• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drag of a D-shaped bluff body under small amplitude harmonic actuation

    2015-11-21 07:27:31YqingLiHongleiBiNnGo

    Yqing Li,Honglei Bi,Nn Go,?

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    cState Key Laboratory of Aerodynamics,Mianyang 621000,Sichuan,China

    Drag of a D-shaped bluff body under small amplitude harmonic actuation

    Yaqing Lia,Honglei Baib,c,Nan Gaoa,?

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian 116024,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    cState Key Laboratory of Aerodynamics,Mianyang 621000,Sichuan,China

    A R T I C L E I N F O

    Article history:

    Received 10 November 2014

    Accepted 29 December 2014

    Available online 16 February 2015

    D-shaped bluff body

    Open-loop flow control method was used to affect the development of a turbulent wake behind a D-shaped bluff body.Loud speakers were embedded inside the bluff body to produce two zero-net-massflux jets through 2 mm-wide span-wise slots located along the upper and lower edges on the rear wall. The drag forces for different actuation amplitudes(Cμ,the ratio between the momentum of the actuating jets and the moment deficit caused by the bluff body)and frequencies(StA)were examined.The effects of the phase difference in the two jets(0 andπ)were also studied.It was found that when Cμwas 0.1%,a drag reduction up to 5%was achieved when the velocities of the two jets varied in phase at a frequency of StA=0.16.When the velocities of the two jets variedπout of phase,significant drag increase was observed.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Flow separation over a bluff body can be found in many applications.Effectively controlling the development of the wake structures can reduce the form drag associated with the flow separations.Zero-net-mass-flux jet(or synthetic jet)actuator was widely used in the active control of separated flows.Compared with the passive control methods such as vortex generators,the active control methods have higher efficiency and better robustness.The periodic perturbations of the flow near the separation region promote the development of the large scale structures and enhance the momentumtransportacross the shearlayer.The pressure on the solid surface,the trajectory of the shear layer and the size of the re-circulation region are thus changed[1-5].Multiple synthetic jet actuators was also used to control the separated flow.Bigger et al.[6]used an array of 6 zero-net-mass-flux jets distributed azimuthally around the edge of a disk to control the wake.They found the size of the separation region could be reduced as much as 10%when the actions of the actuators were in phase and the momentum ratio Cμwas 0.4%.As much as 15%reduction in the separation length was found when the helical actuation was used where the phase difference between the adjacent actuators wasπ/3.Vukasinovic et al.[7]used an array of 11 actuators located azimuthally on a halfcircle around a hemisphere.They found that the separation length was reduced significantly when the actuation frequency was about10 times ofthe naturalshedding frequency(StA=17.4-30.5),and the momentum ratio of the jets was 0.75%-2.3%.Recently,Pastoor et al.[8]used a pair of synthetic jet actuators to force the wake behind a D-shaped body located in the center of a wind tunnel.The actuator issued oscillating jet flow from the upper and the lower edges of the rear surface and the velocity variations ofthe two actuators were in phase.They found the drag was reduced when the actuation frequency was smaller than the natural shedding frequency(0.1<StA<0.2)but increased when the actuation frequency was close to the natural shedding frequency of the turbulent wake(StA=Sto=0.24).When the actuation frequency was StA=0.15 and Cμwas larger than 0.5%,the drag was reduced by approximately 15%for the flow with a Reynolds number of 47000.

    Pastoor et al.[8]did notexamined closely how the drag changed with the actuation frequency and amplitude for smaller actuation amplitudes,particularly for momentum ratio(Cμ)less than 0.2%. The open loop control was conducted in the present investigation using a similar D-shaped body with momentum ratio less than 0.2% where Pastoor et al.[8]only studied a few combinations of actuation amplitude and actuation frequency.Smoke-wire visualization technique was also used to study the effect of actuation on the development of the large scale flow structures.The experimental methodologies will be presented in the next section,followed by the results and the summaries.

    Fig.1.Schematics of the test section in the wind tunnel.

    Fig.2.Schematics of the D-shaped body.

    The D-shaped body was supported by two aluminum square bars located at 123.5 mm downstream of the leading edge(or x=-165 mm)and z=±135 mm.The bars also served as force transducers with strain gauges glued to the center of the bars.The bars were drilled with equally spaced 2.4 mm holes at the locations above and below the strain gauges to minimize the drag caused by the supporting bars.Signals from the strain gauges were amplified using an amplifier with a gain of 100.

    There are two columns(z/H=±0.44)and 4 rows(y/H= ±0.08,±0.24)of 1 mm diameter pressure taps were mounted on the rear wall of the bluff body.Each pressure tap was connected to a CYH-130 pressure transducer using a 0.8 mm inner diameter flexible tubing to measure the mean static pressure on the rear wall.The pressure transducer was calibrated using a YJB-2500 water manometer with a resolution of 0.1 Pa.

    Smoke-wire visualization technique was used to study the evolution of the flow structures.A 304 stainless steel wire with a diameter of 0.1 mm was stretched vertically at 5 mm downstream ofthe rear surface of the bluffbody along in the centralplane ofthe tunnel(x/H=0.08,z=0).The metal wire was connected to two 2200μF capacitors using aluminum electrodes and heavy gauge wires.The capacitors discharged high current electricity through the metal wire and vaporized liquid droplets attached to the wire producing smoke filaments.A short amount of time after the start of discharging,a triggering signal was sent to the camera and the flash to record the streak-lines.The actions were controlled by a timing circuit with an Atmega16 micro-controller.The discharge voltage of the capacitor was set to 75 V(corresponding to a peak current of approximately 10 A)and the time delay between the discharging and the shutter triggering signal was 10 ms.Mixture of paraffin and diesel was applied to the wire using a brush.A Canon 5D Mk-II camera with a Yongnu 560II flash was used to record the image.The flash duration was approximately 0.12 ms,measured using an optical diode.The far side wall of the wind tunnel was painted with candle-soot paint to increase the quality of the pictures.

    Measurements were performed with a free-stream velocity(U∞)of 9.2 m/s,the blockage ratio of the test section was 21%,the incoming velocity was adjusted to U∞,c=11.7 m/s using a method given in Ref.[8].The Reynolds number and the Strouhal number of the actuation frequency are given by ReH=U∞,cH/ν and StA=fAH/U∞,c,respectively.All the measurements and visualizations were performed with Re=47000.Here in this paper,x,y,z are the stream-wise,vertical and span-wise coordinates,respectively.

    Measurements were first performed for the un-actuated baseline case.The boundary layer thickness measured near the rear wall(x/H=0.01,z/H=0)using a single hot-wire probe was 10.8 mm(δ/H=0.171),similar to Ref.[8].The drag coefficient(CD0)was found to be 0.57 and the averaged static wall pressure coefficient(CP0)was-0.51.Measurements of CP0agreed with the measurements in[8-10].Spectral analysis of the force signals indicated that the characteristic frequency of the un-actuated wake(Sto=foH/U∞,c)was approximately 0.24.

    The drag coefficient(CD)and the static pressure coefficients(CP)on the rear wall of the bluff body for non-dimensional actuating frequencies(StA)less than 0.33 and a fixed actuation amplitude(Cμ=0.1%)are shown in Fig.3.The drag and the static pressure coefficients were normalized using the results for the un-actuated case.The static pressure on the rear wall increased and the drag force decreased when StAwas less than 0.22 with the maximum drag reduction of 5%occurred when StAwas approximately 0.16,approximately 2/3 of the natural shedding frequency.The static pressure on the rear wallbecame less than the pressure for the natural flow when StAwas larger than 0.22,while the drag increased at the same time.The largest increase in drag was approximately 18%,occurred when the actuation frequency was close to the natural shedding frequency StA=0.24.

    The drag coefficient and the static pressure coefficients on the rear wall for a fixed actuation frequency StAof 0.16 and differentactuation amplitudes(Cμ)less than 0.2%are shown in Fig.4,the results by Pastoor et al.[8]for a similar flow are also shown for comparisons.Drag was increased when Cμwas less than 0.04%,particularly at Cμ=0.01%where the drag increased for nearly 8%. The mechanism causing the drag to increase at small Cμwas not known and needs further investigations.Drag was reduced when Cμwas more than 0.06%,the drag reduction was more than those found by Pastoor et al.[8].

    When the wake was forced using anti-phase actuation(the velocities of the two actuators varied 180°out of phase,φ=π),the drag force became larger than that for the natural flow for any actuation frequency examined here,as shown in Fig.5.The largest drag increase was approximately 25%,occurred at StA≈0.22,where the static pressure on the rear wall decreased for 30%-40%.

    The visualization of the baseline(the un-actuated)flow and the flow with in-phase actuation(φ=0)at a frequency of StAof 0.16 are shown in Fig.6(a)and 6(b),respectively.There was a separation region emerged downstream of the D-shaped body in the baseline flow.Typical von-Karman vortices with alternating rotating directions formed downstream ofthe bluffbody and grew in size asthey evolved downstream.The in-phase actuation produced a symmetric pair of countering rotating structures downstream of trailing edge of the bluff body.The vortex pair then traveled downstream with a similar velocity.The alternating flow structures found in the natural flow were not visible in the wake under in-phase actuation.The symmetric arrangement of the vortex street suppressed the growth of the vortices.The wake in the flow under in-phase actuation was smaller in the vertical direction than the natural flow and this caused the drag reduction in this flow.When the forcing frequency was larger than 2/3 of the natural shedding frequency,the symmetric arrangement of the vortex street became unstable due to the close distance between neighboring vortices,the wake soon transitioned to the asymmetric von-Karman vortex street.

    The wake behind a D-shaped body with a Reynolds number of 47000 was forced using a pair of zero-net-mass-flux jets directed at a 45°to the free-stream in the upper and lower corners on the trailing surface ofa D-shaped body.Different actuation frequencies(StA=0-0.35)and amplitudes(Cμ=0%-0.2%)were examined. Drag reduction was found when the actions of the actuators were in-phase at a momentum ratio Cμof 0.1%and StAless than 0.22.A maximum 5%drag reduction was found when StAwas 0.16.Smoke wire visualizations revealed that the drag reduction was caused by the suppression of the vortex shedding by the paired counterrotating structures generated by the in-phase actuation.When the actuation frequency was increased to StA=0.22,the drag became more than that of the natural flow.The results also showed that when the actuators were anti-phase,the drag increased for all the actuation frequencies.

    This work was supported by the National Basic Research Program(2014CB744100),State Key Laboratory of Aerodynamics(SKLA20130102),and Dalian University of Technology(DUT14LK07).

    Fig.3.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for in-phase actuation(φ=0)with Cμ=0.1%and different actuation frequencies(StA).

    Fig.4.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for in-phase actuation(φ=0)with StA=0.16 and different actuation strength(Cμ).The drag(◆)and the averaged static pressure(◇)on the rear wall by Pastoor et al.[8]were also shown for comparisons.

    Fig.5.Distributions of the drag coefficient(·)and the pressure coefficient measured at z/H=0.44 and y/H=0.24(?),0.08(□),-0.08(△)and-0.24(▽)for anti-phase actuation(φ=π)with Cμ=0.1%and different actuation frequencies(StA).

    Fig.6.Smoke-wire visualizations of(a)the un-actuated flowand(b)the flowunder actuation of Cμ=0.1%,StA=0.16 andφ=0 behind a D-shaped bluff body for a Reynolds number of 47000.

    [1]H.Choi,W.P.Jeon,J.Kim,Control of flow over a bluff body,Annu.Rev.Fluid Mech.40(2008)113-139.

    [2]L.N.Cattafesta,M.Sheplak,Actuators for active flow control,Annu.Rev.Fluid Mech.43(2011)247-272.

    [3]M.Amitay,A.Glezer,Aerodynamic flow control using synthetic jet actuators,in:P.Koumoutsakos,I.Mezic(Eds.),Control of Fluid Flow,Springer,Berlin,2006,pp.45-73.

    [4]L.H.Feng,J.J.Wang,Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point,J.Fluid Mech.662(2010)232-259.

    [5]P.F.Zhang,J.J.Wang,L.H.Feng,Review of zero-net-mass-flux jet and its application in separation flow control,Sci.China Ser.E 51(2008)1315-1344.

    [6]R.P.Bigger,H.Higuchi,J.W.Hall,Open-loop control of disk wakes,AIAA J.47(2009)1186-1194.

    [7]B.Vukasinovic,D.Brzozowski,A.Glezer,F(xiàn)luidic control of separation over a hemispherical turret,AIAA J.47(2009)2212-2222.

    [8]M.Pastoor,L.Henning,B.R.Noack,K.Rudibert,T.Gilead,F(xiàn)eedback shear layer control for bluff body drag reduction,J.Fluid Mech.608(2008)161-196.

    [9]P.W.Bearman,Investigation ofthe flowbehind a two-dimensionalmodelwith a blunt trailing edge and fitted with splitter plates,J.Fluid Mech.21(1965)241-256.

    [10]H.Park,D.Lee,W.Jeon,S.Hahn,J.Kim,J.Kim,J.Choi,Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device,J.Fluid Mech.563(2006)389-414.

    ?Corresponding author.

    E-mail address:gaonan@dlut.edu.cn(N.Gao).

    Open-loop flow control

    Synthetic jet

    *This article belongs to the Fluid Mechanics

    熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 岛国在线观看网站| 日本三级黄在线观看| 老司机福利观看| 亚洲人与动物交配视频| 一级作爱视频免费观看| 午夜福利视频1000在线观看| 亚洲五月天丁香| 51午夜福利影视在线观看| or卡值多少钱| 一个人免费在线观看的高清视频| 19禁男女啪啪无遮挡网站| 88av欧美| 在线永久观看黄色视频| 人人妻人人澡欧美一区二区| 亚洲 国产 在线| 999久久久国产精品视频| 国内少妇人妻偷人精品xxx网站 | 性欧美人与动物交配| 制服诱惑二区| 久久午夜亚洲精品久久| 久久久久九九精品影院| 青草久久国产| 一本久久中文字幕| 日韩高清综合在线| 18美女黄网站色大片免费观看| 亚洲欧美一区二区三区黑人| 亚洲av第一区精品v没综合| 精品国产美女av久久久久小说| 成人国产一区最新在线观看| 国产精品99久久99久久久不卡| 中文资源天堂在线| 亚洲午夜精品一区,二区,三区| 亚洲一区中文字幕在线| 特级一级黄色大片| 成人高潮视频无遮挡免费网站| 久热爱精品视频在线9| 日本黄大片高清| 亚洲全国av大片| 久久久久久人人人人人| 少妇粗大呻吟视频| 国产精品影院久久| 欧美在线黄色| 91麻豆精品激情在线观看国产| 少妇被粗大的猛进出69影院| 一区福利在线观看| 久久中文看片网| 精品乱码久久久久久99久播| 99re在线观看精品视频| 美女午夜性视频免费| 97人妻精品一区二区三区麻豆| 美女大奶头视频| 色在线成人网| 最好的美女福利视频网| 啦啦啦免费观看视频1| 五月伊人婷婷丁香| 丁香欧美五月| 一级a爱片免费观看的视频| 午夜免费成人在线视频| 日本 av在线| 日本熟妇午夜| 国产精品一区二区精品视频观看| 白带黄色成豆腐渣| 久久国产精品影院| 村上凉子中文字幕在线| 免费无遮挡裸体视频| 在线a可以看的网站| 黑人巨大精品欧美一区二区mp4| 中文在线观看免费www的网站 | 欧美在线黄色| 免费电影在线观看免费观看| 国产成年人精品一区二区| 床上黄色一级片| 18禁美女被吸乳视频| 香蕉国产在线看| 18禁黄网站禁片午夜丰满| 精品午夜福利视频在线观看一区| 亚洲欧洲精品一区二区精品久久久| 国产精品电影一区二区三区| 看黄色毛片网站| 熟妇人妻久久中文字幕3abv| 麻豆成人av在线观看| 日韩精品青青久久久久久| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| 国产不卡一卡二| 99精品欧美一区二区三区四区| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| 51午夜福利影视在线观看| 亚洲色图 男人天堂 中文字幕| 国产真实乱freesex| 午夜老司机福利片| 国产成人啪精品午夜网站| 国产激情欧美一区二区| 欧美乱码精品一区二区三区| 国产精品乱码一区二三区的特点| 亚洲熟女毛片儿| 久久久久亚洲av毛片大全| 亚洲片人在线观看| 国产精品九九99| а√天堂www在线а√下载| 嫁个100分男人电影在线观看| 99久久国产精品久久久| 少妇的丰满在线观看| svipshipincom国产片| 亚洲天堂国产精品一区在线| 免费一级毛片在线播放高清视频| 国产亚洲精品一区二区www| 亚洲色图av天堂| 99久久久亚洲精品蜜臀av| 99国产极品粉嫩在线观看| 国产精品av视频在线免费观看| 麻豆国产97在线/欧美 | 在线观看日韩欧美| svipshipincom国产片| 亚洲av中文字字幕乱码综合| 无限看片的www在线观看| 精品不卡国产一区二区三区| 悠悠久久av| 人人妻人人澡欧美一区二区| 丁香欧美五月| 欧美黑人欧美精品刺激| 黄频高清免费视频| 欧美乱妇无乱码| 国产成人精品无人区| 亚洲av第一区精品v没综合| 久久久久国内视频| e午夜精品久久久久久久| 日本三级黄在线观看| 亚洲一区二区三区不卡视频| 国产精品99久久99久久久不卡| 国产一区二区三区视频了| 久久人人精品亚洲av| 丰满的人妻完整版| 亚洲熟妇熟女久久| 哪里可以看免费的av片| 国产精品自产拍在线观看55亚洲| 大型av网站在线播放| 午夜精品在线福利| 亚洲免费av在线视频| 久久午夜综合久久蜜桃| 日日摸夜夜添夜夜添小说| 日韩精品中文字幕看吧| 999精品在线视频| 国产精品久久久久久亚洲av鲁大| 国产主播在线观看一区二区| 变态另类丝袜制服| 免费搜索国产男女视频| 日本一区二区免费在线视频| 法律面前人人平等表现在哪些方面| 淫妇啪啪啪对白视频| 精品福利观看| 国产av一区二区精品久久| 国产成人精品无人区| 日本撒尿小便嘘嘘汇集6| 看片在线看免费视频| 免费在线观看影片大全网站| 深夜精品福利| 91国产中文字幕| 久久国产精品影院| 日韩精品中文字幕看吧| 国内少妇人妻偷人精品xxx网站 | 巨乳人妻的诱惑在线观看| 久久香蕉国产精品| 中国美女看黄片| 国产亚洲欧美98| 看免费av毛片| 久热爱精品视频在线9| 丁香欧美五月| 俄罗斯特黄特色一大片| 狂野欧美白嫩少妇大欣赏| 精品第一国产精品| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观| 床上黄色一级片| 日日干狠狠操夜夜爽| 老司机午夜十八禁免费视频| 可以在线观看的亚洲视频| 91麻豆av在线| 色综合婷婷激情| 麻豆久久精品国产亚洲av| 一a级毛片在线观看| 亚洲狠狠婷婷综合久久图片| 在线观看日韩欧美| 中文在线观看免费www的网站 | 欧美黑人欧美精品刺激| 一夜夜www| 99热6这里只有精品| 黑人欧美特级aaaaaa片| 欧美日韩精品网址| 啦啦啦免费观看视频1| 久久久精品欧美日韩精品| 制服诱惑二区| 日本在线视频免费播放| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美精品啪啪一区二区三区| 日本五十路高清| 男女下面进入的视频免费午夜| 久久中文字幕人妻熟女| 操出白浆在线播放| 看免费av毛片| 成人特级黄色片久久久久久久| 在线永久观看黄色视频| av视频在线观看入口| 很黄的视频免费| 天堂av国产一区二区熟女人妻 | 久久久水蜜桃国产精品网| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 91av网站免费观看| 久久这里只有精品19| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 国产蜜桃级精品一区二区三区| 岛国在线免费视频观看| 国产日本99.免费观看| 成人一区二区视频在线观看| 三级国产精品欧美在线观看 | 日本精品一区二区三区蜜桃| 亚洲五月婷婷丁香| 黄色丝袜av网址大全| 亚洲精品在线美女| 免费av毛片视频| 大型av网站在线播放| 精品欧美一区二区三区在线| 亚洲一区二区三区不卡视频| 欧美日本亚洲视频在线播放| 成在线人永久免费视频| 免费在线观看黄色视频的| 精品国产乱子伦一区二区三区| 一二三四在线观看免费中文在| 日韩 欧美 亚洲 中文字幕| 亚洲av熟女| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 亚洲av成人不卡在线观看播放网| 亚洲熟妇熟女久久| a级毛片a级免费在线| 亚洲精华国产精华精| 精品日产1卡2卡| 久久久久国产精品人妻aⅴ院| www日本黄色视频网| 久久久精品欧美日韩精品| 国产真实乱freesex| 成人18禁高潮啪啪吃奶动态图| 岛国在线观看网站| 女人高潮潮喷娇喘18禁视频| 国产精品av久久久久免费| 可以在线观看的亚洲视频| 亚洲中文日韩欧美视频| 亚洲 国产 在线| 听说在线观看完整版免费高清| 午夜老司机福利片| 丁香六月欧美| 老熟妇仑乱视频hdxx| 99在线人妻在线中文字幕| 欧美乱妇无乱码| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 久久精品国产清高在天天线| 99riav亚洲国产免费| 级片在线观看| 亚洲熟女毛片儿| 国产免费av片在线观看野外av| 色精品久久人妻99蜜桃| 日本在线视频免费播放| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av香蕉五月| 久久亚洲真实| 成人18禁在线播放| 黄色成人免费大全| 免费av毛片视频| 国产精品 国内视频| 日本在线视频免费播放| 亚洲成人免费电影在线观看| 黄色女人牲交| 国产成人影院久久av| 国产aⅴ精品一区二区三区波| 亚洲无线在线观看| 亚洲五月婷婷丁香| 亚洲在线自拍视频| 两个人的视频大全免费| 88av欧美| 国模一区二区三区四区视频 | 亚洲欧美激情综合另类| 91老司机精品| 欧美一区二区精品小视频在线| www.999成人在线观看| 禁无遮挡网站| 国产99久久九九免费精品| 国内少妇人妻偷人精品xxx网站 | 久久人妻福利社区极品人妻图片| 久99久视频精品免费| 一级毛片高清免费大全| 日韩精品青青久久久久久| 露出奶头的视频| 在线看三级毛片| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 人成视频在线观看免费观看| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 1024视频免费在线观看| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 久久 成人 亚洲| 大型黄色视频在线免费观看| 国产精品精品国产色婷婷| 国产成人欧美在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美黄色淫秽网站| 欧美日韩精品网址| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| netflix在线观看网站| 国产一区在线观看成人免费| 欧美zozozo另类| 亚洲免费av在线视频| 手机成人av网站| 久久亚洲精品不卡| 午夜免费激情av| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 岛国在线免费视频观看| 黄色丝袜av网址大全| 亚洲一区二区三区色噜噜| 成在线人永久免费视频| 可以免费在线观看a视频的电影网站| 久久久久国产精品人妻aⅴ院| avwww免费| 后天国语完整版免费观看| 香蕉久久夜色| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添小说| 人人妻人人澡欧美一区二区| 日本a在线网址| 亚洲天堂国产精品一区在线| 好男人电影高清在线观看| 国产精品精品国产色婷婷| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩东京热| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 一本综合久久免费| 婷婷六月久久综合丁香| 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 男女做爰动态图高潮gif福利片| 欧美乱妇无乱码| 国产伦在线观看视频一区| 国产私拍福利视频在线观看| 在线观看日韩欧美| 搞女人的毛片| 波多野结衣高清作品| 热99re8久久精品国产| 午夜激情av网站| 亚洲精品美女久久av网站| 久久久国产成人精品二区| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 久9热在线精品视频| 国产激情偷乱视频一区二区| 久久久国产欧美日韩av| 亚洲18禁久久av| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 美女黄网站色视频| 精品无人区乱码1区二区| 婷婷亚洲欧美| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 不卡一级毛片| 听说在线观看完整版免费高清| 一本精品99久久精品77| 亚洲美女黄片视频| 国产精华一区二区三区| 久久精品亚洲精品国产色婷小说| 免费电影在线观看免费观看| 精品熟女少妇八av免费久了| 国产黄片美女视频| 久久久久久久午夜电影| 国产人伦9x9x在线观看| 嫩草影视91久久| 亚洲黑人精品在线| 黄色毛片三级朝国网站| 国产免费av片在线观看野外av| 女警被强在线播放| 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 国产久久久一区二区三区| 99久久久亚洲精品蜜臀av| 日本免费a在线| 免费观看精品视频网站| 啦啦啦免费观看视频1| 黄色片一级片一级黄色片| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 色综合婷婷激情| 久久中文看片网| 精品久久蜜臀av无| 午夜福利高清视频| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 又爽又黄无遮挡网站| 亚洲成人久久性| 日日干狠狠操夜夜爽| 国产精品电影一区二区三区| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 亚洲国产精品999在线| 久久九九热精品免费| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| www国产在线视频色| 国产精品综合久久久久久久免费| 亚洲国产欧美一区二区综合| 中文字幕高清在线视频| 1024香蕉在线观看| 最新在线观看一区二区三区| 色哟哟哟哟哟哟| 成人午夜高清在线视频| 亚洲国产欧美网| 男女床上黄色一级片免费看| 成人三级做爰电影| av天堂在线播放| 欧美成狂野欧美在线观看| www日本在线高清视频| 19禁男女啪啪无遮挡网站| 亚洲国产精品久久男人天堂| 欧美日本亚洲视频在线播放| 久9热在线精品视频| 久热爱精品视频在线9| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 欧美黄色片欧美黄色片| 成熟少妇高潮喷水视频| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 老司机在亚洲福利影院| 免费看a级黄色片| 无限看片的www在线观看| 男女床上黄色一级片免费看| 99热这里只有精品一区 | 窝窝影院91人妻| 91麻豆精品激情在线观看国产| 99热6这里只有精品| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 久久精品国产综合久久久| 午夜福利18| 热99re8久久精品国产| 99久久久亚洲精品蜜臀av| 真人一进一出gif抽搐免费| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 搞女人的毛片| 中文字幕熟女人妻在线| 欧美最黄视频在线播放免费| 91麻豆精品激情在线观看国产| 精品欧美一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 岛国在线观看网站| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 欧美午夜高清在线| 国产单亲对白刺激| 日韩欧美国产一区二区入口| 欧美人与性动交α欧美精品济南到| 三级男女做爰猛烈吃奶摸视频| 啪啪无遮挡十八禁网站| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 精品久久久久久久久久免费视频| 国产精品,欧美在线| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 免费在线观看亚洲国产| 欧美日韩黄片免| 一级片免费观看大全| www日本在线高清视频| 香蕉丝袜av| 中文字幕av在线有码专区| www.999成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 少妇人妻一区二区三区视频| 非洲黑人性xxxx精品又粗又长| 久久久久久人人人人人| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 日韩欧美免费精品| 男男h啪啪无遮挡| 五月玫瑰六月丁香| 成人18禁高潮啪啪吃奶动态图| avwww免费| 亚洲免费av在线视频| 日韩免费av在线播放| 一本一本综合久久| 成人特级黄色片久久久久久久| 国产精品久久久久久人妻精品电影| 特级一级黄色大片| 国产亚洲精品久久久久5区| 91九色精品人成在线观看| 久久精品影院6| 黑人欧美特级aaaaaa片| 精品国产美女av久久久久小说| 婷婷丁香在线五月| 成人三级黄色视频| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕一区二区三区有码在线看 | 成年版毛片免费区| 亚洲七黄色美女视频| 欧美性长视频在线观看| 亚洲九九香蕉| 亚洲av片天天在线观看| 亚洲精品美女久久久久99蜜臀| 国产av一区在线观看免费| 中文字幕人成人乱码亚洲影| 欧美中文日本在线观看视频| 最好的美女福利视频网| 日本撒尿小便嘘嘘汇集6| 日韩精品青青久久久久久| av福利片在线| 午夜视频精品福利| 久9热在线精品视频| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 久久精品91蜜桃| 一本久久中文字幕| 黄色成人免费大全| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区mp4| 在线观看午夜福利视频| 国产精品1区2区在线观看.| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 日本 欧美在线| 在线观看66精品国产| 国模一区二区三区四区视频 | 国语自产精品视频在线第100页| 1024视频免费在线观看| 亚洲人成网站在线播放欧美日韩| 91国产中文字幕| 麻豆久久精品国产亚洲av| 最近在线观看免费完整版| ponron亚洲| 国产成人aa在线观看| 亚洲 国产 在线| 精品无人区乱码1区二区| 亚洲自拍偷在线| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 国产成人啪精品午夜网站| 久久精品国产清高在天天线| 国产aⅴ精品一区二区三区波| 99精品欧美一区二区三区四区| 免费在线观看日本一区| 欧美性猛交黑人性爽| 在线观看舔阴道视频| 极品教师在线免费播放| 91成年电影在线观看| 男男h啪啪无遮挡| 在线观看美女被高潮喷水网站 | 亚洲 欧美一区二区三区| av有码第一页| 黑人操中国人逼视频| 国产亚洲精品久久久久5区| 国内精品一区二区在线观看| 日韩av在线大香蕉| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 三级国产精品欧美在线观看 | 99久久精品国产亚洲精品| 亚洲乱码一区二区免费版| 特大巨黑吊av在线直播| 一进一出好大好爽视频| 亚洲在线自拍视频| av有码第一页| 久久久久免费精品人妻一区二区| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 精品久久久久久久末码| 成人特级黄色片久久久久久久| 别揉我奶头~嗯~啊~动态视频| 国产av在哪里看| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 国产99久久九九免费精品| 午夜福利免费观看在线| 国产精品亚洲美女久久久| 久久亚洲真实| 精品国产超薄肉色丝袜足j| 午夜福利在线观看吧| 色哟哟哟哟哟哟| 久久这里只有精品19| 国产精品久久久av美女十八| 国产片内射在线| 日韩三级视频一区二区三区| 日韩欧美在线乱码| 99久久无色码亚洲精品果冻| 久久久久久免费高清国产稀缺|