental data reported by Ji et al.28It should be noted that the data of Kumar and coworkers26,27for fuel rich mixtures are higher than those data reported by Ji et al.28,which is related to the fact that the values of Kumar and coworkers26,27were obtained by linear extrapolation while those of Ji et al.28were derived from nonlinear extrapolation.In general,results with our mechanisms agree better with experimental data derived from linear extrapolation,while results using JetSurF 1.0 are more consistent with those obtained by non-linear extrapolation.

    3.3 Concentration profile of species

    Dagaut and coworkers65-67have experimentally studied the oxidation of several kinds of alkanes in a JSR.The measured concentrations of many species are useful for the validation of mechanisms of alkanes.Because the consumption of reactants and production of products play a very important role during combustion,special attention is paid to the evolution of the concentrations of alkanes,oxygen,CO,CO2in this section.Simulations were performed using a zero-dimensional model under constant-pressure,isothermal conditions.

    Both our semi-detailed and skeletal mechanisms of alkanes were chosen to validate the species concentration in a JSR.Simulations were implemented under the same experimental conditions reported by Dagaut and coworkers.65-67Simulation conditions were equivalence ratio ?=1.0,0.1%alkanes diluted in nitrogen at 1.0×106Pa,and 1.0 s residence time.Simulation results and experimental data for the mole fraction profiles of alkanes,oxygen,CO,CO2are depicted in Fig.5.The models developed by Wang(JetSurF 1.0),34Curran,36and Blanquart64et al.were also employed to simulate species concentrations under the same conditions.Simulation results and experimental data are depicted in Fig.6.

    It can be seen in Figs.5-6 that all calculated concentration profiles of species using our mechanisms and published models are in qualitatively agreement with available experimental data derived from literature.65-67Simulation results from our semidetailed mechanisms are the same as those results obtained by skeletal mechanisms.That means that skeletal mechanisms maintain major reaction pathways of semi-detailed mechanisms.As the temperature is below 800 K,there are some quan-titative differences between calculated and experimental results for the species of n-dodecane,n-decane,and n-heptane oxidation using our mechanisms in Fig.5,while the same results appear in Fig.6(a,b)using JetSurF 1.0 models.The reason is that low temperature reactions have not been included in our mechanisms and JetSurF 1.0 models.The mole fraction profiles of alkanes and CO are reasonably reproduced by these models.The production of CO2is accurately reproduced by our n-do-decane model,n-dodecane model of JetSutF 1.0,Curran′s nheptane model,and Blanquart′s iso-octane model,while the consumption of oxygen is also accurately reproduced by our ndecane,n-heptane,iso-octane models,and n-decane model of Jet-SurF 1.0.However,there are still some quantitative differences between calculated results and experimental data of some species for some models,such as CO2in our n-decane model and oxygen in Curran′s n-heptane model.This result is similar to the result reported by the reference.68

    Fig.5 Chemical species concentrations simulated with our mechanisms in a JSR for 0.1%alkanesn-dodecane;(b,b′)n-decane;n-heptane;(d,d′)iso-octane)diluted in nitrogen at 1.0×106Pa pressure,?=1.0,and 1.0 s residence time

    Fig.6 Chemical species concentrations simulated with published mechanisms in a JSR for 0.1%alkanes((a)n-dodecane;(b)n-decane;(c)n-heptane;(d)iso-octane))diluted in nitrogen at 1.0×106Pa pressure,?=1.0,and 1.0 s residence time

    In order to further verify the rationality of our mechanisms,the simulations of concentration profiles of important species in a JSR under other conditions were implemented.Simulation results and experimental data for the mole fraction profiles of alkanes,oxygen,CO,CO2are depicted in Figs.7-9.

    Under the conditions of equivalence ratio ?=0.5,0.1%alkanes diluted in nitrogen at 1.0×106Pa pressure,and 1.0 s residence time,the simulations of concentration profiles of important species in a JSR for all alkanes except n-decane,which is short of available experimental data under the same conditions,are illustrated in Fig.7.It can be seen in Fig.7 that all calculated concentration profiles of species using our mechanisms are still in qualitatively agreement with available experimental data derived from literature.65,67Calculated results using these models show great agreement with experimental data for the formation of CO and CO2especially for n-heptane and iso-octane.The conversion of iso-octane is also excellently reproduced by the semi-detailed and skeletal mechanisms.However,there are still some quantitative differences between calculated results and experimental data of some species in the models,such as oxygen in our n-heptane and iso-octane models.The simulations for the n-decane oxidation in a JSR under the conditions,equivalence ratios ?=1.0 and 1.5,0.1%n-decane diluted in nitrogen at 1.0×106Pa pressure and 0.5 s residence time,were carried out in our study.Simulation results and experimental data are depicted in Figs.8-9.As can be seen from Figs.8-9,the concentrations of decane and CO2are reproduced by our semi-detailed and skeletal mechanisms.Comparing with experimental data,there are still some quantitative differences of the results for the concentrations of oxygen and COsimulatedby our n-decane model.That means the further investigation should be carried out in order to accurately reproduce all kinds of species involved in alkane oxidation.

    4 Analysis of the mechanism and discussion

    4.1 Reaction pathway analysis

    To better understand combustion process and further optimize the combustion mechanisms of hydrocarbon fuels,reaction pathway analysis were carried out.In reaction pathway analysis,contribution of each reaction to the production and consumption of every species were first calculated using the method of ROP analysis at each time step in the whole reaction progress.Overall production and consumption reaction pathways of main species of the mechanism can be obtained by integration over the whole reaction time.The reaction pathway analysis for combustion of four alkanes based on the skeletal mechanisms was performed using the closed homogeneous batch reactor model in Chemkin 2.0 at 0.5 equivalence ratio,1×105Pa pressure,and 1150 K temperature.Main reaction routes in combustion of these alkanes are presented in Figs.10-13.

    Fig.7 Chemical species concentrations in a JSR for 0.1%alkanesn-dodecane;(b,b′)iso-octane;n-heptane)diluted in nitrogen at 1.0×106Pa pressure,?=0.5,and 1.0 s residence time

    It can be seen from these figures that the fuels,i.e.,n-heptane,iso-octane,n-decane,and n-dodecane,are mainly consumed through H-abstraction reactions with H,OH,and O radicals(over 85%)to generate different alkyl radicals.Mutual isomerization will take place between isomers of these alkyl radicals.In addition,these alkyl radicals will undergo β-scission reactions to form olefins and smaller alkyl radicals.These smaller alkyl radicals either isomerize to form other radicals or are further consumed through β-scission reactions to produce even smaller molecules and radicals.Taken n-dodecane as an example,six different types of dodecyl radicals are generated through H-abstraction reactions.They can convert from one type to another type of dodecyl radical through isomerization or go through β-scission reactions to produce lowmolecular weight olefins and small alkyl radicals.These small alkyls can further decompose to olefin and smaller alkyls through βscission reactions.Based on comprehensive analysis of the reaction pathway in combustion of n-dodecane,we found that the consumption of 2-dodecyl radicals was the main reaction pathway.Once produced,2-dodecyl radicals decompose to propylene(C3H6)molecule and 1-nonyl(1-C9H19)radicals.1-Nonyl radicals mainly undergo isomerization to form 5-nonyl radicals and small hydrocarbon molecules(such as methane,ethylene,methyl,ethyl,1,3-butadiene)can be produced resulting from βscission reactions of 5-nonyl radicals.

    Fig.8 Chemical species concentrations in a JSR for 0.1%ndecane diluted in nitrogen at 1.0×106Pa pressure,?=1.0,and 0.5 s residence time

    4.2 Sensitivity analysis

    In order to illustrate key reactions affecting ignition during high-temperature combustion of alkanes,sensitivity analysis for ignition delay times of n-dodecane,n-decane,n-heptane,and iso-octane were performed at ?=0.5,1150 K initial temperature,and 1.0×105Pa pressure.The method proposed in reference69was adopted to calculate sensitivity of the ignition delay time concerning reaction i as the following:

    where τignis ignition delay ti,me calculated by the original combustion mechanism,τign(2ki)is ignition delay time simulated using this mechanism in which the rate constant of reaction i is doubled through multiplying the pre-exponential factor of reaction i by 2.A positive sensitivity implies that the related reaction has an inhibiting effect on ignition;on the contrary,a negative sensitivity indicates a promoting effect.

    Fig.9 Chemical species concentrations in a JSR for 0.1%ndecane diluted in nitrogen at 1.0×106Pa pressure,?=1.5,and 0.5 s residence time

    Fig.14 demonstrates reactions that have greater effect on ignition delay times according to Eq.(6)as well as corresponding sensitivity values in our semi-detailed and skeletal mechanisms.One can see from this figure that results derived from skeletal mechanisms agree approximately with those using semi-detailed mechanisms.Furthermore,reactions in core mechanism are very important for ignition delay time,while reactions in a set of generated Cn(n≥5)sub-mechanism are less important except for iso-octane,although they are critical in initial steps in combustion.Two reactions with higher negative sensitivity values are always H+O2=OH+O and CH3+HO2=CH3O+OH during combustion of these alkanes.These two reactions thus play an important role in high-temperature chemical process.On the other hand,the reaction C2H3+O2=CHO+HCHO exhibits the largest inhibiting effect among all the reactions for straightchain alkanes,while the radical-radical combination reaction 2CH3(+M)=C2H6(+M)has the largest positive sensitivity value for the branched alkane iso-octane.Moreover,reactions involving HO2/H/OH/CH3/C2H3radicals have large influence on ignition delay time prediction at high temperature for straightchain alkanes.For iso-octane,reactions(H+O2=OH+O and CH3+HO2=CH3O+OH)as well as the fuel-consuming reactions involved the breaking of C―C bond(i-C8H18→CH3+i-C7H15-2,1-i-C8H17→i-C4H9+i-C4H8,i-C8H18→t-C4H9+i-C4H9and i-C8H17-4→CH3+i-C7H14-4)also play an important role in ignition of iso-octane at high temperature.

    It is noted that the sensitivity absolute values of several reac-

    those above mentioned reactions are larger in the skeletal mechanisms than in the semi-detailed mechanisms for n-dodecane/air and n-heptane/air combustion.On the contrary,one can draw the conclusion that the consumption of 1-decatyl radicals is the main reaction pathway for n-decane from Fig.11.It is ethene not propylene that is produced through the decomposition of 1-decatyl.So the sensitivity absolute values of reactions involved in the consumption of propylene are smaller in the skeletal mechanism than in the semi-detailed mechanism for n-decane.But it is noted that the sensitivity absolute value of reaction involved in the consumption of ethene C2H4+OH=C2H3+H2O is also smaller in the skeletal mechanism than in the semi-detailed mechanism for n-decane.Because the ignition delay time used in this work is defined as the time when the largest changing rate(dxOH/dt)of OH radical concentration occurs,more ethenes produced from 1-decatyl decomposition react with more OH radicals,and then this will result in a consequence that the sensitivity value of the reaction C2H4+OH=C2H3+H2O shifts towards inhibited ignition in the skeletal mechanism.

    5 Conclusions

    Detailed mechanisms for high-temperature combustion of the following alkanes:n-heptane,n-decane,n-dodecane,and iso-octane were generated using the automatic mechanism generation program(ReaxGen).Because of the complexity of detailed mechanisms,these mechanisms were reduced first by employing the method of rate-of-production analysis to generate semi-detailed mechanisms.Highly reduced skeletal mechanisms were subsequently obtained using path flux analysis based on the semi-detailed mechanisms.Our results demonstrate that the skeletal mechanisms can accurately and comprehensively reproduce results of the detailed mechanisms.These mechanisms were validated against experimental data over a wide range of conditions to investigate their reliability.Simulation results show that these mechanisms are able to provide a reasonable prediction on ignition delay time,laminar flame speed,and the concentration profile of species.This indicates that the detailed and skeletal mechanisms are reliable in describing combustion behaviors of these alkanes under various conditions.Main pathways in combustion process of the alkanes at high temperature were illustrated based on the reaction path analysis.Furthermore,sensitivity analysis was also carried out,and our results indicate that reactions involving small molecules and radicals in core mechanism have great influence on ignition delay time.The reaction of H+O2=OH+O is found to be the most important reaction to promote the ignition during high-temperature combustion.

    Our results show that combustion mechanisms for these alkanes,which were produced based on reaction classes and a given core mechanism,are reliable in describing high-temperature combustion process.Skeletal mechanisms with smaller numbers of species and reactions could also be helpful in understanding reaction processes and in computational fluid dynamics for engine design.Moreover,the method,which combines constructing,simplifying,validating,and analyzing the high-temperature combustion mechanisms of alkanes,could also be used to generate the mechanism of other hydrocarbons for high-temperature combustion.Mechanisms for low-temperature combustion are also of great importance and it will be desirable to be generated automatically.Work in this direction is in progress.

    Supporting Information: The input files with Chemkin format about mechanisms of n-heptane,iso-octane,n-decane,and n-dodecane are available free of charge via the internet at http://www.whxb.pku.edu.cn and http://www.ccg.scu.edu.cn.

    (1) Westbrook,C.K.;Pitz,W.J.;Herbinet,O.;Curran,H.J.;Silke,E.J.Combust.Flame 2009,156,181.doi:10.1016/j.combustflame.2008.07.014

    (2) Oehlschlaeger,M.A.;Steinberg,J.;Westbrook,C.K.;Pitz,W.J.Combust.Flame 2009,156,2165.doi:10.1016/j.combustflame.2009.05.007

    (3)Mehl,M.;Vanhove,G.;Pitz,W.J.;Ranzi,E.Combust.Flame 2008,155,756.doi:10.1016/j.combustflame.2008.07.004

    (4) Mehl,M.;Pitz,W.J.;Westbrook,C.K.;Yasunaga,K.;Conroy,C.;Curran,H.J.Proc.Combust.Inst.2011,33,201.doi:10.1016/j.proci.2010.05.040

    (5) Mehl,M.;Pitz,W.J.;Westbrook,C.K.;Curran,H.J.Proc.Combust.Inst.2011,33,193.doi:10.1016/j.proci.2010.05.027

    (6) Oehlschlaeger,M.A.;Shen,H.P.S.;Frassoldati,A.;Pierucci,S.;Ranzi,E.Energy Fuels 2009,23,1464.doi:10.1021/ef800892y

    (7)Tan,N.X.;Wang,J.B.;Hua,X.X.;Li,Z.R.;Li,X.Y.Chem.J.Chin.Univ.2011,32,1832.[談寧馨,王靜波,華曉筱,李澤榮,李象遠.高等學?;瘜W學報,2011,32,1832.]

    (8) Yao,T.;Zhong,B.J.Acta.Phys.-Chim.Sin.2013,29,237.[姚 通,鐘北京.物理化學學報,2013,29,237.]doi:10.3866/PKU.WHXB201211271

    (9) Andrae,J.C.G.;Bj?rnbom,P.;Cracknell,R.F.;Kalghatgi,G.T.Combust.Flame 2007,149,2.doi:10.1016/j.combustflame.2006.12.014

    (10) Zheng,D.;Zhong,B.J.Acta.Phys.-Chim.Sin.2012,28,2029.[鄭 東,鐘北京.物理化學學報,2012,28,2029.]doi:10.3866/PKU.WHXB201207042

    (11) Pang,B.;Xie,M.Z.;Jia,M.;Liu,Y.D.Acta.Phys.-Chim.Sin.2013,29,2523.[龐 斌,謝茂昭,賈 明,劉耀東.物理化學學報,2013,29,2523.]doi:10.3866/PKU.WHXB201310161

    (12) Jahangirian,S.;McEnally,C.S.;Gomez,A.Combust.Flame 2009,156,1799.doi:10.1016/j.combustflame.2009.03.003

    (13) Honnet,S.;Seshadri,K.;Niemann,U.;Peters,N.Proc.Combust.Inst.2009,32,485.doi:10.1016/j.proci.2008.06.218

    (14) Natelson,R.H.;Kurman,M.S.;Cernansky,N.P.;Miller,D.L.Fuel 2008,87,2339.doi:10.1016/j.fuel.2007.11.009

    (15) Dagaut,P.;Bakali,A.E.;Ristori,A.Fuel 2006,85,944.doi:10.1016/j.fuel.2005.10.008

    (16) Ranzi,E.;Frassoldati,A.;Granata,S.;Faravelli,T.Ind.Eng.Chem.Res.2005,44,5170.

    (17)Hua,X.X.;Wang,J.B.;Wang,Q.D.;Tan,N.X.;Li,X.Y.Acta Phys.-Chim.Sin.2011,27,2755.[華曉筱,王靜波,王全德,談寧馨,李象遠.物理化學學報,2011,27,2755.]doi:10.3866/PKU.WHXB20112755

    (18) Shen,H.P.S.;Steinberg,J.;Vanderover,J.;Oehlschlaeger,M.A.Energy Fuels 2009,23,2482.doi:10.1021/ef8011036

    (19) Shen,H.P.S.;Vanderover,J.;Oehlschlaeger,M.A.Combust.Flame 2008,155,739.doi:10.1016/j.combustflame.2008.06.001

    (20) Beerer,D.J.;McDonell,V.G.Proc.Combust.Inst.2011,33,301.doi:10.1016/j.proci.2010.05.015

    (21) Liu,N.;Ji,C.;Egolfopoulos,F.N.Combust.Flame 2012,159,465.doi:10.1016/j.combustflame.2011.07.012

    (22) Zhukov,V.P.;Sechenov,V.A.;Starikovskii,A.Y.Combust.Flame 2008,153,130.doi:10.1016/j.combustflame.2007.09.006

    (23) Olchanski,E.;Burcat,A.Int.J.Chem.Kinet.2006,38,703.doi:10.1002/kin.20204

    (24) Kumar,K.;Mittal,G.;Sung,C.J.Combust.Flame 2009,156,1278.doi:10.1016/j.combustflame.2009.01.009

    (25) Davis,S.G.;Law,C.K.Combust.Sci.Technol.1998,140,427.doi:10.1080/00102209808915781

    (26) Kumar,K.;Freeh,J.E.;Sung,C.J.;Huang,Y.J.Propul.Power 2007,23,428.doi:10.2514/1.24391

    (27) Kumar,K.;Sung,C.J.Combust.Flame 2007,151,209.doi:10.1016/j.combustflame.2007.05.002

    (28) Ji,C.;Dames,E.;Wang,Y.L.;Wang,H.;Egolfopoulos,F.N.Combust.Flame 2010,157,277.doi:10.1016/j.combustflame.2009.06.011

    (29) Kelley,A.P.;Liu,W.;Xin,Y.X.;Smallbone,A.J.;Law,C.K.Proc.Combust.Inst.2011,33,501.doi:10.1016/j.proci.2010.05.058

    (30) Jahangirian,S.;Dooley,S.;Haas,F.M.;Dryer,F.L.Combust.Flame 2012,159,30.doi:10.1016/j.combustflame.2011.07.002

    (31) Sheen,D.A.;Wang,H.Combust.Flame 2011,158,645.doi:10.1016/j.combustflame.2010.12.016

    (32) Glaude,P.A.;Warth,V.;Fournet,R.;Battin-Leclerc,F.;Scacchi,G.;Co?me,G.M.Int.J.Chem.Kinet.1998,30,949.doi:10.1002/(SICI)1097-4601(1998)30:12<949::AID-KIN10>3.0.CO;2-G

    (33) Battin-Leclerc,F.Prog.Energy Combust.Sci.2008,34,440.doi:10.1016/j.pecs.2007.10.002

    (34) Sirjean,B.;Dames,E.;Sheen,D.A.;You,X.Q.;Sung,C.;Holley,A.T.;Egolfopoulos,F.N.;Wang,H.;Vasu,S.S.;Davidson,D.F.;Hanson,R.K.;Pitsch,H.;Bowman,C.T.;Kelley,A.;Law,C.K.;Tsang,W.;Cernansky,N.P.;Miller,D.L.;Violi,A.;Lindstedt,R.P.A High-Temperature Chemical Kinetic Model of n-Alkane Oxidation,JetSurF Version 1.0.http://melchior.usc.edu/JetSurF/Version1_0/index.html(accessed September 15,2009).

    (35)You,X.;Egolfopoulos,F.N.;Wang,H.Proc.Combust.Inst.2009,32,403.doi:10.1016/j.proci.2008.06.041

    (36) Curran,H.J.;Gaffuri,P.;Pitz,W.J.;Westbrook,C.K Combust.Flame 1998,114,149.doi:10.1016/S0010-2180(97)00282-4

    (37) Curran,H.J.;Gaffuri,P.;Pitz,W.J.;Westbrook,C.K.Combust.Flame 2002,129,253.doi:10.1016/S0010-2180(01)00373-X

    (38)Wang,Q.D.;Wang,J.B.;Li,J.Q.;Tan,N.X.;Li,X.Y.Combust.Flame 2011,158,217.doi:10.1016/j.combustflame.2010.08.010

    (39) Wen,F.;Zhong,B.J.Acta Phys.-Chim.Sin.2012,28,1306.[文 斐,鐘北京.物理化學學報,2012,28,1306.]doi:10.3866/PKU.WHXB201204012

    (40)Zeuch,T.;Moréac,G.;Ahmed,S.S.;Mauss,F.Combust.Flame 2008,155,651.doi:10.1016/j.combustflame.2008.05.007

    (41) Lu,T.;Law,C.K.Combust.Flame 2008,154,153.doi:10.1016/j.combustflame.2007.11.013

    (42) Sarathy,S.M.;Westbrook,C.K.;Mehl,M.;Pitz,W.J.;Togbe,C.;Dagaut,P.;Wang,H.;Oehlschlaeger,M.A.;Niemann,U.;Seshadri,K.;Veloo,P.S.;Ji,C.;Egolfopoulos,F.N.;Lu,T.Combust.Flame 2011,158,2338.doi:10.1016/j.combustflame.2011.05.007

    (43)Fang,Y.M.;Wang,Q.D.;Wang,F.;Li,X.Y.Acta Phys.-Chim.Sin.2012,28,2536.[方亞梅,王全德,王 繁,李象遠.物理化學學報,2012,28,2536.]doi:10.3866/PKU.WHXB201208201

    (44) Bikas,G.;Peters,N.Combust.Flame 2001,126,1456.doi:10.1016/S0010-2180(01)00254-1

    (45) Zeppieri,S.P.;Klotz,S.D.;Dryer,F.L.Proc.Combust.Inst.2000,28,1587.doi:10.1016/S0082-0784(00)80556-1

    (46) Zhong,B.J.;Yao,T.;Wen,F.Acta Phys.-Chim.Sin.2014,30,210.[鐘北京,姚 通,文 斐.物理化學學報,2014,30,210.]doi:10.3866/PKU.WHXB201312103

    (47) Jiang,Y.;Qiu,R.Acta Phys.-Chim.Sin.2009,25,1019.[蔣 勇,邱 榕.物理化學學報,2009,25,1019.]doi:10.3866/PKU.WHXB20090426

    (48) Chang,Y.;Jia,M.;Liu,Y.;Li,Y.;Xie,M.;Yin,H.Energy Fuels 2013,27,3467.doi:10.1021/ef400460d

    (49) Warth,V.;Battin-Leclerc,F.;Fournet,R.;Glaude,P.A.;Co?me,G.M.;Scacchi,G.Comput.Chem.2000,24,541.doi:10.1016/S0097-8485(99)00092-3

    (50) Ranzi,E.;Faravelli,T.;Gaffuri,P.;Garavaglia,E.;Goldaniga,A.Ind.Eng.Chem.Res.1997,36,3336.doi:10.1021/ie960603c

    (51) Muharam,Y.;Warnatz,J.Phys.Chem.Chem.Phys.2007,9,4218.doi:10.1039/b703415f

    (52) Sun,W.;Chen,Z.;Gou,X.;Ju,Y.Combust.Flame 2010,157,1298.doi:10.1016/j.combustflame.2010.03.006

    (53) Wang,H.;You,X.Q.;Joshi,A.V.;Davis,S.G.;Laskin,A.;Egolfopoulos,F.N.;Law,C.K.USC Mech Version II.High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds.http://ignis.usc.edu/USC_Mech_II.htm(accessed May,2007).

    (54) Moreác,G.;Blurock,E.S.;Mauss,F.Combust.Sci.Technol.2006,178,2025.doi:10.1080/00102200600793262

    (55)Davis,S.G.;Law,C.K.;Wang,H.Combust.Flame 1999,119,375.doi:10.1016/S0010-2180(99)00070-X

    (56) Benson,S.W.Thermochemical Kinetics,2nd ed.;John Wiley and Sons:New York,1976;pp 19-72.

    (57) Lay,T.H.;Bozzelli,J.W.;Dean,A.M.;Ritter,E.R.J.Phys.Chem.1995,99,14514.doi:10.1021/j100039a045

    (58)Wang,H.;Frenklach,M.Combust.Flame 1994,96,163.doi:10.1016/0010-2180(94)90167-8

    (59) Lu,T.;Law,C.K.Combust.Flame 2006,144,24.doi:10.1016/j.combustflame.2005.02.015

    (60)Wang,Q.D.;Fang,Y.M.;Wang,F.;Li,X.Y.Combust.Flame 2012,159,91.doi:10.1016/j.combustflame.2011.05.019

    (61) Kee,R.J.;Rupley,F.M.;Miller,J.A.Chemkin-II:a Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics.Report SAND89-8009,Sandia,1989.

    (62) Lutz,A.E.;Kee,R.J.;Miller,J.A.SENKIN:a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis.Report SAND87-8248,Sandia,1987.

    (63)Kee,R.J.;Grcar,J.F.;Smooke,M.D.;Miller,J.A.PREMIX:a Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames.Report SAND85-8240,Sandia,1985.

    (64) Blanquart,G.;Pepiot-Desjardins,P.;Pitsch,H.Combust.Flame 2009,156,588.doi:10.1016/j.combustflame.2008.12.007

    (65) Dagaut,P.;Reuillon,M.;Cathonnet,M.Combust.Sci.Technol.1994,95,233.

    (66) Dagaut,P.;Reuillon,M.;Cathonnet,M.Combust.Sci.Technol.1994,103,349.doi:10.1080/00102209408907703

    (67)Mzé-Ahmed,A.;Hadj-Ali,K.;Dagaut,P.;Dayma,G.Energy Fuels 2012,26,4253.doi:10.1021/ef300588j

    (68) Chang,Y.;Jia,M.;Liu,Y.;Li,Y.;Xie,M.Combust.Flame 2013,160,1315.doi:10.1016/j.combustflame.2013.02.017

    (69)Kumar,K.;Mittal,G.;Sung,C.J.;Law,C.K.Combust.Flame 2008,153,343.doi:10.1016/j.combustflame.2007.11.012

    猜你喜歡
    全德四川大學物理化學
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    四川大學西航港實驗小學
    中小學校長(2021年9期)2021-10-14 14:36:16
    關(guān)于痔瘡防治的科普知識
    百歲翁的健腦方
    百歲翁的健腦方
    特別健康(2018年8期)2018-09-07 00:35:50
    Chemical Concepts from Density Functional Theory
    百年精誠 譽從信來——走進四川大學華西眼視光之一
    四川大學華西醫(yī)院
    四川大學信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    99热这里只有是精品50| av有码第一页| 69av精品久久久久久| 99热6这里只有精品| 午夜成年电影在线免费观看| 亚洲自偷自拍图片 自拍| 久久精品人妻少妇| 美女黄网站色视频| 久久久久久久精品吃奶| 性欧美人与动物交配| 国产激情偷乱视频一区二区| 国产午夜福利久久久久久| 草草在线视频免费看| 国产伦人伦偷精品视频| 在线看三级毛片| 中文字幕久久专区| 夜夜看夜夜爽夜夜摸| 久久亚洲精品不卡| а√天堂www在线а√下载| xxxwww97欧美| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 久久精品夜夜夜夜夜久久蜜豆 | 国产真实乱freesex| 观看免费一级毛片| 国语自产精品视频在线第100页| 亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 欧美色视频一区免费| 欧美大码av| av福利片在线观看| 亚洲国产看品久久| 午夜亚洲福利在线播放| bbb黄色大片| 99精品在免费线老司机午夜| 久久久久久免费高清国产稀缺| 国产精品久久久人人做人人爽| 99国产精品一区二区蜜桃av| 老司机午夜福利在线观看视频| 香蕉久久夜色| 国产av在哪里看| 91成年电影在线观看| 国产成人aa在线观看| 精品国内亚洲2022精品成人| 亚洲中文字幕一区二区三区有码在线看 | 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色| 在线观看舔阴道视频| 波多野结衣高清无吗| 欧美性猛交黑人性爽| 一进一出抽搐动态| 成人欧美大片| 国产爱豆传媒在线观看 | 国产亚洲精品一区二区www| 神马国产精品三级电影在线观看 | 岛国在线观看网站| 少妇人妻一区二区三区视频| 极品教师在线免费播放| 亚洲人成伊人成综合网2020| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 哪里可以看免费的av片| 亚洲色图 男人天堂 中文字幕| 欧美激情久久久久久爽电影| 悠悠久久av| 国产午夜精品久久久久久| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 在线观看www视频免费| 日韩欧美三级三区| 毛片女人毛片| 黑人欧美特级aaaaaa片| 亚洲精品在线美女| 中文字幕人妻丝袜一区二区| 91国产中文字幕| 亚洲在线自拍视频| 国产一区二区三区视频了| 波多野结衣高清作品| 麻豆国产av国片精品| 国产精品野战在线观看| 97碰自拍视频| 99在线人妻在线中文字幕| 麻豆国产av国片精品| 一级毛片精品| 97碰自拍视频| 极品教师在线免费播放| 亚洲第一欧美日韩一区二区三区| www日本在线高清视频| 国产一区在线观看成人免费| 99国产精品一区二区蜜桃av| 亚洲第一电影网av| 亚洲国产高清在线一区二区三| 亚洲,欧美精品.| 这个男人来自地球电影免费观看| 九色国产91popny在线| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 亚洲人成77777在线视频| e午夜精品久久久久久久| 国产精品亚洲美女久久久| 成人三级黄色视频| 国产成人精品无人区| 国产精品 欧美亚洲| 午夜两性在线视频| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 人人妻人人澡欧美一区二区| 国产黄色小视频在线观看| 成人亚洲精品av一区二区| 老司机在亚洲福利影院| 91麻豆精品激情在线观看国产| 男插女下体视频免费在线播放| 久久久精品大字幕| 久久久久久人人人人人| 久久久国产精品麻豆| 国产97色在线日韩免费| 757午夜福利合集在线观看| 久久亚洲精品不卡| 男插女下体视频免费在线播放| 免费观看精品视频网站| 欧美一区二区精品小视频在线| 视频区欧美日本亚洲| 久久久久久亚洲精品国产蜜桃av| 国内精品一区二区在线观看| 亚洲国产看品久久| 久久久久九九精品影院| 免费观看精品视频网站| 亚洲精品在线观看二区| 国产成人精品无人区| 欧美大码av| 一进一出抽搐gif免费好疼| 九九热线精品视视频播放| 可以免费在线观看a视频的电影网站| 手机成人av网站| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器 | 老司机深夜福利视频在线观看| 国产不卡一卡二| 这个男人来自地球电影免费观看| 亚洲 欧美一区二区三区| 日本五十路高清| 久久久久久久精品吃奶| 黑人欧美特级aaaaaa片| 成人国产一区最新在线观看| 一夜夜www| 国产高清videossex| 人妻夜夜爽99麻豆av| 国产一区二区三区在线臀色熟女| 99久久综合精品五月天人人| 国产精品久久久久久久电影 | 91麻豆精品激情在线观看国产| 国产真实乱freesex| 久久精品亚洲精品国产色婷小说| 男女做爰动态图高潮gif福利片| 青草久久国产| 麻豆一二三区av精品| 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 欧美久久黑人一区二区| 又粗又爽又猛毛片免费看| 最近最新中文字幕大全免费视频| 国产又黄又爽又无遮挡在线| 天天躁夜夜躁狠狠躁躁| 一个人免费在线观看电影 | 亚洲人成网站在线播放欧美日韩| 亚洲精品美女久久av网站| 97超级碰碰碰精品色视频在线观看| 天天一区二区日本电影三级| 午夜免费观看网址| 无人区码免费观看不卡| 国产精品国产高清国产av| 免费电影在线观看免费观看| 黄色片一级片一级黄色片| 亚洲va日本ⅴa欧美va伊人久久| 免费av毛片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦在线观看视频一区| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 一本大道久久a久久精品| 一进一出好大好爽视频| 午夜激情福利司机影院| 欧美不卡视频在线免费观看 | 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三| 亚洲人与动物交配视频| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 国产精品九九99| 亚洲免费av在线视频| 精品不卡国产一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 成人三级做爰电影| 悠悠久久av| 国产成人精品久久二区二区91| 黄色a级毛片大全视频| 亚洲成人精品中文字幕电影| 久久精品91蜜桃| 国产精品爽爽va在线观看网站| 亚洲国产中文字幕在线视频| 黄色 视频免费看| 日日干狠狠操夜夜爽| 91老司机精品| 久久国产乱子伦精品免费另类| 在线观看免费日韩欧美大片| 国产亚洲精品一区二区www| 黄片小视频在线播放| 一进一出抽搐动态| 欧美精品亚洲一区二区| 国产精品爽爽va在线观看网站| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 中亚洲国语对白在线视频| 国产激情欧美一区二区| 亚洲自拍偷在线| 国产精华一区二区三区| 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 色播亚洲综合网| 亚洲欧美日韩高清在线视频| av国产免费在线观看| 1024手机看黄色片| 亚洲国产精品合色在线| 久久香蕉国产精品| 亚洲第一电影网av| 欧美日本亚洲视频在线播放| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 久久精品影院6| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 一级片免费观看大全| 亚洲成av人片在线播放无| 18禁国产床啪视频网站| 国产成人欧美在线观看| 午夜视频精品福利| 老鸭窝网址在线观看| 男男h啪啪无遮挡| 久久精品国产清高在天天线| www国产在线视频色| 少妇粗大呻吟视频| 一级片免费观看大全| 国产亚洲精品av在线| 欧美黑人欧美精品刺激| 国产激情久久老熟女| 男人舔女人的私密视频| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 久久中文看片网| 免费看日本二区| 久久久久久人人人人人| 一边摸一边抽搐一进一小说| 国产成+人综合+亚洲专区| 波多野结衣高清作品| 亚洲国产精品久久男人天堂| 午夜福利18| 1024手机看黄色片| 变态另类成人亚洲欧美熟女| 香蕉丝袜av| 人妻丰满熟妇av一区二区三区| 亚洲精品久久成人aⅴ小说| aaaaa片日本免费| 日本黄色视频三级网站网址| а√天堂www在线а√下载| 成人精品一区二区免费| 黄片小视频在线播放| 亚洲av电影不卡..在线观看| 午夜免费成人在线视频| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲| 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 国内精品久久久久久久电影| 精品国产超薄肉色丝袜足j| 色播亚洲综合网| 久久久久免费精品人妻一区二区| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人一区二区三区免费视频网站| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 搡老熟女国产l中国老女人| 亚洲精品美女久久av网站| 国产人伦9x9x在线观看| 欧美在线黄色| 最新在线观看一区二区三区| 日本免费一区二区三区高清不卡| 欧美乱妇无乱码| 免费无遮挡裸体视频| 丝袜美腿诱惑在线| 国产精品野战在线观看| www.999成人在线观看| 成人18禁在线播放| 国产不卡一卡二| 性欧美人与动物交配| www.自偷自拍.com| 99在线视频只有这里精品首页| 一二三四在线观看免费中文在| 18禁美女被吸乳视频| 在线国产一区二区在线| 19禁男女啪啪无遮挡网站| 男女那种视频在线观看| 丰满的人妻完整版| 国产激情久久老熟女| 国产精品久久久av美女十八| 很黄的视频免费| 两个人的视频大全免费| 男插女下体视频免费在线播放| av免费在线观看网站| 岛国在线免费视频观看| 成人永久免费在线观看视频| 九九热线精品视视频播放| 国产激情欧美一区二区| av福利片在线| 不卡一级毛片| 午夜免费激情av| 久热爱精品视频在线9| av视频在线观看入口| 国产伦一二天堂av在线观看| 亚洲av电影在线进入| 国产激情欧美一区二区| 十八禁网站免费在线| 欧美久久黑人一区二区| 1024香蕉在线观看| 伦理电影免费视频| 色综合亚洲欧美另类图片| 国产成人啪精品午夜网站| 欧美在线黄色| 欧美一级毛片孕妇| 少妇人妻一区二区三区视频| 欧美3d第一页| 久久人人精品亚洲av| 非洲黑人性xxxx精品又粗又长| 午夜视频精品福利| 久久香蕉激情| 三级国产精品欧美在线观看 | 亚洲在线自拍视频| 深夜精品福利| 91老司机精品| 亚洲国产欧洲综合997久久,| 亚洲av成人精品一区久久| 精品乱码久久久久久99久播| 欧美大码av| 久久天堂一区二区三区四区| 色尼玛亚洲综合影院| 亚洲美女视频黄频| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 成熟少妇高潮喷水视频| 97人妻精品一区二区三区麻豆| 欧美中文日本在线观看视频| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 国产av在哪里看| 99久久精品国产亚洲精品| 成人国产一区最新在线观看| 美女 人体艺术 gogo| ponron亚洲| 亚洲成人久久爱视频| 亚洲 国产 在线| 黄色片一级片一级黄色片| 好男人电影高清在线观看| av福利片在线| 亚洲 国产 在线| 午夜老司机福利片| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 亚洲av成人不卡在线观看播放网| 免费在线观看成人毛片| 深夜精品福利| 怎么达到女性高潮| 国产av不卡久久| 国产探花在线观看一区二区| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 国产精品自产拍在线观看55亚洲| 一本综合久久免费| 一个人免费在线观看电影 | 在线观看一区二区三区| 国产精品久久电影中文字幕| 国产蜜桃级精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美午夜高清在线| 色av中文字幕| 99久久精品热视频| 午夜久久久久精精品| 丰满人妻一区二区三区视频av | tocl精华| 999久久久国产精品视频| 国产精品美女特级片免费视频播放器 | 在线视频色国产色| 欧美日韩亚洲国产一区二区在线观看| 黄色女人牲交| 欧美大码av| 日本精品一区二区三区蜜桃| 可以在线观看毛片的网站| 色综合站精品国产| 久久精品国产综合久久久| 国产亚洲精品久久久久5区| 岛国在线观看网站| 免费看十八禁软件| 国产一区二区三区视频了| 亚洲人成电影免费在线| 婷婷精品国产亚洲av在线| 国产97色在线日韩免费| 国产又色又爽无遮挡免费看| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费一区二区三区在线| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 亚洲专区字幕在线| 欧美在线一区亚洲| 亚洲熟女毛片儿| 久久精品成人免费网站| 国产99白浆流出| 亚洲人成电影免费在线| 91老司机精品| 亚洲av成人av| 日韩欧美在线乱码| 亚洲一码二码三码区别大吗| 午夜两性在线视频| 日本一区二区免费在线视频| 久久国产乱子伦精品免费另类| 欧美日韩亚洲国产一区二区在线观看| 久久中文看片网| 国产成人av激情在线播放| 19禁男女啪啪无遮挡网站| 亚洲成av人片在线播放无| 51午夜福利影视在线观看| 精品福利观看| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 一夜夜www| 在线观看66精品国产| 午夜精品在线福利| 人人妻人人澡欧美一区二区| 午夜成年电影在线免费观看| 亚洲精品美女久久久久99蜜臀| 国产精品野战在线观看| 一夜夜www| 在线a可以看的网站| 香蕉国产在线看| 男人舔女人的私密视频| 婷婷丁香在线五月| 88av欧美| 欧美日韩国产亚洲二区| 精品久久久久久久末码| 999精品在线视频| 亚洲人成伊人成综合网2020| 日本 av在线| 淫妇啪啪啪对白视频| 琪琪午夜伦伦电影理论片6080| 久久精品亚洲精品国产色婷小说| 免费看十八禁软件| 又粗又爽又猛毛片免费看| 久久久久国产一级毛片高清牌| 香蕉av资源在线| 国产精品野战在线观看| 两个人视频免费观看高清| 女同久久另类99精品国产91| 热99re8久久精品国产| 一级a爱片免费观看的视频| 中文在线观看免费www的网站 | 不卡av一区二区三区| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 中出人妻视频一区二区| 88av欧美| 国产成+人综合+亚洲专区| 午夜福利在线观看吧| 老熟妇仑乱视频hdxx| 亚洲免费av在线视频| 在线永久观看黄色视频| 国产av麻豆久久久久久久| 亚洲欧美一区二区三区黑人| 一区二区三区激情视频| 精品一区二区三区四区五区乱码| 在线观看一区二区三区| 亚洲 欧美一区二区三区| 午夜亚洲福利在线播放| 成人特级黄色片久久久久久久| 国产成人一区二区三区免费视频网站| 一区福利在线观看| 成人欧美大片| 69av精品久久久久久| 欧美日韩黄片免| 桃色一区二区三区在线观看| 91麻豆精品激情在线观看国产| 成人精品一区二区免费| 一级片免费观看大全| ponron亚洲| 成熟少妇高潮喷水视频| 亚洲熟妇熟女久久| 亚洲一区中文字幕在线| 99精品久久久久人妻精品| 精华霜和精华液先用哪个| 中文字幕最新亚洲高清| 国产精品爽爽va在线观看网站| 国产黄片美女视频| 久99久视频精品免费| 五月伊人婷婷丁香| 精品国内亚洲2022精品成人| 亚洲av熟女| 悠悠久久av| 色综合欧美亚洲国产小说| 亚洲男人天堂网一区| 国产伦一二天堂av在线观看| 久久性视频一级片| 天天躁狠狠躁夜夜躁狠狠躁| 精品第一国产精品| 极品教师在线免费播放| 成人特级黄色片久久久久久久| 久久久久性生活片| 国产91精品成人一区二区三区| 国产亚洲精品综合一区在线观看 | 91字幕亚洲| 亚洲av电影不卡..在线观看| 亚洲精品粉嫩美女一区| 老司机在亚洲福利影院| 三级毛片av免费| 少妇被粗大的猛进出69影院| 99久久99久久久精品蜜桃| www.www免费av| 男女午夜视频在线观看| 黑人欧美特级aaaaaa片| 精品免费久久久久久久清纯| 免费在线观看影片大全网站| 亚洲avbb在线观看| 国产黄a三级三级三级人| 亚洲午夜精品一区,二区,三区| 一级作爱视频免费观看| 国产精品久久久av美女十八| 脱女人内裤的视频| 一个人观看的视频www高清免费观看 | 又紧又爽又黄一区二区| 日本撒尿小便嘘嘘汇集6| 国产免费av片在线观看野外av| 亚洲av成人一区二区三| 十八禁人妻一区二区| 亚洲成人精品中文字幕电影| 亚洲欧美日韩高清在线视频| 69av精品久久久久久| 男人舔女人的私密视频| 国产av一区在线观看免费| 亚洲狠狠婷婷综合久久图片| 日韩中文字幕欧美一区二区| 欧美3d第一页| 久久精品影院6| 亚洲av五月六月丁香网| 精品一区二区三区四区五区乱码| 久久中文看片网| 老司机深夜福利视频在线观看| 国产熟女午夜一区二区三区| 亚洲精品久久成人aⅴ小说| 日韩欧美在线乱码| 91国产中文字幕| 欧美在线黄色| 男男h啪啪无遮挡| 18禁裸乳无遮挡免费网站照片| 无遮挡黄片免费观看| 亚洲av成人精品一区久久| 两个人视频免费观看高清| 91字幕亚洲| 中文在线观看免费www的网站 | 亚洲电影在线观看av| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品,欧美在线| 日韩国内少妇激情av| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 韩国av一区二区三区四区| 国产av又大| 国产精品av视频在线免费观看| 91九色精品人成在线观看| 后天国语完整版免费观看| 成人特级黄色片久久久久久久| 免费看日本二区| av有码第一页| 熟女电影av网| 成年女人毛片免费观看观看9| 久久香蕉国产精品| 亚洲人成网站在线播放欧美日韩| 久久久久国产一级毛片高清牌| 久久久久久久午夜电影| 亚洲熟女毛片儿| 亚洲av电影不卡..在线观看| 中文字幕熟女人妻在线| 国产亚洲精品久久久久久毛片| 免费看日本二区| 欧美性猛交黑人性爽| 国产99白浆流出| 日韩欧美在线二视频| 精品国产乱码久久久久久男人| 久久婷婷成人综合色麻豆| 亚洲第一电影网av| 免费看美女性在线毛片视频|