• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thrust producing mechanisms in ray-inspired underwater vehicle propulsion

    2015-11-21 07:27:35GengLiuYanRenJianzhongZhuHilaryBartSmithHaiboDong

    Geng Liu,Yan Ren,Jianzhong Zhu,Hilary Bart-Smith,Haibo Dong

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA 22904,USA

    Thrust producing mechanisms in ray-inspired underwater vehicle propulsion

    Geng Liu,Yan Ren,Jianzhong Zhu,Hilary Bart-Smith,Haibo Dong?

    Department of Mechanical and Aerospace Engineering,University of Virginia,Charlottesville,VA 22904,USA

    A R T I C L E I N F O

    Article history:

    Received 24 November 2014

    Accepted 26 November 2014

    Available online 6 January 2015

    Hydrodynamics

    Bio-inspired autonomous underwater vehicle

    Computational fluid dynamics

    Vortex dynamics

    This paper describes a computational study of the hydrodynamics of a ray-inspired underwater vehicle conducted concurrently with experimental measurements.High-resolution stereo-videos of the vehicle's fin motions during steady swimming are obtained and used as a foundation for developing a high fidelity geometrical model of the oscillatory fin.A Cartesian grid based immersed boundary solver is used to examine the flow fields produced due to these complex artificial pectoral fin kinematics.Simulations are carried out at a smaller Reynolds number in order to examine the hydrodynamic performance and understand the resultant wake topology.Results show that the vehicle's fins experience large spanwise inflexion of the distal part as well as moderate chordwise pitching during the oscillatory motion.Most thrustforce is generated by the distalpartofthe fin,and it is highly correlated with the spanwise inflexion. Two sets ofinter-connected vortex rings are observed in the wake rightbehind each fin.Those vortex rings induce strong backward flow jets which are mainly responsible for the fin thrust generation.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    A bio-inspired autonomous underwater vehicle(AUV)has been designed as a scientific platform to understand the superior swimming characteristics of batoid fish.Batoid fish such as manta rays(Manta birostris)and cownose rays(Rhinoptera bonasus)are notable for their fast,efficient swimming and high maneuverability.These swimming capabilities arise from flapping of the dorsally flattened pectoral fins,which are also used as control surfaces for depth control and maneuvering.Recent observations in animal propulsion suggest that high efficiency in animal locomotion can be attributed to the stiffness characteristics at the fin tip[1].In rays'swimming,the large bending of the distal part of the pectoral fin can allow them to actively resist hydrodynamic bending forces while producing propulsion forces.To assess this contribution,the current effort is specifically focused on understanding the hydrodynamics of a ray-inspired underwater vehicle -the MantaBot-where biology is the basis for the design.

    The MantaBot consists of two parts:a rigid body rendered from a computer tomography scanning image of a cownose ray and a pair of soft fins driven by tensegrity-based actuators[2](Fig.1(a)). The soft fins of this vehicle are highly flexible,have complex planforms,and undergo an oscillatory motion.Specific to this vehicle's body length(L~43 cm)and free-swimming velocity(0.35 m·s-1),the Reynolds number(Re=UL/ν)is approximately 1.5×105. At this Reynolds number,the attached flow over the body is most likely laminar but transition to turbulence is expected to occur rapidly in the downstream of MantaBot fins.The flow over the fins can be characterized in terms of a Stokes frequency parameter(S=ωAc/ν)whereω,A and c are the fin angular frequency,amplitude and length of the mid-chord,respectively.Typical fin beat frequency of about 2 Hz and fin amplitude and size of about 5 cm and 6 cm,respectively,give S≈3.5×104,which is again in the range where transition from laminar attached flow to turbulence will occur quickly.

    Figure 1(a)shows the MantaBot body with kinematic markers(red dots)drawn on its fins,which are used for tracking and performing 3D surface reconstruction later in the process and a schematic of the experimental setup.To measure the fin kinematics of MantaBot in steady swimming,the vehicle is placed in a 5 m long,1.5 m wide,and 0.6 m deep water tank.Its locomotion is restricted to one degree of freedom(forward translation)using a steel bar,which is connected to a low-friction ball bearing slider on a linear rail.

    The MantaBot swimming motion is then recorded by three well calibrated and synchronized video cameras(rear,side,and top)that are operated at 60 Hz with 512×512 pixel resolutions.These cameras are aligned orthogonalto each other and positioned about 0.75 maway from the Mantabot,giving a depth offield of3-4 body lengths in all directions.The cameras are triggered by a flashing lightsystemto minimize the recording delay ofeach camera.When the MantaBotis in the optimumrange,this camera systemisable to collect data that is consistently in focus.Usable segments of videos from all sides are identified for kinematics reconstruction based on the quality of images.Among all three cameras,the camera set at the rear is for recording the fin flapping motion and spanwise bending.The videos from this camera are used to measure both the flapping angles and inflexion angles shown in Fig.1(c).The side camera,along with the top camera,is used to track the motions of all kinematic markers in Fig.1(a).They are used to accurately measure the chordwise flexibility including the mid-chord pitching angles in Fig.1(c).

    Once these videos are identified,a marker-based 3D surface reconstruction method[3]will then be used to obtain the instantaneous control surfaces of the flapping MantaBot during the steady swimming.These reconstructed 3D surfaces will be meshed using triangular grids and used as inputs for later computationalfluid dynamics(CFD)simulations.Details about this method can be found in Ref.[3].

    A number of combinations of driving frequency and amplitude of the MantaBot were tested,and the case that achieved the maximum speed was selected for this study.Key quantities of the body shape and locomotion are summarized in Table 1,where L is the body length,l is the fin span length,U is the swimming speed,A is the flapping amplitude of the fin mid-chord,f is the flapping frequency,St is the Strouhal number defined as St=fA/U,and Re is the Reynolds number.

    The reconstruction model is shown in Fig.1(b).Upper two plots are the side view of the original MantaBot and the meshed model in 3D reconstruction at the beginning of downstroke and upstroke,respectively.The lower plot is the front view of the model showing the maximum fin bending.The most apparent feature from the fin kinematic reconstruction is the spanwise flapping with large bending at distal part.As shown in Fig.1(c),the flapping angleφ is the angle between the base-to-tip line and the horizontal plane,where the fin base is 0.33l away from middle section of the body. The spanwise bending can be quantified by inflexion angle(β)[1]. The maximum bending happens mostly at 0.67l from the fin base. This location is defined as the inflexion pointshown in Fig.1(c).βis the angle between the lines ofbase-to-inflexionpoint and inflexion point-to-tip.The pitching angleαin Fig.1(c)is defined as the angle between the chord at inflexion point and the horizontal plane.

    Figure 1(d)shows the time course ofφ,β,andα,which are averaged over four consecutive flapping strokes from meshed fin models.The time variation ofφindicates that the basic fin flapping motion is not symmetric.The downward excursion is more than twice the upward excursion.Spanwise bending is prominent because the inflexion angleβhas larger peak-to-peak amplitude values among all three angles.The maximum amplitude ofβis about 45°,which is slightly larger than the average inflexion angle observed in most swimming and flying animals[1].This indicates that the MantaBot fins can achieve large amplitude of bending of the distal parts.The chordwise pitching is observed varying in between±16°during this steady swimming motion.It is worth noting that the tensegrity actuation structures in the MantaBot cannot generate chordwise pitching directly.The fin pitching is passively generated by the interaction between the surrounding flows and the soft fins.It is also found that this pitching motion can only be clearly observed in the distal part of the fin.

    Fig.1.(a)MantaBot with tensegrity actuator and kinematic markers and experimental measurement setup.(b)Side views of original MantaBot(upper left)and meshed model(upper right)and a front view of the MantaBot model(lower)at t/T=0 and t/T=0.5.(c)Definition for flapping,inflexion and pitching angles(φ,βandα,respectively).(d)The time course of the measured kinematics in one typical flapping cycle.

    Table 1Key quantities of the body shape and swimming motion.

    The hydrodynamic mechanism of the ray-inspired underwater vehicle propulsion is then explored using an immersed boundary method[4]based high fidelity CFD simulation.In particular,the solver is time-accurate and non-dissipative,and allows body motion.The details of the solver can be found elsewhere[5-7].To study the long-term hydrodynamic performance of the flapping fins in steady swimming,a uniform flow of speed U passing the MantaBot modelis utilized to save on computation cost.The goalof current simulations is to capture the key features ofthe wake structures for addressing the fundamental hydrodynamic mechanisms ofthe flapping swimming.To this end,the actual Reynolds number is reduced to 1200 for meeting the requirement ofthe mesh resolution and computation costby directnumericalsimulation ofswimming objects[8-12].This is equivalentto either a smaller size bodyperforming a similar motion or using the same body performing a slower motion[12].The nominal grid size employed in the simulations is 264×178×264,which gives approximately 12.4 million grid points in total.Comprehensive studies have been carried out to assess the effectofgrid resolution and domain size on the salient features of the flow,and to demonstrate the accuracy of nominal grid size.According to the stability requirements of the flow solver,time step is chosen to be T/480,where T is the period ofthe flapping motion.For a completed simulation of the MantaBot flow reaching to the steady state using a 10-6convergence criteria for velocity,92 CPU hours on a single Intel(R)Core(TM)i7-3770 CPU @3.4 GHz computer node are generally needed.Results presented here have been obtained by simulating the flow over six fin strokes. The hydrodynamic forces producedby the fin during the stroke will be discussed first,followed by a description of the instantaneous vortex structures formed during the fin strokes in order to elucidate the flow mechanisms responsible for force production.

    First,it is noted that both downstroke and upstroke produces peaks in thrust force.The peak in the upstroke is about 0.84,which is 1.75 times the peak in the downstroke.This matches with the findings in real ray swimming by Heine[14]that upstrokes should play a more important role in thrust producing than that in downstrokes.This may be attributed to both geometric and kinematic asymmetry between the dorsal and the ventral side of the fin.

    Second,the thrust is highly correlated with the inflexion by comparing Fig.1(d)with Fig.2(a).The peaks in CTappear at the same moments asβandαexhibit peak/trough values.Moreover,a negative CTwhich means pressure drag always located at/near the time of zeroβandα.Noting that pitching motion is purely passive and is dependent on the inflexion angle in this case,the thrust production is mainly correlated with the inflexion angle.

    The cycle-averaged value of CTis 0.15,which is slightly higher than the absolute value of cycle-averaged CD(0.11).This is reasonable even though the MantaBot was observed performing steady swimming.The MantaBot only has one degree of freedom while the other five degrees are restrained by the rail(shown in Fig.1(a)).Therefore,the MantaBot has to generate extra thrust to overcome the friction force between the slider and the rail.

    Fig.2.Simulation results ofthe modeled MantaBotatReynolds number1200.(a)The time history ofthrustand drag coefficients atthe fifth flapping cycle.(b)Distribution of cycle-averaged thrust coefficients on the body surface.(c),(d)Side views of the iso-surface contours of the wake topology at t/T=0.19(c)and t/T=0.63(d)(performance peaks in(a)).The vortex structure is identified by Q-criterion at Q=1.0,and colored by the distance from the mid-plane of the body,where yellow represents near the body and red represents away from the body.(e),(f)Contours of the instantaneous spanwise vorticityωzon the sectional slices at 0.30l(e)and 0.95l(f)from the fin root when t/T=0.63.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Table 2Mean values and root-mean-square deviations of thrust and drag coefficients.

    To further understand the thrust producing mechanism of the MantaBot fins,wake topology and vortex dynamics are investigated.Figures 2(c)and 2(d)highlight two snapshots of the 3D flow fields when fins reach to peak thrust in the downstroke and the upstroke respectively.The isosurfaces of Q-criteria are used to identify the wake topologies.During each downstroke or upstroke,there is a vortex ring shed from the trailing edge of the fin.These vortex rings are labeled from V1 to V11 following the shedding order.For instance,V1 is the earliest shed vortex ring in the plots while V11 is the latest.In addition,some smaller vortex structures(in red),which are further away from the bodythan those labeled vortex rings,can also be observed.In the sixth flapping cycle,the downstream wake mainly consists of two sets ofcomplex shaped vortex rings,which convect at oblique angles to the wake centerline.Those vortex rings are inclined with respectto the free stream.It is also noted that there are a number of vortex contrails that extend towards the two adjacent counter-rotating rings.As the vortices convect downstream,these contrails become weaker and ultimately disappear(as for vortex ring V1),leaving only fairly well-defined vortex rings.The overall characteristics of the wake structure are similar to that of a pitching-plunging plate[15].

    The time instance shown in Fig.2(d)is half a cycle later than that shown in Fig.2(c).It is worth noting that the shapes of vortex rings far away from the body(V1-V6)do not change much during the half cycle,while the shapes of vortex rings near the body(V9 and V10)change significantly.For instance,V9 has a groove on the surface in Fig.2(c).After half a cycle,the groove stretches and separates away from V9,further forming a hairpin-like vortex structure with the two legs still connecting with V9(see Fig.2(d)). This hairpin-like vortex structure will be totally detached from V9 and forms a new vortex ring as the one near V7 shown in Fig.2(d).

    To better understand the flow induced by the 3D vortex structures,two vertical slices are used to show the contour of spanwise vorticityωzat the basal part and distal part of the fin,respectively.Avon Kármán vortex street,which is a drag producing vortex structure,is found on the slice at the basal part(0.3l away from the fin base,see Fig.2(e)).However,due to the large flapping amplitude in the distal parts,effective Strouhal number is increased to 1.1 based on Atip.This is about four times of the mid-chord Strouhal number,which is measured 0.27 based on the flapping amplitude of the fin mid-chord,A.Thus,at 0.95l(Fig.2(f)),there are two sets of vortex pairs aligned at oblique angles to the wake centerline.This is the same as the wake topology of vortex rings shown in Fig.2(c).Each vortex pair will induce a strong local jet.The orientation of the jets induced by some of the vortex pairs is identified by arrows in Fig.2(f).These jets are mainly responsible for the thrust producing of the fins.It should be noted that the upper set of vortex pairs are much stronger than corresponding lower vortex pairs.This explains why the thrust generated during upstroke is larger than that generated during downstroke.

    In summary,the double vortex ring loops shed from the distal part of the MantaBot fins are responsible for thrust production of the propulsors.The large inflexion angle of the oscillatory fin not only helps the fin distal parts to achieve a higher effective Strouhal number for thrust production but also allows the fin basal parts to maintain minimum flapping amplitude,which results in a small amount of drag during the MantaBot's steady swimming.

    Acknowledgment

    This work was supported by the Office of Naval Research(ONR)(N00014-14-1-0533 and N00014-08-1-0642).H.Bart-Smith would like to acknowledge The David and Lucille Packard Foundation.

    [1]K.N.Lucas,N.Johnson,W.T.Beaulieu,E.Cathcart,G.Tirrell,S.P.Colin,B.J. Gemmell,J.O.Dabiri,J.H.Costello,Bending rules for animal propulsion,Nature Commun.5(2014)3293.

    [2]K.Moored,T.Kemp,N.Houle,H.Bart-Smith,Analytical predictions,optimization,and design of a tensegrity-based artificial pectoral fin,Int.J. Solids Struct.48(2011)3142-3159.

    [3]C.Koehler,Z.Liang,Z.Gaston,H.Wan,H.Dong,3D reconstruction and analysis of wing deformation in free-flying dragonflies,J.Exp.Biol.215(2012)3018-3027.

    [4]M.Bozkurttas,R.Mittal,H.Dong,G.Lauder,P.Madden,Low-dimensional models and performance scaling of a highly deformable fish pectoral fin,J.Fluid Mech.631(2009)311-342.

    [5]H.Dong,M.Bozkurttas,R.Mittal,P.Madden,G.Lauder,Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin,J.Fluid Mech.645(2010)345-373.

    [6]H.Dong,C.Koehler,Z.Liang,H.Wan,Z.Gaston,An integrated analysis of a dragonfly in free flight,in:40th AIAA Fluid Dynamics Conference and Exhibit,AIAA,Chicago,Illinois,2010,pp.2010-4390.

    [7]Z.Liang,H.Dong,M.Wei,Computational analysis of hovering hummingbird flight,in:48th AIAA Aerospace Sciences Meeting Including the New Horizons Forumand Aerospace Exposition,AIAA,Orlando,F(xiàn)lorida,2010,pp.2010-2555.

    [8]J.Carling,T.Williams,G.Bowtell,Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and Newton's laws of motion,J.Exp.Biol.201(1998)3143-3166.

    [9]S.Kern,P.Koumoutsakos,Simulations of optimized anguilliform swimming,J.Exp.Biol.209(2006)4841-4857.

    [10]G.J.Dong,X.Y.Lu,Characteristics of flow over traveling wavy foils in a side-byside arrangement,Phys.Fluids 19(2007)057107.1994-present.

    [11]S.Wang,X.Zhang,G.He,Numerical simulation of a three-dimensional fishlike body swimming with finlets,Commun.Comput.Phys.11(4)(2012)1323-1333.

    [12]I.Borazjani,F(xiàn).Sotiropoulos,E.D.Tytell,G.V.Lauder,Hydrodynamics of the bluegill sunfish C-start escape response:three-dimensional simulations and comparison with experimental data,J.Exp.Biol.215(2012)671-684.

    [13]R.Ghias,R.Mittal,H.Dong,A sharp interface immersed boundary method for compressible viscous flows,J.Comput.Phys.225(2007)528-553.

    [14]C.Heine,Mechanics of flapping fin locomotion in the cownose ray(Ph.D. dissertation),Duke University,Durham,1992.

    [15]H.Dong,R.Mittal,F(xiàn).Najjar,Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils,J.Fluid Mech.566(2006)309-344.

    ?Corresponding author.

    E-mail address:haibo.dong@virginia.edu(H.Dong).

    *This article belongs to the Fluid Mechanics

    俄罗斯特黄特色一大片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美中文综合在线视频| 国产亚洲精品一区二区www | 丁香六月欧美| 国产亚洲一区二区精品| 亚洲精品一二三| 日本a在线网址| 日本wwww免费看| 一级毛片女人18水好多| 亚洲精品在线美女| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 午夜久久久在线观看| 欧美 亚洲 国产 日韩一| 亚洲精品一区蜜桃| 欧美激情极品国产一区二区三区| 免费不卡黄色视频| 亚洲av成人一区二区三| 老熟妇仑乱视频hdxx| 国产精品二区激情视频| 欧美精品人与动牲交sv欧美| 久久ye,这里只有精品| 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久毛片微露脸 | 亚洲精品成人av观看孕妇| h视频一区二区三区| 精品免费久久久久久久清纯 | 亚洲一卡2卡3卡4卡5卡精品中文| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 99国产精品免费福利视频| 黄片大片在线免费观看| 两个人看的免费小视频| 婷婷色av中文字幕| 亚洲精品美女久久av网站| 国产av又大| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 麻豆av在线久日| 欧美国产精品一级二级三级| 建设人人有责人人尽责人人享有的| 在线永久观看黄色视频| 这个男人来自地球电影免费观看| www.熟女人妻精品国产| 日韩一区二区三区影片| 深夜精品福利| 亚洲人成电影免费在线| 亚洲中文日韩欧美视频| 在线观看人妻少妇| 国产福利在线免费观看视频| 国产男人的电影天堂91| 午夜激情av网站| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 正在播放国产对白刺激| 狂野欧美激情性bbbbbb| 欧美激情 高清一区二区三区| 久久精品成人免费网站| 淫妇啪啪啪对白视频 | 精品一区二区三卡| 亚洲精华国产精华精| 黑人猛操日本美女一级片| a 毛片基地| 两个人免费观看高清视频| 亚洲精华国产精华精| 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻一区二区| 80岁老熟妇乱子伦牲交| 制服诱惑二区| 国产亚洲精品一区二区www | 巨乳人妻的诱惑在线观看| 国产免费福利视频在线观看| 久久国产精品人妻蜜桃| 悠悠久久av| www.av在线官网国产| 香蕉国产在线看| 人妻久久中文字幕网| 免费在线观看日本一区| 国产人伦9x9x在线观看| 亚洲av欧美aⅴ国产| 亚洲av欧美aⅴ国产| 超色免费av| 精品国产一区二区久久| av天堂久久9| 欧美国产精品va在线观看不卡| 国产深夜福利视频在线观看| 欧美黑人欧美精品刺激| 电影成人av| 日韩制服骚丝袜av| 国精品久久久久久国模美| 手机成人av网站| 欧美人与性动交α欧美软件| 999久久久精品免费观看国产| 日本欧美视频一区| 精品乱码久久久久久99久播| 黄频高清免费视频| 中亚洲国语对白在线视频| 中国美女看黄片| 国产精品免费大片| 欧美日韩av久久| 丝袜喷水一区| 90打野战视频偷拍视频| 亚洲国产欧美一区二区综合| 中文字幕色久视频| 99久久99久久久精品蜜桃| 五月天丁香电影| 三上悠亚av全集在线观看| 纯流量卡能插随身wifi吗| 国产成人系列免费观看| 国产精品久久久人人做人人爽| 中文字幕另类日韩欧美亚洲嫩草| 老司机影院毛片| 老鸭窝网址在线观看| 免费不卡黄色视频| 久久久久久久精品精品| 老司机深夜福利视频在线观看 | 亚洲第一青青草原| 高清视频免费观看一区二区| 国产一区二区三区综合在线观看| 黑丝袜美女国产一区| 亚洲av欧美aⅴ国产| 国产黄频视频在线观看| 狂野欧美激情性xxxx| 91大片在线观看| 久久国产亚洲av麻豆专区| 日韩一区二区三区影片| av欧美777| 90打野战视频偷拍视频| 后天国语完整版免费观看| 一级毛片电影观看| 五月天丁香电影| 精品亚洲成a人片在线观看| 岛国毛片在线播放| 欧美精品一区二区免费开放| 国产精品免费大片| 色婷婷久久久亚洲欧美| 午夜免费成人在线视频| 久久中文看片网| 中文字幕人妻丝袜制服| 久久这里只有精品19| 久久久久久久精品精品| 女人爽到高潮嗷嗷叫在线视频| 一边摸一边抽搐一进一出视频| 成人国产一区最新在线观看| 99精品欧美一区二区三区四区| 久久九九热精品免费| 国产成人免费观看mmmm| 中国国产av一级| 精品高清国产在线一区| 老司机在亚洲福利影院| 久久国产精品男人的天堂亚洲| 国产精品自产拍在线观看55亚洲 | 亚洲 国产 在线| 亚洲精品美女久久av网站| 日韩大码丰满熟妇| 亚洲精品乱久久久久久| 9色porny在线观看| 精品福利观看| av线在线观看网站| 国产欧美亚洲国产| 成年人黄色毛片网站| 777米奇影视久久| 亚洲av成人一区二区三| 涩涩av久久男人的天堂| www.av在线官网国产| 如日韩欧美国产精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| 欧美日本中文国产一区发布| 这个男人来自地球电影免费观看| 大码成人一级视频| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 日韩欧美免费精品| 久久人妻福利社区极品人妻图片| 亚洲精品乱久久久久久| 曰老女人黄片| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人爽人人夜夜| 午夜老司机福利片| 国产在视频线精品| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩一区二区三 | 免费不卡黄色视频| 久久青草综合色| 免费日韩欧美在线观看| 亚洲专区中文字幕在线| 免费在线观看完整版高清| 免费观看a级毛片全部| 国产亚洲午夜精品一区二区久久| 看免费av毛片| 国产精品影院久久| 国产精品九九99| 亚洲美女黄色视频免费看| 国产精品一区二区在线不卡| 国产亚洲精品一区二区www | 青春草亚洲视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲欧美一区二区三区久久| 精品国产国语对白av| 男人舔女人的私密视频| 人人妻人人爽人人添夜夜欢视频| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美精品济南到| 国产一区二区 视频在线| 如日韩欧美国产精品一区二区三区| 国产精品亚洲av一区麻豆| 久久99热这里只频精品6学生| 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 亚洲中文av在线| 交换朋友夫妻互换小说| 国产成人啪精品午夜网站| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 亚洲黑人精品在线| 少妇的丰满在线观看| 女性被躁到高潮视频| 热99久久久久精品小说推荐| 中文字幕人妻熟女乱码| 精品国内亚洲2022精品成人 | 国产不卡av网站在线观看| 51午夜福利影视在线观看| 日本wwww免费看| 热re99久久国产66热| 在线亚洲精品国产二区图片欧美| 国产精品国产av在线观看| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 亚洲三区欧美一区| 久久亚洲国产成人精品v| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 自线自在国产av| 99精国产麻豆久久婷婷| 欧美黄色淫秽网站| 国产精品久久久久成人av| 精品人妻在线不人妻| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 夫妻午夜视频| 性色av一级| 人妻一区二区av| 别揉我奶头~嗯~啊~动态视频 | 久久人妻熟女aⅴ| √禁漫天堂资源中文www| 午夜激情av网站| 久久亚洲国产成人精品v| 久久性视频一级片| 亚洲国产精品一区三区| 日韩欧美国产一区二区入口| 纵有疾风起免费观看全集完整版| 熟女少妇亚洲综合色aaa.| 国产精品99久久99久久久不卡| 国产欧美日韩精品亚洲av| 中文字幕色久视频| 中文字幕精品免费在线观看视频| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久人妻精品电影 | 精品一品国产午夜福利视频| 1024视频免费在线观看| 久久久久精品国产欧美久久久 | 日本欧美视频一区| 高清黄色对白视频在线免费看| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 99国产精品免费福利视频| 国产区一区二久久| 在线 av 中文字幕| 国产野战对白在线观看| 狠狠婷婷综合久久久久久88av| 国产精品 欧美亚洲| 婷婷成人精品国产| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 99九九在线精品视频| 国产主播在线观看一区二区| 视频在线观看一区二区三区| 9色porny在线观看| 精品亚洲成a人片在线观看| 永久免费av网站大全| 欧美国产精品一级二级三级| 亚洲精品国产区一区二| 午夜福利在线免费观看网站| 女人精品久久久久毛片| 精品国产国语对白av| 天天躁狠狠躁夜夜躁狠狠躁| 精品福利永久在线观看| 黑人欧美特级aaaaaa片| 18禁观看日本| 成在线人永久免费视频| 成人三级做爰电影| 麻豆乱淫一区二区| 高清av免费在线| 建设人人有责人人尽责人人享有的| 亚洲成av片中文字幕在线观看| 一区在线观看完整版| 男男h啪啪无遮挡| 男人舔女人的私密视频| 欧美日韩中文字幕国产精品一区二区三区 | 欧美性长视频在线观看| 精品国产乱码久久久久久男人| 国产成人a∨麻豆精品| 亚洲久久久国产精品| 伦理电影免费视频| 亚洲成人免费av在线播放| 国产国语露脸激情在线看| 999精品在线视频| 亚洲av国产av综合av卡| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| a级毛片在线看网站| 欧美激情久久久久久爽电影 | 中文精品一卡2卡3卡4更新| 精品人妻一区二区三区麻豆| 性少妇av在线| 免费在线观看影片大全网站| 国产一区二区三区av在线| 老熟妇乱子伦视频在线观看 | 精品少妇内射三级| 精品久久久久久久毛片微露脸 | 亚洲国产精品999| 午夜成年电影在线免费观看| 人妻 亚洲 视频| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 人妻久久中文字幕网| 午夜影院在线不卡| 2018国产大陆天天弄谢| 亚洲精品久久成人aⅴ小说| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 国产区一区二久久| 在线观看一区二区三区激情| 成人三级做爰电影| 午夜免费观看性视频| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久| 桃花免费在线播放| 日本91视频免费播放| 国产成人免费观看mmmm| 日本91视频免费播放| 女人精品久久久久毛片| 搡老岳熟女国产| 成人国语在线视频| 在线观看一区二区三区激情| 欧美另类亚洲清纯唯美| 80岁老熟妇乱子伦牲交| 成人影院久久| 午夜福利,免费看| 丰满迷人的少妇在线观看| 80岁老熟妇乱子伦牲交| 久久影院123| 国产伦理片在线播放av一区| 91老司机精品| 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 女性生殖器流出的白浆| 亚洲国产欧美网| 大陆偷拍与自拍| 91九色精品人成在线观看| 亚洲av电影在线进入| 午夜日韩欧美国产| 久久人妻熟女aⅴ| 不卡av一区二区三区| 精品免费久久久久久久清纯 | 午夜91福利影院| 天天添夜夜摸| 超碰成人久久| 人成视频在线观看免费观看| 狂野欧美激情性bbbbbb| 久久精品亚洲av国产电影网| 欧美日韩黄片免| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 国产精品亚洲av一区麻豆| 国产日韩欧美在线精品| 一级毛片电影观看| 亚洲成av片中文字幕在线观看| 亚洲精品久久午夜乱码| 午夜福利在线免费观看网站| 99国产精品一区二区三区| 国产成人精品久久二区二区91| 老熟妇乱子伦视频在线观看 | 在线十欧美十亚洲十日本专区| 亚洲av日韩在线播放| 岛国在线观看网站| 麻豆av在线久日| 黄网站色视频无遮挡免费观看| 青草久久国产| 男人舔女人的私密视频| 18禁裸乳无遮挡动漫免费视频| 国产又爽黄色视频| 欧美精品av麻豆av| 亚洲成av片中文字幕在线观看| 久久青草综合色| 久久精品人人爽人人爽视色| 亚洲精品国产av成人精品| 亚洲七黄色美女视频| 777久久人妻少妇嫩草av网站| 亚洲精华国产精华精| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| av天堂在线播放| 久久久久久亚洲精品国产蜜桃av| av欧美777| av天堂久久9| 男女床上黄色一级片免费看| 中文字幕高清在线视频| 久久精品国产亚洲av高清一级| 午夜激情av网站| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 99久久国产精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 男女高潮啪啪啪动态图| 日本黄色日本黄色录像| 99九九在线精品视频| 亚洲七黄色美女视频| 一级a爱视频在线免费观看| 亚洲人成电影观看| 成人av一区二区三区在线看 | 欧美黑人精品巨大| 久久国产精品人妻蜜桃| 性高湖久久久久久久久免费观看| 黑人欧美特级aaaaaa片| 久久狼人影院| 操出白浆在线播放| 欧美成人午夜精品| 1024视频免费在线观看| 亚洲专区国产一区二区| 天堂中文最新版在线下载| 一本综合久久免费| 19禁男女啪啪无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 乱人伦中国视频| 久久久精品免费免费高清| 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 国产男女超爽视频在线观看| 欧美久久黑人一区二区| 天天影视国产精品| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 亚洲精品第二区| 一区在线观看完整版| 精品亚洲乱码少妇综合久久| 久久久国产一区二区| 另类亚洲欧美激情| 国产免费视频播放在线视频| 亚洲av日韩在线播放| 亚洲欧美激情在线| 日本wwww免费看| 精品国产一区二区三区四区第35| 中国国产av一级| 国产精品九九99| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 狠狠精品人妻久久久久久综合| 18禁裸乳无遮挡动漫免费视频| av免费在线观看网站| 香蕉国产在线看| 国产在线一区二区三区精| 精品欧美一区二区三区在线| 1024香蕉在线观看| 亚洲av片天天在线观看| 欧美精品人与动牲交sv欧美| 成人av一区二区三区在线看 | 国产真人三级小视频在线观看| 国产高清国产精品国产三级| 宅男免费午夜| netflix在线观看网站| 人成视频在线观看免费观看| 黄色 视频免费看| 少妇人妻久久综合中文| 国产免费av片在线观看野外av| 亚洲 欧美一区二区三区| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 亚洲第一av免费看| 9色porny在线观看| 久久中文字幕一级| 黄网站色视频无遮挡免费观看| 热99re8久久精品国产| 国产淫语在线视频| xxxhd国产人妻xxx| 亚洲国产精品一区二区三区在线| 亚洲精品中文字幕在线视频| 18禁裸乳无遮挡动漫免费视频| 91麻豆精品激情在线观看国产 | 电影成人av| 飞空精品影院首页| 人妻久久中文字幕网| 在线精品无人区一区二区三| 我要看黄色一级片免费的| 亚洲精品日韩在线中文字幕| 伊人久久大香线蕉亚洲五| 美女扒开内裤让男人捅视频| 岛国毛片在线播放| 下体分泌物呈黄色| 国产欧美日韩综合在线一区二区| 国产精品香港三级国产av潘金莲| 国精品久久久久久国模美| 高清黄色对白视频在线免费看| 婷婷成人精品国产| 中文精品一卡2卡3卡4更新| 亚洲精品美女久久久久99蜜臀| 欧美人与性动交α欧美软件| 日本av免费视频播放| 欧美av亚洲av综合av国产av| 青青草视频在线视频观看| 少妇裸体淫交视频免费看高清 | 麻豆av在线久日| 丝瓜视频免费看黄片| 黑人猛操日本美女一级片| 国产在线免费精品| 手机成人av网站| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲| 久久 成人 亚洲| 99国产精品一区二区蜜桃av | 国产精品国产三级国产专区5o| 精品久久久久久电影网| 国产免费av片在线观看野外av| 丝袜美足系列| 丝袜人妻中文字幕| 久久久国产欧美日韩av| 精品第一国产精品| 免费观看av网站的网址| 国产无遮挡羞羞视频在线观看| 日韩大片免费观看网站| 99国产精品免费福利视频| 亚洲va日本ⅴa欧美va伊人久久 | 日韩中文字幕欧美一区二区| 亚洲精品乱久久久久久| 国产在线视频一区二区| 成年人午夜在线观看视频| 欧美日韩福利视频一区二区| 久久久精品免费免费高清| 王馨瑶露胸无遮挡在线观看| 桃红色精品国产亚洲av| 国产野战对白在线观看| 精品国产乱子伦一区二区三区 | 亚洲国产欧美日韩在线播放| 777米奇影视久久| 岛国毛片在线播放| 一级黄色大片毛片| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| 9热在线视频观看99| 国产麻豆69| 免费在线观看完整版高清| 亚洲va日本ⅴa欧美va伊人久久 | 丰满饥渴人妻一区二区三| 中文字幕色久视频| 亚洲精品粉嫩美女一区| 一级a爱视频在线免费观看| 99久久精品国产亚洲精品| 欧美黑人欧美精品刺激| 曰老女人黄片| 日韩一卡2卡3卡4卡2021年| 精品乱码久久久久久99久播| www日本在线高清视频| 日韩有码中文字幕| 国产欧美日韩一区二区三 | 成人亚洲精品一区在线观看| 久久国产精品影院| 两人在一起打扑克的视频| 99国产精品免费福利视频| 老熟妇乱子伦视频在线观看 | 久久久久久人人人人人| 夫妻午夜视频| 美女脱内裤让男人舔精品视频| 超碰97精品在线观看| 老司机福利观看| 国产免费现黄频在线看| 99热全是精品| 婷婷丁香在线五月| 国产亚洲欧美在线一区二区| 亚洲熟女毛片儿| 人妻久久中文字幕网| 国产成人精品在线电影| 国产无遮挡羞羞视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲性夜色夜夜综合| 黄色 视频免费看| 久久久久精品国产欧美久久久 | 王馨瑶露胸无遮挡在线观看| 欧美成狂野欧美在线观看| 午夜福利乱码中文字幕| 一区二区三区乱码不卡18| 别揉我奶头~嗯~啊~动态视频 | 大片免费播放器 马上看| 国产色视频综合| 欧美黑人精品巨大| 无限看片的www在线观看| 日本一区二区免费在线视频| 蜜桃在线观看..| 久久久久网色| 夜夜夜夜夜久久久久| 亚洲精品国产精品久久久不卡| 国产日韩欧美视频二区| 高清av免费在线|