• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on vortex induced vibration(VIV)of a wide-D-section cylinder in a cross flow

    2015-11-21 07:27:32QingyangWangMogengLiShengjinXu

    Qingyang Wang,Mogeng Li,Shengjin Xu

    School of Aerospace Engineering,Tsinghua University,Beijing,China

    Experimental study on vortex induced vibration(VIV)of a wide-D-section cylinder in a cross flow

    Qingyang Wang,Mogeng Li,Shengjin Xu?

    School of Aerospace Engineering,Tsinghua University,Beijing,China

    A R T I C L E I N F O

    Article history:

    Received 30 September 2014

    Accepted 17 December 2014

    Available online 14 February 2015

    Wide D-section cylinder

    Hot wire

    Phase-locked PIV

    Vortex induced vibration

    Lock-on

    Wake structures and vortex induced vibration(VIV)of a spring-supported wide-D-section cylinder were experimentally investigated using an X-wire,a novel phase-locked particle image velocimetry(PIV),and an acceleration sensor at a low speed wind tunnel.Compared with the fixed case,the 2P(two pair)vortex mode as defined by Govardhan and Williamson(2000)rather than S(single vortex)mode exists in the wake.The velocity deficit behind the cylinder is much larger than that of fixed case.The mean drag coefficient increases from 1.42 for the fixed case to 1.64 for the vibrating case.The Reynolds stress presents even distribution and small with increased distance of X/D=-2 to X/D=-10.The power spectra density based on accelerator and hot wire data presents a highlight identical.It shows that after a strong interaction the cylinder vibration and the vortex shedding come to a stable state.The vortex shedding is totally locked on and controlled by the cylinder vibration.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Flow induced vibration(FIV)of structures is frequently seen in industrial manufactures,such as in mechanical engineering,civil engineering,chemical engineering,marine engineering,aerospace engineering,thermal power engineering,and so on.The structures employed in those fields are initially designed to bear loadings,contain flow or provide heat transfer surface without considering fluid dynamical optimization[1].The structures immersed in a fluid flow could be easily subject to fluid forces.Especially,fluid force fluctuation may result in vortex induced vibration(VIV)[2],even galloping or flutter unless the structural collapses occur.The VIV easily occurs or not often depends on the shapes of structures,Reynolds number,scenario offacing flow,etc.Whetherto suppress orto utilize the VIV,orto guarantee the structuressafe,orto realize flow control,it is both essential and crucial to investigate details on the interaction between the VIV structure and the fluid flow.It motivates the present study.

    There are innumerable experimental and theoretical studies on VIV of structures with simple cross section shapes.The circular cylinder is the simplest geometry and most commonly used in the industry[3].Numerous experimental studies show that vortex shedding behind the circular cylinder causes fluctuation lift resulting in a periodical vibration,which is so-called VIV.So far,the VIV of other bluff bodies has also attracted people's interest[4,5].The key of VIV problem exists in a strong interaction between the cylinder motion and vortex shedding[6,7].The VIV of a cylinder is often subject to the effects of cross section shape of the cylinder,Reynolds number,Strouhal number,added mass effect,structural stiffness of the cylinder,and damping ratio[8,9].Many semi-empirical models have been built to predict the dynamics of the VIV cylinder.Meanwhile,the two most popular models are the harmonic model and the wake oscillator model,respectively[1,10,11].With the two models one may give a simple prediction to the VIV of a cylinder in the cross flow.

    In this paper,we aim to study the flow structure and oscillation of a wide-D-section cylinder since the study is significant to engineering applications but being less concerned[12].The flow structures around the cylinder are studied using a novel phaselocked particle image velocimetry(PIV).The vibration of cylinder is monitored by an acceleration sensor.The velocity profiles and Reynolds stress behind the cylinder are measured by an X-wire.

    The experimentwas carriedoutata low speed wind tunnelwith a square test section(0.5 m×0.5 m)of 2 m long.The wind speed can be adjusted from 0 m/s to 40 m/s.Turbulence intensity was less than 0.5%in the free stream in this experiment.A wide-D-section cylinder was horizontally supported by two springs at each end of the cylinder.The cylinder was mounted in the middle of the working section.The flat surface of the cylinder is faced to the free flow and the x-y coordinate is shown in Fig.1.The cross section of the cylinder is shown in Fig.1(b).The blockage was about 5.5%. The mass ratio m?was approximately 962,the structural damping ratioζwas estimated to be 0.0007 and the natural frequency fnof the spring-cylinder was 6.866 Hz.Both the natural frequency and the damping ratio were measured in the still air.The free stream velocity U0in this experiment was fixed at 4.0 m/s.The corresponding Reynolds number defined by the speed of free flow and the height of the cylinder was about 8000.

    The flow structures behind the wide-D-section cylinder were captured by a standard LaVision PIV system.The smoke particle(around 2μm in diameter)generated by paraffin oil was used as trace particle.The double pulsed YAG Laser sources of a wavelength of 532 nm served as flow illumination devices in the test zone.The maximum energy outputofthe laser is about 120 mJ.The thickness of the laser sheet was about 1 mm.A single CCD camera with a resolution of 2048 pixels×2048 pixels for each image was used to capture the flow structure.The cylinder surface and the wind tunnel wall illuminated by the laser sheet were painted black to minimize the light reflection noise.The green light generated by the laser source is allowed to pass through and goes inside CCD camera by an optical filter,of which the passing wavelength is 532 nm.Velocity vector fields were calculated from the raw images by a cross-correlation algorithmbuilt in the Davis software ofthe LaV-ision system.The interrogation area was 32 pixels×32 pixels and the overlap was 50%.The weak correlation vectors were automatically removed in the post-processing.To measure the flow structures at the designated vibration phase of the spring-supported cylinder,the PIV was triggered by a dSPACE real-time control desk combined with the MATLAB/Simulink platform.Thus,a series of flow structure according with the designated vibration phase could be measured by this modified PIV technique.After phase-average calculation,a smooth and averaged flow velocity field can be obtained for arbitrary vibration phase of the cylinder.

    The vibration ofthe wide-D-section cylinder was measured by a miniature B&K acceleration sensor(Delta 4516)fixed at one end of the cylinder.The signal after amplifier was collected by a NI 6521 acquisition system at a sampling frequency fsample=5 kHz,and the sampling time was about 30 s.

    The velocity profile behind the wide-D-section cylinder was measured by an IFA 300 constant temperature hotwire anemometer with an X-arrangement hot film sensor Model 1246-20W(50.8μm of diameter)at X/D=-2,X/D=-5,and X/D=-10,respectively.Sixty-one points were measured along y direction at the range of Y/D=-3 to 3.Signals was offset,amplified,digitized using an 8 channel A/D board and then recorded by a computer at a sampling frequency fsample=5 kHz.The sampling time was about 26 s.The vortex shedding frequencies of the cylinder were calculated based on the power spectral density of hot wire measurements.

    Instantaneous vorticity field of the fixed wide-D-section cylinder is shown in Fig.2.Vortices alternatively shed from the leading corner of the cylinder.It distinguishes from that of fixed circular cylinder[13]and square cylinder[14].The vortices stretch muchlonger in the wake of the D-section cylinder than that of the circular or square cylinder.The vorticity is not available below the cylinder where the flow is in the shadow.

    Fig.1.Experimental setup and dimensions of the wide-D section cylinder.

    Fig.2.Normalized vorticity contours(ω?=ωzD/U0)for the fixed wide-D cylinder,Re=8000.

    Figure 3 shows the phase average results for normalized vorticity contours at designated vibration phase for the vibrating case. Each picture is the average of 300 pairs of vorticity contour which obtained using phase-locked PIV at a designated vibration phase. Figure 3(a)shows the details in vibration phases(45°of phase interval)in accordance with the vorticity contours in Fig.3(b).Unlike the fixed case of the wide-D cylinder,the vortices form two pair vortex structure in the wake which was so-called 2P mode according to Govardhan and Williamson[20].Figure 3(b)I-IVshow that the cylinder is moving down to the outmostposition and coming back to the balance point(Fig.3(b)IV).Figure 3(b)IV-VI showvorticity change atthe range ofanother180°phase angle.Avortexpair including two vortices with opposite sign vorticity presents at each side of the cylinder.One of vortex in the pair forms from the natural shedding at the corner of the cylinder,another is from the induced flow because of the cylinder motion.Two vortex-pairs alternatively occur at each side of the cylinder.

    Fig.3.The normalized vorticityω?=ωzD/U0for Re=8000.

    Fig.4.The mean velocity deficit at X/D=-2,X/D=-5,and X/D=-10.

    The mean velocity deficit at X/D=-2,X/D=-5,and X/D=-10 obtained by an X-arrangementhotfilmisillustrated in Fig.4.The area of the deficit becomes larger as X/D increased since the wake is still developing in this range of X/D.The deficit area of vibrating case is larger than that of the fixed case.The vibrating cylinder broadened the velocity deficit in transverse direction,compared to the fixed cylinder case.

    To estimate the mean drag,the algorithm[15-17]taking the Reynolds normal stress into account is adopted as Eq.(2.1)

    Fig.5.profile along y direction at X/D=-2,X/D=-5,and X/D=-10.

    Fig.6.profile along y direction at X/D=-2,X/D=-5,and X/D=-10.

    Fig.7.profile along y direction at X/D=-2,X/D=-5,and X/D=-10.

    whereρis the density of the fluid,U0is the free stream velocity,and FDis the drag force.

    Equation(2.1)includes two components,namely the momentum integral I1and I2,with contribution from mean velocity and Reynolds normal stress,respectively.

    To measure the structural frequency of the spring-supported wide-D cylinder,acceleration of the cylinder is obtained when it is in a damped free vibration.The vibration is approximately linear. According to the measurement as shown in Fig.8,the structural damping ratioζis estimated to be 0.0007 and the structural naturalfrequency fnis 6.866 Hz,or 0.0515 normalized by D and free streamvelocity U0.As the steady VIVofthe wide-Dcylinder occurs,the acceleration becomes apparently to be periodical.The vibration frequency is identical to the natural frequency all the time.Even if the flutter occurs,the vibration amplitude increases rapidly to a new value but the vibration frequency still remains identical to the natural frequency.That is because the vortex shedding frequency is locked on the cylinder vibration.At the beginning of the cylinder vibration,the cylinder is forced to vibrate by the periodical force caused by vortex shedding(see Fig.9).Hence,the vibration frequency is slightly higher than that of structural natural frequency of the cylinder,say 0.0878-0.0956 normalized frequency as shown as the hot wire measurement in Fig.10(notshown in acceleration data).Power spectra density functions for different X/D fromhot wire measurement are presented in Figs.10 and 11.The fixed case is in Fig.10 and the vibrating case is in Fig.11.For the fixed case,the vortex shedding frequency(0.0956)at X/D=-2 is slightly higher than those(0.0878 and 0.0876)at X/D=-5 and-10(0.0876).It shows that the convective velocity of the vortex is a little bit rapid that is probably caused by blockage effect near the cylinder.The convective velocity keeps nearly constant speed downstream.For the vibrating case,the vortex shedding is locked on the natural frequency of the cylinder. The dominant peak of the normalized frequency occurs at 0.0515. Meanwhile,double and triple frequencies of the value of 0.0515 also can be found in the power spectra density function.Those peaks indicate that the vortex is breaking into many small vortices downstream.

    Table 1Cdof the wide-D-section cylinder.

    Table 2Cdfor different cylinders.

    Fig.8.Acceleration and its power spectra density function for damped free vibration of the cylinder.

    Fig.9.Acceleration and its power spectra density function for steady VIV of the cylinder.

    Fig.10.Power spectra density from hot wire signal for the fixed case.(a)X/D= -2;(b)X/D=-5;(c)X/D=-10.

    The near wakes of a spring supported wide D-section cylinder both for fixed and vibrating cases have been studied using PIV,X-wire and an acceleration sensor.The following conclusions can be drawn.

    The flow structure is influenced by the vibration of the cylinder. The wake of the vibrating cylinder presents two pair vortex structure(2P),which is different from 2S mode contained in the fixed case.The cylinder vibration results in a larger drag than that of the fixed case.In the steady VIV,the vibration frequency is identical to the structural natural frequency even if the flutter occurs.

    Fig.11.Power spectra density from hot wire signal for the vibrating case.(a)X/D=-2;(b)X/D=-5;(c)X/D=-10.

    This work was supported by the National Natural Science Foundation of China(11472158).

    [1]R.D.Blevins,F(xiàn)low-Induced Vibration,Van Nostrand Reinhold Co.,New York,1990.

    [2]C.H.K.Williamson,R.Govardhan,Vortex-induced vibrations,Annu.Rev.Fluid Mech.36(2004)413-455. http://dx.doi.org/10.1146/annurev.fluid.36.050802.122128.

    [3]R.D.Gabbai,H.Benaroya,An overviewofmodeling and experiments ofvortexinduced vibration of circular cylinders,J.Sound Vib.282(2005)575-616,http://dx.doi.org/10.1016/j.jsv.2004.04.017. http://www.sciencedirect.com/science/article/pii/S0022460X04004845.

    [4]M.P.Pa?doussis,S.J.Price,E.de Langre,F(xiàn)luid-Structure Interactions:Crossflow-induced Instabilities,Cambridge University Press,Cambridge,2011,http://www.cambridge.org/us/academic/subjects/engineering/thermalfluids-engineering/fluid-structure-interactions-cross-flow-inducedinstabilities.

    [5]R.M.Corless,G.V.Parkinson,A model of the combined effects of vortexinduced oscillation and galloping,J.Fluids Struct.2(1988)203-220,http://dx.doi.org/10.1016/S0889-9746(88)80008-2. http://www.sciencedirect.com/science/article/pii/S0889974688800082.

    [6]P.W.Bearman,Vortex shedding from oscillating bluff bodies,Annu.Rev. Fluid Mech.16(1984)195-222.http://dx.doi.org/10.1146/annurev.fl.16. 010184.001211.http://www.annualreviews.org/doi/abs/10.1146/annurev.fl. 16.010184.001211?journalCode=fluid.

    [7]R.D.Blevins,C.S.Coughran,Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass,damping,and Reynolds number,J.Fluids Eng.131(2009)101-202,http://dx.doi.org/ 10.1115/1.3222904.http://fluidsengineering.asmedigitalcollection.asme.org/ article.aspx?articleid=1478300.

    [8]T.Sarpkaya,A critical review of the intrinsic nature of vortex-induced vibrations,J.Fluids Struct.19(2004)389-447,http://dx.doi.org/10.1016/j.jfluidstructs.2004.02.005. http://www.sciencedirect.com/science/article/pii/S0889974604000350.

    [9]M.L.Facchinetti,E.de Langre,F(xiàn).Biolley,Coupling of structure and wake oscillators in vortex-induced vibrations,J.Fluids struct.19(2004)123-140,http://dx.doi.org/10.1016/j.jfluidstructs.2003.12.004. http://www.sciencedirect.com/science/article/pii/S0889974603001853.

    [10]A.Farshidianfar,H.Zanganeh,A modified wake oscillator model for vortexinduced vibration ofcircular cylinders fora wide range ofmass-damping ratio,J.Fluids Struct.26(2010)430-441,http://dx.doi.org/10.1016/j.jfluidstructs.2009.11.005. http://www.sciencedirect.com/science/article/pii/S0889974610000149.

    [11]N.Cagney,S.Balabani,Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations,J.Fluids Struct.38(2013)127-145,http://dx.doi.org/10.1016/j.jfluidstructs.2012.12.004. http://www.sciencedirect.com/science/article/pii/S0889974612002277.

    [12]P.Van Dyke,A.Laneville,Galloping of a single conductor covered with a D-section on a high-voltage overhead test line,J.Wind Eng.Ind.Aerodyn.96(2008)1141-1151,http://dx.doi.org/10.1016/j.jweia.2007.06.036. http://www.sciencedirect.com/science/article/pii/S0167610507001614.

    [13]H.M.Blackburn,R.D.Henderson,A study of two-dimensional flow past an oscillating cylinder,J.Fluid Mech.385(1999)255-286,http://dx.doi.org/10.1017/S0022112099004309. http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid=15051&fileId=S0022112099004309.

    [14]B.W.Van Oudheusden,F(xiàn).Scarano,N.P.Van Hinsberg,et al.,Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence,Exp.Fluids 39(2005)86-98,http://dx.doi.org/10.1007/s00348-005-0985-5. http://link.springer.com/article/10.1007%2Fs00348-005-0985-5.

    [15]R.A.Antonia,S.Rajagopalan,Determination of drag of a circular cylinder,AIAA J.28(1990)1833-1834,http://dx.doi.org/10.2514/3.10485. http://arc.aiaa.org/doi/abs/10.2514/3.10485?journalCode=aiaaj.

    [16]L.H.Feng,J.J.Wang,Synthetic jet control of separation in the flow over a circular cylinder,Exp.Fluids 53(2012)467-480,http://dx.doi.org/10.1007/s00348-012-1302-8. http://link.springer.com/article/10.1007/s00348-012-1302-8.

    [17]G.S.He,N.Li,J.J.Wang,Drag reduction of square cylinders with cut-corners at the front edges,Exp.Fluids 55(2014)1-11,http://dx.doi.org/10.1007/s00348-014-1745-1. http://link.springer.com/article/10.1007%2Fs00348-014-1745-1.

    [18]C.Tropea,A.L.Yarin,J.F.Foss,et al.,Springer Handbook of Experimental Fluid Mechanics,Springer-Verlag,Berlin Heidelberg,2007,pp.1125-1145,http://dx.doi.org/10.1007/978-3-540-30299-5. http://link.springer.com/referencework/10.1007%2F978-3-540-30299-5.

    [19]F.M.White,F(xiàn)luid Mechanics,4th edn.,McGraw-Hill,New York,2001.

    [20]R.Govardhan,C.H.K.Williamson,Modes of vortex formation and frequency response of a freely vibrating cylinder,J.Fluid Mech.420(2000)85-130,http://dx.doi.org/10.1017/S0022112000001233. http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid=56925&fileId=S0022112000001233.

    ?Corresponding author.

    E-mail address:xu_shengjin@tsinghua.edu.cn(S.Xu).

    *This article belongs to the Fluid Mechanics

    80岁老熟妇乱子伦牲交| 国产一区有黄有色的免费视频| 99国产综合亚洲精品| 国产黄频视频在线观看| 日韩在线高清观看一区二区三区| 性色avwww在线观看| 久久久久人妻精品一区果冻| 久久精品久久久久久噜噜老黄| 最新的欧美精品一区二区| 熟女电影av网| 欧美变态另类bdsm刘玥| 日韩一区二区视频免费看| 如何舔出高潮| 亚洲国产欧美日韩在线播放| 少妇人妻精品综合一区二区| 丰满少妇做爰视频| 久久久精品94久久精品| 亚洲欧美日韩卡通动漫| 午夜福利影视在线免费观看| 国产高清三级在线| 大陆偷拍与自拍| 69精品国产乱码久久久| 国产成人av激情在线播放 | 男人爽女人下面视频在线观看| 国产亚洲av片在线观看秒播厂| 成人免费观看视频高清| 亚洲欧洲国产日韩| videossex国产| 成年av动漫网址| 国产精品99久久久久久久久| 午夜av观看不卡| 9色porny在线观看| 欧美成人精品欧美一级黄| 99re6热这里在线精品视频| 日本与韩国留学比较| 成人18禁高潮啪啪吃奶动态图 | 国产av精品麻豆| 最新中文字幕久久久久| av国产久精品久网站免费入址| 三上悠亚av全集在线观看| 免费看不卡的av| 日日摸夜夜添夜夜添av毛片| 最近中文字幕2019免费版| 少妇人妻 视频| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 在线观看人妻少妇| 成人毛片60女人毛片免费| 国产男人的电影天堂91| 下体分泌物呈黄色| 两个人免费观看高清视频| 欧美精品一区二区大全| 激情五月婷婷亚洲| 狂野欧美激情性bbbbbb| 色5月婷婷丁香| 在线观看免费日韩欧美大片 | 国产高清不卡午夜福利| 日韩中文字幕视频在线看片| 啦啦啦视频在线资源免费观看| 亚洲色图综合在线观看| 亚洲四区av| 又黄又爽又刺激的免费视频.| 人体艺术视频欧美日本| 欧美精品国产亚洲| 久久久久网色| 久久这里有精品视频免费| 亚洲激情五月婷婷啪啪| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 大陆偷拍与自拍| 十分钟在线观看高清视频www| 午夜老司机福利剧场| 在线观看人妻少妇| 男女边摸边吃奶| 久久ye,这里只有精品| 在线免费观看不下载黄p国产| 精品人妻在线不人妻| 天天躁夜夜躁狠狠久久av| 多毛熟女@视频| 狂野欧美激情性bbbbbb| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到 | 久久久a久久爽久久v久久| 全区人妻精品视频| √禁漫天堂资源中文www| 成年人午夜在线观看视频| 美女中出高潮动态图| 亚洲av欧美aⅴ国产| 精品久久国产蜜桃| 妹子高潮喷水视频| 久久国产精品大桥未久av| 国产精品国产三级国产av玫瑰| 亚洲四区av| 一区二区日韩欧美中文字幕 | 日韩精品有码人妻一区| 18禁在线无遮挡免费观看视频| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| a级毛片免费高清观看在线播放| 99热6这里只有精品| 日韩成人伦理影院| 亚洲av成人精品一二三区| 国产在视频线精品| 国产精品国产av在线观看| 国产精品国产三级专区第一集| 黄片播放在线免费| 亚洲人成网站在线播| 久久女婷五月综合色啪小说| 久久久国产一区二区| 亚洲欧美一区二区三区国产| 九草在线视频观看| 亚洲人成网站在线观看播放| 欧美老熟妇乱子伦牲交| 午夜av观看不卡| 一区二区三区四区激情视频| 乱码一卡2卡4卡精品| 亚洲欧美一区二区三区黑人 | 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频| 国产精品麻豆人妻色哟哟久久| 我的老师免费观看完整版| 91久久精品国产一区二区三区| 免费看av在线观看网站| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 日韩一区二区三区影片| 色94色欧美一区二区| 成人国语在线视频| 少妇人妻精品综合一区二区| 久久久久国产网址| 亚洲av福利一区| 国产 精品1| 91精品一卡2卡3卡4卡| 亚洲精品日韩av片在线观看| 午夜91福利影院| 亚洲欧美色中文字幕在线| 亚洲激情五月婷婷啪啪| 18禁在线无遮挡免费观看视频| 日本欧美视频一区| 汤姆久久久久久久影院中文字幕| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 亚洲精品aⅴ在线观看| 中国国产av一级| 中文字幕免费在线视频6| 九九在线视频观看精品| 狂野欧美激情性xxxx在线观看| 亚洲av不卡在线观看| 免费高清在线观看日韩| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡 | 搡老乐熟女国产| 妹子高潮喷水视频| 久久99一区二区三区| 搡老乐熟女国产| 自线自在国产av| 高清黄色对白视频在线免费看| 国产日韩一区二区三区精品不卡 | 91aial.com中文字幕在线观看| 91精品国产国语对白视频| 亚洲图色成人| 亚洲一区二区三区欧美精品| 一区二区三区免费毛片| 久久精品国产鲁丝片午夜精品| 亚洲人成网站在线观看播放| 黑人猛操日本美女一级片| 中国国产av一级| 丝袜脚勾引网站| 韩国高清视频一区二区三区| 乱人伦中国视频| 亚洲人成网站在线观看播放| 91精品三级在线观看| 国产探花极品一区二区| 国产欧美亚洲国产| 免费观看av网站的网址| 狠狠婷婷综合久久久久久88av| 超色免费av| 欧美bdsm另类| 一级片'在线观看视频| 国产国拍精品亚洲av在线观看| 视频中文字幕在线观看| 最近手机中文字幕大全| 一边摸一边做爽爽视频免费| 嘟嘟电影网在线观看| 亚洲欧美色中文字幕在线| 久久av网站| 国产黄频视频在线观看| 午夜老司机福利剧场| 蜜桃在线观看..| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 成年人免费黄色播放视频| 精品久久蜜臀av无| 九九爱精品视频在线观看| 国产精品 国内视频| 一区二区三区四区激情视频| 久久狼人影院| 国产国语露脸激情在线看| 亚洲国产精品成人久久小说| 亚洲中文av在线| 高清av免费在线| 国产精品久久久久久久久免| 久久免费观看电影| 一区二区三区乱码不卡18| kizo精华| 一级片'在线观看视频| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 人人妻人人添人人爽欧美一区卜| 成年女人在线观看亚洲视频| 成人国产av品久久久| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品| 视频在线观看一区二区三区| 精品少妇内射三级| 麻豆成人av视频| 久久久久视频综合| 亚洲美女搞黄在线观看| 91国产中文字幕| 免费观看的影片在线观看| 麻豆成人av视频| 777米奇影视久久| 晚上一个人看的免费电影| 久久99一区二区三区| 久久97久久精品| 午夜免费观看性视频| 国产伦精品一区二区三区视频9| 久久久久国产精品人妻一区二区| 精品熟女少妇av免费看| 毛片一级片免费看久久久久| 欧美+日韩+精品| 777米奇影视久久| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 热99国产精品久久久久久7| 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| 国产无遮挡羞羞视频在线观看| 亚洲美女搞黄在线观看| videosex国产| av一本久久久久| 精品亚洲成a人片在线观看| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| 黄色配什么色好看| 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片| 永久网站在线| 嫩草影院入口| av有码第一页| 天美传媒精品一区二区| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 精品国产国语对白av| 日韩成人伦理影院| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 日本色播在线视频| 精品人妻熟女av久视频| 我的老师免费观看完整版| 大片免费播放器 马上看| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| 熟妇人妻不卡中文字幕| 亚洲天堂av无毛| 亚洲人与动物交配视频| 成人毛片a级毛片在线播放| videossex国产| 久久精品国产亚洲av涩爱| 黑人猛操日本美女一级片| 丝袜喷水一区| www.色视频.com| 亚洲成人一二三区av| 22中文网久久字幕| 欧美日韩av久久| 最近中文字幕2019免费版| 久久青草综合色| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 伊人久久国产一区二区| 99热国产这里只有精品6| 韩国av在线不卡| 永久网站在线| 亚洲四区av| 成人亚洲精品一区在线观看| 国产免费视频播放在线视频| 免费大片黄手机在线观看| 亚洲欧洲精品一区二区精品久久久 | 看免费成人av毛片| 国产成人av激情在线播放 | 大码成人一级视频| 久久久久久久亚洲中文字幕| 99热网站在线观看| 亚洲国产欧美日韩在线播放| 日本色播在线视频| 嘟嘟电影网在线观看| 国产极品天堂在线| 一级黄片播放器| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 国产有黄有色有爽视频| 能在线免费看毛片的网站| 国产成人精品福利久久| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | a级毛色黄片| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| av网站免费在线观看视频| 国产在视频线精品| 免费观看av网站的网址| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 国产精品.久久久| 人人妻人人添人人爽欧美一区卜| 国产成人一区二区在线| 天堂8中文在线网| 少妇被粗大的猛进出69影院 | 亚洲精品久久午夜乱码| 久久精品国产亚洲av涩爱| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| a级毛片免费高清观看在线播放| 日韩视频在线欧美| 午夜激情久久久久久久| 中文字幕久久专区| 成人国语在线视频| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 18禁动态无遮挡网站| 国产精品一国产av| 999精品在线视频| 国产午夜精品久久久久久一区二区三区| 亚洲精品成人av观看孕妇| 精品人妻偷拍中文字幕| 少妇 在线观看| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 永久网站在线| 免费日韩欧美在线观看| 久久99一区二区三区| 国内精品宾馆在线| 人成视频在线观看免费观看| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 久久久久网色| 天天躁夜夜躁狠狠久久av| 国产精品一区www在线观看| 两个人的视频大全免费| 狂野欧美激情性bbbbbb| 视频在线观看一区二区三区| 国产亚洲一区二区精品| 免费观看a级毛片全部| 亚洲av综合色区一区| 欧美精品一区二区免费开放| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 高清毛片免费看| 日本wwww免费看| 熟妇人妻不卡中文字幕| 久久久久久久久大av| 亚洲av在线观看美女高潮| 亚洲国产av影院在线观看| 亚洲人成网站在线播| 成人国产麻豆网| 欧美 日韩 精品 国产| 亚洲精品日韩在线中文字幕| av国产久精品久网站免费入址| 久久精品久久久久久噜噜老黄| 精品久久久久久久久亚洲| 色视频在线一区二区三区| 蜜桃久久精品国产亚洲av| 精品一品国产午夜福利视频| 日本av免费视频播放| 日本av手机在线免费观看| 中文字幕制服av| 欧美日韩综合久久久久久| av一本久久久久| 18禁动态无遮挡网站| 欧美最新免费一区二区三区| 激情五月婷婷亚洲| 国产视频内射| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 青春草国产在线视频| 国产av精品麻豆| 国产精品人妻久久久影院| 麻豆精品久久久久久蜜桃| 日韩熟女老妇一区二区性免费视频| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 久久久久久久久久成人| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 岛国毛片在线播放| 多毛熟女@视频| 免费黄频网站在线观看国产| 国产精品偷伦视频观看了| 亚洲综合精品二区| 午夜视频国产福利| 免费观看a级毛片全部| 老司机影院成人| 少妇精品久久久久久久| 黄片无遮挡物在线观看| av不卡在线播放| 黄色一级大片看看| 97在线视频观看| av在线app专区| 男人操女人黄网站| 国产片特级美女逼逼视频| 岛国毛片在线播放| 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| 香蕉精品网在线| 天天操日日干夜夜撸| 91久久精品国产一区二区成人| 热99久久久久精品小说推荐| 久久久久久久久大av| 国产精品久久久久久精品古装| 永久免费av网站大全| 亚洲婷婷狠狠爱综合网| 午夜免费男女啪啪视频观看| 九九久久精品国产亚洲av麻豆| 狠狠精品人妻久久久久久综合| 一区二区av电影网| 国产一区有黄有色的免费视频| 日本猛色少妇xxxxx猛交久久| 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 国产av一区二区精品久久| 久久久久视频综合| 国产精品久久久久久精品古装| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜爱| 极品少妇高潮喷水抽搐| 欧美亚洲 丝袜 人妻 在线| 美女cb高潮喷水在线观看| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频 | 亚洲精品自拍成人| 熟女av电影| 少妇的逼好多水| 黄色欧美视频在线观看| 亚洲国产精品一区三区| 久久精品人人爽人人爽视色| 日韩亚洲欧美综合| 久久久午夜欧美精品| 嘟嘟电影网在线观看| 亚洲国产av影院在线观看| 欧美一级a爱片免费观看看| 伦理电影免费视频| 国产精品一区二区三区四区免费观看| 2021少妇久久久久久久久久久| 亚洲精品视频女| 亚洲国产欧美日韩在线播放| 一本—道久久a久久精品蜜桃钙片| 久久婷婷青草| 免费观看性生交大片5| 99视频精品全部免费 在线| 久久久久网色| 国产精品无大码| 久久精品国产鲁丝片午夜精品| 久久人人爽人人爽人人片va| 麻豆成人av视频| 一区二区三区免费毛片| 22中文网久久字幕| 纯流量卡能插随身wifi吗| 七月丁香在线播放| 18+在线观看网站| 啦啦啦视频在线资源免费观看| 你懂的网址亚洲精品在线观看| 欧美xxxx性猛交bbbb| 免费观看a级毛片全部| 丁香六月天网| 国产高清国产精品国产三级| 性高湖久久久久久久久免费观看| 久久久久网色| av免费观看日本| 久久久国产欧美日韩av| 制服人妻中文乱码| videosex国产| 黄色视频在线播放观看不卡| 少妇被粗大猛烈的视频| 亚洲三级黄色毛片| 午夜久久久在线观看| 国产淫语在线视频| 大片电影免费在线观看免费| 老女人水多毛片| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 一级毛片黄色毛片免费观看视频| 毛片一级片免费看久久久久| 成年人免费黄色播放视频| 91在线精品国自产拍蜜月| 亚洲久久久国产精品| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 人人妻人人爽人人添夜夜欢视频| 成人漫画全彩无遮挡| 赤兔流量卡办理| 亚州av有码| 丁香六月天网| 日本色播在线视频| 国产无遮挡羞羞视频在线观看| 这个男人来自地球电影免费观看 | 午夜精品国产一区二区电影| 五月伊人婷婷丁香| 国产精品久久久久久精品古装| 亚洲精品,欧美精品| 韩国av在线不卡| 国产精品一国产av| 欧美 日韩 精品 国产| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 精品亚洲成a人片在线观看| 国产午夜精品久久久久久一区二区三区| 在线观看www视频免费| 国产午夜精品久久久久久一区二区三区| 蜜桃国产av成人99| 少妇被粗大猛烈的视频| 中文字幕免费在线视频6| 男人操女人黄网站| 超碰97精品在线观看| 只有这里有精品99| 婷婷成人精品国产| 美女主播在线视频| 18禁动态无遮挡网站| 亚洲欧洲国产日韩| 极品少妇高潮喷水抽搐| 久久久久视频综合| 成年女人在线观看亚洲视频| 国产片内射在线| 亚洲无线观看免费| 久久青草综合色| 色94色欧美一区二区| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 亚洲精品日本国产第一区| 国产精品 国内视频| 麻豆乱淫一区二区| 成人黄色视频免费在线看| 自线自在国产av| 色吧在线观看| 欧美精品高潮呻吟av久久| 国产男人的电影天堂91| 久热这里只有精品99| 国产片内射在线| 人妻一区二区av| 一区二区三区乱码不卡18| 中文欧美无线码| 日韩视频在线欧美| 午夜福利视频精品| 男女啪啪激烈高潮av片| av在线app专区| 天堂8中文在线网| 我的老师免费观看完整版| 国产爽快片一区二区三区| av一本久久久久| 一级毛片黄色毛片免费观看视频| 蜜桃国产av成人99| 有码 亚洲区| 久久久久久久久久人人人人人人| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 久久久久精品性色| av线在线观看网站| 日韩伦理黄色片| videos熟女内射| 亚洲综合色惰| 亚洲三级黄色毛片| 国产片内射在线| 国产在线视频一区二区| 丝袜美足系列| 亚洲欧美精品自产自拍| 久久久久国产精品人妻一区二区| 观看av在线不卡| 亚洲国产成人一精品久久久| 亚洲国产av影院在线观看| 国产色爽女视频免费观看| 少妇的逼好多水| 高清视频免费观看一区二区| 91精品伊人久久大香线蕉| 精品熟女少妇av免费看| 狂野欧美激情性bbbbbb| 一区在线观看完整版| 极品少妇高潮喷水抽搐| 国产男女内射视频| 亚洲性久久影院| videossex国产| 成人毛片a级毛片在线播放| 国产亚洲一区二区精品| 亚洲欧洲国产日韩| 精品久久久噜噜| 18禁在线播放成人免费| 成人亚洲精品一区在线观看| 国产精品嫩草影院av在线观看| 欧美日韩成人在线一区二区| 蜜桃久久精品国产亚洲av| 国语对白做爰xxxⅹ性视频网站| 一级,二级,三级黄色视频| 国产亚洲av片在线观看秒播厂| 校园人妻丝袜中文字幕| 男女边摸边吃奶|