• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of a transonic separating/reattaching shear layer by means of PIV

    2015-11-21 07:27:30Scharnowskihler

    S.Scharnowski,C.J.K?hler

    Institute of Fluid Mechanics and Aerodynamics,Bundeswehr University Munich,Neubiberg,Germany

    Investigation of a transonic separating/reattaching shear layer by means of PIV

    S.Scharnowski?,C.J.K?hler

    Institute of Fluid Mechanics and Aerodynamics,Bundeswehr University Munich,Neubiberg,Germany

    A R T I C L E I N F O

    Article history:

    Received 25 October 2014

    Accepted 8 December 2014

    Available online 3 February 2015

    Backward-facing step

    Shear layer

    Reattachment

    Particle Image Velocimetry

    The separating/reattaching flow over an axisymmetric backward-facing step is analyzed experimentally by means of particle image velocimetry(PIV).The main purpose of the measurements is the investigation of the mean flow field as well as of the Reynolds stress distributions at a Mach number of 0.7 and at a Reynolds number of 3.3×105based on the step height.Due to the strong progress of optical flow measurements in the last years it was possible to resolve all flow scales down to 180μm(≈1%of the step height)with high precision.Thanks to the high spatial resolution it was found for the first time that the Reynolds stress distribution features a local minimum between the first part of the shear layer and a region inside the recirculation region.This implies a more complex wake dynamics than assumed before.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    The flow around a backward-facing step(BFS)is one of the canonical test cases in aerodynamics which was extensively studied both experimentally and numerically in the last decades.Although the geometry is rather simple,the flow field is relatively complex,as illustrated in Fig.1.The incoming turbulent boundary layer developing along the forebody is forced to separate at the sharp edge.As a result of a Kelvin-Helmholtz instability tiny coherent vortices are generated in the first part of the very thin shear layer which increases in size as they are convecting downstream.According to Simpson[1],the spanwise coherence starts to break down after 3 step heights due to secondary instabilities,and the turbulent structures become fully three dimensional even faster upstream of reattachment.This on average causes a broadening of the shear layer with increasing distance from the point of separation.Due to the enhanced turbulent mixing the shear layer reattaches on the lower wall.The mean flow field is characterized by a large recirculation region,which is separated from the outer region by the dividing streamline.However,the reattachment location is not fixed in space and time due to the dynamic of coherent vortices.Some of the coherent shear layer vortices move into the recirculation region by an adverse pressure gradient,according to Chandrasuda[2]and McGuinness[3]and they interact with the next generation of shear layer vortices or trigger the instability as they disturb the shear layer itself,if they survive sufficiently long before they vanish due to viscosity.Due to this feedback,the shear layer of a backward-facing step differs significantly from a free shear layer.Furthermore,the vortices traveling upstream into the primary recirculation region decay into smaller vortices due to secondary Kelvin-Helmholtz instabilities,or they become larger and weaker due to viscosity effects.Due to the increasing pressure with decreasing distance from the step,the upward motion of the fluid along the lower wall separates again.As a result,a secondary recirculation region is formed on average in the corner of the primary recirculation region with opposite sign of vorticity.

    Bradshaw and Wong[4]as well as Eaton and Johnston[5]showed in their review papers that for a 2D BFS the stream-wise extension of the primary recirculation region mainly depends on the step height and on the state of the incoming boundary layer. The reattachment length is between 5 and 7 times the step height for a fully turbulent incoming flow state at the point of separation. This holds for a Reynolds number range of Reh=3000-300 000 based on the step height.Simpson[1]showed in his review paper,that the instantaneous impingement location of the shear layer moves up-and downstream by as much as±2 step heights.The second half of the separated flow region is characterized by a strongly curved shear layer,indicated by the dividing streamline in Fig.1.In this region the shear layer broadens and the Reynolds stresses increase.Eaton and Johnston[5]compared several experiments on 2D models and concluded that the streamwise location with maximum stream-wise Reynolds normal stress and shear stress is close to the reattachment location or slightly upstream.However,it is not evident if this is an artifact of a low measurement resolution or in case it holds true,what is the physical effect that leads to the strong intensity of the Reynolds stresses close to the mean reattachment location.

    Fig.1.Backward-facing step flow field.

    The early measurements[4,5]were performed by point-like probes(LDAand hot-wire).Thus,they revealed only profiles rather than spatial distributions of the velocity,and they were not able to detect instantaneous flow structures.PIV,on the other hand,allows to measure non-intrusively thousands of 2D or 3D velocity fields within a few seconds.Huang and Fiedler[6]used PIVto study the temporal development of the starting flow of a backwardfacing step in a water tunnel at Reh=4300.They showed that an initially formed regular vorticity street collapses after a short time(t·U/h=17)due to vorticity interaction.More recent experiments[7,8]investigated turbulent structures within instantaneous velocity fields to detect vortices and measure their size and swirling strength at relatively low Reynolds numbers(Reh≈5000).It was shown thatthe size ofspan-wise aligned rollers grows nearly linearly in the first part of the shear layer for a 2D BFS.Furthermore,a significant fraction of counter rotating vortices indicated an early three dimensional breakdown resulting in a varying reattachment location.Le,Moin,and J.Kim[9]also observed this phenomena in direct numericalsimulations(DNS)for a similar test case.

    Roshko and Thomke[10]investigated the turbulent reattachment downstream of an axisymmetric step in supersonic flow by means of intrusive pitot probe measurements and non-intrusive schlieren images.They found that the reattachment length is only 2.8-3.7 times the step height for Mach numbers between 2 and 4.5.Bitter et al.[11]performed measurements at Ma=0.7 and presented also a value of 3.7 for this quantity.Low speed experiments also showed a decreased length of the reattachment location[12,13]indicating that the round shape of the model reduces this quantity significantly.The flow over a cylindrical forebody elongated by a second cylinder of smaller diameter and finite length was in the focus of several numerical investigations[14-17]andofexperiments presented in Ref.[18].Depres etal.[18]performed unsteady wallpressure measurements on the elongated cylinder at Mach numbers between 0.6 and 0.85.Two characteristic frequencies were found inthe pressure spectra.The corresponding Strouhal numbers(based on the forebody's diameter d)are Std=0.2 and Std=0.6,which are related to the formation oflarge scale vortices and convection of turbulent eddies in the separated shear layer,respectively.Bitter etal.[11]analyzed the pressure dynamics for a similar model,with a very long base cylinder,using fast-responding pressure-sensitive paint.They showed the spatial distribution of the surface pressure:The maximum amplitude corresponds to a Strouhal number of Std=0.21 and was detected at a location shortly after reattachment.

    The aim of this work is the estimation of the mean velocity and the Reynolds stress distribution in the wake of an axisymmetric BFS at a transonic Mach number and a high Reynolds number. Since only little information is available in the literature for such conditions,these statistical flow properties are very important for the validation of new numerical approaches as well as for the comparison of different experiments.To achieve the aim a large amount of statistically independent PIV recordings will be analyzed with high resolution evaluation methods.Only nonintrusive and spatially resolving techniques,like PIV,are suited to provide the required results.

    Fig.2.Axisymmetric backward-facing step with rearsting.The laserlightsheetand the field of view(FOV)for high-repetition rate PIV measurements are illustrated. Numerical values are given in mm.

    The measurements were performed in the Trisonic Wind tunnel at the Bundeswehr University in Munich.It is a blow down wind tunnel with a test section of 675 mm height,300 mm width and 1200 mm length.The total pressure range of the wind tunnel is pt=(1.2,...,5)bar,leading to a Reynolds number range of Reh≈(1.2,...,12)×105.The Mach number is adjustable between 0.3 and 3.0.The facility is described in detail in Ref.[19].

    The tests were performed on a blunt axisymmetric model,sketched in Fig.2.The configuration consists of a 36°cone with a spherical nose of R=5 mm and a cylindrical part with a length of 164.3 mm and a diameter of d=54 mm.The connection between cone and main body is smooth to avoid leading edge separation. The model was made of aluminum and the surface is polished to avoid diffuse reflections at the wall,which would bias the near wall PIV measurements[20,21].A rear sting,21.5 mm in diameter,in the base of the cylinder was used for mounting the model in the middle of the test section of the wind tunnel.Thus the step height is h=16.25 mm.Compared to a strut mounting,applied by van Oudheusden and Scarano[22],the rear sting avoids strong 3D effects on the flow in and around the base region of the model. The model's size is selected to optimize for the blockage effect in the test section of the wind tunnel and the spatial resolution of the PIV measurements.

    For the PIV measurements the flow is seeded with DEHS(Di-Ethyl-Hexyl-Sebacat)tracer particles with a mean diameter of 1μm[23].Due to the limited run time of the facility(about 50 s)and the large number of recordings required for the measurement of statistical quantities,a high-repetition rate PIV system was used.The laser beam is shaped into a 1 mm thick light sheet which illuminates the tracer particles on the field of view(FOV),as sketched in Fig.2.21 500 PIV double images,1280×400 px in size,were captured at a Mach number of Ma=0.7 and a total pressure of p0=1.5 bar leading to a Reynolds number of Reh= 3.3×105,based on the step height.The recording frequency was 2 kHz,corresponding to a total measurement time of T=10.75 s. Since the vortex shedding frequency is around 900 Hz[11],the images are considered as uncorrelated,which is essential for the computation of statistical values.

    Two different evaluation procedures were applied to the PIV images in order to achieve instantaneous as well as ensemble averaged velocity fields.The first method,window correlation including iterative concepts with window shifting and image deformation[24],allows to compute 21 500 instantaneous velocity fields from which one is shown in Fig.3(a).Here,the spatial resolution is rather low(322px corresponding to 5%of the main body diameter)because each interrogation window should contain at least 6-10 particle images in order to keep the number of spurious vectors at an acceptable level[25,26].The second evaluation approach is the single-pixel ensemble-correlation. It can be used for a large amount of PIV image pairs and results in improved spatial resolution and dynamic spatial range[27,28].Recently,the single-pixelevaluation was further expanded to estimate Reynolds stresses in turbulentflows with nearly singlepixel resolution[29].Furthermore the evaluation technique wasenhanced by compensating bias errors due to curved stream lines[30].

    In the following the approaches are used to evaluate the mean velocity as well as the Reynolds stress distribution.The instantaneous velocity fields,computed by window correlation,are used to analyze the shape and size of coherent structures in the model's wake.

    Instantaneous flow fields,as shown in Fig.3(a),are unique and not very useful for the comparison of different experiments or for the validation of numerical flow simulation.For this reason the mean velocity distribution is required.Figure 3(b)shows the mean velocity field computed from 21 500 PIV image pairs with singlepixel ensemble-correlation.According to the findings of K?hler et al.[27],the in-plane resolution of the vector field is about 180μm≈0.01h.

    The boundary layer upstream of the BFS strongly influences the wake flow topology[4,5].The boundary layer thickness and the free stream velocity at x/h=-0.3 were estimated to beδ99=(0.40±0.02)h=(6.5±0.3)mm and u∞=(237±1)m.s-1,respectively.The displacement thickness at x/h=-0.3 is

    Fig.4.Maximum velocity gradient in the separated shear layer.

    leading to a shape factor of H12=δ1/δ2≈1.17.Thus,for the analyzed Mach and Reynolds number combination the boundary layer at the end of the main body is fully turbulent.From the last data points,the near wall gradient was estimated to be?u/?y|y=h>8.6×105s-1.Hence,the wall-shear stress can be estimated to

    and the friction velocity

    where the viscosity and the density areμ=1.66×10-5Ps.s and ρ=1.43 kg.m-3,respectively.The viscous sub-layer could not be resolved with the chosen setup and evaluation techniques.A higher resolution combined with PTV evaluation techniques,based on those discussed in Cierpka,Scharnowski,and K?hler[21],would be required for this task.

    At x/h=0 the separation forms a thin shear layer which broadens further downstream.Fig.4 shows the developmentofthe maximum velocity gradient with respect to the horizontal location estimated from the velocity distribution in Fig.3(b).A reciprocal fit function shows good agreement with the measurement points. The decay of the velocity gradient goes hand in hand with a growing shear-layer thickness,which reaches values in the order of the step height downstream of reattachment.At x/h=3.52±0.10 the ensemble-averaged flow reattaches on the rear sting,which is slightly shorter than numerical predictions presented by Deck and Thorigny[14].The difference might be due to differences in the turbulence level of the incoming and boundary layer flow along the model,as discussed in Isomoto and Honami[31]or the disturbances in the recirculation region are not high enough in the numerical simulation.Inside the dividing streamline a distinct recirculation region develops,wherein the maximum mean upstream velocity is≈88 m s-1.

    Besides the mean velocity distribution,analyzed in the previous section,the velocity fluctuations are essential to characterize the flow over the BSF and to compare to other experiments or to validate turbulence models used for CFD simulations.Fig.5 shows the distribution ofthe Reynolds normalstress in the axialdirection,in the radial direction,and the Reynolds shear stress computed by using the single-pixel approach.This method allows for the reliable estimation of Reynolds stresses without spatial lowpass filtering,by analyzing the shape of single-pixel correlation functions.The evaluation procedure was developed by the authors and is discussed in detail in Scharnowski,Hain,and K?hler[29].

    The normal stress in the axial direction,in Fig.5(a),has a maximum around x/h≈2.5 and it decreases towards the upstream part of the recirculation region as well as for locations downstream of reattachment,in agreement with the findings of Eaton and Johnston[5].Additionally,the shear layer shortly after separation shows high stress values.The stress distribution clearly shows two maxima and a valley in between at y/h≈0.75 within the recirculation region.The two regions of high stress intensity with the valley in between were not reported in the works based on point-wise measurements[4,5].Also,more recent PIV measurements by Hudy et al.[13]and Bitter et al.[19]did not resolve this topology,due to the limited spatial resolution and spatial low-pass filtering.Recently,Weiss and Deck[32]detected a similar distribution with two maxima in numerical flow simulations.Scharnowski et al.[33]analyzed the spatialdistribution ofvortices in the models wake and showed that the double peak structure in the streamwise Reynolds stress distribution is a result of the mean vortexdistribution.They detected a very high density of vortices in the developing shear layer and a small region just below in that the amount of detected vortices is significantly lower.This region corresponds to the local minimum in the stress distributions from Fig.5(a).Furthermore,the single-pixel evaluation detects increasing stresses near the surface of the rear sting at y/h=0.The high stress values at the reattachment location are caused by the strong fluctuation of the reattachment line.Profiles of the axial Reynolds stress at the location ofreattachmentpresented in the literature[8,5,13]are in good qualitative agreement with those in Fig.5(a). However,they did not report a strong increase in the near wall region.

    The maximum position of the Reynolds normal stress in the radial direction,in Fig.5(b),is shifted downstream to x/h≈3.3 compared to that of the u′2-distribution.In the radial direction,the v′2-distribution has its maximum at y/h≈0.3 close to reattachment.Figure 5(b)shows not a very deep valley,as in the case of u′2,but two inflection points around y/h≈0.7 can be clearly resolved.

    The Reynolds shear stress distribution in Fig.5(c)is mainly negative within the separated region leading to turbulence production.The maximum position of the u′v′distribution is around x/h≈3.6,which is in agreementwith the findings ofEaton and Johnston[5].The line plots within the recirculation region in Fig.5(c)show again two maxima around y/h=0.7.The primary maximum at y/h≈0.9 corresponds to the oscillating shear layer and the secondary one at y/h≈0.5 is a result of the higher probability of vortices in the recirculation region,as discussed in Ref.[33].

    To examine the relation between vortical motion and Reynolds stresses,the two pointcorrelation function was calculated fromthe instantaneous velocity fields.For the velocity component ui,the two-point correlation coefficient is defined as

    Fig.5.Distribution of the Reynolds normal stresses in(a)the axial direction,in(b)the radial direction,and(c)the Reynolds shear stress estimated from the shape of the correlation functions using single-pixel ensemble-correlation.

    Fig.6.Two-point correlation of the axial(a)and radial(b)velocity component for a characteristic location in the shear layer.Dividing streamlines of the primary and secondary recirculation regions are indicated by dashed lines.

    Figure 6 shows the spatial distribution of the two-point correlation coefficient of the axial Ruuand radial velocity component R vv for a characteristic location in the shear layer.It can be seen from Ruu(Fig.6(a))that large coherent structures develop in the separated region.The shape of the structures reveals a direct connection between both sides of the dividing stream line,leading to the conclusion thatvortices inside and outside the recirculation region are coherent with each other.

    In Fig.6(b),the two-point correlation of the vertical velocity component Rvvis illustrated.The negative correlation next to the maximumindicates vortices with their center axis aligned perpendicular to the measurementplane:The verticalvelocity component in the upstream and downstream part of a vortex are of opposite sign,which causes a negative correlation coefficient.Additionally,the correlation with the previous and the following vortex can be seen from the neighboring extrema in the Rvv-distribution.Thus,it can be concluded that the shear layer vortices are generated more or less periodically as expected from the Kelvin-Helmholtz instability.The distance between neighboring minimum and maximum in R vv grows with increasing distance from the model's base as the Kelvin-Helmholtz vortices grow in size.Figure 7 shows this distance with respect to the horizontal position x/h for shear layer vortices at y/h=1.Whereλis the distance between the maximum and the minimum and the corresponding x-location in Fig.7 is the mean between the center position of both extrema.The distance 2λis the mean separation oftwo coherentvortices,which increases nearly linearly with x,as can be seen from the figure.From this it can be concluded that the size of the vortices in the shear layer grows linearly and the vortices are accelerated while traveling downstream.Both effects resultin a constant Strouhalnumber.

    Due to improved PIV evaluation methods it was possible to estimate turbulence statistics in the wake of a axisymmetric backward-facing step flow without spatial low-pass filtering at a Mach number of 0.7 and at a Reynolds number of 3.3×105. A low magnification imaging approach combined with singlepixel ensemble-correlation allows to achieve a very large dynamicspatial range and high accuracy required to resolve the strong flow gradients.

    The mean flow field of the axisymmetric backward-facing step features a recirculation region that extends more than one model diameter in the axial direction in accordance with the literature. The shear layer reattaches on the model's rear sting at x/h= 3.52 which matches well with previous investigations by other authors at low Ma numbers.The motion of the separated shear layer causes an increase in the velocity fluctuations and thus in the Reynolds stress level.Between the shear layer and the primary recirculation region a distinct valley in the stress distributions was found.Two-point correlation of the in-plane velocity components revealed large coherent structures in the recirculation region.A periodic generation of shear layer vortices was found and the spatial separation between coherent structures was determined. The results are very important for the validation of new numerical methods as well as for a better understanding of the flow physics.

    This work was supported by the German Research Foundation DFG in the framework of the TRR40.Technical language revisions by Rodrigo Segura are also appreciated.

    Fig.7.Separation between neighboring coherent structures estimated from the distance between minimum and maximum of Rvvas shown in Fig.6(b).

    [1]R.L.Simpson,Turbulent boundary-layer separation,Annu.Rev.Fluid Mech.21(1989)205-234.

    [2]C.Chandrasuda,A reattaching turbulent shear layer in incompressible flow(Ph.D.thesis),Imperial College London,University of London,1975.

    [3]M.McGuinness,F(xiàn)low with a separation bubble:steady and unsteady aspects(Ph.D.thesis),University of Cambridge,1978.

    [4]P.Bradshaw,F(xiàn).Y.F.Wong,The reattachment and relaxation of a turbulent shear layer,J.Fluid Mech.52(1972)113-135.http://dx.doi.org/10.1017/ S002211207200299X.

    [5]J.K.Eaton,J.P.Johnston,A review of research on subsonic turbulent flow reattachment,AIAA J.19(1981)1093-1100.http://dx.doi.org/10.2514/3. 60048.

    [6]H.T.Huang,H.E.Fiedler,A DPIV study of a starting flow downstream of a backward-facing step,Exp.Fluids 23(1997)395-404.http://dx.doi.org/10. 1007/s003480050127.

    [7]F.Scarano,C.Benocci,M.L.Riethmuller,Pattern recognition analysis of the turbulentflow pasta backward facing step,Phys.Fluids11(1999)3808.http:// dx.doi.org/10.1063/1.870240.

    [8]C.Schram,P.Rambaud,M.L.Riethmuller,Wavelet based eddy structure education from a backward facing step flow investigated using particle image velocimetry,Exp.Fluids 36(2004)233-245.http://dx.doi.org/10.1007/ s00348-003-0695-9.

    [9]H.Le,P.Moin,K.J.Kim,Direct numerical simulation of turbulent flow over a backward facing step,J.Fluid Mech.330(1997)349-374.http://dx.doi.org/10. 1017/S0022112096003941.

    [10]A.Roshko,G.J.Thomke,Observations of turbulent reattachment behind an axisymmetric downstream-facing step in supersonic flow,AIAA J.4(1966)975-980.

    [11]M.Bitter,T.Hara,R.Hain,D.Yorita,K.Asai,C.J.K?hler,Characterization of pressure dynamics in an axisymmetric separating/reattaching flow using fast-responding pressure-sensitive paint,Exp.Fluids 53(2012)1737-1749. http://dx.doi.org/10.1007/s00348-012-1380-7.

    [12]L.M.Hudy,A.M.Naguib,J.W.M.Humphreys,Wall-pressure-array measurements beneath a separating/reattaching flow region,Phys.Fluids 15(2003)706-717.http://dx.doi.org/10.1063/1.1540633.

    [13]L.M.Hudy,A.M.Naguib,W.M.Humphreys,S.M.Bartram,Particle image velocimetry measurements of a two/three-dimensional separating/reattaching boundary layer downstream of an axisymmetric backward-facing step,in: 43rd AIAA Aerospace Sciences Meeting and Exhibit,Reno,NV,United States,10-13 Jan,2005.

    [14]S.Deck,P.Thorigny,Unsteadiness of an axisymmetric separating-reattaching flow:Numerical investigation,Phys.Fluids 19(2007)065103.http://dx.doi. org/10.1063/1.2734996.

    [15]P.E.Weiss,S.Deck,J.C.Robinet,P.Sagaut,On the dynamics of axisymmetric turbulent separating/reattaching flows,Phys.Fluids 21(2009)075103. http://dx.doi.org/10.1063/1.3177352.

    [16]J.H.Meiss,W.Schr?der,Large-eddy simulation of the base flow of a cylindrical space vehicle configuration,in:6th European Symposium on Aerothermodynamics for Space Vehicles,Versailles,F(xiàn)rance,2008.

    [17]V.Statnikov,C.Glatzer,M.Meinke,W.Schr?der,EUCASS Flight Physics Book,Vol.5,2012.

    [18]D.Depres,P.Reijasse,J.P.Dussauge,Analysis of unsteadiness in afterbody transonic flows,AIAA J.42(2004)2541-2550.

    [19]M.Bitter,S.Scharnowski,R.Hain,C.J.K?hler,High-repetition-rate PIV investigations on a generic rocket model in sub-and supersonic flows,Exp. Fluids 50(2011)1019-1030.http://dx.doi.org/10.1007/s00348-010-0988-8.

    [20]C.J.K?hler,U.Scholz,J.Ortmanns,Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of longdistance micro-PIV,Exp.Fluids 41(2006)327-341.http://dx.doi.org/10.1007/ s00348-006-0167-0.

    [21]C.Cierpka,S.Scharnowski,C.J.K?hler,Parallax correction for precise near-wall flow investigations using particle imaging,Appl.Opt.52(2013)2923-2931. http://dx.doi.org/10.1364/AO.52.002923.

    [22]B.W.van Oudheusden,F(xiàn).Scarano,PIV investigation of supersonic base-flowplume interaction,in:A.Schr?der,C.E.Willert(Eds.),Topics in Applied Physics,Springer Verlag,2008,pp.465-474.

    [23]C.J.K?hler,B.Sammler,J.Kompenhans,Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics,Exp.Fluids 33(2002)736-742.http://dx.doi.org/10.1007/s00348-002-0492-x.

    [24]M.Stanislas,K.Okamoto,C.J.K?hler,J.Westerweel,F(xiàn).Scarano,Main results of the third international PIV Challenge,Exp.Fluids 45(2008)27-71. http://dx.doi.org/10.1007/s00348-008-0462-z.

    [25]M.Raffel,C.E.Willert,S.T.Wereley,J.Kompenhans,Particle Image Velocimetry:a Practical Guide,Springer Verlag,2007.

    [26]R.J.Adrian,J.Westerweel,Particle Image Velocimetry,Cambridge University Press,2010.

    [27]C.J.K?hler,S.Scharnowski,C.Cierpka,On the resolution limitofdigitalparticle image velocimetry,Exp.Fluids 52(2012)1629-1639.http://dx.doi.org/10. 1007/s00348-012-1280-x.

    [28]C.J.K?hler,S.Scharnowski,C.Cierpka,On the uncertainty of digital PIV and PTV near walls,Exp.Fluids 52(2012)1641-1656.http://dx.doi.org/10.1007/ s00348-012-1307-3.

    [29]S.Scharnowski,R.Hain,C.J.K?hler,Reynolds stress estimation up to singlepixel resolution using PIV-measurements,Exp.Fluids 52(2012)985-1002. http://dx.doi.org/10.1007/s00348-011-1184-1.

    [30]S.Scharnowski,C.J.K?hler,On the effect of curved streamlines on the accuracy of PIV vector fields,Exp.Fluids 54(2013)1435.http://dx.doi.org/10.1007/ s00348-012-1435-9.

    [31]K.Isomoto,S.Honami,The effect of inlet turbulence intensity on the reattachment process over a backward-facing step,J.Fluids Eng.111(1989)87-92.

    [32]P.Weiss,S.Deck,Numerical investigation of the robustness of an axisymmetric separating/reattaching flow to an external perturbation using ZDES,F(xiàn)low Turbul.Combust.91(2013)697-715.http://dx.doi.org/10.1007/ s10494-013-9484-6.

    [33]S.Scharnowski,V.Statnikov,M.Meinke,W.Schr?der,C.J.K?hler,Combined experimental and numerical investigation of a transonic space launcher wake,in:5th European Conference for Aeronautics and Space Sciences EUCASS,Munich,Germany,2013.

    ?Corresponding author.

    E-mail address:sven.scharnowski@unibw.de(S.Scharnowski).

    *This article belongs to the Fluid Mechanics

    亚洲色图综合在线观看| 91精品三级在线观看| 身体一侧抽搐| 一本综合久久免费| 国产精品电影一区二区三区 | 在线十欧美十亚洲十日本专区| 多毛熟女@视频| 男人的好看免费观看在线视频 | 9色porny在线观看| 在线av久久热| 久久性视频一级片| 满18在线观看网站| 欧美黑人欧美精品刺激| 国产野战对白在线观看| 久久婷婷成人综合色麻豆| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美精品永久| av超薄肉色丝袜交足视频| 欧美激情极品国产一区二区三区| 色在线成人网| 黄色成人免费大全| 少妇猛男粗大的猛烈进出视频| www.精华液| 18禁黄网站禁片午夜丰满| 最近最新免费中文字幕在线| 国产免费现黄频在线看| 亚洲片人在线观看| 日韩制服丝袜自拍偷拍| 欧美成人午夜精品| netflix在线观看网站| 最近最新中文字幕大全电影3 | 国产亚洲欧美在线一区二区| 亚洲片人在线观看| 嫩草影视91久久| 欧美日韩av久久| 美女福利国产在线| 国产精品一区二区免费欧美| 久久久久视频综合| 亚洲熟女精品中文字幕| 天天操日日干夜夜撸| 久久久久久久午夜电影 | 日韩精品免费视频一区二区三区| 国产精品久久久久久精品古装| 水蜜桃什么品种好| 99久久99久久久精品蜜桃| 久久国产精品人妻蜜桃| e午夜精品久久久久久久| 视频区图区小说| 欧美日韩亚洲国产一区二区在线观看 | 巨乳人妻的诱惑在线观看| 国产成人欧美| 亚洲色图av天堂| 午夜91福利影院| 99精品在免费线老司机午夜| 高清在线国产一区| 国产精品亚洲av一区麻豆| 91国产中文字幕| 夜夜爽天天搞| 国产精品一区二区在线观看99| 国产精品免费一区二区三区在线 | 黄色视频不卡| 国产91精品成人一区二区三区| 热99久久久久精品小说推荐| 久久天堂一区二区三区四区| 国产野战对白在线观看| 12—13女人毛片做爰片一| 999久久久精品免费观看国产| 久久国产精品影院| 手机成人av网站| 欧美人与性动交α欧美软件| 亚洲精品国产色婷婷电影| 热99re8久久精品国产| tocl精华| a级毛片在线看网站| 黄色视频,在线免费观看| 大香蕉久久网| 亚洲成人国产一区在线观看| 国产主播在线观看一区二区| 色在线成人网| tube8黄色片| 亚洲国产精品sss在线观看 | 夫妻午夜视频| 首页视频小说图片口味搜索| 日韩有码中文字幕| 在线观看免费日韩欧美大片| av网站免费在线观看视频| 久久国产精品大桥未久av| 欧美在线一区亚洲| 青草久久国产| 午夜精品久久久久久毛片777| 精品午夜福利视频在线观看一区| 国产激情久久老熟女| 久久精品国产99精品国产亚洲性色 | 99久久99久久久精品蜜桃| 热re99久久精品国产66热6| 亚洲全国av大片| 无遮挡黄片免费观看| 久久天堂一区二区三区四区| 黄色视频,在线免费观看| 日韩人妻精品一区2区三区| 免费观看a级毛片全部| 国产97色在线日韩免费| 亚洲成a人片在线一区二区| 美女扒开内裤让男人捅视频| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 亚洲全国av大片| 国产不卡av网站在线观看| 大香蕉久久网| 最近最新免费中文字幕在线| 精品一区二区三区四区五区乱码| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区在线不卡| 黑人操中国人逼视频| 亚洲自偷自拍图片 自拍| 水蜜桃什么品种好| 老汉色∧v一级毛片| 村上凉子中文字幕在线| 精品人妻在线不人妻| 99在线人妻在线中文字幕 | 精品少妇久久久久久888优播| 91在线观看av| 又黄又爽又免费观看的视频| 飞空精品影院首页| 巨乳人妻的诱惑在线观看| 欧美日本中文国产一区发布| 天堂中文最新版在线下载| 视频在线观看一区二区三区| x7x7x7水蜜桃| 黑人猛操日本美女一级片| 中文字幕av电影在线播放| 欧美日韩瑟瑟在线播放| 好男人电影高清在线观看| av中文乱码字幕在线| 啦啦啦免费观看视频1| 亚洲熟妇熟女久久| 高清黄色对白视频在线免费看| 久久九九热精品免费| 亚洲第一欧美日韩一区二区三区| 中文字幕高清在线视频| 欧美精品亚洲一区二区| 韩国精品一区二区三区| 精品国产美女av久久久久小说| videosex国产| 亚洲熟女精品中文字幕| 免费不卡黄色视频| 脱女人内裤的视频| av电影中文网址| 欧美日韩精品网址| 久久人人97超碰香蕉20202| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文看片网| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产亚洲av高清一级| 麻豆av在线久日| 欧美色视频一区免费| 多毛熟女@视频| 91老司机精品| 成人精品一区二区免费| 欧美日韩精品网址| 热re99久久精品国产66热6| 免费看a级黄色片| 久久久精品免费免费高清| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美在线一区二区| 国产男女超爽视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品秋霞免费鲁丝片| svipshipincom国产片| 丝袜美足系列| 亚洲专区国产一区二区| 久久久久久久国产电影| 久久久久久人人人人人| 两个人看的免费小视频| 欧美精品啪啪一区二区三区| ponron亚洲| 午夜福利一区二区在线看| 90打野战视频偷拍视频| 精品福利永久在线观看| 99香蕉大伊视频| 国产精品免费大片| 精品卡一卡二卡四卡免费| 在线观看www视频免费| 久久久国产欧美日韩av| 日韩欧美三级三区| 亚洲av电影在线进入| 国产成人精品久久二区二区91| av福利片在线| www.熟女人妻精品国产| 国产精品电影一区二区三区 | 亚洲成人国产一区在线观看| 人人妻人人澡人人爽人人夜夜| 黄频高清免费视频| 欧美日韩视频精品一区| 在线av久久热| av国产精品久久久久影院| 又黄又粗又硬又大视频| 妹子高潮喷水视频| 啦啦啦免费观看视频1| 精品人妻熟女毛片av久久网站| 国产精品一区二区在线观看99| 日韩人妻精品一区2区三区| 首页视频小说图片口味搜索| av国产精品久久久久影院| 成年版毛片免费区| av中文乱码字幕在线| 他把我摸到了高潮在线观看| 在线天堂中文资源库| 免费看十八禁软件| 99久久综合精品五月天人人| 中文字幕av电影在线播放| 变态另类成人亚洲欧美熟女 | 成熟少妇高潮喷水视频| 搡老熟女国产l中国老女人| 建设人人有责人人尽责人人享有的| 国产蜜桃级精品一区二区三区 | 亚洲情色 制服丝袜| a级毛片黄视频| 黑人巨大精品欧美一区二区蜜桃| 99国产精品免费福利视频| 欧美成狂野欧美在线观看| 国产亚洲欧美精品永久| 亚洲中文日韩欧美视频| 女同久久另类99精品国产91| 在线观看一区二区三区激情| 亚洲熟妇中文字幕五十中出 | 欧美精品人与动牲交sv欧美| 极品人妻少妇av视频| 人妻丰满熟妇av一区二区三区 | 午夜福利视频在线观看免费| 亚洲视频免费观看视频| 免费观看人在逋| 国产熟女午夜一区二区三区| 国产亚洲欧美精品永久| 少妇猛男粗大的猛烈进出视频| 久久香蕉精品热| 精品国产美女av久久久久小说| 亚洲av欧美aⅴ国产| 老司机福利观看| netflix在线观看网站| 动漫黄色视频在线观看| 国产淫语在线视频| 国产欧美亚洲国产| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 国产成人精品久久二区二区免费| 亚洲欧美日韩另类电影网站| 国产日韩欧美亚洲二区| 亚洲av美国av| 中亚洲国语对白在线视频| 国产成人免费观看mmmm| 亚洲色图综合在线观看| 欧美亚洲日本最大视频资源| 搡老岳熟女国产| 久久中文看片网| 夜夜爽天天搞| 国产片内射在线| 午夜激情av网站| 在线观看一区二区三区激情| 中文字幕另类日韩欧美亚洲嫩草| 久久这里只有精品19| 丁香六月欧美| 热re99久久精品国产66热6| 国产一区在线观看成人免费| 中文字幕另类日韩欧美亚洲嫩草| e午夜精品久久久久久久| 精品国产乱子伦一区二区三区| 国产精品亚洲一级av第二区| 久久国产精品男人的天堂亚洲| 国产精品一区二区在线观看99| 欧美成狂野欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 天天躁日日躁夜夜躁夜夜| 中文字幕制服av| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 中文字幕人妻熟女乱码| 一级毛片女人18水好多| 国产欧美日韩一区二区三区在线| 国产一区二区三区综合在线观看| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩瑟瑟在线播放| 精品人妻1区二区| 久久中文字幕人妻熟女| 中文字幕制服av| 国产高清激情床上av| 日韩欧美免费精品| 极品人妻少妇av视频| 久久国产精品人妻蜜桃| 精品国产亚洲在线| 日韩欧美一区二区三区在线观看 | 桃红色精品国产亚洲av| 黑人猛操日本美女一级片| 色老头精品视频在线观看| 老熟女久久久| 午夜福利,免费看| 十八禁人妻一区二区| 午夜久久久在线观看| 又紧又爽又黄一区二区| 搡老岳熟女国产| 黄色视频,在线免费观看| 日本vs欧美在线观看视频| 亚洲色图综合在线观看| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线免费观看网站| 久久精品亚洲av国产电影网| 多毛熟女@视频| 亚洲精品国产区一区二| 99热只有精品国产| 1024视频免费在线观看| 国产日韩一区二区三区精品不卡| 老熟妇乱子伦视频在线观看| 亚洲少妇的诱惑av| av有码第一页| 日本wwww免费看| 中文字幕av电影在线播放| 国产在线一区二区三区精| 久久久水蜜桃国产精品网| 久9热在线精品视频| 国产日韩一区二区三区精品不卡| 中文亚洲av片在线观看爽 | aaaaa片日本免费| 在线观看舔阴道视频| 精品人妻1区二区| 人人妻人人澡人人爽人人夜夜| 欧美日韩福利视频一区二区| 窝窝影院91人妻| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| 最近最新免费中文字幕在线| 美女扒开内裤让男人捅视频| 亚洲色图av天堂| 日韩精品免费视频一区二区三区| 久久99一区二区三区| aaaaa片日本免费| 老司机亚洲免费影院| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 男女高潮啪啪啪动态图| 欧美成人午夜精品| 91麻豆精品激情在线观看国产 | 久久中文字幕一级| 久久久久久亚洲精品国产蜜桃av| 亚洲一区二区三区不卡视频| 韩国精品一区二区三区| 国产av精品麻豆| 大片电影免费在线观看免费| 国产精品98久久久久久宅男小说| 欧美在线黄色| 国产精品av久久久久免费| 夜夜夜夜夜久久久久| 天天躁日日躁夜夜躁夜夜| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 婷婷精品国产亚洲av在线 | 最新美女视频免费是黄的| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 青草久久国产| 精品国产乱子伦一区二区三区| 悠悠久久av| 成年人免费黄色播放视频| aaaaa片日本免费| 99国产精品一区二区三区| 另类亚洲欧美激情| 亚洲人成电影免费在线| 老司机亚洲免费影院| 欧美老熟妇乱子伦牲交| 精品无人区乱码1区二区| 欧美日韩国产mv在线观看视频| av欧美777| 青草久久国产| 国产在视频线精品| 国产高清激情床上av| 在线观看午夜福利视频| 国产激情欧美一区二区| 久久久国产欧美日韩av| 后天国语完整版免费观看| 不卡av一区二区三区| 亚洲男人天堂网一区| 最新在线观看一区二区三区| 婷婷成人精品国产| www.999成人在线观看| e午夜精品久久久久久久| 国产精品国产高清国产av | 欧美黄色淫秽网站| 亚洲色图av天堂| 亚洲av成人av| 免费不卡黄色视频| 成年版毛片免费区| www.999成人在线观看| 夜夜夜夜夜久久久久| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 99精品久久久久人妻精品| 成人永久免费在线观看视频| 日本欧美视频一区| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 欧美精品啪啪一区二区三区| 18禁国产床啪视频网站| 免费在线观看黄色视频的| 国产精品乱码一区二三区的特点 | 色尼玛亚洲综合影院| 久久久精品区二区三区| 国产精品一区二区在线观看99| 婷婷丁香在线五月| 久久香蕉精品热| 国产男女超爽视频在线观看| 欧美另类亚洲清纯唯美| 美女视频免费永久观看网站| 国产精品自产拍在线观看55亚洲 | 国产免费现黄频在线看| 大码成人一级视频| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 中文字幕色久视频| 亚洲精品在线美女| 免费观看人在逋| 高清在线国产一区| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 99国产精品一区二区蜜桃av | 亚洲国产看品久久| 成人黄色视频免费在线看| 国产精品电影一区二区三区 | 夜夜夜夜夜久久久久| 久久国产精品影院| 亚洲精品久久午夜乱码| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 一级作爱视频免费观看| 又黄又爽又免费观看的视频| 欧美激情 高清一区二区三区| 极品人妻少妇av视频| 麻豆乱淫一区二区| 午夜福利在线免费观看网站| svipshipincom国产片| 伊人久久大香线蕉亚洲五| 欧美在线一区亚洲| 91精品国产国语对白视频| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| www日本在线高清视频| 中文字幕人妻丝袜一区二区| 大码成人一级视频| 老汉色∧v一级毛片| 亚洲av第一区精品v没综合| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| 日本撒尿小便嘘嘘汇集6| 亚洲五月色婷婷综合| 极品教师在线免费播放| 国产精品欧美亚洲77777| 乱人伦中国视频| 亚洲一区二区三区欧美精品| 亚洲午夜理论影院| 一进一出好大好爽视频| 少妇的丰满在线观看| 久久久久久人人人人人| 亚洲国产欧美一区二区综合| 在线观看免费高清a一片| 两个人免费观看高清视频| 三级毛片av免费| 国产乱人伦免费视频| 在线天堂中文资源库| 老司机福利观看| 18禁观看日本| 中国美女看黄片| 黑人操中国人逼视频| 80岁老熟妇乱子伦牲交| 中出人妻视频一区二区| 欧美激情久久久久久爽电影 | 久久草成人影院| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产 | 在线播放国产精品三级| 两个人免费观看高清视频| 亚洲一区高清亚洲精品| 日韩免费av在线播放| 一边摸一边抽搐一进一小说 | 丝袜美腿诱惑在线| 国产精品电影一区二区三区 | 99久久综合精品五月天人人| 丝袜在线中文字幕| 男女下面插进去视频免费观看| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲国产一区二区在线观看 | 色综合婷婷激情| 精品乱码久久久久久99久播| 少妇的丰满在线观看| 好男人电影高清在线观看| 最新的欧美精品一区二区| 好看av亚洲va欧美ⅴa在| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 国产免费av片在线观看野外av| 一进一出抽搐动态| 999久久久国产精品视频| av网站免费在线观看视频| 在线观看舔阴道视频| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 午夜精品久久久久久毛片777| 一级a爱视频在线免费观看| 国内毛片毛片毛片毛片毛片| 精品高清国产在线一区| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| 美女午夜性视频免费| 免费不卡黄色视频| 嫩草影视91久久| 99精品久久久久人妻精品| 国产亚洲精品久久久久久毛片 | 一区二区三区国产精品乱码| 美女高潮到喷水免费观看| 美女扒开内裤让男人捅视频| 精品久久久久久,| 极品人妻少妇av视频| 好男人电影高清在线观看| 在线观看日韩欧美| 国产一区二区三区视频了| 老鸭窝网址在线观看| 岛国在线观看网站| 满18在线观看网站| 久久久久国产精品人妻aⅴ院 | 色综合婷婷激情| av有码第一页| 看片在线看免费视频| 亚洲av日韩精品久久久久久密| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 欧美 日韩 精品 国产| 欧美精品一区二区免费开放| 久热爱精品视频在线9| 午夜亚洲福利在线播放| 高清欧美精品videossex| 一夜夜www| 亚洲午夜精品一区,二区,三区| 国产av精品麻豆| 欧美精品啪啪一区二区三区| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 一级片免费观看大全| 岛国在线观看网站| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 久久精品91无色码中文字幕| 水蜜桃什么品种好| cao死你这个sao货| 国产精品1区2区在线观看. | 中文欧美无线码| 一级a爱视频在线免费观看| 亚洲av欧美aⅴ国产| 亚洲一区中文字幕在线| av超薄肉色丝袜交足视频| 变态另类成人亚洲欧美熟女 | www.自偷自拍.com| 免费不卡黄色视频| av在线播放免费不卡| 亚洲精品国产一区二区精华液| 午夜免费观看网址| 国产精品电影一区二区三区 | 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 黄色毛片三级朝国网站| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 露出奶头的视频| 久久精品国产综合久久久| 国产精品av久久久久免费| 欧美乱色亚洲激情| 亚洲精品中文字幕一二三四区| 成人永久免费在线观看视频| 国产亚洲精品久久久久5区| 久久精品亚洲熟妇少妇任你| 最近最新中文字幕大全免费视频| 色老头精品视频在线观看| a级毛片在线看网站| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 亚洲中文字幕日韩| 男人操女人黄网站| 三上悠亚av全集在线观看| 日本wwww免费看| videos熟女内射| 婷婷丁香在线五月| 国产不卡一卡二| 婷婷丁香在线五月| av视频免费观看在线观看| 久久久久精品国产欧美久久久| 1024香蕉在线观看| 91老司机精品| 五月开心婷婷网| 在线观看舔阴道视频| 天堂中文最新版在线下载| 国产精品国产高清国产av | 亚洲欧美一区二区三区久久| 久久人妻福利社区极品人妻图片|