• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    過渡金屬改性的ZSM-5催化劑應用于甲硫醚轉化制甲硫醇

    2014-09-17 06:59:58陳世萍王偉明劉迎偉魏育才袁成龍方維平楊意泉
    物理化學學報 2014年6期
    關鍵詞:福建廈門元華化工學院

    陳世萍 王偉明 劉迎偉 魏育才 袁成龍 方維平 楊意泉,*

    (1廈門大學化學化工學院化學工程與生物工程系,福建廈門361005;2廈門大學化學化工學院化學系,福建廈門361005)

    1 Introduction

    The sulfur-containing compounds such as dimethyl sulfide(DMS),methanethiol(MT),and H2S are referred to as total reduced sulfur(TRS)compounds,and they all have malodorous odor.1,2Among them,MT is now used as an important chemical intermediate to produce organosulfur compounds such as methionine,widely used as feed additive.With increasing demand for methionine,the production of MT becomes more important.3Industrially,it is synthesized from methanol and hydrogen sulfide over alumina-supported metal oxide catalysts;and DMS,a major byproduct,is always formed along with methanethiol.4In the H2S atmosphere,DMS can be converted into MT in the presence of a catalyst,so as to boost the yield of methanethiol and lower the content of DMS in wastewater,which is economically as well as environmentally attractive for better carbon management.

    Several solid acid catalysts like Al2O3,phosphorus promoted Al2O3,and WO3/ZrO2,have been studied for the synthesis of MT from DMS at 623-673 K with byproduct methane.5-12Besides,the effect of temperature,space velocity,and molar ratio of H2S to DMS was investigated in our previous study.6

    There is still a constant search for the development of novel catalysts with high activity and selectivity for the conversion of DMS to MT.In this regard,less attention has been paid towards the ZSM-5 catalysts.Plaisance and Dooley13reported the production of DMS and MT by condensation of methanol and hydrogen sulfide in the presence of a kind of zeolite,and deduced that the zeolite with stronger acid sites can easily adsorb DMS and MT.Satokawa et al.14found that DMS was efficiently adsorbed on silver-exchanged Y zeolites(Ag/Na-Y)at room temperature.Hwang and Tai15have used Ag/ZSM-5,Mn/ZSM-5,and Ag-Mn/ZSM-5 as catalysts to catalyze the oxidation of DMS with ozone;they concluded that ion-exchanged ZSM-5 strengthened the adsorption and oxidation of DMS.

    It is well known that transition metals(W,Ni,Co,Mo)have an ability to catalyze sulfurization.14-19However,to the best of our knowledge,these transition metals supported on ZSM-5 have not been systematically studied for the reaction of DMS with H2S.The aim of this work is to carry out a systematic comparison of the performance of ZSM-5-supported W,Ni,Co,and Mo catalysts for the reaction.The performance-structure correlation of different catalysts was discussed as well.

    2 Experimental

    2.1 Catalyst preparation

    The catalysts were prepared by incipient wetness impregnation method.Ammonium metatungstate,nickel nitrate,cobalt nitrate,and ammonium molybdate(all are 99%of purity,Sinopharm Chemical Reagent Co.,Ltd.)were used as precursors of the said transition metals.Appropriate amount of transition metal salt was dissolved in distilled water to produce an aqueous solution,in which then the support material ZSM-5,(proton form,n(SiO2)/n(Al2O3)=38(molar ratio),Catalyst Factory of NanKai University)was soaked at room temperature.The impregnated sample was dried at 353 K for 24 h and then calcined in air at 773 K for 2 h.After pressing into wafer,crushing and sieving,the catalyst particles of 30-60 mesh were collected for use;the as-prepared catalysts are denoted as M/ZSM-5,(M=W,Ni,Co,Mo),the stoichiometric metal content was 2%(mass fraction).Besides,the used catalyst is marked as M/ZSM-5-A

    2.2 Catalyst activity evaluation

    DMS conversion reaction was conducted in a glass tubular fixed bed reactor with an internal diameter of 10 mm;typically,2.0 mL of the catalyst with 30-60 mesh was filled into the reactor,with a thin layer of glass fiber and a layer of quartz powder(30-60 mesh)covered on the catalyst bed.Before experiment,the catalyst was sulfurized with H2S for 1 h at 673 K to activate the catalyst;the H2S flow rate was maintained by mass flow controller(Beijing Seven star,D08-1F).Then the sulfurized catalyst was tested at 593,633,and 673 K in turn for 2 h,respectively,and the system pressure was held at 0.5 MPa with the aid of a back-pressure regulator.The DMS solution was injected into the catalyst bed by precision metering pump(Beijing Satellite Manufactory,2ZB-1L10).The outlet stream temperature was kept at 400 K with heater band and analyzed by an on-line gas-chromatograph equipped with a Porapak Q(2 m×Ф 3 mm)column connected to a thermal conductivity detector(TCD).

    2.3 Catalyst characterization

    XRD measurements were performed on a Panalytical X′pert PRO X-ray diffractometer utilizing monochromatic Cu Kαradiation(λ=0.15418 nm,tube voltage:40 kV,tube current:30 mA)in the 2θ range from 5°to 50°.Unmodified ZSM-5 zeolite sample was used as reference for crystallinity comparison.The degree of crystallinity of M/ZSM-5 was defined utilizing the main X-ray diffraction peak(2θ=22.0°-25.0°)by the following equation:

    The surface areas of the catalysts were measured using nitrogen adsorption at 77 K with a Micromeritics Tristar 3000 surface area and pore analyzer.Prior to N2physisorption measurement,all samples were degassed at 393 K for 1 h and then evacuated at 573 K for 3 h to remove physically adsorbed impurities.The specific surface area(SBET)was determined by the Brunauer-Emmett-Teller(BET)method and the pore size distributions were calculated by Barrett-Joyner-Halenda(BJH)method according to the desorption branch of the isotherms.The Si/Al mole ratios and actual metal compositions of the M/ZSM-5 samples were determined by a Bruker S8 TIGER X-ray fluorescence(XRF)spectrometer.The contents of carbon and sulfur on the tested catalysts were measured on CHNS Equipment(Vario EL III elemental analyser)with the limit of detection(LOD)being 0.03-20 mg for carbon and 0.03-6 mg for sulfur.

    CO2and NH3temperature-programmed desorption(TPD)measurements of the catalysts were conducted in a quartz tube reactor filled with 80 mg catalyst.For CO2-TPD experiment,the catalyst was pretreated in Ar at 673 K for 1 h,then cooled down to 323 K;carbon dioxide adsorption was performed for about 0.5 h in a CO2stream at a flow rate of 30 mL·min-1.Weakly adsorbed CO2was removed by Ar sweeping at 323 K,and then the temperature was increased to 1073 K at a heating rate of 10 K·min-1.The desorbed CO2component was monitored with a mass spectrometry(MS)signal of m/e=44 in multiple ion detection(MID)mode.So did the NH3-TPD experiment as CO2-TPD with NH3substituting for CO2.The NH3-TPD experiment was conducted from 323 to 873 K.Desorbed NH3and H2O were monitored with a MS signal of m/e=16,17 in MID mode,and a MS signal of m/e=18,respectively.

    O2temperature-programmed oxidation(TPO)experiment for the used catalysts was performed in a quartz reactor.For each experiment,80 mg sample was pretreated in Ar at 323 K for 1 h,and then swept with 5%O2/Ar at a rate of 20 mL·min-1until the base line on the recorder remained unchanged.Finally,the sample was heated at a rate of 10 K·min-1in 5%O2/Ar.CO2and SO2formed were analyzed with a MS signal of m/e=44,64 in MID mode,respectively.

    3 Results and discussion

    3.1 Catalytic activity

    The evaluation results of the catalysts as a function of temperature are shown in Fig.1;the activity data of the catalysts with different molar ratios of H2S to DMS at 593 K are summarized in Table 1.Earlier studies5-7indicated that the reaction of H2S with DMS to form MT is accompanied with by-product methane;two reactions,i.e.,CH3SH→CH4+S+C,and CH3SCH3→CH4+C2H6+S+C,led to the formation of methane at the expense of MT and DMS.

    The data of DMS conversion and selectivities toward MT and methane are listed in Table 1.The conversions of DMS at 593 K for all catalysts are similar,and the selectivity toward MT is found to be higher than 98%for all catalysts.The modified ZSM-5 sample exhibits a relatively high activity,which may be due to the strong Lewis acid sites on ZSM-5.In the transition metal-modified ZSM-5 catalysts,the Co/ZSM-5 sample shows the best conversion at both H2S/DMS mole ratio cases,followed by Mo-,Ni-,and W-modified samples in turn.Several lines of evidences verified that both DMS and MT were adsorbed on the Al3+cation of ZSM-5 by electronic pairs,20-22the above activity results show that the additive ions(W6+,Ni2+,Co3+,and Mo6+)are more efficient than Al3+in adsorbing DMS and MT.

    Fig.1 Conversion of DMS as a function of temperature over(a)W/ZSM-5,(b)Ni/ZSM-5,(c)Co/ZSM-5,(d)Mo/ZSM-5

    Table 1 Conversion of DMS at different mole ratios of H2S to DMS over the catalysts at 593 K

    The shapes of conversion and selectivity curves for W-,Ni-,Co-and Mo-containing catalysts are similar(Fig.1).We observed that increasing in the reaction temperature led to the enhancement in the conversion of DMS and decline in the selectivity towards MT.It might be due to the inevitable decomposition of DMS and MT with the temperature increasing.23W/ZSM-5 exhibits the lowest conversion and the highest selectivity towards methanethiol as the increase of temperature with respect to the four transition metal-modified catalysts,whereas the Co/ZSM-5 catalyst is most active and the selectivity towards methanethiol severely decreases with temperature increasing.The decreasing rate of the selectivity towards methanethiol follows the sequence:Co/ZSM-5>Mo/ZSM-5>Ni/ZSM-5>W/ZSM-5.In other words,the transition metal-modified ZSM-5 catalysts not only strengthen the adsorption of DMS and MT,but also improve the decomposition of DMS and MT on active metal sites.Low selectivity towards MT of the Co-containing catalyst for this reaction is rather unexpected although the severe decomposition of DMS and MT may generate much carbon and sulfur deposition,which will clog the pore.When the amount of carbon accumulated has been over 20%(mass fraction)on the surface,the catalyst would be deactivated.5

    For the four catalysts,the conversion of DMS is relative to the concentration of DMS in the feed.At H2S/DMS molar ratio of 4,the conversion of DMS is close to twice as many as that at H2S/DMS molar ratio of 2.This phenomenon is accordance with the result reported in the literature23for γ-Al2O3used in the reaction of DMS with H2S.

    3.2 Catalyst characterization

    3.2.1 Physicochemical properties

    The XRD patterns of the metal-modified ZSM-5(M/ZSM-5)samples(both fresh and used samples)are shown in Fig.2.As can be observed from Fig.2a,all the fresh M/ZSM-5 samples exhibit typical peaks due to ZSM-5,indicating that the structure of the zeolite remained intact after metal loading.However,the crystallinity of different metal-modified catalysts drops to some extent(Table 2),possibly owing to the dealumination of the zeolite during the modification process(impregnating,drying,and calcining).The transition metal cations(W6+,Ni2+,Co3+,Mo6+)anchor to the negative framework charge held in the Al―O―(Si―O)2―Al cluster on the surface of ZSM-5 and replace for some of Al3+sites,24so the mole ratio of Si/Al for the modified catalysts exhibits a little increase.No diffraction peaks due to metal oxides(metal=W,Ni,Co,Mo)can be detected,indicating that the active metal component on the catalyst surface is highly dispersed or lower than the XRD detection limit.The XRD patterns of the used catalysts illustrate that the support ZSM-5 in all metal-modified ZSM-5 samples still preserves typical structure even under harsh reaction conditions,obviously,the crystallinity drops to varying degrees,which is estimated from Fig.2b;this may be attributed to carbon deposition on the surface.

    Fig.2 XRD patterns of the metal-modified ZSM-5 samples before and after using

    The surface area,pore diameter,and pore volume of the M/ZSM-5 samples are found to be lower than those of ZSM-5 sample(Table 3).The surface area of Ni/ZSM-5 is lower than those of the others;the difference may be due to different particle sizes of these metal oxides and their different interactions with ZSM-5.It is observed that the porosity and specific surface area of the used catalyst reduce much;the losses in the sur-face area(compared with the surface area of the fresh catalyst)are 29.7%for W/ZSM-5,33.75%for Ni/ZSM-5,37%for Co/ASM-5,and 40.5%for Mo/ZSM-5.The distinct loss of the porosity and specific surface area may be ascribed to the deposition of carbon and sulfur on the surface,leading to blocking up the pore;these depositions caused by DMS conversion are subjected to oxidation treatment at above 773 K repeatedly to rejuvenate the catalyst in industrial process.6,7

    Table 2 Chemical composition of the different M/ZSM-5 samples

    Table 3 Textural properties of M/ZSM-5 samples before and after using

    3.2.2 Surface acid-base properties

    The NH3-TPD and CO2-TPD measurement results are depicted in Figs.3 and 4.Two outstanding desorption peaks appear in the NH3-TPD patterns arising from the catalysts.A low temperature peak at near 420 K due to the ammonia species,which is desorbed from week acidic sites,in all catalysts appears;whereas a high temperature peak at near 730 K due to the ammonia species desorbed from strong acidic sites in W/ZSM-5,Ni/ZSM-5,Mo/ZSM-5 catalysts occurs.25,26Compared with ZSM-5 sample,the samples modified with M(M=W,Ni,Co,Mo)have a small shoulder peak at near 520 K in the NH3-TPD profile,indicating that small amounts of moderate acidic sites in all modified catalysts appear.In summary,the area below the curve increases as the addition of transition metal,this indicates that the total acidity of ZSM-5 is enhanced by the modification with transition metal;the addition of W,Ni,and Mo intensifies the strong acid of the catalysts,while Co makes the weak acidic sites increase.On the other hand,the intensities and quantities of basic sites on the modified catalysts are changed to some extent,especially in Co/ZSM-5 and Mo/ZSM-5.For Co/ZSM-5 catalyst,doping cobalt oxide results in the disappearance of the most of moderate basic sites with a CO2desorption peak occurring at 700 K,27and in the appearance of strong basic sites with a CO2desorption peak occurring at 800 K.A shoulder peak at 750 K appears in the profile for the Mo/ZSM-5 catalyst,indicating that Mo-modified ZSM-5 expresses more mild basicity.Weak basic sites shown by CO2desorption peak at 410 K do not exhibit significant change for all catalysts.

    Fig.3 NH3-TPD profiles of M/ZSM-5 samples

    Fig.4 CO2-TPD profiles of M/ZSM-5 samples

    The transformation of the acidities and basicities induced by doping transition metal oxides could be explained by the reaction of metal active sites and the acidic(basic)sites on the ZSM-5 surface.Therefore,the different metal-modified ZSM-5 zeolites result in various metal-sulfur interactions during the presulfurization with H2S.27The C―S bond is activated via acid site on the catalyst surface and cleaves to a methylthiolate group.14The increase of the acidity increases the capacity of the catalysts to carry out the C―S bond incision,28-31and subsequently improves the catalytic behaviors in converting DMS.The above catalyst activity test and characterization results strongly suggest that metal active sites and the acidic sites closely situated have a strong synergistic effect;therefore,the interactions of transition metals with DMS become stronger and the acid sites favor the cleavage of C―S bond.Furthermore,the MT selectivity decreases apparently with increasing in the surface basicity on Co/ZSM-5 and Mo/ZSM-5,this may be due to the decompositions of DMS and MT,which are easy to carry out on basic sites on the catalyst surface.

    3.2.3 Investigation of C and S deposition measured by using O2-TPO

    As we briefly mentioned above,the accumulation of carbon and sulfur on the surface may block up the pore,leading to the losses of porosity and specific surface area.The data of surface contents of C and S on used catalysts are listed in Table 3.DMS and MT decompositions are the main routes for coke and sulfur formation,resulting in the highest content of C and S on the Co/ZSM-5 catalyst owing to the strongest effect of Co3+on C―S bond incision.

    Fig.5 O2-TPO profiles of M/ZSM-5 samples

    O2-TPO measurements for the used catalysts are depicted in Fig.5,the reaction includes the oxidation of the deposited carbon and sulfur along with the residual adsorbed TRS(DMS,MT,and H2S),resulting in the formation of CO2,SO2,and water,which are the complete oxidation products.It is evident that there are three regions of CO2formation with respect to the maximum peaks occurring at 690,750,and 860 K,respectively,which can be assigned to some carbonaceous deposits within the ZSM-5 zeolite channels.The M/ZSM-5 catalysts except Mo/ZSM-5 show a higher and stronger peak at 890 K,suggesting more carbon deposition existing,thus,higher temperature is needed when the reactivation of the catalyst is wanted.The release of SO2is more complicated,there is one apparent peak for ZSM-5 at 720 K,while,two small and broad peaks occur at 530 and 900 K for M/ZSM-5,whereas all the peaks of the M/ZSM-5 catalysts exhibit a small shift toward lower temperature for the oxidation of sulfur,The action of Co/ZSM-5 leads to producing largest amount of SO2,followed by that of Mo,Ni,W,indicating that the severest reaction occurs on Co/ZSM-5.

    4 Conclusions

    The reaction of H2S with DMS to form MT was studied over the transition metals(W,Ni,Co,Mo)modified ZSM-5 catalysts,the metal active sites and the acidic sites closely situated have a strong synergistic effect.The transition metal cations(W6+,Ni2+,Co3+,Mo6+)replace some of Al3+sites,since the transition metal cations are more efficient than Al3+in adsorbing DMS and MT,leading to more intense conversion of DMS.The total acidity of ZSM-5 was found to be enhanced by doping transition metal promoters,the addition of W,Ni,and Mo intensified the acidity of strong acid sites of the catalysts,while Co made the weak acidic sites increase.The increase of the acidity increases the capacity of the catalysts to carry out C―S bond incising,and subsequently improves the catalytic behavior in converting DMS.On the other hand,the MT selectivity decreases apparently with increasing in the surface basicity on Co/ZSM-5 and Mo/ZSM-5,which may be due to the fact that the decompositions of DMS and MT are easy to carry out on basic sites on the surface of the catalysts.

    The used catalysts suffer from deactivation because of carbon and sulfur deposition on the surface;they cause distinct losses of the porosity and specific surface area,and subsequently block the pore and hinder the transport of reactants(H2S,DMS)to the surface,and,as a result,reduce the reaction rate.The oxidation treatment can efficiently rejuvenate the catalysts.

    (1) Kastner,J.R.;Buquoi,Q.;Gangavaram,R.;Das,K.C.Envir.Sci.Technol.2005,39,1835.doi:10.1021/es0499492

    (2) Demessie,E.S.;Devulapelli,V.G.Appl.Catal.B:Environ.2008,84,408.doi:10.1016/j.apcatb.2008.04.025

    (3) Gutiérrez,O.;Kaufmann,C.;Hrabar,A.;Zhu,Y.;Lercher,J.J.Catal.2011,280,264.doi:10.1016/j.jcat.2011.03.027

    (4) Chandra,S.;Soni,K.;Bunkar,R.;Sharma,M.;Singh,B.;Mahato,A.N.;Vijayaraghavan,R.Catal.Commun.2009,11,77.doi:10.1016/j.catcom.2009.08.014

    (5) Beach,L.K.Preparation ofAlkyl Mercaptans.US Patent 2667515,1954-1-26.

    (6)Chen,S.P.;Zhang,Y.H.;Wu,M.;Fang,W.P.;Yang,Y.Q.Appl.Catal.A 2012,431-432,151.

    (7)Chen,S.P.;Wang,W.M.;Zhang,Y.H.;Wei,Y.C.;Fang,W.P.;Yang,Y.Q.J.Mol.Catal.A:Chem.2012,365,60.doi:10.1016/j.molcata.2012.08.009

    (8) Chang,J.S.;Yu,H.B.;Jiang,X.D.;Ma,Y.Q.;Cheng,H.;Zhao,H.Ind.Catal.2005,13,32.[常俊石,于海斌,姜雪丹,馬月謙,成 宏,趙 虹.工業(yè)催化,2005,13,32.]

    (9)Zhang,Y.H.;Chen,S.P.;Yuan,C.L.;Fang,W.P.;Yang,Y.Q.Chin.J.Catal.2012,33,317.[張元華,陳世萍,袁成龍,方維平,楊意泉.催化學報,2012,33,317.]

    (10) Barth,J.O.Process for Preparing Methyl Mercaptan from Dialkyl Sulphides and Dialkyl Polysulphides.US Patent 7576243,2009-8-18.

    (11) Mashkina,A.V.Petro.Chem.2009,49,441.

    (12) Ziolek,M.;Kujawa,J.;Saur,O.;Lavalley,J.C.J.Phys.Chem.1993,97,9761.doi:10.1021/j100140a037

    (13) Plaisance,C.P.;Dooley,K.M.Catal.Lett.2009,128,449.doi:10.1007/s10562-008-9772-2

    (14) Satokawa,S.;Kobayashi,Y.;Fujiki,H.Appl.Catal.B:Environ.2005,56,51.doi:10.1016/j.apcatb.2004.06.022

    (15) Hwang,C.L.;Tai,N.H.Appl.Catal.A 2011,393,251.doi:10.1016/j.apcata.2010.12.004

    (16)Ding,L.H.;Zheng,Y.Catal Commun.2006,7,1035.doi:10.1016/j.catcom.2006.05.006

    (17)Chen,A.P.;Wang,Q.;Li,Q.L.;Hao,Y.J.;Fang,W.P.;Yang,Y.Q.J.Mol.Catal.A:Chem.2008,238,69.

    (18) Fan,X.L.;Liu,Y.;Du,X.J.;Liu,C.;Zhang,C.Acta Phys.-Chim.Sin.2013,29,263.[范曉麗,劉 燕,杜秀娟,劉 崇,張 超.物理化學學報,2013,29,263.]doi:10.3866/PKU.WHXB201211231

    (19) Koranyi,T.I.;Moreau,F.;Rozanov,V.V.;Rozanova,E.A.J.Mol.Struct.1997,410,103.

    (20) Hwang,C.L.;Tai,N.H.Appl.Catal.B 2010,93,363.doi:10.1016/j.apcatb.2009.10.009

    (21) Maia,A.J.;Louis,B.;Lam,Y.L.;Pereira,M.M.J.Catal.2010,269,103.doi:10.1016/j.jcat.2009.10.021

    (22) Garcia,C.L.;Johannes,A.L.J.Phys.Chem.1991,95,10729.doi:10.1021/j100179a040

    (23) Mashkina,V.Y.Appl.Catal.A 1994,109,45.doi:10.1016/0926-860X(94)85002-X

    (24) Sazama,P.;Dedecek,J.;Gábová,V.;Wichterlová,B.;Spoto,G.;Bordiga,S.J.Catal.2008,254,180.doi:10.1016/j.jcat.2007.12.005

    (25)Luz,R.G.;Hermes,F.;Bertmer,M.;Enrique,R.C.;Antonio,J.L.;Simon,U.Appl.Catal.A 2007,328,174.doi:10.1016/j.apcata.2007.06.003

    (26) Wang,W.L.;Liu,B.J.;Zeng,X.J.Acta Phys.-Chim.Sin.2008,24,2102.[王文蘭,劉百軍,曾賢君.物理化學學報,2008,24,2102.]doi:10.3866/PKU.WHXB20081128

    (27)Seong,M.J.;Demoulin,O.;Grange,P.J.Mol.Catal.A:Chem.2005,236,94.doi:10.1016/j.molcata.2005.03.028

    (28) Pecoraro,T.A.;Chianelli,F.R.J.Catal.1981,67,430.doi:10.1016/0021-9517(81)90303-1

    (29) Mashkina,A.V.;Gruncald,V.R.;Borodin,B.P.;Nasteka,V.I.;Yakovleva,V.N.;Khairulina,L.N.React.Kinet.Catal.Lett.1991,43,361.doi:10.1007/BF02064698

    (30) Koshelev,S.N.;Paukshtis,E.A.;Sagitullin,R.S.;Bezrukov,A.V.;Mashkina,A.V.React.Kinet.Catal.Lett.1985,27,387.doi:10.1007/BF02070480

    (31) Ziolek,M.;Kujawa,J.;Saur,O.;Lavalley,J.C.J.Mol.Catal.A 1995,97,49.doi:10.1016/1381-1169(94)00068-9

    猜你喜歡
    福建廈門元華化工學院
    使固態(tài)化學反應100%完成的方法
    開學第一課
    珍貴樹種黃檀栽培技術
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    福建廈門
    雕塑藝術在食品造型中的應用研究
    詩書畫苑
    晚晴(2019年7期)2019-08-26 01:33:53
    讓詩詞插上音樂的翅膀——中華詩詞學會顧問李元華訪談錄
    中華詩詞(2016年11期)2016-07-21 14:56:16
    凌辱還是自愿?兒子刀下之人是否“第三者”
    中国国产av一级| 99热网站在线观看| 高清在线国产一区| 精品卡一卡二卡四卡免费| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花| 欧美日韩成人在线一区二区| 午夜激情久久久久久久| 欧美日韩国产mv在线观看视频| 黄网站色视频无遮挡免费观看| 精品视频人人做人人爽| 满18在线观看网站| 欧美另类亚洲清纯唯美| 老司机深夜福利视频在线观看 | 亚洲av国产av综合av卡| av网站在线播放免费| 一区二区三区乱码不卡18| 国产高清视频在线播放一区 | 免费一级毛片在线播放高清视频 | 一本一本久久a久久精品综合妖精| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 精品国产国语对白av| 999久久久国产精品视频| 91精品三级在线观看| 免费高清在线观看视频在线观看| 黄片播放在线免费| 午夜视频精品福利| 国产又爽黄色视频| 日韩 欧美 亚洲 中文字幕| 亚洲国产av新网站| 国产欧美日韩综合在线一区二区| 各种免费的搞黄视频| 黑人猛操日本美女一级片| 免费av中文字幕在线| 亚洲av电影在线观看一区二区三区| 久久午夜综合久久蜜桃| 男男h啪啪无遮挡| 美国免费a级毛片| 狂野欧美激情性bbbbbb| 女人被躁到高潮嗷嗷叫费观| 十八禁高潮呻吟视频| 亚洲国产看品久久| 国产一卡二卡三卡精品| 日韩熟女老妇一区二区性免费视频| 国产伦人伦偷精品视频| 中亚洲国语对白在线视频| 美女主播在线视频| 国产成人精品久久二区二区免费| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 欧美精品av麻豆av| 飞空精品影院首页| 成在线人永久免费视频| 老司机福利观看| 色婷婷久久久亚洲欧美| 久久久欧美国产精品| 中亚洲国语对白在线视频| 高清在线国产一区| 女人被躁到高潮嗷嗷叫费观| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 久久久久网色| 成年动漫av网址| 人成视频在线观看免费观看| 亚洲国产精品一区三区| 麻豆乱淫一区二区| 国产无遮挡羞羞视频在线观看| 大片免费播放器 马上看| 91麻豆精品激情在线观看国产 | 国产av一区二区精品久久| tocl精华| 精品久久蜜臀av无| 久久久久久久久免费视频了| 欧美人与性动交α欧美软件| 国产无遮挡羞羞视频在线观看| av在线老鸭窝| 亚洲av美国av| 少妇裸体淫交视频免费看高清 | 久久久久久免费高清国产稀缺| 日本精品一区二区三区蜜桃| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 久久久久久久国产电影| 91字幕亚洲| 黑人猛操日本美女一级片| 精品一区在线观看国产| 亚洲精品av麻豆狂野| 精品福利观看| 人人妻,人人澡人人爽秒播| 人妻一区二区av| 男女之事视频高清在线观看| 久久久国产成人免费| 国产亚洲午夜精品一区二区久久| 中文字幕av电影在线播放| 日韩 亚洲 欧美在线| 国产深夜福利视频在线观看| 在线永久观看黄色视频| 国内毛片毛片毛片毛片毛片| 99热国产这里只有精品6| 国产免费视频播放在线视频| 日本欧美视频一区| 国产av又大| 日日爽夜夜爽网站| 搡老岳熟女国产| 美女大奶头黄色视频| 欧美大码av| 国产精品一二三区在线看| 十八禁网站网址无遮挡| 老司机午夜福利在线观看视频 | 欧美精品啪啪一区二区三区 | 最新在线观看一区二区三区| 欧美日韩精品网址| 99国产精品免费福利视频| 如日韩欧美国产精品一区二区三区| 天堂8中文在线网| 亚洲精品中文字幕在线视频| 色94色欧美一区二区| 色婷婷av一区二区三区视频| 一级a爱视频在线免费观看| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 男女床上黄色一级片免费看| 久久精品国产亚洲av高清一级| 夜夜夜夜夜久久久久| 精品久久久精品久久久| 91麻豆精品激情在线观看国产 | 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 男女高潮啪啪啪动态图| 超碰97精品在线观看| 性高湖久久久久久久久免费观看| svipshipincom国产片| 精品国产超薄肉色丝袜足j| 岛国毛片在线播放| 十分钟在线观看高清视频www| 欧美日韩av久久| 国产伦理片在线播放av一区| 最新在线观看一区二区三区| 超碰97精品在线观看| 亚洲av电影在线进入| 一级片'在线观看视频| 国产亚洲av高清不卡| 国产在线视频一区二区| 中文精品一卡2卡3卡4更新| 亚洲欧美精品综合一区二区三区| 久久精品人人爽人人爽视色| 中文精品一卡2卡3卡4更新| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 精品第一国产精品| 少妇精品久久久久久久| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 久久精品国产亚洲av高清一级| 最黄视频免费看| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 91国产中文字幕| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 免费人妻精品一区二区三区视频| 正在播放国产对白刺激| 亚洲成人免费电影在线观看| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡| 日本欧美视频一区| 亚洲国产精品一区二区三区在线| 老司机福利观看| 免费在线观看视频国产中文字幕亚洲 | 久久久久久人人人人人| 1024香蕉在线观看| 欧美精品人与动牲交sv欧美| 少妇的丰满在线观看| 国产精品 欧美亚洲| 五月天丁香电影| videos熟女内射| 丝袜美腿诱惑在线| 亚洲欧美成人综合另类久久久| 国产成人av激情在线播放| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 麻豆国产av国片精品| 久久青草综合色| 中文字幕人妻丝袜制服| 99热网站在线观看| 精品国产国语对白av| av免费在线观看网站| 亚洲成人国产一区在线观看| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 天天躁日日躁夜夜躁夜夜| 蜜桃国产av成人99| 1024香蕉在线观看| 人成视频在线观看免费观看| 成年女人毛片免费观看观看9 | 亚洲国产毛片av蜜桃av| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 国产亚洲午夜精品一区二区久久| a级毛片黄视频| 亚洲国产看品久久| 亚洲黑人精品在线| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 午夜影院在线不卡| 亚洲精品中文字幕一二三四区 | 黑人猛操日本美女一级片| 黑人巨大精品欧美一区二区mp4| av欧美777| 在线观看免费视频网站a站| 国产日韩欧美视频二区| 欧美精品高潮呻吟av久久| 国产一区二区三区在线臀色熟女 | 高清在线国产一区| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产 | 欧美精品av麻豆av| 久久人人爽人人片av| 欧美老熟妇乱子伦牲交| tocl精华| 亚洲中文日韩欧美视频| 国产一区有黄有色的免费视频| 国产精品偷伦视频观看了| 午夜福利影视在线免费观看| 视频区欧美日本亚洲| 国产精品欧美亚洲77777| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 五月天丁香电影| 女人久久www免费人成看片| 一级毛片电影观看| 日韩电影二区| 亚洲免费av在线视频| 性色av一级| 亚洲国产精品一区二区三区在线| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| 亚洲精品国产色婷婷电影| 嫩草影视91久久| 国产黄色免费在线视频| 岛国在线观看网站| 五月开心婷婷网| 欧美国产精品一级二级三级| 青春草视频在线免费观看| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| 伊人亚洲综合成人网| 99久久综合免费| 国产精品国产av在线观看| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 欧美人与性动交α欧美软件| 大陆偷拍与自拍| 精品一区二区三区av网在线观看 | 国产伦理片在线播放av一区| 国产精品免费大片| 国产在线观看jvid| 国产成人一区二区三区免费视频网站| 国产成人欧美| 日韩大码丰满熟妇| av不卡在线播放| 久久毛片免费看一区二区三区| 久久这里只有精品19| 黄网站色视频无遮挡免费观看| 在线看a的网站| 国产一区二区 视频在线| videos熟女内射| 两性夫妻黄色片| 欧美 亚洲 国产 日韩一| 超碰97精品在线观看| 国产野战对白在线观看| 99国产综合亚洲精品| 男女高潮啪啪啪动态图| 91成人精品电影| 男女下面插进去视频免费观看| 久久av网站| 母亲3免费完整高清在线观看| 久久国产亚洲av麻豆专区| 秋霞在线观看毛片| 久久久水蜜桃国产精品网| 欧美一级毛片孕妇| 国产精品国产三级国产专区5o| 叶爱在线成人免费视频播放| 久久久精品94久久精品| 成年av动漫网址| videosex国产| 大码成人一级视频| 少妇 在线观看| 搡老岳熟女国产| 精品国产乱码久久久久久小说| 制服人妻中文乱码| 婷婷成人精品国产| 日韩熟女老妇一区二区性免费视频| 精品欧美一区二区三区在线| 久久久国产一区二区| 热99国产精品久久久久久7| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| av天堂久久9| 成年av动漫网址| 永久免费av网站大全| 中国国产av一级| 97在线人人人人妻| 国产三级黄色录像| 久久人妻福利社区极品人妻图片| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 久久精品亚洲熟妇少妇任你| 1024香蕉在线观看| 成人手机av| 亚洲一区中文字幕在线| 99精品欧美一区二区三区四区| 可以免费在线观看a视频的电影网站| 性色av一级| 肉色欧美久久久久久久蜜桃| 日本av手机在线免费观看| 高清av免费在线| 一边摸一边做爽爽视频免费| 国内毛片毛片毛片毛片毛片| 国产一区二区 视频在线| 天天躁夜夜躁狠狠躁躁| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美在线精品| 男人操女人黄网站| 久久久久网色| 亚洲久久久国产精品| 婷婷丁香在线五月| 国产精品国产三级国产专区5o| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 精品亚洲成国产av| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 精品亚洲乱码少妇综合久久| 欧美在线一区亚洲| 国产99久久九九免费精品| 另类亚洲欧美激情| 国产成人免费观看mmmm| 蜜桃国产av成人99| 国产成人精品无人区| av国产精品久久久久影院| 久久久国产欧美日韩av| 在线观看免费日韩欧美大片| 人妻人人澡人人爽人人| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 女人被躁到高潮嗷嗷叫费观| 桃红色精品国产亚洲av| 欧美精品啪啪一区二区三区 | 高清视频免费观看一区二区| 日韩制服骚丝袜av| 秋霞在线观看毛片| 成年美女黄网站色视频大全免费| 丰满人妻熟妇乱又伦精品不卡| av在线app专区| 如日韩欧美国产精品一区二区三区| 精品福利观看| 人人妻人人澡人人爽人人夜夜| 久久午夜综合久久蜜桃| 国产亚洲av片在线观看秒播厂| 欧美人与性动交α欧美精品济南到| 黄色视频在线播放观看不卡| 91精品三级在线观看| 免费久久久久久久精品成人欧美视频| 少妇粗大呻吟视频| 亚洲av欧美aⅴ国产| 国产成人免费无遮挡视频| avwww免费| 日本av免费视频播放| 免费日韩欧美在线观看| 国产在线免费精品| 久久综合国产亚洲精品| 蜜桃在线观看..| 777米奇影视久久| av线在线观看网站| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影| 99国产综合亚洲精品| 一级毛片精品| 国产精品久久久人人做人人爽| 日韩大片免费观看网站| 欧美 日韩 精品 国产| cao死你这个sao货| 丰满少妇做爰视频| 成年人免费黄色播放视频| 法律面前人人平等表现在哪些方面 | 国产精品1区2区在线观看. | 日本wwww免费看| 下体分泌物呈黄色| 国产三级黄色录像| 久久久久精品国产欧美久久久 | 久久亚洲精品不卡| 亚洲国产av新网站| 国产亚洲一区二区精品| 男女下面插进去视频免费观看| 久久精品国产综合久久久| 国产精品二区激情视频| 大码成人一级视频| 精品人妻一区二区三区麻豆| 视频区图区小说| 国产精品一二三区在线看| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 久久精品熟女亚洲av麻豆精品| 日本av免费视频播放| 99久久99久久久精品蜜桃| 捣出白浆h1v1| 久久午夜综合久久蜜桃| 韩国精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| www.熟女人妻精品国产| 乱人伦中国视频| 18在线观看网站| 久久精品国产综合久久久| kizo精华| 一本色道久久久久久精品综合| 亚洲欧美精品综合一区二区三区| www.av在线官网国产| 亚洲国产欧美在线一区| 蜜桃国产av成人99| 免费女性裸体啪啪无遮挡网站| 国产一区二区 视频在线| 一个人免费看片子| 国产精品偷伦视频观看了| 国产成+人综合+亚洲专区| 国产精品久久久人人做人人爽| 99香蕉大伊视频| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 午夜成年电影在线免费观看| 天天躁夜夜躁狠狠躁躁| 99国产精品一区二区蜜桃av | 人人妻人人爽人人添夜夜欢视频| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 999久久久精品免费观看国产| av免费在线观看网站| 亚洲男人天堂网一区| 亚洲国产av影院在线观看| 九色亚洲精品在线播放| 大香蕉久久网| 夫妻午夜视频| 老熟妇仑乱视频hdxx| 纵有疾风起免费观看全集完整版| 成人影院久久| 丁香六月天网| 91国产中文字幕| 视频区欧美日本亚洲| 亚洲精品乱久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美亚洲 丝袜 人妻 在线| 国产成+人综合+亚洲专区| 久久亚洲国产成人精品v| 精品国产一区二区久久| 亚洲精品第二区| 国产男女超爽视频在线观看| 国产片内射在线| 亚洲成人免费av在线播放| 久久久久国内视频| 日日夜夜操网爽| 久久精品国产亚洲av香蕉五月 | 乱人伦中国视频| 国产亚洲精品久久久久5区| 91老司机精品| 天天影视国产精品| 桃红色精品国产亚洲av| 91大片在线观看| 国产xxxxx性猛交| 午夜精品久久久久久毛片777| 久久久久网色| 亚洲av日韩精品久久久久久密| 搡老乐熟女国产| 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 高清欧美精品videossex| 女性生殖器流出的白浆| 正在播放国产对白刺激| videos熟女内射| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 久久99一区二区三区| 啦啦啦在线免费观看视频4| 欧美97在线视频| 精品国产一区二区久久| 女人被躁到高潮嗷嗷叫费观| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 19禁男女啪啪无遮挡网站| 久久久国产一区二区| 精品亚洲成国产av| 精品一区二区三区四区五区乱码| 国产精品免费视频内射| 狠狠狠狠99中文字幕| 黄色毛片三级朝国网站| 宅男免费午夜| 91麻豆av在线| 亚洲少妇的诱惑av| 午夜精品久久久久久毛片777| 午夜两性在线视频| 男女下面插进去视频免费观看| 精品高清国产在线一区| 日韩,欧美,国产一区二区三区| www.熟女人妻精品国产| 国产日韩欧美在线精品| 久久香蕉激情| 国产亚洲av高清不卡| 最近最新免费中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合欧美亚洲国产小说| 乱人伦中国视频| 一区二区av电影网| 12—13女人毛片做爰片一| 日韩大码丰满熟妇| av免费在线观看网站| 国产伦人伦偷精品视频| 天天躁日日躁夜夜躁夜夜| videosex国产| 精品少妇内射三级| 另类亚洲欧美激情| 777米奇影视久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 老司机靠b影院| 黄片大片在线免费观看| 色老头精品视频在线观看| 亚洲av日韩在线播放| 高清欧美精品videossex| 51午夜福利影视在线观看| 一本久久精品| 中文字幕另类日韩欧美亚洲嫩草| 91精品伊人久久大香线蕉| 高清视频免费观看一区二区| 搡老乐熟女国产| 国产av一区二区精品久久| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 日韩大片免费观看网站| 午夜免费成人在线视频| 制服诱惑二区| 悠悠久久av| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站| 青草久久国产| 国产精品国产三级国产专区5o| 麻豆av在线久日| 秋霞在线观看毛片| 在线观看免费日韩欧美大片| 国产精品国产三级国产专区5o| 69av精品久久久久久 | 两性午夜刺激爽爽歪歪视频在线观看 | 丰满人妻熟妇乱又伦精品不卡| 男人添女人高潮全过程视频| 精品久久蜜臀av无| 欧美av亚洲av综合av国产av| 亚洲av男天堂| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 一进一出抽搐动态| 午夜视频精品福利| 亚洲熟女精品中文字幕| 亚洲精品在线美女| 日本av免费视频播放| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 99国产精品一区二区蜜桃av | 叶爱在线成人免费视频播放| 9191精品国产免费久久| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 久久精品国产综合久久久| 国产一区二区三区在线臀色熟女 | 亚洲av片天天在线观看| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 在线天堂中文资源库| 亚洲精品av麻豆狂野| 亚洲精品国产精品久久久不卡| 丰满迷人的少妇在线观看| 黄片小视频在线播放| 国产日韩一区二区三区精品不卡| 亚洲精品一二三| 国产人伦9x9x在线观看| 成年动漫av网址| 丰满人妻熟妇乱又伦精品不卡| 久热这里只有精品99| 久久午夜综合久久蜜桃| kizo精华| 天堂8中文在线网| 男女床上黄色一级片免费看| 男女国产视频网站| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 国产不卡av网站在线观看| 制服人妻中文乱码| 精品人妻熟女毛片av久久网站| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 2018国产大陆天天弄谢| 精品人妻一区二区三区麻豆| 黄片大片在线免费观看|