• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biological characteristics of[18F]-THK523 for tau imaging?

    2014-08-05 09:13:18KONGYanYan孔艷艷SIZhan司展ZHANGZhengWei張政偉GUANYiHui管一暉CAOGuoXian曹國憲XUEFangPing薛方平HUAFengChun華逢春WUPing吳平ZHAOJun趙軍ZHUJianHua朱建華LICong李聰CHENJian陳鍵andQIANJun錢雋
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:吳平方平

    KONG Yan-Yan(孔艷艷),SI Zhan(司展),ZHANG Zheng-Wei(張政偉),GUAN Yi-Hui(管一暉),,CAO Guo-Xian(曹國憲),XUE Fang-Ping(薛方平),HUA Feng-Chun(華逢春),WU Ping(吳平),ZHAO Jun(趙軍),ZHU Jian-Hua(朱建華),LI Cong(李聰),CHEN Jian(陳鍵),and QIAN Jun(錢雋)

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Education&PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Biological characteristics of[18F]-THK523 for tau imaging?

    KONG Yan-Yan(孔艷艷),1SI Zhan(司展),1ZHANG Zheng-Wei(張政偉),1GUAN Yi-Hui(管一暉),1,?CAO Guo-Xian(曹國憲),2XUE Fang-Ping(薛方平),1HUA Feng-Chun(華逢春),1WU Ping(吳平),1ZHAO Jun(趙軍),1ZHU Jian-Hua(朱建華),3LI Cong(李聰),3CHEN Jian(陳鍵),3and QIAN Jun(錢雋)3

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Education&PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Reliable and non-invasive diagnostic tools are highly valuable for successful therapeutic strategies for the treatment of Alzheimer’s disease(AD).The existence of neurofibrillary tangles(NFTs)consisting of tau protein are one kind of the pathological features of AD,and its level of severity is correlated with the stage of AD. However,no clinically approved positron emission tomography(PET)probe is currently available for selective imaging of neurofibrillary tangles on patients.In this paper,we report our studies on biological characteristics of[18F]-THK523 as a novel tau imaging probe.With low molecular weight,[18F]-THK523 is stable,electrically neutral,lipophilic and non-mass concentration-dependent.Preliminary biological studies have shown the excellent properties of[18F]-THK523 as brain imaging tracer for further research.

    [18F]-THK523,Neurofibrillary tangles(NFTs),Alzheimer’s disease(AD),Tau-specific probe,Biological characteristics

    I.INTRODUCTION

    NationalInstituteonAging-Alzheimer’sAssociation (USA)has suggested that Alzheimer’s disease(AD)would be optimally treated before significant cognitive impairment, defined as a‘presymptomatic’or‘preclinical’stage[1].Diagnosis and treatment strategies for AD are based on sensitive and specific detection of the incipient neuropathological characteristics,combined with emerging treatments that counteract molecular processes in AD pathogenesis.The hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles(NFTs)represent a characteristic neuropathological feature in AD brain.

    Tau,localizing in the axons of neurons,is a microtubuleassociated protein(MAP)and maintains microtubules(MTs) stability,neurite outgrowth and chromosome stability[2–5]. NFTs are constituent of aggregated paired helical filaments (PHF)comprising of aberrantly phosphorylated tau.NFTs are formed in entorhinal cortex at the early stage of AD,and spread to the dentate gyrus,hippocampus,and cingulate cortex as the memory loss develops[6].NFTs,especially soluble hyperphosphorylated tau aggregations,interact with Aβmediated toxicity,oxidative stress,inflammation and abnormal mitochondrial function[7,8].Also,anti-tau treatmentcan reduce Aβ formation and the excitotoxicity levels[9,10].

    The utility of positron emission tomography(PET),with a radio-ligand for translocator protein as a biomarker for tau-triggered toxicity tau imaging and diagnostic assessment of tauopathies,with and without Aβ pathologies,shall be of technical importance for both clinical and basic research aimed at prodromal pathologies of AD.

    There is no effective treatment target tau pathology used clinically.Nakamuraet al.[11]reported in 2012 that unlike trans p-tau,cis isomerization p-tau by proline-directed kinases appeared early in the brains of humans with mild cognitive impairment,accumulated exclusively in degenerated neurons,and localized to dystrophic neuritis during AD progression.Cs isomer cannot promote MTs assembly.It is more resistant to dephosphorylation and degradation,and more prone to aggregation.Conventional peptidyl-prolyl cistrans isomerases(PPIases)Pin1 can convertcistotransptau to prevent Alzheimer’s tau pathology.Tau-specific PET probe can effectively evaluate such new approach with accurate,reliable,and reproducible noninvasive monitoring of tau protein aggregates in the living brain.

    There has been an increasing focus on developing PET imaging radiotracers for preclinical diagnosis of AD,especially[18F]-THK523,which may be a potential tau targeted probe.In vitrobinding studies demonstrated that[18F]-THK523 had higher af fi nity to a greater number of binding sites on recombinant tau(k18Δ280k)than β-amyloid1?42fi brils.[18F]-THK523 bound to tau pathology on autoradiographic and histo fl uorescence analysis of AD hippocampal serial sections.It had higher retention in tau transgenic mice brain than wild-type littermates mice,and that it bound to recombinant tau with much higher af fi nity than it did toβ-amyloid plaques[12].And it showed higher af fi nity totau fi brils than Aβfi brils by comparing the binding properties of[18F]-THK523 and other amyloid imaging agents,including PiB,BF-227 and FDDNP,to synthetic protein fi brils and human brain tissue[13].Zenget al.[14]demonstrated that[3H]-THK523 binds to NFTs and Aβ plaques in human AD brain sections.However,in transgenic mouse brain sections,[3H]-THK523 binds only to Aβ but fails to bind to NFTs.Okamuraet al.[15]reported that novel18F-labeled arylquinolinederivatives,18F-THK-5105and18F-THK-5117, had higher binding affinity for tau protein aggregates and tau-rich AD brain homogenates,and higher brain uptake and faster clearance in normal mice than[18F]-THK523.In this paper,wereportourcomplementarybiologicalcharacteristics studies to investigate whether[18F]-THK523 can meet ligand criteria for tau imaging tracer.

    II.MATERIALS AND METHODS

    A.Labeling procedure

    The 2-((2-(4-(tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7),as protected precursor,was synthesized at our lab[16].[18F]-THK523 was radio-synthetized with high yield from THK-7 by a fully automated module(PET Science&Technology Co.Ltd.,Beijing,China)[16].Aqueous18F–trapped on a quadrupole mass analyzer(QMA)cartridge was washedby1.5mLofK2CO3(2.73mg/mL)/KryptofixTM2.2.2 (11.82mg/mL),and the solvents were evaporated.After 2mg of THK dissolved in 1mL of acetonitrile(2mg/mL)was added,the nucleophilic substitution reaction was carried out at 120?C.To hydrolyze the Boc protecting group,1N HCl (250μL)solution was added.The mixture was allowed to react at 105?C for 5 minutes.The excess HCl was neutralized by 2N NaOH(125μL).Saturated 1N NaHCO3(125μL)was added to adjust the pH value to 7.4.The product was loaded on a Sep-Pak tC18 SPE cartridge,and washed with water to remove free18F–,polar byproducts,KryptofixR○TM2.2.2,etc. The cartridge was then washed with 2mL of ethanol.Crude product was collected after passing through a sterile filter, followed by further purification using semipreparative highperformance liquid chromatography(Waters XBridgeTMprep Shield RP18 10μm,250mm×10mm,part No.186003990, serial No.101/123041GG01,70%EtOH:30%H2O;Waters Corporation,Milford,Massachusetts,USA)equipped with Bioscan radioactivity detector at a flow rate of 4mL/min and stabilized with ascorbic acid(2mg,0.011mmol)before sterile filtration.Quality control of[18F]-THK523 was achieved by thin layer chromatography(TLC)and radio highperformance liquid chromatography(RHPLC).

    Radiochemical yield of[18F]-THK523 was evaluated by TLC using silica gel G60 with fluorescence(F254)plates (cut into 10cm×0.4cm strips)as stationary phase while ethyl acetate:n-hexane:triethylamine=4:1:0.005(V/V/V) as mobile phase.The reaction product was spotted with a capillary and developed by mobile phase.After development,the strips were dried at room temperature,cut into 1cm×0.4cm pieces and counted by Wizard 1470 automatic gamma counter(Perkin Elmer Company,USA)equipped with a multi-channel analyzer.Retention factor(Rf)and labeling yield were determined from TLC chromatogram data. Two TLCs ran for each tested reaction condition and the data were averaged as the labeled rate.

    The radiochemical purity(RCP)of[18F]-THK523 was determined by analytical RHPLC.The sample was passed through a Millipore fi lter carefully and then injected into the HPLC column(PurospherR○STAR LPRP-18e endcapped (5μm),250×4.6mm,sorbent Lot No.TA1752311,column No.210072)at room temperature.The absorbance was measured at 350nm and the fl ow rate was adjusted to 0.6mL/min. An injection volume of 20μL tracer was used with a mobile phase at volume(acetonitrile)/volume(containing triethylamine 0.05%water)ratio of 80%/20%.Retention time (Rt)was measured and checked with the standard product.

    B.Electrophoresis

    The charge of[18F]-THK523 was determined by paper electrophoresis using kalium phosphate buffer solution:alcohol:distilled water,1:1:1(V/V/V)with pH 7.4 as electrolyte and Xinhua No.1 papers strips as a support.The sample was run at a constant voltage of 110V for 2.5h of standing time. The strip was scanned by gamma-counter.For comparison,a sample of18F–was run under the identical condition.

    C.Determination of lipid–water partition coef fi cient of [18F]-THK523

    Lipid–water partition coef fi cient of[18F]-THK523 was measured in two steps.Step 1:1mL of phosphate-buffered saline(PBS)(pH=7.4)saturated by n-octyl alcohol and 1mL of n-octyl alcohol saturated by PBS(pH=7.4)were added to centrifuge tube containing 100μL of sample.Step 2:The tube was capped and vortexed for 10min at room temperature,and then stood for 5 min.After reaching equilibrium,the tube was centrifuged at 2000r/min(r=6.0cm)for 10min.100μL of the organic phase and water phase were pipetted out respectively and each phase was counted by the gammacounter.Theorganicphaseof500μLwaspipettedout into another centrifuge tube and then followed by the addition of 500μL of n-octyl alcohol saturated by PBS(pH=7.4)and 1mL of PBS(pH=7.4)saturated byn-octyl alcohol.Step 2 was repeated for six times.The partition coef fi cient was calculated as(cpm in organic phase)/(cpm in water phase).

    D.Measurement of plasma protein binding rate

    Heparin anticoagulant fresh blood plasma of 10 volunteers was provided by Nuclear Medicine Department,Huashan Hospital af fi liated to Fudan University.Trichloroacetic acid with volume fraction of 10%and 25%was prepared,respectively.The experiment was divided into the high,middle,mid-low and low dose groups,each having four parallel samples.Each tube contained 0.2mL blood plasma and 0.1mL of[18F]-THK523 in activity of 22.20,2.22,0.22 or 0.02MBq for the high,middle,mid-low and low dose groups,respectively.Being incubated for 2 hours at 37?C,each tube was added with 1mL of 25%trichloroacetic acid.They were vortex blended,and centrifuged at 2000r/min(r=6.0cm)for 10min.Then,the supernatant was collected.Afterwards, 1mL of 10%trichloroacetic acid was added to the precipitate. This step was repeated twice.According to the radioactivity counts of precipitation and supernatant,plasma protein binding rate was calculated as following:plasma protein binding rate=[(precipitationradioactivecounts)/(precipitation+supernatant radioactive counts)]×100%.

    E.Stability studies

    Stability assessment of the complex was carried out by measuring its radio chemical purity at 25?C.The radiochemical purity of[18F]-THK523 was determined by TLC and the radioactivity of[18F]-THK523 was counted by gamma counter at 0.5,1,1.5,2,3,4,5,6 and 7h after preparation.

    F.Blood kinetic studies

    Blood clearance studies were performed in C57 mice (n=5,(21±1)g).For each animal,5.18MBq/140μCi of the[18F]-THK523(0.1mL)was administered intravenously through the tail vein.Blood samples(10μL)were collected from the tail vein and radioactivity was measured by the gamma counter at different time intervals(2,5,10,15,20, 30,45 and 60min)after intravenous injection.The data was expressed as percentage of the administered dose at each time point.The weight of each blood sample was determined by weighing the microcentrifuge tube before and after blood collection.The concentrations of radioactivity in the blood were calculated as%ID/g.The blood clearance patterns of [18F]-THK523 were simulated using Pharmacokinetics Local Model(PLM)software developed by Caoet al.[17].

    G.Micro PET Imaging

    Normal C57 mice((20±2)g)were acquired with a SiemensInveonPET/CTsystem(SiemensMedicalSolutions, Knoxville,USA).After induction of anesthesia and placement of the catheter systems,the animals were placed with their bodies in the center of the fi eld of view and were fi xed in the scanner in prone feet fi rst position(FFP).At the beginning of the PET scanning procedure,a CT scan(Inveon)was performed for all animals.[18F]-THK523 was given via the catheter system intravenously in a slow bolus.The total applied volume was(0.18±0.02)mL.The amount of injected activity was(0.15±0.03)mCi.Radioactivity in the syringe and catheter was measured immediately before and after injection.Dynamic data acquisition was performed by Inveon Acquisition Workplace(IAW,Siemens)for 60min starting immediately after injection(p.i.)of the tracer.A PET image was reconstructed from 600 million coincidental 511keV photon counts.A reconstruction of sinograms yielded a 3D mapping of positron signal using Fourier rebinning and a 2D fi ltered back-projection algorithm with a ramp fi lter.And the voxel size was set as 0.80mm×0.86mm×0.86mm.CT images were reconstructed using a modi fi ed Feldkamp cone beam reconstruction algorithm(COBRA)from 360 projections with isotropic pixel size of 110μm.The emission data were normalized and corrected for decay and dead time.The resulting sinograms were reconstructed with FBP( fi ltered back-projection)into 8 frames(1@120;1@180;3@300; 1@600;2@900)of equal length used for motion correction, ratio measurements and image production for time-activity curve(TAC)generation.

    For each micro PET scan,three-dimensional regions-ofinterest(ROIs)were drawn over the major organs by using vendor software(Inveon Research Workshop;IRW)on decay-corrected whole-body images.All PET and CT image datasets were scaled to calibrated kBq/cc and saved in fl oat format.Orientation of planes was con fi rmed to radiological human brain standard such that theZ-axis was perpendicular to horizontal sections.

    To retrieve reliable small-animal PET results,accurate and standardized co-registration of PET to CT is essential.A twostep matching process of PET data was used.The initial automatic rigid matching was performed fi rst,and manual adjustment was applied if necessary.High-resolution CT scan was used as the basis for VOI de fi nition.To quantify the dynamic data,TACs with high initial time resolution were used.

    H.Biodistribution studies in mice

    Ex vivobiodistribution studies were carried out to confi rm that the quantitative tracer uptake values based on non-invasive micro PET imaging truly represented the actual tracer distribution in normal mice.Fifty C57 mice ((20±2)g)from Shanghai Slac Laboratory Animal CO.Ltd. were used in animal experiments(25 female,25 male).They were divided into ten groups randomly according to sacri fi ce time points.[18F]-THK523(0.1mL)in activity of 5.18MBq/140μCi was injected into the tail vein of each mouse and the animals were sacri fi ced at 2,5,10,15,30, 45,60,120,180 and 240min after injection.Samples of the major organs/tissues of interest,including liver,spleen,pancreas,stomach,intestine,femur,muscle,gonad,lung,kidney, heart,brain and blood,were collected and wet-weighed.Speci fi c radioactivity of the tissue samples was measured using a gamma-counter.The percent dose per organ was calculated byacomparisonofthetissuecountstothecountsofasuitably diluted aliquot of the injected material.The concentrations of radioactivity in the blood were also calculated as%ID/g.

    The experiments were carried out in compliance with national laws for the conduct of animal experimentation and were approved by the local committee for animal research.

    III.RESULTS

    A.Electrophoresis

    Charge of the complex was con fi rmed by paper electrophoresis.Table 1 shows that 95.8%of[18F]-THK523 stay still under the condition of current,indicating that it was electrically neutral;while the18F-species moved to anode,indicating that the compound exhibited anionic behavior.

    TABLE 1.Electrophoresis of[18F]-THK523

    B.Determination of lipid–water partition coef fi cient of [18F]-THK523

    The lipophilicity of[18F]-THK523 is determined by lipid–water partition coef fi cient(lgP),and the results are listed in Table 2(lgP=0.99±0.06,n=7),indicating[18F]-THK523 is lipophilic,which is consistent with Ref.[12,13].

    TABLE 2.Lipid-water partition coef fi cient of[18F]-THK523

    C.Measurement of plasma protein binding rate

    Plasmaproteinbindingratewas(8.68±0.45)%, (7.86±0.32)%,(8.13±0.35)%and(8.11±0.53)%for the high,middle,mid-low and low concentration groups, respectively.They do not differ signi fi cantly,indicating that the protein binding rate of[18F]-THK523 is not of the mass concentration-dependent nature.

    D.Stability studies

    Stability of the radiolabeled compound over time was investigated.According to our test results,radiochemical purity of[18F]-THK523 was stable,remaining at the level of about 90%for up to 5h.It was decreased to 87.6%and 86% at 6h and 7h respectively(Fig.1).Considering the radioactive decomposition and decay of18F,it is better to applied [18F]-THK523 within 5h after preparation.

    Fig.1.Stability of[18F]-THK523 at room temperature.

    E.Blood kinetic studies

    The following dual-exponential equation was adopted to model the pharmacokinetic of[18F]-THK523 in mice in mice:Y=2.23e?0.014t+1.89?0.0007t,whereYis%ID g?1in blood;tis time in minute.The distribution and elimination were coincident with the results given by compartment modeling.Thepharmacokineticsparametersof[18F]-THK523are listed in Table 3.

    TABLE 3.Pharmacokinetic parameters of[18F]-THK523 in mice (131.35MBq/mL,n=5)

    F.Micro PET imaging and Biodistribution studies in mice

    The biodistribution of[18F]-THK523 was determinedex vivoin healthy mice at 2,5,10,15,30,45,60,120,180 and 240min after intravenous injection.The uptakes in liver((7.96±0.97)%ID/g),kidney((4.32±0.33)%ID/g) and heart((4.18±0.28)%ID/g)were the highest initially at 2min,followed by fast clearance(Fig.2(a)).Preclinical study showed that the highest[18F]-THK523 uptake occurred in gall bladder,followed by liver,kidney,heart and intestine,whereas femur and gonads showed the lowest uptake(Fig.2(b)).Within less than 15min,[18F]-THK523 essentially cleared from blood and plasma.[18F]-THK523was mainly metabolized by liver and excreted through biliary,thus leading to substantial rise in the uptake in intestine at 15min and then slow decline started approximately at 120min.Micro PET imaging demonstrated such changes vividlyin vivo,agreeing with the biodistribution analysisexvivo(Figs.2(a)and 2(c)).The bone uptake rose and then decreased slowly because of radioactive decomposition,which could be improved with the presence of ascorbic acid(2mg, 0.011mmol).

    Fig.2.(Color online)Biodistribution of[18F]-THK523 in main metabolic organs(a)and other organs(b)in normal mice,and smallanimal PET images of a mouse at 60min after[18F]-THK523 injection.The orange arrows indicate gall bladder,and the blue arrows indicate intestine.The data are expressed as means±SD(n=5).

    Fig.3.(Color online)Biodistribution of[18F]-THK523 in main regions(a)and cortex of in normal mice brain(expressed as means,n=5).

    The brain uptake was(2.62±0.39)%ID/g at 2min after injection.Mouse brains were dissected into following regions:cortex(front cortex,parietal cortex, temporal cortex,occipital cortex),striatum,hippocampus,thalamus,cerebellum,pons and medulla oblongata. The uptakes in occipital cortex((4.91±0.94)%ID/g), temporal cortex((3.33±0.72)%ID/g)and hippocampus ((3.07±0.35)%ID/g)were the highest initially at 2min,followed by fast clearance(Figs.3(a)and 3(b)).The tracer uptake for the occipital cortex and temporal cortex were higher than other cortex(Fig.3(b)).The brain uptake trend of[18F]-THK523 was similar betweenex vivoandin vivofrom injec-tion to 60min.The highest brain uptake was at 2min after injection,followed by quick clearance during 90min postinjection.The clearance was relatively slow from 90min to 240min after injection(Fig.4).

    Fig.4.(Color online)The brain uptake trend of[18F]-THK523 over time in normal miceex vivo(a)andin vivo(b).

    IV.DISCUSSION

    NFTs are one kind of the pathological hallmarks found in AD brains and are closely associated with the severity of dementia,indicating the contribution of NFTs to neuronal dysfunction.NFTs are therapeutic target of AD for disease modifying therapy.A PET tracer for imaging NFTs in the brain shall be valuable in developing new therapies for AD.

    Considering the factors related to brain uptake,a radioactive tracer can hardly cross the blood-brain barrier(BBB)if it is not electrically neutral or non-lipophilic.For brain tracer, lowplasmaproteinbindingrateisalsocriticaltobrainuptake. If plasma protein binding rate is too high,the tracer would be unable to get access to target region.The analytical data and favorable lgPsuggest that[18F]-THK523 should cross the BBB and enter the central nervous system(CNS).Also, with the presence of ascorbic acid,[18F]-THK523 is stable at room temperature up to 5 h.All these biological characteristics demonstrate that[18F]-THK523 satis fi es the basic requirements of brain tracer.Our blood kinetic studies show that[18F]-THK523 distributes quickly from blood to other organs(t1/2α=47.9min),with relatively favorable retention time in target organs(t1/2β=965.1min).

    Metabolism and biodistribution patterns should be evaluated for any radiopharmaceutical candidate being considered for clinical translation.Ourex vivostudies reveal a high brain uptake at 2min after injection,especially in the hippocampus,followed by rapid clearance in healthy mice.In vitroandin vivostudies have con fi rmed that[18F]-THK523 is of high af fi nity and selectivity for tau pathology[12,13],and our biological characteristics results shall help ful fi lling its brain ligand criteria for further imaging trials.

    V.CONCLUSION

    [18F]-THK523 was radiosynthesized on automated module anditsbiologicalcharacteristicswereevaluated.Invitrostudies demonstrated that[18F]-THK523 was electrically neutral, lipophilic(lgP=0.99±0.06,n=7)and quite stable with its radiochemical purity of more than 90%maintained for up to 7h at room temperature.Due to its low molecular weight,[18F]-THK523 can easily cross blood brain barrier(BBB).With relatively low plasma protein binding rate, [18F]-THK523 is not of mass concentration-dependent nature.From calculations of pharmacokinetics parameters of the blood,and the blood kinetic study,the dual-exponential equation wasY=2.23e?0.014t+1.89?0.0007twitht1/2α= 47.9min?1,t1/2β=965.1min?1,K12=0.0067min?1,K21=0.0070min?1,Ke=0.0015min?1,plasma clearance=0.036%ID/g/min,area under concentration-time curve=2785.1ID%/g/min.[18F]-THK523 is of high brain uptake,and our study on its biodistribution in healthy C57 mice shows that[18F]-THK523 is mainly metabolized by liver and excreted through biliary.[18F]-THK523 may well be a promising candidate for molecular imaging of tau pathology.

    ACKNOWLEDGEMENTS

    We are grateful to GAO Xi-Hui,HUANG Cui-Yun, ZHENG Shu-Yan and WANG Feng for helpful brain anatomy and counseling in all aspects of animal handling and experimenting.

    [1]Mori T,Maeda J,Shimada H,et al.Psychogeriatrics,2012,12: 106–114.

    [2]Wang J Z and Liu F.Prog Neurobiol,2008,85:148–175.

    [3]Rossi G,Dalpr`a L,Crosti F,et al.Cell Cycle,2008,7:1788–1894.

    [4]Witman G B,Cleveland D W,Weingarten M D,et al.Proc Natl Acad Sci USA,1976,73:4070–4074.

    [5]Guo J L,Covell D J,Daniels J P,et al.Cell,2013,154:103–117.

    [6]de Calignon A,Polydoro M,Suarez-Calvet M,et al.Neuron, 2012,73:685–697.

    [7]Revett T J,Baker G B,Jhamandas J,et al.J Psychiatr Neurosci, 2013,38:6–23.

    [8]Ittner L M,Ke Y D,Delerue F,et al.Cell,2010,142:387–397.

    [9]RobersonED,Scearce-LevieK,PalopJJ,etal.Science,2007,316:750–754.

    [10]Nussbaum J M,Schilling S,Cynis H,et al.Nature,2012,485: 651–655.

    [11]Nakamura K,Greenwood A,Binder L,et al.Cell,2012,149: 232–244.

    [12]Fodero-Tavoletti M T,Okamura N,Furumoto S,et al.Brain, 2011,134:1089–1100.

    [13]Harada R,Okamura N,Furumoto S,et al.Eur J Nucl Med Mol, 2013,40:125–132.

    [14]Zeng Z,Chen T B,Miller P,et al.Alzheimers Dement,2012,8:P66.

    [15]Okamura N,Furumoto S,Harada R,et al.J Nucl Med,2013,54:1420–1427.

    [16]Kong Y Y,Cao G X,Zhang Z W,et al.Nucl Sci Tech,2014,25:040302.

    [17]Cao G,Zhou X,Kong Y,et al.Nucl Tech,2013,36:60–65.(in Chinese)

    10.13538/j.1001-8042/nst.25.050302

    (Received January 7,2014;accepted in revised form February 21,2014;published online October 4,2014)

    ?Supported by National Natural Science Foundation of China(Nos. 81271516 and 81371625),Program of Shanghai Science and Technology Commission(Nos.13JC1401503 and 14DZ1930402),Shanghai MunicipalHealthandFamilyPlanningCommission(No.2013313)andExchange Programme Foundation of Doctoral Student under the Office for Graduate Medical Education,Fudan University

    ?Corresponding author,guanyihui@hotmail.com

    猜你喜歡
    吳平方平
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
    春雪
    吳平:戶外語文課,用觀察擺脫寫作空洞
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    改姓
    春雪
    血染“不出軌保證書”,“武隆好人”婚姻無性
    女友有求于我
    小小說月刊(2014年8期)2014-08-29 03:36:08
    亚洲国产精品成人综合色| 精品高清国产在线一区| 黄色 视频免费看| avwww免费| 亚洲中文av在线| a在线观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 在线观看舔阴道视频| 丝袜在线中文字幕| 波多野结衣高清作品| av超薄肉色丝袜交足视频| 亚洲成国产人片在线观看| 国产激情偷乱视频一区二区| 嫩草影视91久久| 黄片小视频在线播放| 一个人观看的视频www高清免费观看 | 热re99久久国产66热| 亚洲精品在线美女| 日本精品一区二区三区蜜桃| 别揉我奶头~嗯~啊~动态视频| xxx96com| 精品一区二区三区视频在线观看免费| 亚洲久久久国产精品| 99riav亚洲国产免费| 日韩欧美在线二视频| 757午夜福利合集在线观看| 午夜福利18| 亚洲人成77777在线视频| 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 午夜视频精品福利| 90打野战视频偷拍视频| 国内精品久久久久久久电影| 亚洲专区字幕在线| 在线观看一区二区三区| 国产精品久久视频播放| 观看免费一级毛片| 老司机靠b影院| 99精品欧美一区二区三区四区| 欧美日韩乱码在线| 国产精品亚洲av一区麻豆| 91在线观看av| 国产真人三级小视频在线观看| 淫秽高清视频在线观看| 国产日本99.免费观看| 成人精品一区二区免费| 色在线成人网| cao死你这个sao货| 亚洲国产精品久久男人天堂| 国产黄片美女视频| 久久久久久久久久黄片| 久久香蕉激情| 亚洲午夜理论影院| 国产亚洲精品第一综合不卡| 大型av网站在线播放| 婷婷丁香在线五月| 午夜两性在线视频| 国产三级黄色录像| 首页视频小说图片口味搜索| 99国产精品一区二区三区| 久久国产乱子伦精品免费另类| 国内毛片毛片毛片毛片毛片| 成年女人毛片免费观看观看9| 超碰成人久久| 久久亚洲精品不卡| 欧美成狂野欧美在线观看| 淫妇啪啪啪对白视频| 在线观看www视频免费| 日韩欧美三级三区| 久久午夜亚洲精品久久| 精品卡一卡二卡四卡免费| 日韩欧美国产一区二区入口| 欧美成人性av电影在线观看| 级片在线观看| 亚洲一区二区三区色噜噜| 男女床上黄色一级片免费看| x7x7x7水蜜桃| 美女国产高潮福利片在线看| 午夜免费观看网址| 国产熟女午夜一区二区三区| 看黄色毛片网站| 韩国精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 久久99热这里只有精品18| 久久精品成人免费网站| 99精品在免费线老司机午夜| 亚洲精品一区av在线观看| 精品国产乱码久久久久久男人| 国产成人欧美在线观看| 久久香蕉精品热| 18禁国产床啪视频网站| 人人妻人人澡人人看| 亚洲国产欧美网| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 侵犯人妻中文字幕一二三四区| 一进一出好大好爽视频| bbb黄色大片| 真人做人爱边吃奶动态| 日本五十路高清| 日韩欧美免费精品| 久久午夜综合久久蜜桃| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 啦啦啦 在线观看视频| 三级毛片av免费| 国产亚洲精品一区二区www| 午夜福利欧美成人| 亚洲成av人片免费观看| 美国免费a级毛片| 国产一区在线观看成人免费| 成年人黄色毛片网站| 亚洲精品av麻豆狂野| 午夜福利在线在线| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 巨乳人妻的诱惑在线观看| 国产精品久久视频播放| 人人妻人人看人人澡| 久久国产乱子伦精品免费另类| 99国产精品一区二区蜜桃av| 怎么达到女性高潮| 亚洲欧美日韩无卡精品| 桃红色精品国产亚洲av| netflix在线观看网站| 99re在线观看精品视频| 久久久国产成人免费| 精品高清国产在线一区| 亚洲国产精品999在线| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 村上凉子中文字幕在线| 日韩高清综合在线| 国产伦在线观看视频一区| 中文字幕人成人乱码亚洲影| 18禁裸乳无遮挡免费网站照片 | 亚洲国产看品久久| 又大又爽又粗| 中文资源天堂在线| 在线免费观看的www视频| 操出白浆在线播放| 亚洲专区国产一区二区| 亚洲人成77777在线视频| 亚洲欧美精品综合久久99| 一级a爱视频在线免费观看| 天堂动漫精品| 人妻久久中文字幕网| 女同久久另类99精品国产91| 欧美性猛交╳xxx乱大交人| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 色哟哟哟哟哟哟| 午夜福利免费观看在线| 欧美中文日本在线观看视频| 成人永久免费在线观看视频| 亚洲 国产 在线| 变态另类丝袜制服| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 久久久精品欧美日韩精品| 成人亚洲精品av一区二区| 中文亚洲av片在线观看爽| 久久久久久国产a免费观看| 国产成人欧美在线观看| 999久久久精品免费观看国产| 91成年电影在线观看| 成人三级做爰电影| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 精品高清国产在线一区| 宅男免费午夜| 少妇的丰满在线观看| 亚洲五月色婷婷综合| 亚洲熟妇中文字幕五十中出| 91麻豆av在线| 天天躁夜夜躁狠狠躁躁| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| videosex国产| 一本精品99久久精品77| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| 搡老岳熟女国产| 久久久久国内视频| 国产免费男女视频| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 日本黄色视频三级网站网址| 搡老妇女老女人老熟妇| 日韩大尺度精品在线看网址| 在线观看一区二区三区| 99久久国产精品久久久| 亚洲 欧美 日韩 在线 免费| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| 免费av毛片视频| 非洲黑人性xxxx精品又粗又长| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 女人被狂操c到高潮| 亚洲三区欧美一区| 久久久久久久精品吃奶| 亚洲精品av麻豆狂野| 一a级毛片在线观看| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 法律面前人人平等表现在哪些方面| 黄色 视频免费看| 国产成人精品久久二区二区91| 啦啦啦韩国在线观看视频| 18禁黄网站禁片免费观看直播| 两性夫妻黄色片| 无限看片的www在线观看| 国产精品二区激情视频| 国产亚洲欧美精品永久| 亚洲 国产 在线| 麻豆av在线久日| 亚洲国产日韩欧美精品在线观看 | 久久国产亚洲av麻豆专区| 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 国产精品精品国产色婷婷| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 无人区码免费观看不卡| 变态另类成人亚洲欧美熟女| 欧美成人性av电影在线观看| 一区二区三区国产精品乱码| www.999成人在线观看| 免费看日本二区| 一进一出抽搐gif免费好疼| 欧美在线一区亚洲| 一本综合久久免费| 一个人免费在线观看的高清视频| 中文字幕久久专区| 18禁国产床啪视频网站| 日本三级黄在线观看| 婷婷精品国产亚洲av在线| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 在线观看www视频免费| 露出奶头的视频| aaaaa片日本免费| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 啦啦啦观看免费观看视频高清| 日韩精品免费视频一区二区三区| 十分钟在线观看高清视频www| 亚洲精品中文字幕在线视频| 免费看十八禁软件| 一本综合久久免费| 国产精品爽爽va在线观看网站 | 一区福利在线观看| 狂野欧美激情性xxxx| 老司机靠b影院| 亚洲五月天丁香| 国产伦一二天堂av在线观看| 天堂动漫精品| 国产在线精品亚洲第一网站| 久久精品国产清高在天天线| 美女扒开内裤让男人捅视频| 亚洲成人精品中文字幕电影| 国内精品久久久久久久电影| 嫩草影视91久久| 成年人黄色毛片网站| 国产乱人伦免费视频| 99国产综合亚洲精品| 一级毛片女人18水好多| 亚洲精品色激情综合| 国产亚洲欧美精品永久| 18禁黄网站禁片免费观看直播| 99久久国产精品久久久| 国产爱豆传媒在线观看 | 九色国产91popny在线| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 老汉色∧v一级毛片| a级毛片在线看网站| 亚洲专区字幕在线| 免费看美女性在线毛片视频| 欧美乱码精品一区二区三区| 国产一区二区三区在线臀色熟女| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 国产精品野战在线观看| 变态另类丝袜制服| 久久热在线av| 亚洲第一青青草原| 亚洲天堂国产精品一区在线| 黄色女人牲交| 日本三级黄在线观看| 美女大奶头视频| 美女 人体艺术 gogo| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 热re99久久国产66热| 亚洲精品美女久久久久99蜜臀| 日韩欧美在线二视频| 亚洲第一av免费看| 两人在一起打扑克的视频| 少妇粗大呻吟视频| 国产亚洲av嫩草精品影院| 黄色成人免费大全| 久久天躁狠狠躁夜夜2o2o| 亚洲一区中文字幕在线| 亚洲黑人精品在线| www日本在线高清视频| av在线天堂中文字幕| 亚洲中文日韩欧美视频| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 国产私拍福利视频在线观看| 亚洲天堂国产精品一区在线| 国产一卡二卡三卡精品| 级片在线观看| 久久中文看片网| 在线播放国产精品三级| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 国产高清激情床上av| 欧美一级毛片孕妇| 欧美在线黄色| 国产激情久久老熟女| 美女免费视频网站| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 国内精品久久久久久久电影| 女人高潮潮喷娇喘18禁视频| 夜夜夜夜夜久久久久| 久久欧美精品欧美久久欧美| 很黄的视频免费| 男人舔奶头视频| 18禁黄网站禁片午夜丰满| 老司机靠b影院| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 久久香蕉激情| 午夜福利高清视频| 国产麻豆成人av免费视频| 午夜福利高清视频| x7x7x7水蜜桃| 无遮挡黄片免费观看| 97超级碰碰碰精品色视频在线观看| 好男人电影高清在线观看| 亚洲成人久久爱视频| ponron亚洲| 欧美日韩福利视频一区二区| 波多野结衣高清无吗| 别揉我奶头~嗯~啊~动态视频| 亚洲中文字幕一区二区三区有码在线看 | 国产av一区二区精品久久| 性欧美人与动物交配| 村上凉子中文字幕在线| 婷婷丁香在线五月| 国产高清激情床上av| www.精华液| 男女下面进入的视频免费午夜 | 久久人人精品亚洲av| 99热6这里只有精品| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 狂野欧美激情性xxxx| 国产又爽黄色视频| √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 人妻丰满熟妇av一区二区三区| 亚洲av成人av| 亚洲欧美日韩高清在线视频| av有码第一页| 香蕉久久夜色| cao死你这个sao货| 国产视频一区二区在线看| 黄片大片在线免费观看| 午夜视频精品福利| 99久久精品国产亚洲精品| 日本五十路高清| 欧美丝袜亚洲另类 | 亚洲全国av大片| 无人区码免费观看不卡| 色在线成人网| 国产激情久久老熟女| 草草在线视频免费看| 国产久久久一区二区三区| 国产欧美日韩一区二区三| 欧美大码av| 99热只有精品国产| 一级毛片精品| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| www.www免费av| 在线观看www视频免费| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 18禁黄网站禁片午夜丰满| 99国产极品粉嫩在线观看| 成人国语在线视频| 欧美黑人精品巨大| 91老司机精品| 久久久久久久午夜电影| 国产亚洲精品一区二区www| 国产伦人伦偷精品视频| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片 | 18美女黄网站色大片免费观看| 国产亚洲精品久久久久久毛片| 午夜福利视频1000在线观看| 午夜福利高清视频| 首页视频小说图片口味搜索| 婷婷六月久久综合丁香| 男女那种视频在线观看| 久久香蕉国产精品| 中文字幕精品免费在线观看视频| 最近最新免费中文字幕在线| 妹子高潮喷水视频| 国产成人一区二区三区免费视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久在线观看| 18禁国产床啪视频网站| 国产精品野战在线观看| 日本免费a在线| 国产精品国产高清国产av| 又大又爽又粗| 亚洲专区中文字幕在线| 国产视频内射| 男女下面进入的视频免费午夜 | 一a级毛片在线观看| 正在播放国产对白刺激| 19禁男女啪啪无遮挡网站| 在线观看舔阴道视频| 亚洲av熟女| 国产精品一区二区精品视频观看| 国产成人精品无人区| 欧美乱码精品一区二区三区| 欧美在线一区亚洲| 亚洲电影在线观看av| 亚洲五月天丁香| 女性被躁到高潮视频| 日本 欧美在线| 999精品在线视频| 日韩欧美免费精品| 国产黄片美女视频| 精品欧美国产一区二区三| 18禁观看日本| 色综合欧美亚洲国产小说| 91麻豆精品激情在线观看国产| 脱女人内裤的视频| 91av网站免费观看| 麻豆成人av在线观看| 久久久久九九精品影院| 男人舔奶头视频| 老司机福利观看| 日韩欧美三级三区| 91在线观看av| 亚洲国产欧美一区二区综合| 亚洲成人久久性| 国产亚洲欧美98| 男女做爰动态图高潮gif福利片| 精品一区二区三区av网在线观看| 国产精品精品国产色婷婷| 老熟妇乱子伦视频在线观看| 午夜精品在线福利| 国产亚洲精品第一综合不卡| 日韩欧美在线二视频| 亚洲熟妇中文字幕五十中出| 亚洲国产日韩欧美精品在线观看 | 99久久久亚洲精品蜜臀av| 成年免费大片在线观看| 国产精品久久久人人做人人爽| 精品国内亚洲2022精品成人| 51午夜福利影视在线观看| 中文亚洲av片在线观看爽| 无人区码免费观看不卡| 久久精品夜夜夜夜夜久久蜜豆 | 无限看片的www在线观看| 1024视频免费在线观看| 18禁观看日本| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 欧美 亚洲 国产 日韩一| 一本久久中文字幕| av天堂在线播放| 国产v大片淫在线免费观看| 国产私拍福利视频在线观看| 精品国产国语对白av| 中亚洲国语对白在线视频| 一进一出抽搐gif免费好疼| 中出人妻视频一区二区| 亚洲久久久国产精品| 国产亚洲精品一区二区www| 1024视频免费在线观看| 此物有八面人人有两片| 日本在线视频免费播放| 欧美性猛交黑人性爽| 欧美日韩精品网址| 女警被强在线播放| 久热这里只有精品99| 日日摸夜夜添夜夜添小说| av视频在线观看入口| 国产成人欧美| 国产亚洲欧美精品永久| 亚洲熟妇熟女久久| 日本熟妇午夜| 久久香蕉激情| 午夜a级毛片| 中文字幕久久专区| 亚洲一码二码三码区别大吗| 一区二区三区高清视频在线| 一卡2卡三卡四卡精品乱码亚洲| 一二三四社区在线视频社区8| 国产免费男女视频| tocl精华| 久久国产乱子伦精品免费另类| 国产又黄又爽又无遮挡在线| 丝袜美腿诱惑在线| 亚洲精品在线美女| 精品欧美一区二区三区在线| 亚洲av成人av| 婷婷亚洲欧美| 无人区码免费观看不卡| 色综合亚洲欧美另类图片| 亚洲av片天天在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人不卡在线观看播放网| 国产av一区在线观看免费| 成人免费观看视频高清| 一级黄色大片毛片| x7x7x7水蜜桃| 久久中文看片网| 国产成+人综合+亚洲专区| 青草久久国产| 啦啦啦免费观看视频1| 99精品在免费线老司机午夜| 99久久无色码亚洲精品果冻| 91字幕亚洲| 国产av一区在线观看免费| 亚洲性夜色夜夜综合| 日韩中文字幕欧美一区二区| 成人国语在线视频| 亚洲av成人av| 亚洲色图av天堂| 中文字幕精品亚洲无线码一区 | 国产亚洲欧美精品永久| 亚洲中文av在线| 久久国产精品影院| 亚洲成a人片在线一区二区| 欧美黄色片欧美黄色片| 日本熟妇午夜| 国产极品粉嫩免费观看在线| 精品国产美女av久久久久小说| 91九色精品人成在线观看| 青草久久国产| 激情在线观看视频在线高清| 免费在线观看黄色视频的| 日韩欧美一区视频在线观看| 亚洲午夜理论影院| 青草久久国产| 在线观看一区二区三区| 色播在线永久视频| 青草久久国产| 在线观看一区二区三区| 午夜日韩欧美国产| 久久九九热精品免费| 国产不卡一卡二| 热re99久久国产66热| 久久久久九九精品影院| 18禁黄网站禁片免费观看直播| 丁香六月欧美| 日韩大码丰满熟妇| 亚洲国产精品sss在线观看| 怎么达到女性高潮| 亚洲五月天丁香| 午夜影院日韩av| 国产99久久九九免费精品| 国产精品 国内视频| 国产三级在线视频| 精品国内亚洲2022精品成人| 色精品久久人妻99蜜桃| 无遮挡黄片免费观看| 日日夜夜操网爽| a级毛片在线看网站| 久久久国产欧美日韩av| 啦啦啦观看免费观看视频高清| 男女视频在线观看网站免费 | 国产精品av久久久久免费| 麻豆久久精品国产亚洲av| 国产成人啪精品午夜网站| 叶爱在线成人免费视频播放| 身体一侧抽搐| √禁漫天堂资源中文www| 久久中文字幕一级| ponron亚洲| 观看免费一级毛片| 69av精品久久久久久| 99国产极品粉嫩在线观看| 高潮久久久久久久久久久不卡| 男女视频在线观看网站免费 | 国产成人精品久久二区二区91|