• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna?

    2021-06-26 03:03:44KunGao高坤XiangYuCao曹祥玉JunGao高軍HuanHuanYang楊歡歡andJiangFengHan韓江楓
    Chinese Physics B 2021年6期
    關(guān)鍵詞:韓江

    Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高軍), Huan-Huan Yang(楊歡歡), and Jiang-Feng Han(韓江楓)

    Information and Navigation College of Air Force Engineering University,Xi’an 710077,China

    Keywords: characteristic mode analysis,wideband,high gain,metasurface antenna

    1. Introduction

    Microstrip patch antennas have been widely used in wireless communication, satellite communication for their excellent performances of low profile, easy conformal, and easy processing. Electromagnetic metasurface (MTS) provides the solutions to the inherent shortcomings such as low gain and narrow band,and greatly expands the performances,such as nano imaging,[1]phase modulation,[2–5]polarization conversion,[6,7]high performance,[8]etc.However,traditional MTS has limitations in application, and good MTS needs to be designed based on rich experience. The equivalent circuit theory,[9–11]effective medium theory,[12]surface impedance extraction,[13,14]and other theories have been used to characterize the MTS. But these methods are not suitable for MTS antenna analysis consisting of only a few units. The theory of characteristic mode (TCM) based on the method of moment (MOM) is a practical method of designing antenna,which can have an in-depth physical insight into the radiation phenomenon in the antenna. The TCM guides the design of MTS,and realizes the function of suppressing higherorder modes and exciting the desired modes to improve the radiation performance.[15]Recently, the TCM is used to analyze and optimize low-profile wideband metasurface antennas with microstrip feeding and coaxial feeding respectively.[16,17]In Ref. [18], the TCM is also used to analyze the orthogonal modal current with equal modal significance(MS)amplitude and phase difference of 90?to find the optimal feeding point position and realize circular polarization. In Ref.[19], a new combined characteristic mode (CM) associated with low resistance resonances of slot antenna is introduced to increase the bandwidth of ring slot antenna by loading stubs. In addition,according to the guidelines of modal weighting coefficient(MWC),a low RCS T-shaped slot antenna is designed to suppress the scattering mode while maintaining the radiation mode by loading reactance components and slots.[20]So far,a small amount of work has been done on the design of high gain antenna in wideband range based on characteristic mode analysis(CMA).

    In this paper,a metasurface antenna is designed for wideband high-gain and low-profile operation based on the CMA.The antenna is comprised of a rectangle patch fed by coaxial probe sandwiched between the metasurface composed of three sizes and the ground plane. The CMs of the proposed and original metasurface are in depth analyzed in order to explain the working principle and study the underlying modal behaviors of the metasurface and guide the mode excitation.The designed metasurface antenna length is 0.065λ0(λ0is the working wavelength of 6.5 GHz in free space). The designed antenna is in good agreement between simulation and measurement.

    The rest of this paper is structured as follows. In Section 2, the characteristic mode theory of multilayered dielectric antenna is briefly introduced. In Section 3, the antenna structure is illustrated,the characteristic mode analysis of the proposed and original antenna are conducted,and the gain enhancement is analyzed. Section 4 reports the simulation of the antenna and the measurement environment. The final conclusions are given in Section 5.

    2. TCM of multilayered medium

    The theory of characteristic modes (TCM) was first introduced in 1965,[21]and in the few years that follows, it was further developed to analyze the radiation and scattering properties of dielectric and magnetic material bodies by the MOM.[22–25]The elements of the impedance matrixZcan be expressed by applying the standard Galerkin’s procedure to the MPIE.[26,27]Following the procedure of the conventional TCM for PEC bodies, a generalized eigenvalue equation for the MPIE can be written as

    whereRandXare the real part and imaginary part of the impedance matrixZ,respectively.λnis the real eigenvalue associated with each characteristic currentJn,andndenotes the index of the order of each mode. Characteristic modes form a complete set of solutions,and hence the total current can be expressed as a linear superposition of these mode currents

    whereαndenotes the modal weighting coefficient(MWC)and can be calculated from

    where the termVinis called the modal excitation coefficient(MEC),andEiis the external excitation. The MS is expressed as

    The mode resonates and radiates most efficiently when MS=1, that is,λn= 0. Suppressing unwanted modes requires reducing|αn|,or changing the unwanted modal current behaviors.

    3. CMA of metasurface antenna

    3.1. Antenna structure and design

    The structure of the proposed antenna is shown in Fig.1.The antenna consists of three metallic layers,a metasurface,a microstrip patch, and a ground from top to bottom. The two F4B substrates (εr=2.65 and tanδ=0.0007) are both 1.5 mm in thickness. The metasurface is composed of three sizes of patches. It should be noted that the widths of the two patches adjacent to the center patch in thexdirection are bothSpand the two ends of the patche in theydirection are square patches,with each side beingWp.

    Fig. 1. Structure of proposed antenna, with Wg =50 mm, Lg =50 mm,Wp=7.2 mm,Lp=8.9 mm,Sp=3.6 mm,Ws=0.65 mm,PW =7.2 mm,PL=12.3 mm,Lf=5.2 mm,ha=1.5 mm,and hf=1.5 mm.

    3.2. CMA of proposed antenna structure

    The CMs are obtained using the MoM-based CMA tool in commercial simulation software CST Studio Suite 2020,in which the ground plane and dielectric layers extend infinitely by using a multilayer solver. The dielectric loss is neglected in the CMA but considered in the time domain analysis, and all other geometric dimensions of the antenna are kept unchanged.

    Fig.2. (a)Modal significance and(b)|MWC|versus frequency for several modes of antenna structure.

    The calculated MS of the first eight modes of the proposed structure without the feed are plotted in Fig.2(a).Modal currents and radiation patterns ofJ1–J8are shown in Figs. 3 and 4,respectively. As can be seen,J1andJ7are linearly polarized along theyaxis with broadside radiation, whileJ3is linearly polarized along thexaxis.J2,J4,andJ5are symmetrical, and the patterns are split.J6is in the shape of a ring,which does not radiate outwards , and the main lobe of the mode pattern is concave. TheJ8is reversed in thexdirection and symmetrical in theydirection, and the side lobe level is higher. It can be seen thatJ1andJ7are the modes that need to be excited, and the other modes are unwanted modes. The mode electric field on the microstrip patch is shown in Fig.5.The feed point is marked with an empty circle. The coaxial feed is selected at the point where the modalE-field of theJ1andJ7are largest and the undesired mode excitation intensity is minimum. The coaxial probe fed by electric field coupling can be regarded as a capacitive coupling element(CCE).[28,29]If the CCE is placed at the peak of theJ1andJ7, the desired modes will be greatly excited. The modal weighting coefficients (MWCs) of the first eight modes are obtained from Eq.(3)to measure the ratio of each mode’s radiation power to the total radiation power as shown in Fig. 2(b). The excited mode current distribution is basically the same as that of the mode current without feed structure in Fig. 3. It can be seen thatJ1is dominant andJ7is partially excited in the higher frequency band. Some unwanted modes are well suppressed due to the selection of appropriate feeding position. In addition,J2andJ8are negligible compared withJ1andJ7.

    Fig.3. Modal current distribution,for(a)J1 at 6 GHz,(b)J2 at 8 GHz,(c)J3 at 8 GHz,(d)J4 at 8 GHz,(e)J5 at 8 GHz,(f)J6 at 8 GHz,(g)J7 at 8 GHz,and(h)J8 at 8 GHz.

    Fig.4. Modal radiation patterns for(a)J1 at 6 GHz,(b)J2 at 8 GHz,(c)J3 at 8 GHz,(d)J4 at 8 GHz,(e)J5 at 8 GHz,(f)J6 at 8 GHz,(g)J7 at 8 GHz,and(h)J8 at 8 GHz.

    Fig.5. Modal radiation patterns,for(a)J1 at 6 GHz,(b)J2 at 8 GHz,(c)J3 at 8 GHz,(d)J4 at 8 GHz,(e)J5 at 8 GHz,(f)J6 at 8 GHz,(g)J7 at 8 GHz,and(h)J8 at 8 GHz.

    3.3. Gain enhancement analysis

    The top view of the original antenna structure is shown in Fig. 6(a), and the geometric dimension is kept unchanged exceptSpthat is changed into 7.2 mm. The CMA is performed on the original antenna with the coaxial feed structure,and the mode with coaxial feed excitation is more consistent with the actual excitation mode for the origin antenna structure. The mode current is shown in Fig.7,and MWC is shown in Fig. 6(b). TheJs1is dominant, whileJs5andJs7are also excited to different degrees at high frequency. TheJs5is symmetrical,andJs7is opposite to the current in theydirection of the center,which results in the large side lobe and the concave gain of the original antenna at high frequency. Figure 8 shows the reflection coefficient and gainversusfrequency of the original antenna, as well as the pattern at 5.5 GHz, 6.5 GHz, and 7.5 GHz,separately. It can be seen that the pattern has a larger sidelobe and a concave gain at 7.5 GHz.

    Fig.6. (a)Top view of original antenna structure and(b)|MWC|versus frequency for various modes of original antenna structure.

    Fig.7. Modal currents distribution of original antenna for(a)Js1 at 6 GHz,(b)Js2 at 8 GHz,(c)Js3 at 8 GHz,(d)Js4 at 8 GHz,(e)Js5 at 8 GHz,(f)Js6 at 8 GHz,(g)Js7 at 8 GHz,and(h)Js8 at 8 GHz.

    Fig.8. Reflection coefficient and gain versus frequency of original antenna,and pattern at 5.5 GHz,6.5 GHz,and 7.5 GHz.

    In order to reduce the side lobe and enhance the gain,the patch named Spatch with widthSpin Fig. 1 plays a pivotal role in radiation performance,and the variations of impedance matching and gain with frequency for various values ofSpare studied as shown in Fig. 9. In the lower-end frequency band, the dominant mode currentJs1on the Spatch is in the identical direction with that on the center patch and the microstrip patch,and the boresight gain declines withSpdecreasing; in the upper-end frequency band, the higher-order mode current on the Spatch is different from that on the center patch and microstrip patch,and the boresight gain increases withSpdecreasing. Owing to the fact that the mode current on the Spatch cancels out the radiation,the gain drops sharply within 7 GHz–8 GHz, whenSpis 7.2 mm. WhenSpis greater than 3.6 mm,the?10-dB impedance bandwidth is satisfactory,andvice versa. The bandwidth is basically stable except for slight frequency shift. It is worth mentioning that the four corner patches and Spatch with 3.6 mm increase the antenna gain by 1.1 dB,and the two square patches expand the bandwidth. To summarize,Spis chosen to be 3.6 mm,which can improve the radiation performance.

    Fig.9. Effect of Sp on antenna,showing(a)|S11|and(b)gain versus frequency.

    Fig.10. Effect of Ws,Lf,Wp,Lp,PW,PL on antenna|S11|and gain,(a)Ws,(b)Lf,(c)Wp,(d)Lp,(e)PW,(f)PL versus frequency.

    3.4. Parameter study

    With the increase ofPW, the impedance matching becomes worse, and the gain decreases at low frequency and increases at high frequency.LfandWphave little influence on the impedance bandwidth and gain, whileWs,Lp, andPLmainly contribute to impedance matching and gain.

    4. Fabrication and measurement

    The photograph of the proposed antenna and the anechoic chamber measurement environment are shown in Fig.11. By using the full-wave simulator,HFSS 14.0 simulator,the entire antenna is simulated and characterized to derive its radiation patterns. The simulated and measuredS-parameters and boresight gain are compared in Fig.12,and it can be seen that the simulated pattern sidelobe is reduced at 7.5 GHz. The discrepancy between the measurements and simulations may be attributed to the ungratified experimental measurement state,the accuracy of fabrication and the accuracy of mesh generation. The measured impedance bandwidth for|S11|=?10 dB is 39.8% (5.3 GHz–7.94 GHz), within which the boresight gain varies from 7.8 dBi to 10.04 dBi.

    Fig. 11. Fabricated prototypes of proposed antenna, showing (a) top view, (b) middle patch view, (c) back view, (d) anechoic chamber measurement environment.

    Fig.12. Simulated(Sim.) and measured(Mea.) results of(a)return loss and(b)gain.

    Fig.13. Radiation patterns at(a)5.5 GHz for y–z plane,(b)5.5 GHz for x–z plane,(c)6.5 GHz for y–z plane,(d)6.5 GHz for x–z plane,(e)7.5 GHz for y–z plane,and(f)7.5 GHz for x–z plane.

    Figure 13 shows the excellent agreement between the simulated and measured normalized radiation patterns at 5.5 GHz,6.5 GHz,and 7.5 GHz. Besides,the measured crosspolarization levels at boresight is below?30 dB across the operating band due to the suppression of undesired modes. The performance comparison between the proposed antenna and some other metasurface antennas based on CMA are shown in Table 1.

    Table 1. Comparison of wideband patch antennas based on CMA between our proposed antenna and other reported antennas.

    5. Conclusions

    A wideband high-gain and low-profile patch antenna fed by coaxial probe using metasurface is proposed, analyzed,and experimentally verified. The wideband high-gain working mechanism is well explained and understood based on the CMA. Quantities and parameters of characteristic modes effectively guid the design, optimization, and excitation placement.

    猜你喜歡
    韓江
    韓江憶
    奇奇怪怪兒童樂園
    學(xué)與玩(2022年2期)2022-05-03 00:08:32
    韓江憶
    小說月報(2022年11期)2022-03-23 04:40:57
    赦免你的“錯”:懲罰的風(fēng)往愛的方向吹
    倉皇流年中的溫暖
    溫暖流年的一句話
    自卑的窗外也可以開出繁花
    感悟(2016年10期)2016-11-23 06:38:35
    溫暖流年的一句話
    流年中的一句話
    自卑的窗外也可以開出繁花
    国产精品久久久av美女十八| 狂野欧美激情性bbbbbb| 国产免费视频播放在线视频| 亚洲精品久久午夜乱码| 又黄又粗又硬又大视频| 亚洲五月色婷婷综合| 日韩 欧美 亚洲 中文字幕| 国产成人精品在线电影| 这个男人来自地球电影免费观看 | 亚洲第一av免费看| 国产日韩欧美在线精品| 欧美日韩综合久久久久久| 黄频高清免费视频| 国精品久久久久久国模美| 纵有疾风起免费观看全集完整版| 波野结衣二区三区在线| 免费观看人在逋| 亚洲av欧美aⅴ国产| 国产成人精品在线电影| 久久99一区二区三区| 亚洲av国产av综合av卡| 看非洲黑人一级黄片| 青草久久国产| 日韩精品有码人妻一区| 日韩大片免费观看网站| 欧美国产精品一级二级三级| 最近中文字幕高清免费大全6| 老司机深夜福利视频在线观看 | 一级片'在线观看视频| 咕卡用的链子| 丝袜喷水一区| 中文天堂在线官网| 国产精品免费大片| 日韩一区二区三区影片| 日本91视频免费播放| 国产高清不卡午夜福利| 极品人妻少妇av视频| 亚洲精品久久午夜乱码| 人人妻,人人澡人人爽秒播 | av在线观看视频网站免费| 国产精品 欧美亚洲| 亚洲精品日本国产第一区| 波多野结衣av一区二区av| 大陆偷拍与自拍| 免费不卡黄色视频| 王馨瑶露胸无遮挡在线观看| 波多野结衣av一区二区av| 香蕉丝袜av| 最新在线观看一区二区三区 | 亚洲欧美精品综合一区二区三区| h视频一区二区三区| 满18在线观看网站| 精品午夜福利在线看| 高清欧美精品videossex| 91成人精品电影| 人体艺术视频欧美日本| 欧美中文综合在线视频| 国产精品一二三区在线看| 亚洲国产精品999| 国产精品国产三级专区第一集| 国产片内射在线| 97精品久久久久久久久久精品| 欧美黑人精品巨大| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 超碰97精品在线观看| 国产伦理片在线播放av一区| 亚洲av成人精品一二三区| 午夜福利视频精品| 免费黄频网站在线观看国产| 美女大奶头黄色视频| 免费av中文字幕在线| 欧美精品亚洲一区二区| 高清视频免费观看一区二区| 久久精品久久久久久噜噜老黄| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 免费观看av网站的网址| 午夜激情久久久久久久| 在线免费观看不下载黄p国产| 国产不卡av网站在线观看| 婷婷色麻豆天堂久久| 国产亚洲最大av| 丰满饥渴人妻一区二区三| 欧美激情 高清一区二区三区| 香蕉国产在线看| 亚洲,一卡二卡三卡| 亚洲国产欧美日韩在线播放| 天天添夜夜摸| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 久久女婷五月综合色啪小说| 国产精品 国内视频| 一级毛片电影观看| 老汉色∧v一级毛片| 国产一区二区三区综合在线观看| bbb黄色大片| 好男人视频免费观看在线| 十八禁高潮呻吟视频| 99国产综合亚洲精品| 十分钟在线观看高清视频www| 又黄又粗又硬又大视频| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 成人影院久久| 熟妇人妻不卡中文字幕| 国产成人精品久久二区二区91 | 丝袜喷水一区| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 嫩草影视91久久| 人体艺术视频欧美日本| 亚洲精品国产色婷婷电影| 国产亚洲一区二区精品| 亚洲成色77777| 最新在线观看一区二区三区 | 如何舔出高潮| 国产av精品麻豆| 在线观看三级黄色| 亚洲精品在线美女| 亚洲成色77777| 久久久久国产一级毛片高清牌| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 久久久久精品久久久久真实原创| netflix在线观看网站| 亚洲国产毛片av蜜桃av| 成人手机av| 国产1区2区3区精品| 亚洲成人免费av在线播放| 纵有疾风起免费观看全集完整版| 久久精品久久精品一区二区三区| 丁香六月天网| 免费高清在线观看视频在线观看| 一二三四中文在线观看免费高清| 少妇精品久久久久久久| 午夜日本视频在线| 热re99久久国产66热| 亚洲伊人色综图| 日本黄色日本黄色录像| 久久久久久久久久久久大奶| 日韩av在线免费看完整版不卡| 日本午夜av视频| 国产欧美日韩综合在线一区二区| 国产精品三级大全| 又黄又粗又硬又大视频| 男人舔女人的私密视频| 黄片小视频在线播放| 欧美精品一区二区大全| 99久久精品国产亚洲精品| 久久青草综合色| 亚洲欧美一区二区三区国产| 少妇精品久久久久久久| 亚洲成人av在线免费| 欧美日韩一级在线毛片| 我的亚洲天堂| 久热爱精品视频在线9| 国产成人系列免费观看| 欧美最新免费一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲色图综合在线观看| 蜜桃国产av成人99| 91精品三级在线观看| 91aial.com中文字幕在线观看| 久久久久精品国产欧美久久久 | 国产精品一区二区在线不卡| 18禁观看日本| 亚洲一区二区三区欧美精品| 午夜日韩欧美国产| 午夜免费男女啪啪视频观看| 亚洲av男天堂| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 中文字幕最新亚洲高清| 午夜福利视频在线观看免费| 久久性视频一级片| 热99国产精品久久久久久7| 亚洲第一青青草原| 最近最新中文字幕免费大全7| av女优亚洲男人天堂| 国产毛片在线视频| xxx大片免费视频| 99热全是精品| 欧美xxⅹ黑人| 青青草视频在线视频观看| 十八禁高潮呻吟视频| 1024视频免费在线观看| 国产成人a∨麻豆精品| 日韩 欧美 亚洲 中文字幕| 两性夫妻黄色片| 美国免费a级毛片| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 国产 精品1| 国产在线免费精品| 精品久久蜜臀av无| 国产精品一二三区在线看| 99精国产麻豆久久婷婷| 日本爱情动作片www.在线观看| 国产亚洲av片在线观看秒播厂| 视频在线观看一区二区三区| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 少妇人妻久久综合中文| 婷婷成人精品国产| 老鸭窝网址在线观看| 啦啦啦在线免费观看视频4| 国产成人系列免费观看| 国产精品一国产av| 久久精品国产综合久久久| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 亚洲精品一区蜜桃| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 色94色欧美一区二区| 夫妻午夜视频| 日本91视频免费播放| 久久性视频一级片| 亚洲精品日本国产第一区| 19禁男女啪啪无遮挡网站| 国产激情久久老熟女| 中文字幕制服av| 人成视频在线观看免费观看| 丰满少妇做爰视频| 五月开心婷婷网| www.熟女人妻精品国产| 国产日韩欧美亚洲二区| 亚洲美女黄色视频免费看| 99久国产av精品国产电影| 久久久久精品人妻al黑| 中国国产av一级| 少妇精品久久久久久久| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 成人毛片60女人毛片免费| 免费黄网站久久成人精品| 最近最新中文字幕大全免费视频 | 自线自在国产av| 久久天躁狠狠躁夜夜2o2o | 高清在线视频一区二区三区| 国产精品 国内视频| 天美传媒精品一区二区| 九色亚洲精品在线播放| 我的亚洲天堂| 青春草国产在线视频| 亚洲精品美女久久久久99蜜臀 | av有码第一页| 在线天堂中文资源库| 自线自在国产av| 丝袜美腿诱惑在线| 国产97色在线日韩免费| 免费日韩欧美在线观看| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 丁香六月欧美| 少妇精品久久久久久久| 超色免费av| 国产成人免费无遮挡视频| 国产在线一区二区三区精| 成年人免费黄色播放视频| 91国产中文字幕| 午夜日韩欧美国产| avwww免费| 香蕉国产在线看| 最近中文字幕高清免费大全6| 一区二区三区激情视频| 精品人妻在线不人妻| 国产 一区精品| 嫩草影院入口| 精品亚洲成国产av| 麻豆av在线久日| 午夜免费鲁丝| 国产日韩欧美亚洲二区| 91精品三级在线观看| 久久精品久久久久久噜噜老黄| 少妇猛男粗大的猛烈进出视频| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 一级片'在线观看视频| 热re99久久精品国产66热6| 成人免费观看视频高清| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 满18在线观看网站| xxxhd国产人妻xxx| 自线自在国产av| 日韩熟女老妇一区二区性免费视频| 狠狠婷婷综合久久久久久88av| 亚洲国产av新网站| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 国产av码专区亚洲av| 伦理电影免费视频| 欧美成人精品欧美一级黄| 最近中文字幕2019免费版| 国产成人91sexporn| 亚洲欧美激情在线| 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 久久国产精品男人的天堂亚洲| 这个男人来自地球电影免费观看 | 最近的中文字幕免费完整| videosex国产| 色综合欧美亚洲国产小说| 婷婷成人精品国产| 成人毛片60女人毛片免费| 伦理电影免费视频| 国产黄色视频一区二区在线观看| www日本在线高清视频| 欧美日韩视频高清一区二区三区二| 精品亚洲乱码少妇综合久久| 99re6热这里在线精品视频| av免费观看日本| 校园人妻丝袜中文字幕| 女人被躁到高潮嗷嗷叫费观| 人人妻人人澡人人爽人人夜夜| 在线天堂最新版资源| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 国产不卡av网站在线观看| 青草久久国产| 久久国产亚洲av麻豆专区| 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 99热网站在线观看| 毛片一级片免费看久久久久| 在线亚洲精品国产二区图片欧美| 精品少妇黑人巨大在线播放| bbb黄色大片| 丝袜美足系列| 久久人人97超碰香蕉20202| 国产高清不卡午夜福利| 亚洲精品乱久久久久久| 9191精品国产免费久久| 日韩制服丝袜自拍偷拍| 19禁男女啪啪无遮挡网站| 久久99精品国语久久久| 国产成人免费无遮挡视频| 亚洲精品在线美女| 午夜免费男女啪啪视频观看| 午夜福利网站1000一区二区三区| 亚洲国产欧美在线一区| 老司机在亚洲福利影院| 赤兔流量卡办理| 亚洲国产av影院在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久久久99蜜臀 | 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 欧美黑人欧美精品刺激| 欧美日韩福利视频一区二区| 国产精品熟女久久久久浪| 国产成人一区二区在线| 精品一区二区免费观看| 一区二区三区激情视频| 黄频高清免费视频| 我的亚洲天堂| tube8黄色片| 在线观看免费日韩欧美大片| netflix在线观看网站| 久久天堂一区二区三区四区| 国产精品免费视频内射| 男女床上黄色一级片免费看| 一本—道久久a久久精品蜜桃钙片| 超碰成人久久| 我要看黄色一级片免费的| 天天影视国产精品| 久久99精品国语久久久| 亚洲四区av| 精品国产露脸久久av麻豆| 欧美久久黑人一区二区| 午夜免费观看性视频| 亚洲免费av在线视频| 免费黄网站久久成人精品| 国产熟女午夜一区二区三区| 亚洲国产精品成人久久小说| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 日韩欧美一区视频在线观看| 午夜老司机福利片| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 亚洲欧美成人综合另类久久久| 少妇人妻精品综合一区二区| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| www.av在线官网国产| 久久久久精品国产欧美久久久 | 亚洲精品,欧美精品| 亚洲自偷自拍图片 自拍| 国产免费现黄频在线看| 精品一区二区三区av网在线观看 | 日韩熟女老妇一区二区性免费视频| 在线观看国产h片| 91成人精品电影| 成人国产麻豆网| 999精品在线视频| 日韩人妻精品一区2区三区| 久久精品亚洲熟妇少妇任你| 欧美激情高清一区二区三区 | 一级毛片黄色毛片免费观看视频| 精品国产国语对白av| 久久鲁丝午夜福利片| 青青草视频在线视频观看| 午夜福利乱码中文字幕| 欧美人与性动交α欧美精品济南到| 97人妻天天添夜夜摸| 国产免费现黄频在线看| 久久久久久久精品精品| 日韩一区二区视频免费看| 久久久久视频综合| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| 曰老女人黄片| 90打野战视频偷拍视频| 天美传媒精品一区二区| 亚洲视频免费观看视频| 高清av免费在线| av在线app专区| 亚洲av成人精品一二三区| 在线亚洲精品国产二区图片欧美| 一区二区三区精品91| 日韩 亚洲 欧美在线| av网站免费在线观看视频| 色婷婷久久久亚洲欧美| 亚洲七黄色美女视频| 我要看黄色一级片免费的| 成年美女黄网站色视频大全免费| 午夜日韩欧美国产| 午夜福利免费观看在线| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精| 多毛熟女@视频| 美女中出高潮动态图| 中文字幕色久视频| 97在线人人人人妻| 欧美日韩福利视频一区二区| 美女视频免费永久观看网站| 制服诱惑二区| 天堂俺去俺来也www色官网| 交换朋友夫妻互换小说| 免费在线观看视频国产中文字幕亚洲 | 97在线人人人人妻| 午夜日本视频在线| 亚洲熟女毛片儿| 欧美精品一区二区免费开放| 另类精品久久| 超色免费av| 一区二区三区激情视频| 香蕉国产在线看| 欧美成人精品欧美一级黄| 国产av码专区亚洲av| 天堂8中文在线网| 亚洲在久久综合| 久久热在线av| 亚洲在久久综合| 亚洲,一卡二卡三卡| 精品酒店卫生间| 美女福利国产在线| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频| 色网站视频免费| 亚洲欧美一区二区三区久久| 色94色欧美一区二区| 好男人视频免费观看在线| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 你懂的网址亚洲精品在线观看| 欧美乱码精品一区二区三区| 久久国产精品大桥未久av| av国产久精品久网站免费入址| 看免费成人av毛片| 免费观看性生交大片5| 成年动漫av网址| 中国三级夫妇交换| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| avwww免费| 国产精品 欧美亚洲| 午夜免费男女啪啪视频观看| 亚洲国产中文字幕在线视频| 午夜免费男女啪啪视频观看| av一本久久久久| 在线观看一区二区三区激情| 可以免费在线观看a视频的电影网站 | av视频免费观看在线观看| 一级毛片电影观看| 久久毛片免费看一区二区三区| 激情五月婷婷亚洲| 秋霞伦理黄片| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 欧美另类一区| 尾随美女入室| 亚洲av电影在线观看一区二区三区| 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 久久精品国产亚洲av涩爱| 久久久久久久精品精品| 国产一区二区激情短视频 | 日韩伦理黄色片| 悠悠久久av| 精品国产乱码久久久久久小说| 999久久久国产精品视频| 人人妻人人澡人人看| www.av在线官网国产| 人人澡人人妻人| 成人午夜精彩视频在线观看| 国产高清国产精品国产三级| 久久av网站| 久久99热这里只频精品6学生| 亚洲国产精品999| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说| 精品少妇内射三级| 中文字幕另类日韩欧美亚洲嫩草| 女性被躁到高潮视频| av网站免费在线观看视频| 少妇人妻精品综合一区二区| 天堂中文最新版在线下载| 美女国产高潮福利片在线看| 天天操日日干夜夜撸| 97精品久久久久久久久久精品| 亚洲七黄色美女视频| 少妇人妻精品综合一区二区| 一区二区三区精品91| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 久久人人97超碰香蕉20202| 性少妇av在线| 亚洲国产看品久久| 多毛熟女@视频| 亚洲第一青青草原| 日日爽夜夜爽网站| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 秋霞在线观看毛片| 欧美日韩视频精品一区| 三上悠亚av全集在线观看| 制服丝袜香蕉在线| a 毛片基地| 在线观看免费日韩欧美大片| 欧美亚洲日本最大视频资源| 精品一区二区三区四区五区乱码 | 狂野欧美激情性bbbbbb| 青草久久国产| 嫩草影视91久久| 国产成人欧美在线观看 | 侵犯人妻中文字幕一二三四区| 久久久久久久久久久久大奶| 一区二区三区激情视频| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 国产成人欧美在线观看 | 黄网站色视频无遮挡免费观看| 观看av在线不卡| 成年av动漫网址| 亚洲成国产人片在线观看| 美女中出高潮动态图| 两个人看的免费小视频| 看免费成人av毛片| 一区二区三区乱码不卡18| 亚洲国产精品一区二区三区在线| 777久久人妻少妇嫩草av网站| 一级片免费观看大全| 一区二区三区激情视频| 免费观看a级毛片全部| 男人舔女人的私密视频| 桃花免费在线播放| 国产色婷婷99| 制服人妻中文乱码| 美女高潮到喷水免费观看| 一级毛片我不卡| av.在线天堂| 侵犯人妻中文字幕一二三四区| 哪个播放器可以免费观看大片| 自线自在国产av| 国产男人的电影天堂91| 亚洲视频免费观看视频| 一区二区三区四区激情视频| 大陆偷拍与自拍| a 毛片基地| 国产精品一国产av| 老熟女久久久| 色综合欧美亚洲国产小说| 国产一卡二卡三卡精品 | 男女午夜视频在线观看| 国产激情久久老熟女| 国产精品二区激情视频| 99九九在线精品视频| 欧美精品一区二区大全| 超碰97精品在线观看| 日韩不卡一区二区三区视频在线| 午夜影院在线不卡| 国产亚洲最大av| 成人亚洲精品一区在线观看| 中文字幕精品免费在线观看视频| 国产精品 国内视频| 国产亚洲av片在线观看秒播厂| 免费观看性生交大片5| 亚洲一区二区三区欧美精品| 一级爰片在线观看| 少妇猛男粗大的猛烈进出视频| 大香蕉久久成人网| 欧美在线黄色| 久久精品国产综合久久久| 亚洲美女黄色视频免费看|