• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV

    2015-11-21 07:27:33HipingTinJingxinZhngErdnWngZhohuiYoNnJing

    Hiping Tin,Jingxin Zhng,Erdn Wng,Zhohui Yo,Nn Jing,c,?

    aDepartment of Mechanics,Tianjin University,Tianjin,30072,China

    bDepartment of Engineering Mechanics,School of Aerospace,Tsinghua University,Beijing 100190,China

    cTianjin Key Laboratory of Modern Engineering Mechanics,Tianjin 30072,China

    Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV

    Haiping Tiana,Jingxian Zhangb,Erdan Wanga,Zhaohui Yaob,Nan Jianga,c,?

    aDepartment of Mechanics,Tianjin University,Tianjin,30072,China

    bDepartment of Engineering Mechanics,School of Aerospace,Tsinghua University,Beijing 100190,China

    cTianjin Key Laboratory of Modern Engineering Mechanics,Tianjin 30072,China

    A R T I C L E I N F O

    Article history:

    Received 30 September 2014

    Received in revised form

    12 November 2014

    Accepted 23 December 2014

    Available online 17 February 2015

    Superhydrophobic surface

    Drag reduction

    TBL

    TRPIV

    Spatial topology

    This study aims at the mechanism of drag reduction in turbulent boundary layer(TBL)with superhydrophobic surface.Comparing the time-resolved particle image velocimetry(TRPIV)measurementresults with thatofhydrophilic surface,the drag reduction rate overa superhydrophobic surface isapproximately 10%.To investigate the characteristics of coherent structure in a drag-reduced TBL with superhydrophobic surface,a modified multi-scale spatial locally-averaged structure function is proposed for detecting coherent structure.The conditional sampling and spatial phase-lock average methods are employed to obtain the topology of physical quantities like the velocity fluctuation,spanwise vorticity,and Reynolds stress during eject and sweep process.The results indicate that the suppression of coherent structure burst in the near-wall region is the key mechanism in reducing the skin friction drag for TBL over superhydrophobic surface.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/ licenses/by/4.0/).

    The superhydrophobic surface generally refers to special surfaces with hydrophobic chemicals and micro/nanoscale surface roughness,on which the static contact angle of a droplet is usually above 150°and the contact angle hysteresis is less than 10°[1]. Excellent water repellence property and wizardly self-cleaning ability are its main features.Thanks to the rapid development of material science and micro-nano technology,the artificially fabricated superhydrophobic surface has been widely applied to engineering practice.For example,it is used in solar panel surface as antifouling,it is applied to reduce skin friction for saving pumping powerin pipeline,itcan also be applied in underwatervehicle such as torpedoes for speeding up.

    The hydrophobic material prevents the water from stepping into the region between the peaks of the roughness,resulting in a shear-free air-water interface.The surprising performance of the superhydrophobic surface has attracted much attention ofscholars and various drag reduction researches were conducted.In laminar flow,most studies were in microtube or micro-channel.Watanabe and Akino[2]got a drag reduction of 14%by measuring the pressure drop.Gruncelletal.[3]performed directnumericalsimulation(DNS)and found that the special surfaces could cause the delay of boundary transition and thus getting a drag reduction efficiency of 50%.Although the results in laminar flows are pretty consistent,there exists discrepancy in turbulent flow.Some studies exhibited drag reduction in TBL,but some indicated no such effect.Min and Kim[4]analyzed several wall boundary conditions by DNS and found the effectofsuperhydrophobic surfaces for turbulentboundary layer(TBL)was actually a combination of two anisotropic mutual influences by the geometry of the surface roughness,that the streamwise slip is conducive to drag reduction but the spanwise slip could cause the anti-drag reduction.

    The mechanism of drag reduction in turbulent flow over superhydrophobic surfaces still remains an open problem with its great potentialapplications.At present,few experimentalresearch in centimetre-scale were reported.In this paper,a time-resolved particle image velocimetry(TRPIV)system was employed to investigate the mechanism and the influence caused by a large-scale superhydrophobic test surfaces.The emphases are focused on the changed characteristic of coherent structure in drag-reduced TBL by the presence of superhydrophobic surface.

    Experimental setup and apparatus The contrast experiments between hydrophilic plate and superhydrophobic plate have been conducted in an open circulating water channel in Tianjin University,while the two replaceable plates are equal in size of 200 mm ×200 mm×15 mm.The testsection ofchannelis 5.4 mlong,0.3 m high,and 0.25 m wide.The flat plate with superhydrophobic surface,which has micro-nano dual-scale structures[5],was fabricated by Tsinghua University.Based on the result of contact angle measuring device(JC2000CD1),static contact angle was 161°and contact angle hysteresis was 0.9°.

    Figure 1 shows the schematic of experimental setup.The TBL was generated by a trip wire which was attached to the leadingedge of the plate.The free-coming stream velocity was 0.17 m/s.A CMOS camera(1280 pixels×1024 pixels)recorded 6001 images for hydrophilic plate and another 6001 images for superhydrophobic plate with the sampling frequency was 500 Hz.The size of flow image is 56.6 mm×45.1 mm(streamwise length×normalheight). The interrogate window for correlation is 32 pixels×32 pixels,and the overlap rate is 75%.157×125 velocity vectors with the spacing of 0.3585 mm are reconstructed for each image.Although the velocity information ofnear wallpoints has a kind ofinaccuracy for wall surface effect by the PIV technique.After subtracting wallnormal distance of wall position,the closest point is obtained,which is 0.3181 mm above the wall and corresponds to y+≈3.

    Fig.1.The schematic of experimental setup.

    Table 1Flow parameters of the TBL over superhydrophobic and hydrophilic surfaces.

    The flow image processing method The idea of multi-scales and local averaged velocity structure function proposed by Liu and Jiang[6]was gradually adopted for detecting coherent structure in TBL.Tian et al.[7]extended this concept into the research of spatial topological mode of coherent structure with three velocity component.Based on the spatial local-averaged velocity structure function,a new detection criterion was introduced to educe the spatial topological mode of coherent structures in TBL.The spatial local-averaged structure function for streamwise velocity component in streamwise direction is defined as

    Fig.2.Mean velocity profile in TBL over superhydrophobic and hydrophilic surfaces.

    δux(x0,l)is the local-averaged streamwise velocity of an eddy in scale 2l with center located at x0in streamwise direction.Thus the local-averaged streamwise velocity strain reveals the tensile and compressive deformation of eddy structure located at x0within scale 2l.Aconditionaleduction and segmentation algorithm was developed.The conditional sampling criterion based on thestreamwise-streamwise spatial local-averaged velocity structure function can be defined as

    Fig.3.Contours offluctuating velocity during ejection.(a)Streamwise for hydrophilic surface.(b)Streamwise for superhydrophobic surface.(c)Normal-wallfor hydrophilic surface.(d)Normal-wall for superhydrophobic surface.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)

    where D(b,l)is the detection function with l the spatial scale in streamwise direction and b is the spatial location in streamwise direction.

    It detectsδux(x0,l)along streamwise direction at each wallnormal layer for which satisfies the detection condition.Then a square area with 32×32(x×y)grid sizes,which corresponding to 11.5 mm×11.5 mm≈108 WU(wall units)×108 WU in two cases,centered at the detected point with a physical quantity was cut out from the instantaneous flow field.

    Spatial topology modes of physical quantities of coherent structure,such as fluctuating velocity,velocity gradient,velocity strain rate and vorticity,are obtained by 2D spatial phase-locked average method across these sampled squares.

    〈〉represents the samples ensemble average,and f(x,l)is the wondering physical quantities which respectively stands for fluctuating velocity,velocity strain rate or fluctuating vorticity.N is the number of ejection events and M is the number of sweep events.

    Results and discussion

    The statistic parameters of the TBL over superhydrophobic and hydrophilic surface plates are listed in Table 1.It should be noted that the running status of water channel in the experiment was stable.Through the comparison,the free-stream velocity Ueover superhydrophobic surface is a little higher than that of thehydrophilic one for the same power.This shows that the existence of superhydrophobic surface reduces the skin friction drag in turbulent boundary layer flow and increases mainstream velocity. τwstands for wall shear stress and cfis the skin friction coefficient. Finally,the drag reduction rateηis approximately 10.1%.

    The local averaged velocity structure function was employed to decompose the velocity vector into multi-scales.After conditional sampling detection by Eq.(2)and spatial phase-lock averaging by Eq.(3),the spatial topological coherent structure of physicalquantities including the fluctuation velocity,vorticity,and Reynolds shear stress during the ejection and sweep process are obtained with the spatial scale corresponds to 5.74 mm in streamwise and normal-wall direction.Contours of streamwise fluctuating velocity,normal-wall fluctuating velocity,spanwise vorticity,and Reynolds shear stress during eject events in both cases are shown in Figs.3-5,respectively.

    Fig.4.Contours of spanwise vorticity during ejection.(a)Hydrophilic surface.(b)Superhydrophobic surface.

    Fig.5.Contours of Reynolds shear stress during ejection.(a)Hydrophilic surface.(b)Superhydrophobic surface.

    Compared with the blue regions for the low-speed fluids of both cases in Fig.3,the superhydrophobic surface reduces the magnitude of the streamwise fluctuation velocity u′<0 and the normal-wall fluctuation velocity v′>0 during the low-speed fluids eject.The angle of fluctuating velocity vectors down from the x axis over hydrophilic surface is larger than the situation of superhydrophobic surface.It indicates that the superhydrophobic surface weakened the strength of eject events.In Fig.4,the strength of spanwise vorticityω3is also decreased by the superhydrophobic surface.Moreover,the contour map of Reynolds shear stress,which is thought to be a vital source of the turbulence production,was also shown in Fig.5.Apparently,the strength of Reynolds shear stress over superhydrophobic surface is about one order smaller than that of the hydrophilic case.These results indicate that the existence of superhydrophobic surface greatly depresses the burst events of coherent structures.

    In summary,current research implies that the superhydrophobic surface can achieve drag reduction for macroscopic-scale TBL. Despite the process ofgetting the streamwise velocity profiles normalized by the wall friction velocity has the applicability of uncertainty in superhydrophobic case,the superhydrophobic surface produces a result that the log-law layer is lifted up and buffer layer is thicken which was accompanied by a little increase of mainstream velocity.The most important features of turbulent coherent structure associated with the burst events were well captured by conditional sampling and spatial phase-lock average methods. The conditionally averaged fluctuating velocity,spanwise vorticity,and Reynolds shear stress for coherent structure burst are decreased by the superhydrophobic surface,indicating that the suppression of coherent structure burst in the near-wall region is the key mechanism in reducing the skin friction drag for TBL over superhydrophobic surface.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(11272233,11272176,11411130150, and 11332006(key project)),National Basic Research Program(973Program)(2012CB720101 and 2012CB720103).

    [1]B.Bhushan,Y.C.Jung,Wetting,adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces,J. Phys.Condens.Matter 20(2008)225010,http://dx.doi.org/10.1088/0953-8984/20/22/225010.

    [2]K.Watanabe,T.Akino,Drag reduction in laminar flow between two vertical coaxial cylinders,J.Fluids Eng.121(1999)541-547.http://dx.doi.org/10.1115/ 1.2823502.

    [3]R.K.Gruncell,D.Sandham,G.Mchale,Simulation of laminar flow past a superhydrophobic sphere with drag reduction and separation delay,Phys. Fluids 25(2013)043601,http://dx.doi.org/10.1063/1.4801450.

    [4]T.Min,J.Kim,Effects of hydrophobic surface on skin-friction drag,Phys.Fluids 16(2004)55-58,http://dx.doi.org/10.1063/1.1755723.

    [5]S.Lu,Z.H.Yao,P.F.Hao,C.S.Fu,Drag reduction in turbulent flows over superhydrophobic surfaces with micro-nano textures,Mech.Eng.35(2013)20-24,http://dx.doi.org/10.6052/1000-0879-13-098.(in Chinese).

    [6]W.Liu,N.Jiang,There kinds of velocity structure function in turbulent flows,Chin.Phys.Lett.21(2004)1989-1992,http://iopscience.iop.org/0256-307X/21/10/035.(in Chinese).

    [7]H.P.Tian,S.Q.Yang,L.Cheng,Y.Wang,N.Jiang,Antisymmetric quadrupole mode of coherent structures in wall-bounded turbulence,Theoret.Appl.Mech. Lett.3(2013)052002,http://dx.doi.org/10.1063/2.1305202.

    [8]X.Fan,N.Jiang,Skin friction measurement in turbulent boundary layer by mean velocity profile method,Mech.Eng.27(2005)28-30,http://dx.doi.org/10.6052/1000-0992-2004-213.(in Chinese).

    [9]K.Fukagate,N.Kasagi,A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces,Phys.Fluids 18(2006)051703,http://dx.doi.org/10.1063/1.2205307.

    ?Corresponding author at:Department of Mechanics,Tianjin University,Tianjin 30072,China.

    E-mail address:nanj@tju.edu.cn(N.Jiang).

    *This article belongs to the Fluid Mechanics

    九色成人免费人妻av| 极品教师在线视频| 亚洲国产精品成人综合色| 久久精品综合一区二区三区| 在线免费观看的www视频| 精品久久久久久久久av| 欧美性感艳星| 99国产精品一区二区蜜桃av| 午夜免费激情av| 中文字幕精品亚洲无线码一区| 很黄的视频免费| 欧美xxxx性猛交bbbb| 国产精品伦人一区二区| 免费黄网站久久成人精品 | 国内精品一区二区在线观看| 波野结衣二区三区在线| 亚洲精品在线美女| 久久人人精品亚洲av| avwww免费| 丰满的人妻完整版| 精品午夜福利在线看| 噜噜噜噜噜久久久久久91| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 免费在线观看亚洲国产| 尤物成人国产欧美一区二区三区| 啦啦啦观看免费观看视频高清| 韩国av一区二区三区四区| 成人高潮视频无遮挡免费网站| 亚洲人成网站在线播放欧美日韩| 91午夜精品亚洲一区二区三区 | 久久精品国产自在天天线| 精品午夜福利在线看| 日本a在线网址| 色精品久久人妻99蜜桃| 国产精华一区二区三区| x7x7x7水蜜桃| 国产精品永久免费网站| 日日摸夜夜添夜夜添小说| 成人永久免费在线观看视频| 国产精品亚洲一级av第二区| 在线观看av片永久免费下载| 日韩欧美精品v在线| 久久久久久久久大av| 综合色av麻豆| 男女视频在线观看网站免费| 一进一出抽搐动态| 性欧美人与动物交配| 乱码一卡2卡4卡精品| 亚洲午夜理论影院| 韩国av一区二区三区四区| 亚洲av二区三区四区| 亚洲精品在线美女| 成人三级黄色视频| 精品午夜福利在线看| 一区二区三区四区激情视频 | 亚洲天堂国产精品一区在线| 人妻丰满熟妇av一区二区三区| 91在线观看av| 亚洲欧美日韩东京热| 亚洲电影在线观看av| 免费看a级黄色片| 精品一区二区免费观看| 丰满乱子伦码专区| 免费搜索国产男女视频| 亚洲国产色片| 一级av片app| 最近最新中文字幕大全电影3| 精品久久久久久久人妻蜜臀av| 看十八女毛片水多多多| 日韩欧美 国产精品| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 免费看美女性在线毛片视频| 最后的刺客免费高清国语| 中文字幕精品亚洲无线码一区| 精品人妻一区二区三区麻豆 | 少妇的逼好多水| 性色av乱码一区二区三区2| 在现免费观看毛片| 校园春色视频在线观看| av专区在线播放| 成人国产综合亚洲| 午夜福利高清视频| 最新中文字幕久久久久| 88av欧美| 69av精品久久久久久| 精品熟女少妇八av免费久了| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 黄色配什么色好看| 国内精品美女久久久久久| 3wmmmm亚洲av在线观看| 国产精品三级大全| 一区二区三区免费毛片| 美女高潮的动态| 乱码一卡2卡4卡精品| 亚洲一区二区三区不卡视频| 一区二区三区激情视频| 久久国产乱子伦精品免费另类| 精品一区二区免费观看| 制服丝袜大香蕉在线| 青草久久国产| 欧美成人免费av一区二区三区| 天堂av国产一区二区熟女人妻| 波野结衣二区三区在线| 国产三级在线视频| 日韩中字成人| 亚洲18禁久久av| 成人午夜高清在线视频| av女优亚洲男人天堂| 国产精品永久免费网站| 搡老熟女国产l中国老女人| 日韩欧美 国产精品| 精品乱码久久久久久99久播| 一夜夜www| 国产中年淑女户外野战色| 国产色爽女视频免费观看| 亚洲av五月六月丁香网| 此物有八面人人有两片| 日韩中字成人| 超碰av人人做人人爽久久| 久久午夜福利片| 成年免费大片在线观看| 天堂av国产一区二区熟女人妻| 九九在线视频观看精品| www日本黄色视频网| 久久久久久久午夜电影| 亚洲精品久久国产高清桃花| 一卡2卡三卡四卡精品乱码亚洲| 在线播放无遮挡| 悠悠久久av| 欧美黄色片欧美黄色片| 国产精品久久久久久人妻精品电影| 国产日本99.免费观看| 欧美一级a爱片免费观看看| 老熟妇乱子伦视频在线观看| 国产三级在线视频| 国产亚洲欧美在线一区二区| 亚洲七黄色美女视频| 国产视频内射| 成人一区二区视频在线观看| 动漫黄色视频在线观看| 国产男靠女视频免费网站| АⅤ资源中文在线天堂| 99riav亚洲国产免费| 亚洲av电影不卡..在线观看| 欧美+日韩+精品| 悠悠久久av| 欧美黄色片欧美黄色片| 久久久久国内视频| 亚洲av不卡在线观看| 国产精品亚洲美女久久久| 大型黄色视频在线免费观看| 五月玫瑰六月丁香| 欧美成人一区二区免费高清观看| 老司机福利观看| 成人永久免费在线观看视频| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 亚洲人成网站在线播| 亚洲av熟女| 久久九九热精品免费| 亚洲精品久久国产高清桃花| 男人和女人高潮做爰伦理| 欧美3d第一页| 国产成人a区在线观看| 久久精品国产亚洲av涩爱 | 久久人人精品亚洲av| 欧美黑人欧美精品刺激| 久久亚洲真实| 中文字幕精品亚洲无线码一区| 亚洲人成网站高清观看| 成人国产综合亚洲| 国产爱豆传媒在线观看| 欧美黑人欧美精品刺激| 精品久久久久久久末码| 成年免费大片在线观看| 欧美潮喷喷水| 在线观看66精品国产| 日本与韩国留学比较| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 国产日本99.免费观看| 国产大屁股一区二区在线视频| 国产色婷婷99| 波多野结衣巨乳人妻| 91在线观看av| h日本视频在线播放| 精品人妻偷拍中文字幕| 免费电影在线观看免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人久久爱视频| 日韩欧美精品免费久久 | 国产伦在线观看视频一区| 12—13女人毛片做爰片一| 色综合亚洲欧美另类图片| 我要搜黄色片| 久久久久性生活片| 美女被艹到高潮喷水动态| 亚洲电影在线观看av| 亚洲精品成人久久久久久| 我要搜黄色片| 精品熟女少妇八av免费久了| 亚洲欧美日韩高清在线视频| 国产精品1区2区在线观看.| 精华霜和精华液先用哪个| av在线天堂中文字幕| 欧美日韩福利视频一区二区| 亚洲欧美日韩高清在线视频| 国产午夜福利久久久久久| 波多野结衣高清作品| 色吧在线观看| av在线天堂中文字幕| 桃红色精品国产亚洲av| av在线老鸭窝| 亚洲经典国产精华液单 | 精品无人区乱码1区二区| 中文字幕久久专区| 中文亚洲av片在线观看爽| 国产免费av片在线观看野外av| 精品免费久久久久久久清纯| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 日本五十路高清| 午夜福利免费观看在线| 男人的好看免费观看在线视频| 国产在视频线在精品| av天堂中文字幕网| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频 | 国产精品电影一区二区三区| 身体一侧抽搐| 美女黄网站色视频| 亚洲国产精品成人综合色| 国产亚洲欧美98| 真人做人爱边吃奶动态| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 亚洲精品影视一区二区三区av| 亚洲第一欧美日韩一区二区三区| 国产伦一二天堂av在线观看| 成人国产一区最新在线观看| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 免费黄网站久久成人精品 | or卡值多少钱| 99热6这里只有精品| 人人妻人人看人人澡| 亚洲专区中文字幕在线| 日本精品一区二区三区蜜桃| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 亚洲av二区三区四区| 久久亚洲精品不卡| 国产伦人伦偷精品视频| 国内精品久久久久久久电影| 亚洲中文日韩欧美视频| 老熟妇仑乱视频hdxx| 国产黄a三级三级三级人| 1024手机看黄色片| 国产精品一区二区免费欧美| 亚洲成人免费电影在线观看| 免费电影在线观看免费观看| 亚洲成av人片免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 婷婷精品国产亚洲av在线| 久久精品影院6| 一进一出抽搐动态| 亚洲在线自拍视频| 1000部很黄的大片| 久久中文看片网| www.www免费av| 国产色婷婷99| 国产精品久久久久久亚洲av鲁大| 亚洲无线在线观看| 亚洲欧美激情综合另类| 国产熟女xx| 国内精品美女久久久久久| 在线免费观看的www视频| 国产亚洲av嫩草精品影院| 国产色婷婷99| 日韩欧美国产一区二区入口| 国产精品精品国产色婷婷| 亚洲精品456在线播放app | 亚洲国产精品合色在线| 久久精品国产自在天天线| 亚洲黑人精品在线| 日韩欧美国产在线观看| 99视频精品全部免费 在线| 久久精品国产清高在天天线| 十八禁人妻一区二区| 九色国产91popny在线| 悠悠久久av| 国产亚洲欧美在线一区二区| 午夜激情福利司机影院| 韩国av一区二区三区四区| 五月伊人婷婷丁香| 精品久久久久久久末码| av在线老鸭窝| 国产高潮美女av| 国产一区二区在线av高清观看| 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 国产男靠女视频免费网站| 日韩欧美免费精品| 三级毛片av免费| 国产伦一二天堂av在线观看| 欧美在线黄色| 中国美女看黄片| 淫妇啪啪啪对白视频| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 国产高清激情床上av| 欧美黄色片欧美黄色片| 久久九九热精品免费| 国产伦精品一区二区三区四那| 国产高潮美女av| 色哟哟·www| 午夜精品久久久久久毛片777| 窝窝影院91人妻| 久久国产乱子免费精品| 69人妻影院| 亚洲va日本ⅴa欧美va伊人久久| 在线观看av片永久免费下载| 黄色视频,在线免费观看| 特大巨黑吊av在线直播| 亚洲av二区三区四区| 精品久久国产蜜桃| 在线看三级毛片| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 免费人成视频x8x8入口观看| 淫妇啪啪啪对白视频| 久久精品人妻少妇| 综合色av麻豆| 美女高潮的动态| 欧美激情久久久久久爽电影| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 亚洲五月婷婷丁香| 免费一级毛片在线播放高清视频| 嫩草影视91久久| 国产伦人伦偷精品视频| 欧洲精品卡2卡3卡4卡5卡区| 成人毛片a级毛片在线播放| 亚洲av熟女| 免费人成在线观看视频色| 精品人妻1区二区| 国产精品精品国产色婷婷| 国产精品久久电影中文字幕| 每晚都被弄得嗷嗷叫到高潮| 琪琪午夜伦伦电影理论片6080| 最新在线观看一区二区三区| 欧美最新免费一区二区三区 | 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 亚洲成人精品中文字幕电影| 亚洲欧美清纯卡通| 国产午夜精品论理片| 国产高清激情床上av| 成人av在线播放网站| 91在线观看av| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 黄色一级大片看看| 琪琪午夜伦伦电影理论片6080| 日本在线视频免费播放| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 久9热在线精品视频| 黄色配什么色好看| 国产精品一区二区三区四区久久| 午夜激情欧美在线| 亚洲色图av天堂| 麻豆国产97在线/欧美| 国产av一区在线观看免费| 国内少妇人妻偷人精品xxx网站| 日日干狠狠操夜夜爽| 人妻丰满熟妇av一区二区三区| 村上凉子中文字幕在线| 亚洲五月天丁香| 国产亚洲精品综合一区在线观看| 婷婷六月久久综合丁香| 无人区码免费观看不卡| 看十八女毛片水多多多| 99在线人妻在线中文字幕| 老司机福利观看| 老熟妇仑乱视频hdxx| 国产精品久久久久久人妻精品电影| 欧美潮喷喷水| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 老熟妇乱子伦视频在线观看| 哪里可以看免费的av片| 亚洲一区高清亚洲精品| 动漫黄色视频在线观看| 极品教师在线免费播放| 国产又黄又爽又无遮挡在线| 亚洲 国产 在线| 高清毛片免费观看视频网站| 国产午夜精品论理片| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 亚洲精品亚洲一区二区| 欧美成人a在线观看| 搡老熟女国产l中国老女人| 色吧在线观看| 色综合欧美亚洲国产小说| 国产免费一级a男人的天堂| 国内毛片毛片毛片毛片毛片| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 亚洲成人久久爱视频| 亚洲人成网站在线播放欧美日韩| a级毛片a级免费在线| av黄色大香蕉| 亚洲成人精品中文字幕电影| 真人一进一出gif抽搐免费| 黄色日韩在线| 男女之事视频高清在线观看| 中文字幕久久专区| 最新中文字幕久久久久| 亚洲成a人片在线一区二区| 亚洲第一区二区三区不卡| 99国产精品一区二区蜜桃av| 真人做人爱边吃奶动态| 91麻豆精品激情在线观看国产| 国产精品久久久久久久久免 | 天堂动漫精品| 免费黄网站久久成人精品 | 97超级碰碰碰精品色视频在线观看| 成年女人看的毛片在线观看| 精品免费久久久久久久清纯| 午夜精品一区二区三区免费看| 一级a爱片免费观看的视频| 90打野战视频偷拍视频| 成人亚洲精品av一区二区| 久久久久久久久久成人| 黄片小视频在线播放| 亚洲avbb在线观看| 午夜福利在线在线| 久久性视频一级片| 亚洲经典国产精华液单 | 一本综合久久免费| 一a级毛片在线观看| 久99久视频精品免费| 一个人看的www免费观看视频| 18禁在线播放成人免费| 亚洲在线自拍视频| 搡女人真爽免费视频火全软件 | 熟女电影av网| 天天躁日日操中文字幕| 色5月婷婷丁香| 久久人人爽人人爽人人片va | 女同久久另类99精品国产91| 最近中文字幕高清免费大全6 | 欧美日韩亚洲国产一区二区在线观看| 国产av在哪里看| 国产成人av教育| 悠悠久久av| 禁无遮挡网站| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 国产欧美日韩精品亚洲av| 高清在线国产一区| 热99在线观看视频| 久久精品国产99精品国产亚洲性色| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 黄色一级大片看看| 国产黄色小视频在线观看| 亚洲国产日韩欧美精品在线观看| 久久久久久国产a免费观看| 中文字幕久久专区| 欧美午夜高清在线| 亚洲人成网站在线播| 成人三级黄色视频| 免费在线观看亚洲国产| 日本黄大片高清| 男插女下体视频免费在线播放| 国产精品一区二区三区四区免费观看 | 欧美性猛交黑人性爽| 窝窝影院91人妻| 国产精品一区二区三区四区久久| 中文字幕人妻熟人妻熟丝袜美| 精品国产三级普通话版| 内地一区二区视频在线| 亚洲精品日韩av片在线观看| 国产中年淑女户外野战色| av在线蜜桃| 高清毛片免费观看视频网站| 一级黄色大片毛片| 久久亚洲真实| 国内精品一区二区在线观看| 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 69人妻影院| 少妇熟女aⅴ在线视频| 中文字幕熟女人妻在线| 色5月婷婷丁香| 午夜亚洲福利在线播放| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 色哟哟·www| 欧美潮喷喷水| 女生性感内裤真人,穿戴方法视频| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 免费在线观看日本一区| 国产成人福利小说| 欧美潮喷喷水| 久久精品综合一区二区三区| 真人做人爱边吃奶动态| 国产国拍精品亚洲av在线观看| 免费观看精品视频网站| 男女床上黄色一级片免费看| 蜜桃久久精品国产亚洲av| 国产主播在线观看一区二区| 成熟少妇高潮喷水视频| eeuss影院久久| 人妻久久中文字幕网| 国产精品久久久久久亚洲av鲁大| 18禁黄网站禁片午夜丰满| 日本免费一区二区三区高清不卡| 最近在线观看免费完整版| 日本黄大片高清| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线观看免费| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在 | 91久久精品国产一区二区成人| 一本综合久久免费| 90打野战视频偷拍视频| 国产精品不卡视频一区二区 | 赤兔流量卡办理| 亚洲最大成人av| 国产午夜精品论理片| 极品教师在线免费播放| 亚洲无线观看免费| 国产精品精品国产色婷婷| 国产熟女xx| 狠狠狠狠99中文字幕| 国产成+人综合+亚洲专区| 国产伦人伦偷精品视频| 国产精品国产高清国产av| 亚洲七黄色美女视频| 一个人看视频在线观看www免费| 日本a在线网址| 欧美激情国产日韩精品一区| 久久久久久久精品吃奶| 一级黄色大片毛片| 免费观看的影片在线观看| 国产免费一级a男人的天堂| 一进一出抽搐动态| 久久人人精品亚洲av| 亚洲av电影不卡..在线观看| 日韩中字成人| 精品久久久久久成人av| 九九久久精品国产亚洲av麻豆| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 国产成人a区在线观看| 少妇的逼好多水| a级一级毛片免费在线观看| 丰满乱子伦码专区| 欧美绝顶高潮抽搐喷水| 啪啪无遮挡十八禁网站| 伦理电影大哥的女人| 国模一区二区三区四区视频| 99视频精品全部免费 在线| 精品一区二区三区视频在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美激情综合另类| 18禁黄网站禁片免费观看直播| 国产精品久久久久久久久免 | 午夜福利在线观看吧| 午夜两性在线视频| 简卡轻食公司| 亚洲成人精品中文字幕电影| 别揉我奶头 嗯啊视频| 我的女老师完整版在线观看| 又黄又爽又刺激的免费视频.| 欧美一区二区国产精品久久精品| 91在线观看av| 欧美黑人巨大hd| 亚洲精品在线美女| 国产中年淑女户外野战色| 美女免费视频网站| www.熟女人妻精品国产| 深夜精品福利| 精品久久久久久久人妻蜜臀av| 国产黄色小视频在线观看| 黄色日韩在线| 真人一进一出gif抽搐免费| 国产精品影院久久| 国产单亲对白刺激| 男女做爰动态图高潮gif福利片| 国内久久婷婷六月综合欲色啪| 久久人人爽人人爽人人片va | 精品人妻视频免费看| 久久伊人香网站| 变态另类丝袜制服| 91狼人影院| 久久亚洲真实| 免费在线观看影片大全网站|