• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of a transonic separating/reattaching shear layer by means of PIV

    2015-11-21 07:27:30Scharnowskihler

    S.Scharnowski,C.J.K?hler

    Institute of Fluid Mechanics and Aerodynamics,Bundeswehr University Munich,Neubiberg,Germany

    Investigation of a transonic separating/reattaching shear layer by means of PIV

    S.Scharnowski?,C.J.K?hler

    Institute of Fluid Mechanics and Aerodynamics,Bundeswehr University Munich,Neubiberg,Germany

    A R T I C L E I N F O

    Article history:

    Received 25 October 2014

    Accepted 8 December 2014

    Available online 3 February 2015

    Backward-facing step

    Shear layer

    Reattachment

    Particle Image Velocimetry

    The separating/reattaching flow over an axisymmetric backward-facing step is analyzed experimentally by means of particle image velocimetry(PIV).The main purpose of the measurements is the investigation of the mean flow field as well as of the Reynolds stress distributions at a Mach number of 0.7 and at a Reynolds number of 3.3×105based on the step height.Due to the strong progress of optical flow measurements in the last years it was possible to resolve all flow scales down to 180μm(≈1%of the step height)with high precision.Thanks to the high spatial resolution it was found for the first time that the Reynolds stress distribution features a local minimum between the first part of the shear layer and a region inside the recirculation region.This implies a more complex wake dynamics than assumed before.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The flow around a backward-facing step(BFS)is one of the canonical test cases in aerodynamics which was extensively studied both experimentally and numerically in the last decades.Although the geometry is rather simple,the flow field is relatively complex,as illustrated in Fig.1.The incoming turbulent boundary layer developing along the forebody is forced to separate at the sharp edge.As a result of a Kelvin-Helmholtz instability tiny coherent vortices are generated in the first part of the very thin shear layer which increases in size as they are convecting downstream.According to Simpson[1],the spanwise coherence starts to break down after 3 step heights due to secondary instabilities,and the turbulent structures become fully three dimensional even faster upstream of reattachment.This on average causes a broadening of the shear layer with increasing distance from the point of separation.Due to the enhanced turbulent mixing the shear layer reattaches on the lower wall.The mean flow field is characterized by a large recirculation region,which is separated from the outer region by the dividing streamline.However,the reattachment location is not fixed in space and time due to the dynamic of coherent vortices.Some of the coherent shear layer vortices move into the recirculation region by an adverse pressure gradient,according to Chandrasuda[2]and McGuinness[3]and they interact with the next generation of shear layer vortices or trigger the instability as they disturb the shear layer itself,if they survive sufficiently long before they vanish due to viscosity.Due to this feedback,the shear layer of a backward-facing step differs significantly from a free shear layer.Furthermore,the vortices traveling upstream into the primary recirculation region decay into smaller vortices due to secondary Kelvin-Helmholtz instabilities,or they become larger and weaker due to viscosity effects.Due to the increasing pressure with decreasing distance from the step,the upward motion of the fluid along the lower wall separates again.As a result,a secondary recirculation region is formed on average in the corner of the primary recirculation region with opposite sign of vorticity.

    Bradshaw and Wong[4]as well as Eaton and Johnston[5]showed in their review papers that for a 2D BFS the stream-wise extension of the primary recirculation region mainly depends on the step height and on the state of the incoming boundary layer. The reattachment length is between 5 and 7 times the step height for a fully turbulent incoming flow state at the point of separation. This holds for a Reynolds number range of Reh=3000-300 000 based on the step height.Simpson[1]showed in his review paper,that the instantaneous impingement location of the shear layer moves up-and downstream by as much as±2 step heights.The second half of the separated flow region is characterized by a strongly curved shear layer,indicated by the dividing streamline in Fig.1.In this region the shear layer broadens and the Reynolds stresses increase.Eaton and Johnston[5]compared several experiments on 2D models and concluded that the streamwise location with maximum stream-wise Reynolds normal stress and shear stress is close to the reattachment location or slightly upstream.However,it is not evident if this is an artifact of a low measurement resolution or in case it holds true,what is the physical effect that leads to the strong intensity of the Reynolds stresses close to the mean reattachment location.

    Fig.1.Backward-facing step flow field.

    The early measurements[4,5]were performed by point-like probes(LDAand hot-wire).Thus,they revealed only profiles rather than spatial distributions of the velocity,and they were not able to detect instantaneous flow structures.PIV,on the other hand,allows to measure non-intrusively thousands of 2D or 3D velocity fields within a few seconds.Huang and Fiedler[6]used PIVto study the temporal development of the starting flow of a backwardfacing step in a water tunnel at Reh=4300.They showed that an initially formed regular vorticity street collapses after a short time(t·U/h=17)due to vorticity interaction.More recent experiments[7,8]investigated turbulent structures within instantaneous velocity fields to detect vortices and measure their size and swirling strength at relatively low Reynolds numbers(Reh≈5000).It was shown thatthe size ofspan-wise aligned rollers grows nearly linearly in the first part of the shear layer for a 2D BFS.Furthermore,a significant fraction of counter rotating vortices indicated an early three dimensional breakdown resulting in a varying reattachment location.Le,Moin,and J.Kim[9]also observed this phenomena in direct numericalsimulations(DNS)for a similar test case.

    Roshko and Thomke[10]investigated the turbulent reattachment downstream of an axisymmetric step in supersonic flow by means of intrusive pitot probe measurements and non-intrusive schlieren images.They found that the reattachment length is only 2.8-3.7 times the step height for Mach numbers between 2 and 4.5.Bitter et al.[11]performed measurements at Ma=0.7 and presented also a value of 3.7 for this quantity.Low speed experiments also showed a decreased length of the reattachment location[12,13]indicating that the round shape of the model reduces this quantity significantly.The flow over a cylindrical forebody elongated by a second cylinder of smaller diameter and finite length was in the focus of several numerical investigations[14-17]andofexperiments presented in Ref.[18].Depres etal.[18]performed unsteady wallpressure measurements on the elongated cylinder at Mach numbers between 0.6 and 0.85.Two characteristic frequencies were found inthe pressure spectra.The corresponding Strouhal numbers(based on the forebody's diameter d)are Std=0.2 and Std=0.6,which are related to the formation oflarge scale vortices and convection of turbulent eddies in the separated shear layer,respectively.Bitter etal.[11]analyzed the pressure dynamics for a similar model,with a very long base cylinder,using fast-responding pressure-sensitive paint.They showed the spatial distribution of the surface pressure:The maximum amplitude corresponds to a Strouhal number of Std=0.21 and was detected at a location shortly after reattachment.

    The aim of this work is the estimation of the mean velocity and the Reynolds stress distribution in the wake of an axisymmetric BFS at a transonic Mach number and a high Reynolds number. Since only little information is available in the literature for such conditions,these statistical flow properties are very important for the validation of new numerical approaches as well as for the comparison of different experiments.To achieve the aim a large amount of statistically independent PIV recordings will be analyzed with high resolution evaluation methods.Only nonintrusive and spatially resolving techniques,like PIV,are suited to provide the required results.

    Fig.2.Axisymmetric backward-facing step with rearsting.The laserlightsheetand the field of view(FOV)for high-repetition rate PIV measurements are illustrated. Numerical values are given in mm.

    The measurements were performed in the Trisonic Wind tunnel at the Bundeswehr University in Munich.It is a blow down wind tunnel with a test section of 675 mm height,300 mm width and 1200 mm length.The total pressure range of the wind tunnel is pt=(1.2,...,5)bar,leading to a Reynolds number range of Reh≈(1.2,...,12)×105.The Mach number is adjustable between 0.3 and 3.0.The facility is described in detail in Ref.[19].

    The tests were performed on a blunt axisymmetric model,sketched in Fig.2.The configuration consists of a 36°cone with a spherical nose of R=5 mm and a cylindrical part with a length of 164.3 mm and a diameter of d=54 mm.The connection between cone and main body is smooth to avoid leading edge separation. The model was made of aluminum and the surface is polished to avoid diffuse reflections at the wall,which would bias the near wall PIV measurements[20,21].A rear sting,21.5 mm in diameter,in the base of the cylinder was used for mounting the model in the middle of the test section of the wind tunnel.Thus the step height is h=16.25 mm.Compared to a strut mounting,applied by van Oudheusden and Scarano[22],the rear sting avoids strong 3D effects on the flow in and around the base region of the model. The model's size is selected to optimize for the blockage effect in the test section of the wind tunnel and the spatial resolution of the PIV measurements.

    For the PIV measurements the flow is seeded with DEHS(Di-Ethyl-Hexyl-Sebacat)tracer particles with a mean diameter of 1μm[23].Due to the limited run time of the facility(about 50 s)and the large number of recordings required for the measurement of statistical quantities,a high-repetition rate PIV system was used.The laser beam is shaped into a 1 mm thick light sheet which illuminates the tracer particles on the field of view(FOV),as sketched in Fig.2.21 500 PIV double images,1280×400 px in size,were captured at a Mach number of Ma=0.7 and a total pressure of p0=1.5 bar leading to a Reynolds number of Reh= 3.3×105,based on the step height.The recording frequency was 2 kHz,corresponding to a total measurement time of T=10.75 s. Since the vortex shedding frequency is around 900 Hz[11],the images are considered as uncorrelated,which is essential for the computation of statistical values.

    Two different evaluation procedures were applied to the PIV images in order to achieve instantaneous as well as ensemble averaged velocity fields.The first method,window correlation including iterative concepts with window shifting and image deformation[24],allows to compute 21 500 instantaneous velocity fields from which one is shown in Fig.3(a).Here,the spatial resolution is rather low(322px corresponding to 5%of the main body diameter)because each interrogation window should contain at least 6-10 particle images in order to keep the number of spurious vectors at an acceptable level[25,26].The second evaluation approach is the single-pixel ensemble-correlation. It can be used for a large amount of PIV image pairs and results in improved spatial resolution and dynamic spatial range[27,28].Recently,the single-pixelevaluation was further expanded to estimate Reynolds stresses in turbulentflows with nearly singlepixel resolution[29].Furthermore the evaluation technique wasenhanced by compensating bias errors due to curved stream lines[30].

    In the following the approaches are used to evaluate the mean velocity as well as the Reynolds stress distribution.The instantaneous velocity fields,computed by window correlation,are used to analyze the shape and size of coherent structures in the model's wake.

    Instantaneous flow fields,as shown in Fig.3(a),are unique and not very useful for the comparison of different experiments or for the validation of numerical flow simulation.For this reason the mean velocity distribution is required.Figure 3(b)shows the mean velocity field computed from 21 500 PIV image pairs with singlepixel ensemble-correlation.According to the findings of K?hler et al.[27],the in-plane resolution of the vector field is about 180μm≈0.01h.

    The boundary layer upstream of the BFS strongly influences the wake flow topology[4,5].The boundary layer thickness and the free stream velocity at x/h=-0.3 were estimated to beδ99=(0.40±0.02)h=(6.5±0.3)mm and u∞=(237±1)m.s-1,respectively.The displacement thickness at x/h=-0.3 is

    Fig.4.Maximum velocity gradient in the separated shear layer.

    leading to a shape factor of H12=δ1/δ2≈1.17.Thus,for the analyzed Mach and Reynolds number combination the boundary layer at the end of the main body is fully turbulent.From the last data points,the near wall gradient was estimated to be?u/?y|y=h>8.6×105s-1.Hence,the wall-shear stress can be estimated to

    and the friction velocity

    where the viscosity and the density areμ=1.66×10-5Ps.s and ρ=1.43 kg.m-3,respectively.The viscous sub-layer could not be resolved with the chosen setup and evaluation techniques.A higher resolution combined with PTV evaluation techniques,based on those discussed in Cierpka,Scharnowski,and K?hler[21],would be required for this task.

    At x/h=0 the separation forms a thin shear layer which broadens further downstream.Fig.4 shows the developmentofthe maximum velocity gradient with respect to the horizontal location estimated from the velocity distribution in Fig.3(b).A reciprocal fit function shows good agreement with the measurement points. The decay of the velocity gradient goes hand in hand with a growing shear-layer thickness,which reaches values in the order of the step height downstream of reattachment.At x/h=3.52±0.10 the ensemble-averaged flow reattaches on the rear sting,which is slightly shorter than numerical predictions presented by Deck and Thorigny[14].The difference might be due to differences in the turbulence level of the incoming and boundary layer flow along the model,as discussed in Isomoto and Honami[31]or the disturbances in the recirculation region are not high enough in the numerical simulation.Inside the dividing streamline a distinct recirculation region develops,wherein the maximum mean upstream velocity is≈88 m s-1.

    Besides the mean velocity distribution,analyzed in the previous section,the velocity fluctuations are essential to characterize the flow over the BSF and to compare to other experiments or to validate turbulence models used for CFD simulations.Fig.5 shows the distribution ofthe Reynolds normalstress in the axialdirection,in the radial direction,and the Reynolds shear stress computed by using the single-pixel approach.This method allows for the reliable estimation of Reynolds stresses without spatial lowpass filtering,by analyzing the shape of single-pixel correlation functions.The evaluation procedure was developed by the authors and is discussed in detail in Scharnowski,Hain,and K?hler[29].

    The normal stress in the axial direction,in Fig.5(a),has a maximum around x/h≈2.5 and it decreases towards the upstream part of the recirculation region as well as for locations downstream of reattachment,in agreement with the findings of Eaton and Johnston[5].Additionally,the shear layer shortly after separation shows high stress values.The stress distribution clearly shows two maxima and a valley in between at y/h≈0.75 within the recirculation region.The two regions of high stress intensity with the valley in between were not reported in the works based on point-wise measurements[4,5].Also,more recent PIV measurements by Hudy et al.[13]and Bitter et al.[19]did not resolve this topology,due to the limited spatial resolution and spatial low-pass filtering.Recently,Weiss and Deck[32]detected a similar distribution with two maxima in numerical flow simulations.Scharnowski et al.[33]analyzed the spatialdistribution ofvortices in the models wake and showed that the double peak structure in the streamwise Reynolds stress distribution is a result of the mean vortexdistribution.They detected a very high density of vortices in the developing shear layer and a small region just below in that the amount of detected vortices is significantly lower.This region corresponds to the local minimum in the stress distributions from Fig.5(a).Furthermore,the single-pixel evaluation detects increasing stresses near the surface of the rear sting at y/h=0.The high stress values at the reattachment location are caused by the strong fluctuation of the reattachment line.Profiles of the axial Reynolds stress at the location ofreattachmentpresented in the literature[8,5,13]are in good qualitative agreement with those in Fig.5(a). However,they did not report a strong increase in the near wall region.

    The maximum position of the Reynolds normal stress in the radial direction,in Fig.5(b),is shifted downstream to x/h≈3.3 compared to that of the u′2-distribution.In the radial direction,the v′2-distribution has its maximum at y/h≈0.3 close to reattachment.Figure 5(b)shows not a very deep valley,as in the case of u′2,but two inflection points around y/h≈0.7 can be clearly resolved.

    The Reynolds shear stress distribution in Fig.5(c)is mainly negative within the separated region leading to turbulence production.The maximum position of the u′v′distribution is around x/h≈3.6,which is in agreementwith the findings ofEaton and Johnston[5].The line plots within the recirculation region in Fig.5(c)show again two maxima around y/h=0.7.The primary maximum at y/h≈0.9 corresponds to the oscillating shear layer and the secondary one at y/h≈0.5 is a result of the higher probability of vortices in the recirculation region,as discussed in Ref.[33].

    To examine the relation between vortical motion and Reynolds stresses,the two pointcorrelation function was calculated fromthe instantaneous velocity fields.For the velocity component ui,the two-point correlation coefficient is defined as

    Fig.5.Distribution of the Reynolds normal stresses in(a)the axial direction,in(b)the radial direction,and(c)the Reynolds shear stress estimated from the shape of the correlation functions using single-pixel ensemble-correlation.

    Fig.6.Two-point correlation of the axial(a)and radial(b)velocity component for a characteristic location in the shear layer.Dividing streamlines of the primary and secondary recirculation regions are indicated by dashed lines.

    Figure 6 shows the spatial distribution of the two-point correlation coefficient of the axial Ruuand radial velocity component R vv for a characteristic location in the shear layer.It can be seen from Ruu(Fig.6(a))that large coherent structures develop in the separated region.The shape of the structures reveals a direct connection between both sides of the dividing stream line,leading to the conclusion thatvortices inside and outside the recirculation region are coherent with each other.

    In Fig.6(b),the two-point correlation of the vertical velocity component Rvvis illustrated.The negative correlation next to the maximumindicates vortices with their center axis aligned perpendicular to the measurementplane:The verticalvelocity component in the upstream and downstream part of a vortex are of opposite sign,which causes a negative correlation coefficient.Additionally,the correlation with the previous and the following vortex can be seen from the neighboring extrema in the Rvv-distribution.Thus,it can be concluded that the shear layer vortices are generated more or less periodically as expected from the Kelvin-Helmholtz instability.The distance between neighboring minimum and maximum in R vv grows with increasing distance from the model's base as the Kelvin-Helmholtz vortices grow in size.Figure 7 shows this distance with respect to the horizontal position x/h for shear layer vortices at y/h=1.Whereλis the distance between the maximum and the minimum and the corresponding x-location in Fig.7 is the mean between the center position of both extrema.The distance 2λis the mean separation oftwo coherentvortices,which increases nearly linearly with x,as can be seen from the figure.From this it can be concluded that the size of the vortices in the shear layer grows linearly and the vortices are accelerated while traveling downstream.Both effects resultin a constant Strouhalnumber.

    Due to improved PIV evaluation methods it was possible to estimate turbulence statistics in the wake of a axisymmetric backward-facing step flow without spatial low-pass filtering at a Mach number of 0.7 and at a Reynolds number of 3.3×105. A low magnification imaging approach combined with singlepixel ensemble-correlation allows to achieve a very large dynamicspatial range and high accuracy required to resolve the strong flow gradients.

    The mean flow field of the axisymmetric backward-facing step features a recirculation region that extends more than one model diameter in the axial direction in accordance with the literature. The shear layer reattaches on the model's rear sting at x/h= 3.52 which matches well with previous investigations by other authors at low Ma numbers.The motion of the separated shear layer causes an increase in the velocity fluctuations and thus in the Reynolds stress level.Between the shear layer and the primary recirculation region a distinct valley in the stress distributions was found.Two-point correlation of the in-plane velocity components revealed large coherent structures in the recirculation region.A periodic generation of shear layer vortices was found and the spatial separation between coherent structures was determined. The results are very important for the validation of new numerical methods as well as for a better understanding of the flow physics.

    This work was supported by the German Research Foundation DFG in the framework of the TRR40.Technical language revisions by Rodrigo Segura are also appreciated.

    Fig.7.Separation between neighboring coherent structures estimated from the distance between minimum and maximum of Rvvas shown in Fig.6(b).

    [1]R.L.Simpson,Turbulent boundary-layer separation,Annu.Rev.Fluid Mech.21(1989)205-234.

    [2]C.Chandrasuda,A reattaching turbulent shear layer in incompressible flow(Ph.D.thesis),Imperial College London,University of London,1975.

    [3]M.McGuinness,F(xiàn)low with a separation bubble:steady and unsteady aspects(Ph.D.thesis),University of Cambridge,1978.

    [4]P.Bradshaw,F(xiàn).Y.F.Wong,The reattachment and relaxation of a turbulent shear layer,J.Fluid Mech.52(1972)113-135.http://dx.doi.org/10.1017/ S002211207200299X.

    [5]J.K.Eaton,J.P.Johnston,A review of research on subsonic turbulent flow reattachment,AIAA J.19(1981)1093-1100.http://dx.doi.org/10.2514/3. 60048.

    [6]H.T.Huang,H.E.Fiedler,A DPIV study of a starting flow downstream of a backward-facing step,Exp.Fluids 23(1997)395-404.http://dx.doi.org/10. 1007/s003480050127.

    [7]F.Scarano,C.Benocci,M.L.Riethmuller,Pattern recognition analysis of the turbulentflow pasta backward facing step,Phys.Fluids11(1999)3808.http:// dx.doi.org/10.1063/1.870240.

    [8]C.Schram,P.Rambaud,M.L.Riethmuller,Wavelet based eddy structure education from a backward facing step flow investigated using particle image velocimetry,Exp.Fluids 36(2004)233-245.http://dx.doi.org/10.1007/ s00348-003-0695-9.

    [9]H.Le,P.Moin,K.J.Kim,Direct numerical simulation of turbulent flow over a backward facing step,J.Fluid Mech.330(1997)349-374.http://dx.doi.org/10. 1017/S0022112096003941.

    [10]A.Roshko,G.J.Thomke,Observations of turbulent reattachment behind an axisymmetric downstream-facing step in supersonic flow,AIAA J.4(1966)975-980.

    [11]M.Bitter,T.Hara,R.Hain,D.Yorita,K.Asai,C.J.K?hler,Characterization of pressure dynamics in an axisymmetric separating/reattaching flow using fast-responding pressure-sensitive paint,Exp.Fluids 53(2012)1737-1749. http://dx.doi.org/10.1007/s00348-012-1380-7.

    [12]L.M.Hudy,A.M.Naguib,J.W.M.Humphreys,Wall-pressure-array measurements beneath a separating/reattaching flow region,Phys.Fluids 15(2003)706-717.http://dx.doi.org/10.1063/1.1540633.

    [13]L.M.Hudy,A.M.Naguib,W.M.Humphreys,S.M.Bartram,Particle image velocimetry measurements of a two/three-dimensional separating/reattaching boundary layer downstream of an axisymmetric backward-facing step,in: 43rd AIAA Aerospace Sciences Meeting and Exhibit,Reno,NV,United States,10-13 Jan,2005.

    [14]S.Deck,P.Thorigny,Unsteadiness of an axisymmetric separating-reattaching flow:Numerical investigation,Phys.Fluids 19(2007)065103.http://dx.doi. org/10.1063/1.2734996.

    [15]P.E.Weiss,S.Deck,J.C.Robinet,P.Sagaut,On the dynamics of axisymmetric turbulent separating/reattaching flows,Phys.Fluids 21(2009)075103. http://dx.doi.org/10.1063/1.3177352.

    [16]J.H.Meiss,W.Schr?der,Large-eddy simulation of the base flow of a cylindrical space vehicle configuration,in:6th European Symposium on Aerothermodynamics for Space Vehicles,Versailles,F(xiàn)rance,2008.

    [17]V.Statnikov,C.Glatzer,M.Meinke,W.Schr?der,EUCASS Flight Physics Book,Vol.5,2012.

    [18]D.Depres,P.Reijasse,J.P.Dussauge,Analysis of unsteadiness in afterbody transonic flows,AIAA J.42(2004)2541-2550.

    [19]M.Bitter,S.Scharnowski,R.Hain,C.J.K?hler,High-repetition-rate PIV investigations on a generic rocket model in sub-and supersonic flows,Exp. Fluids 50(2011)1019-1030.http://dx.doi.org/10.1007/s00348-010-0988-8.

    [20]C.J.K?hler,U.Scholz,J.Ortmanns,Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of longdistance micro-PIV,Exp.Fluids 41(2006)327-341.http://dx.doi.org/10.1007/ s00348-006-0167-0.

    [21]C.Cierpka,S.Scharnowski,C.J.K?hler,Parallax correction for precise near-wall flow investigations using particle imaging,Appl.Opt.52(2013)2923-2931. http://dx.doi.org/10.1364/AO.52.002923.

    [22]B.W.van Oudheusden,F(xiàn).Scarano,PIV investigation of supersonic base-flowplume interaction,in:A.Schr?der,C.E.Willert(Eds.),Topics in Applied Physics,Springer Verlag,2008,pp.465-474.

    [23]C.J.K?hler,B.Sammler,J.Kompenhans,Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,Exp.Fluids 33(2002)736-742.http://dx.doi.org/10.1007/s00348-002-0492-x.

    [24]M.Stanislas,K.Okamoto,C.J.K?hler,J.Westerweel,F(xiàn).Scarano,Main results of the third international PIV Challenge,Exp.Fluids 45(2008)27-71. http://dx.doi.org/10.1007/s00348-008-0462-z.

    [25]M.Raffel,C.E.Willert,S.T.Wereley,J.Kompenhans,Particle Image Velocimetry:a Practical Guide,Springer Verlag,2007.

    [26]R.J.Adrian,J.Westerweel,Particle Image Velocimetry,Cambridge University Press,2010.

    [27]C.J.K?hler,S.Scharnowski,C.Cierpka,On the resolution limitofdigitalparticle image velocimetry,Exp.Fluids 52(2012)1629-1639.http://dx.doi.org/10. 1007/s00348-012-1280-x.

    [28]C.J.K?hler,S.Scharnowski,C.Cierpka,On the uncertainty of digital PIV and PTV near walls,Exp.Fluids 52(2012)1641-1656.http://dx.doi.org/10.1007/ s00348-012-1307-3.

    [29]S.Scharnowski,R.Hain,C.J.K?hler,Reynolds stress estimation up to singlepixel resolution using PIV-measurements,Exp.Fluids 52(2012)985-1002. http://dx.doi.org/10.1007/s00348-011-1184-1.

    [30]S.Scharnowski,C.J.K?hler,On the effect of curved streamlines on the accuracy of PIV vector fields,Exp.Fluids 54(2013)1435.http://dx.doi.org/10.1007/ s00348-012-1435-9.

    [31]K.Isomoto,S.Honami,The effect of inlet turbulence intensity on the reattachment process over a backward-facing step,J.Fluids Eng.111(1989)87-92.

    [32]P.Weiss,S.Deck,Numerical investigation of the robustness of an axisymmetric separating/reattaching flow to an external perturbation using ZDES,F(xiàn)low Turbul.Combust.91(2013)697-715.http://dx.doi.org/10.1007/ s10494-013-9484-6.

    [33]S.Scharnowski,V.Statnikov,M.Meinke,W.Schr?der,C.J.K?hler,Combined experimental and numerical investigation of a transonic space launcher wake,in:5th European Conference for Aeronautics and Space Sciences EUCASS,Munich,Germany,2013.

    ?Corresponding author.

    E-mail address:sven.scharnowski@unibw.de(S.Scharnowski).

    *This article belongs to the Fluid Mechanics

    亚洲国产精品合色在线| 免费少妇av软件| 在线十欧美十亚洲十日本专区| 久久婷婷成人综合色麻豆| 精品一品国产午夜福利视频| 高清黄色对白视频在线免费看| 免费不卡黄色视频| 一区二区三区国产精品乱码| 免费在线观看影片大全网站| 国产在线观看jvid| 久久精品aⅴ一区二区三区四区| 午夜免费成人在线视频| av中文乱码字幕在线| 亚洲国产精品sss在线观看 | 欧美在线一区亚洲| 91麻豆av在线| 免费日韩欧美在线观看| 在线观看www视频免费| 在线播放国产精品三级| 可以免费在线观看a视频的电影网站| 热99re8久久精品国产| 欧美成狂野欧美在线观看| 久久久国产一区二区| 看片在线看免费视频| 国产成+人综合+亚洲专区| 热99国产精品久久久久久7| 高潮久久久久久久久久久不卡| 最近最新中文字幕大全电影3 | 91在线观看av| 18禁观看日本| 久热这里只有精品99| 久热这里只有精品99| 日本五十路高清| 欧美av亚洲av综合av国产av| 在线观看一区二区三区激情| 国产精品爽爽va在线观看网站 | 制服人妻中文乱码| 在线观看66精品国产| 久久亚洲精品不卡| 午夜亚洲福利在线播放| 男人的好看免费观看在线视频 | 亚洲精品国产一区二区精华液| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| 天堂中文最新版在线下载| 美女 人体艺术 gogo| 一级毛片高清免费大全| 国产野战对白在线观看| 亚洲欧美一区二区三区黑人| 精品久久久久久电影网| 久久久国产一区二区| 法律面前人人平等表现在哪些方面| 亚洲第一欧美日韩一区二区三区| 亚洲avbb在线观看| 99精品在免费线老司机午夜| 久久久久久久久中文| 国产乱人伦免费视频| 中文亚洲av片在线观看爽| 在线观看免费视频网站a站| 免费人成视频x8x8入口观看| 国产精品一区二区在线不卡| 亚洲 欧美 日韩 在线 免费| 男人舔女人下体高潮全视频| av在线播放免费不卡| 美女大奶头视频| 国产一区二区激情短视频| 高清毛片免费观看视频网站 | 久久久久国产一级毛片高清牌| 黑人猛操日本美女一级片| 校园春色视频在线观看| 最新美女视频免费是黄的| 91精品国产国语对白视频| 一边摸一边做爽爽视频免费| 国产精品99久久99久久久不卡| 不卡一级毛片| 无遮挡黄片免费观看| 精品一区二区三卡| 宅男免费午夜| 露出奶头的视频| 欧美乱妇无乱码| 亚洲欧美日韩高清在线视频| 日本五十路高清| 日韩精品免费视频一区二区三区| 在线十欧美十亚洲十日本专区| 中文字幕人妻丝袜制服| 午夜福利免费观看在线| 99国产精品一区二区蜜桃av| a级毛片在线看网站| 欧美乱妇无乱码| 亚洲人成伊人成综合网2020| 多毛熟女@视频| 国产亚洲精品综合一区在线观看 | 色精品久久人妻99蜜桃| 桃红色精品国产亚洲av| 国产成人欧美在线观看| 级片在线观看| 欧美亚洲日本最大视频资源| 午夜两性在线视频| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 真人做人爱边吃奶动态| 成人特级黄色片久久久久久久| 12—13女人毛片做爰片一| 国产又色又爽无遮挡免费看| 在线免费观看的www视频| 免费女性裸体啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 亚洲国产精品合色在线| 国产在线观看jvid| 国产有黄有色有爽视频| 19禁男女啪啪无遮挡网站| 国产一卡二卡三卡精品| 国产av精品麻豆| 久久精品亚洲av国产电影网| 两人在一起打扑克的视频| 黄色a级毛片大全视频| 不卡av一区二区三区| 一级a爱视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 精品人妻1区二区| 国产主播在线观看一区二区| 国产成人精品在线电影| 色婷婷av一区二区三区视频| 亚洲av成人一区二区三| 欧美日韩亚洲高清精品| 日本免费一区二区三区高清不卡 | 91字幕亚洲| 99re在线观看精品视频| 99在线人妻在线中文字幕| 大型av网站在线播放| 午夜精品久久久久久毛片777| 色婷婷av一区二区三区视频| 窝窝影院91人妻| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av香蕉五月| a在线观看视频网站| 高潮久久久久久久久久久不卡| 91字幕亚洲| 成人亚洲精品一区在线观看| 18禁美女被吸乳视频| 欧美激情高清一区二区三区| 色精品久久人妻99蜜桃| 国产欧美日韩综合在线一区二区| 亚洲免费av在线视频| 免费观看精品视频网站| 亚洲专区国产一区二区| 国产在线观看jvid| 久久久久久大精品| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 大码成人一级视频| 成人av一区二区三区在线看| 亚洲av熟女| 成人影院久久| 亚洲美女黄片视频| 久久性视频一级片| 99国产精品一区二区三区| 免费少妇av软件| 满18在线观看网站| 久久这里只有精品19| 成人影院久久| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 女人精品久久久久毛片| 丁香六月欧美| 不卡一级毛片| 久久精品国产亚洲av高清一级| 久久伊人香网站| 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 多毛熟女@视频| 黄色 视频免费看| 丝袜美腿诱惑在线| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡免费网站照片 | 国产精品成人在线| 色婷婷久久久亚洲欧美| 亚洲精品国产精品久久久不卡| 中文字幕色久视频| 亚洲国产欧美日韩在线播放| 电影成人av| 可以在线观看毛片的网站| 国产精品久久久av美女十八| 一级作爱视频免费观看| 又紧又爽又黄一区二区| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 亚洲成人精品中文字幕电影 | 色老头精品视频在线观看| 天堂动漫精品| 黑人猛操日本美女一级片| 国产高清视频在线播放一区| 91av网站免费观看| 老司机午夜福利在线观看视频| 久久久国产一区二区| 中出人妻视频一区二区| 国产成人av激情在线播放| 妹子高潮喷水视频| 99国产精品一区二区蜜桃av| 男男h啪啪无遮挡| 精品久久久久久,| 母亲3免费完整高清在线观看| 久久影院123| 成人国产一区最新在线观看| 99热只有精品国产| 亚洲av第一区精品v没综合| 久久性视频一级片| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区免费欧美| 午夜激情av网站| 久久久国产欧美日韩av| 亚洲精品粉嫩美女一区| 91国产中文字幕| 成人亚洲精品av一区二区 | 80岁老熟妇乱子伦牲交| 香蕉丝袜av| 久久久久九九精品影院| 性欧美人与动物交配| 香蕉丝袜av| 欧美黄色淫秽网站| 午夜激情av网站| 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 国产一区二区三区综合在线观看| 国产精品久久久久久人妻精品电影| 国产成人影院久久av| www.精华液| 欧美激情久久久久久爽电影 | 天天躁狠狠躁夜夜躁狠狠躁| 中国美女看黄片| 精品国内亚洲2022精品成人| 一边摸一边做爽爽视频免费| 黄色女人牲交| 国产成人影院久久av| 色尼玛亚洲综合影院| 国产精品电影一区二区三区| 精品国产国语对白av| 国产精品影院久久| 日本a在线网址| 亚洲男人的天堂狠狠| 老司机在亚洲福利影院| 一级a爱片免费观看的视频| 一个人免费在线观看的高清视频| 精品久久久久久电影网| 搡老熟女国产l中国老女人| 大型黄色视频在线免费观看| 色综合站精品国产| 国产欧美日韩综合在线一区二区| 久久久久亚洲av毛片大全| 麻豆av在线久日| 在线观看舔阴道视频| 欧美老熟妇乱子伦牲交| 久久久国产成人精品二区 | 国产极品粉嫩免费观看在线| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 脱女人内裤的视频| 男女床上黄色一级片免费看| 欧美大码av| 久久国产精品男人的天堂亚洲| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 男女之事视频高清在线观看| 黑人操中国人逼视频| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 国产亚洲欧美98| 女人被躁到高潮嗷嗷叫费观| 国产精品久久视频播放| 午夜激情av网站| 精品国产乱码久久久久久男人| 精品国产乱子伦一区二区三区| 搡老岳熟女国产| 美女 人体艺术 gogo| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看| 国产成人精品久久二区二区免费| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 男女下面进入的视频免费午夜 | 天天添夜夜摸| 亚洲av片天天在线观看| 久久久久久久午夜电影 | 99国产综合亚洲精品| 脱女人内裤的视频| 免费高清视频大片| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 9色porny在线观看| 黄片小视频在线播放| 久久久国产一区二区| 国产亚洲精品第一综合不卡| aaaaa片日本免费| 成人av一区二区三区在线看| 国产熟女午夜一区二区三区| 久久婷婷成人综合色麻豆| 这个男人来自地球电影免费观看| 在线观看66精品国产| 久久99一区二区三区| 国产熟女xx| 国产午夜精品久久久久久| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 首页视频小说图片口味搜索| 久久人人97超碰香蕉20202| 欧美日韩视频精品一区| 欧美亚洲日本最大视频资源| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 黄色视频,在线免费观看| 久久 成人 亚洲| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 99国产极品粉嫩在线观看| 久9热在线精品视频| 国产视频一区二区在线看| 亚洲黑人精品在线| 九色亚洲精品在线播放| 久久精品91无色码中文字幕| www日本在线高清视频| 99国产综合亚洲精品| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 91精品国产国语对白视频| 老汉色av国产亚洲站长工具| av国产精品久久久久影院| 欧美黑人欧美精品刺激| 一级毛片女人18水好多| 国产午夜精品久久久久久| 免费观看精品视频网站| 国产午夜精品久久久久久| 一级毛片女人18水好多| 欧美激情极品国产一区二区三区| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 久久人人爽av亚洲精品天堂| 亚洲成av片中文字幕在线观看| 国产日韩一区二区三区精品不卡| 深夜精品福利| 精品国内亚洲2022精品成人| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 成人免费观看视频高清| 亚洲国产欧美网| 露出奶头的视频| 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 国产精品日韩av在线免费观看 | 日本免费一区二区三区高清不卡 | 一区二区三区国产精品乱码| 午夜福利免费观看在线| 热re99久久国产66热| 女性生殖器流出的白浆| 黑人操中国人逼视频| 嫩草影院精品99| 91在线观看av| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 男女之事视频高清在线观看| 激情在线观看视频在线高清| 免费看十八禁软件| 日韩中文字幕欧美一区二区| 国产av又大| 丝袜在线中文字幕| bbb黄色大片| 久久人人97超碰香蕉20202| 99久久国产精品久久久| 久久人人精品亚洲av| 国产亚洲欧美98| 在线视频色国产色| 亚洲国产中文字幕在线视频| 亚洲精品一二三| 国产色视频综合| av免费在线观看网站| 国产精品久久视频播放| 精品一区二区三区视频在线观看免费 | 久久中文字幕人妻熟女| 欧美 亚洲 国产 日韩一| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 制服诱惑二区| 国产深夜福利视频在线观看| 女人精品久久久久毛片| 亚洲国产看品久久| 搡老乐熟女国产| 99热只有精品国产| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 精品福利观看| 久久久久九九精品影院| ponron亚洲| 三级毛片av免费| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 国产三级黄色录像| 又黄又粗又硬又大视频| 亚洲精华国产精华精| 亚洲人成网站在线播放欧美日韩| 一级作爱视频免费观看| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 亚洲男人天堂网一区| 怎么达到女性高潮| 国产精品自产拍在线观看55亚洲| 757午夜福利合集在线观看| 国产精品久久久久久人妻精品电影| xxx96com| a级片在线免费高清观看视频| 国产av一区在线观看免费| 免费在线观看完整版高清| 国产99久久九九免费精品| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 日韩大码丰满熟妇| 少妇粗大呻吟视频| 99香蕉大伊视频| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 欧美激情高清一区二区三区| xxx96com| 神马国产精品三级电影在线观看 | 久久久久久久久久久久大奶| 亚洲一区二区三区不卡视频| 久久久水蜜桃国产精品网| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 别揉我奶头~嗯~啊~动态视频| 亚洲成人免费电影在线观看| 欧美色视频一区免费| 亚洲精品在线观看二区| av片东京热男人的天堂| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 正在播放国产对白刺激| 一级黄色大片毛片| 午夜福利在线免费观看网站| xxxhd国产人妻xxx| 欧美日韩亚洲高清精品| 在线看a的网站| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 国产精品美女特级片免费视频播放器 | 日韩欧美国产一区二区入口| 如日韩欧美国产精品一区二区三区| 水蜜桃什么品种好| 狠狠狠狠99中文字幕| 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 国产精品秋霞免费鲁丝片| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 久久中文字幕人妻熟女| 国产成人av激情在线播放| 丁香欧美五月| 一区在线观看完整版| 搡老熟女国产l中国老女人| 久久精品aⅴ一区二区三区四区| 女警被强在线播放| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 亚洲色图av天堂| 最近最新中文字幕大全免费视频| 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| 午夜日韩欧美国产| 琪琪午夜伦伦电影理论片6080| 精品国产乱子伦一区二区三区| videosex国产| 美女国产高潮福利片在线看| 99在线视频只有这里精品首页| 亚洲自拍偷在线| 天堂影院成人在线观看| 午夜福利免费观看在线| 午夜激情av网站| 国产欧美日韩一区二区精品| 国产精品久久久av美女十八| 久久久久久久久免费视频了| 丝袜美腿诱惑在线| 亚洲三区欧美一区| 亚洲人成伊人成综合网2020| 日韩欧美一区视频在线观看| 国产精品野战在线观看 | 侵犯人妻中文字幕一二三四区| 国产av又大| 在线视频色国产色| 亚洲在线自拍视频| 男女之事视频高清在线观看| 999久久久精品免费观看国产| 性少妇av在线| 亚洲视频免费观看视频| netflix在线观看网站| 一级,二级,三级黄色视频| 男人舔女人的私密视频| 亚洲精品国产一区二区精华液| 长腿黑丝高跟| 欧美精品啪啪一区二区三区| 欧美乱妇无乱码| 波多野结衣av一区二区av| 最新美女视频免费是黄的| 黑丝袜美女国产一区| 一级黄色大片毛片| 三级毛片av免费| 婷婷六月久久综合丁香| 久久国产亚洲av麻豆专区| av在线天堂中文字幕 | 嫩草影院精品99| 一级黄色大片毛片| 性少妇av在线| 欧美老熟妇乱子伦牲交| av电影中文网址| 国产精品偷伦视频观看了| 亚洲成人免费av在线播放| 黄色丝袜av网址大全| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影| 性少妇av在线| 亚洲第一青青草原| 亚洲一区二区三区不卡视频| 两性夫妻黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 黄色a级毛片大全视频| 51午夜福利影视在线观看| 老司机靠b影院| 国产单亲对白刺激| 长腿黑丝高跟| 成年版毛片免费区| 精品国产一区二区久久| 1024香蕉在线观看| 亚洲专区字幕在线| 国产欧美日韩一区二区精品| 精品一区二区三卡| 91精品国产国语对白视频| 色精品久久人妻99蜜桃| 亚洲精品一区av在线观看| av天堂久久9| 免费观看人在逋| 久久婷婷成人综合色麻豆| 亚洲欧美精品综合久久99| 一二三四社区在线视频社区8| 国产精品乱码一区二三区的特点 | 99精品在免费线老司机午夜| 欧美在线一区亚洲| 国产深夜福利视频在线观看| 伦理电影免费视频| 中文字幕人妻丝袜制服| 少妇粗大呻吟视频| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 亚洲中文字幕日韩| 狂野欧美激情性xxxx| 一二三四社区在线视频社区8| 女性被躁到高潮视频| 一边摸一边抽搐一进一出视频| 欧美日韩视频精品一区| av欧美777| 丝袜美足系列| 桃红色精品国产亚洲av| 国产精品久久久av美女十八| 一级毛片精品| 这个男人来自地球电影免费观看| 精品久久久久久,| 免费观看精品视频网站| av超薄肉色丝袜交足视频| 午夜免费成人在线视频| 黄色a级毛片大全视频| 男女下面插进去视频免费观看| 欧美+亚洲+日韩+国产| 最新美女视频免费是黄的| 亚洲精品中文字幕一二三四区| 色哟哟哟哟哟哟| 夫妻午夜视频| 日韩欧美免费精品| 亚洲国产欧美日韩在线播放| 国内久久婷婷六月综合欲色啪| 国产有黄有色有爽视频| 国产高清视频在线播放一区| 国内久久婷婷六月综合欲色啪| 日韩欧美免费精品| 纯流量卡能插随身wifi吗| 国产人伦9x9x在线观看| 亚洲欧美一区二区三区黑人| 亚洲 国产 在线| 国产精品久久电影中文字幕| 99精国产麻豆久久婷婷| 老司机靠b影院| 伦理电影免费视频| 日本a在线网址| 神马国产精品三级电影在线观看 | 久久中文字幕一级| 免费在线观看影片大全网站|