• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Density functional theory study of H,C and O chemisorption on UN(001)and(111)surfaces?

    2014-08-05 09:13:24LIRuSong李如松HEBin何彬XUPeng許鵬WANGFei王飛andMAWenYan馬文彥
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:王飛

    LI Ru-Song(李如松),HE Bin(何彬),XU Peng(許鵬),WANG Fei(王飛),and MA Wen-Yan(馬文彥)

    1Xi’an Research Institute of Hi-Tech,Xi’an 710025,China

    Density functional theory study of H,C and O chemisorption on UN(001)and(111)surfaces?

    LI Ru-Song(李如松),1,?HE Bin(何彬),1XU Peng(許鵬),1WANG Fei(王飛),1and MA Wen-Yan(馬文彥)1

    1Xi’an Research Institute of Hi-Tech,Xi’an 710025,China

    We performed density functional theory calculations of H,C,and O chemisorption on the UN(001)and (111)surfaces using the generalized gradient approximation(GGA)and the HubbardUparameter and revised Perdew-Burke-Ernzerhof(RPBE)exchange-correlation functional at non-spin polarized level with the periodic slab model.Chemisorption energies vs.distance of molecules from UN(001)and UN(111)surfaces have been optimized for four symmetrical chemisorption sites,respectively.The results show that the Hollow,N-top,and Hollow adsorption sites are the most stable sites for H,C,and O atoms with chemisorption energies of 13.06, 25.50 and 27.34kJ/mol for UN(001)surface,respectively.From the point of adsorbent(UN(001)and UN(111) surfaces in this paper),interaction of O with the chemisorbed surface is of the maximum magnitude,then C and H,which are in agreement with electronegativities of individual atoms.For the UN(001)surface,U-N bond lengths change relatively little(<9%)as a result of H chemisorption,however C and O chemisorptions result in remarkable changes for U-N bond lengths in interlayer(>10%).Electronic structure calculations indicate that Bridge position is equivalent with Hollow position,and the most stable chemisorption position for H,C, and O atoms are all Bridge(or Hollow)position for the UN(111)surface.Calculated electronic density of states(DOSs)demonstrate electronic charge transfer betweens,porbitals in chemisorbed atoms and U 6d,5forbitals.

    Chemisorption,Density functional theory,Relaxation,Density of states

    I.INTRODUCTION

    Uranium nitrides are considered as promising fuel for the fast nuclear Generation IV reactors.Compared to many uranium and plutonium oxide nuclear fuels,uranium nitrides have several advantages[1,2],such as higher thermal conductivity,melting point,metal density,and smaller lattice constant.Many research groups have identified an important role of UN in anti-corrosion application since the 1960s[3–5],and investigations on uranium nitride compounds renew great attention due to enviormental pollution and increasing interest for development of new nuclear fuels.The bulk properties of actinide nitrides have been investigated in these works,especially the elastic and magnetic properties.

    Contrary to a number of available experimental data,some theoretical work have paid much attention on the pure and defective UN,physical properties of various defects(such as vacancy,Oimpurities,grainboundary)[6–13].Basicbulkproperties have been considered in these studies for uranium nitrides with emphasis on elastic and magnetic properties[14–18].Petitet al.[9]have clarified the partial localization of 5felectrons in UN and reproduced the experimental total magnetic moment.In Ref.[7],the all-electron relativistic spin-polarized DFT calculations were performed to evaluate the total energies,optimized geometries,and electronic and thermodynamic properties of perfect stoichiometric UN and UN2single crystals.However,high reactivities of uraniumnitrides with hydrogen,carbon,and oxygen at ambient atmosphere can affect the fuel fabrication process and fuel performance[1].Experimental studies also clearly showed that oxygen in contact with the surface of uranium mononitride can result in growth of the oxide compound and,in initial stages,can lead to the formation of a surface layer structurally similar to oxynitrides UOxNy[19].

    To predict UN fuel performance under different operating conditions and understand the material properties at the microscopic scale,it is crucial to investigate the surface properties and chemisorption process based on electronic structure calculations.However,a few papers have focused on the chemisorption behaviors of molecules or atoms on the surface of uranium nitrides.

    Only recently[19–23],some groups have simulated the reactivity of molecules/atoms with the surface of uranium nitrides.These reports have indicated that O2molecule would spontaneously dissociate after chemisorption on the UN(001)surface,then the produced O atoms exhibit a strong chemisorption behavior.

    AccordingtoTasker’sanalysis,the(001)surfacemusthave the lowest surface energy for the rock-salt compounds[24]. At the same time,the(111)surface is usually the most denseplaneforface-centeredcubic(fcc)structure.Therefore, we consider two representative planes for the UN lattice–UN(001)and UN(111)surface.In this work,we perform electronic structure calculations within the framework of density functional theory(DFT)method to deeply understand chemisorption mechanisms of H,C,and O atoms on the UN(001)and(111)surfaces,shed light on the mechanisms of hydrogenization,oxidation,and cabonization of UN in the air at the electronic and atomic level,and analyse the chemical bonding of U 6d,5fstates with H 1s,C 2s,2p,and O 2s, 2pstates.

    II.METHODOLOGY

    Uranium mononitride(UN)has NaCl-type structure(facecentered cubic)with the experimental lattice constanta= 0.4889nm.In this paper,we use the generalized gradient approximation(GGA)+U(HubbardUparameter to represent a correction to Coulomb repulsion interaction,separatingfmanifold into lower and upper Hubbard bands and removingfdegrees of freedom from the Fermi level,U=4.0eV)within the framework of density functional theory(DFT)and revised Perdew-Burke-Ernzerhof(RPBE) exchange-correlation functional with a periodicthree-layer slab model and single-sided chemisorption mode (an atom is placed on one side of the slab model,namely 0.5ML adsorptivity)to simulate chemisorption behaviors of H,C,and O atoms on UN(001)and(111)surfaces in all calculations.A vacuum layer of 2.0nm is added to a unit cell of the layers.The vacuum height test will be described in Sec.III in detail.We do not yet consider fully relativistic effects instead by using the scalar-relativistic approach.However,all other relativistic kinematic effects,such as massvelocity,Darwin,and higher order terms are retained.Wang and Hayet al.[25,26]have found that one can adequately describe the electronic and geometric properties of actinide complexes without treating spin-orbit effects explicitly,since we areinterestedin the chemisorptionenergies,definedasthe difference in total energies.Therefore,we expect the inclusion of other relativistic effects,such as spin-orbit coupling, spin polarization,and orbital polarization effects,will not alter the main qualitative and quantitative conclusions of our work,as discussed in other works[27].

    The outer fourteen electrons(6s26p65f66d17s2)of the U atom are treated as the valence electrons and the remaining seventy-eight electrons are treated as the core electrons.DFT semi-core pseudopotentials(DSPP)and a double numerical basis set with polarization functions(DNP)have been used to treatthecoreelectronsandthevalenceelectrons,respectively. All electron basis sets are used for H,C,N,and O atoms.A 8×8×2 Monkhorst-Pack k-point mesh is applied for the Brillouin zone(BZ)integration.The convergence of a selfconsistent field(SCF)is less than 1.0×10?5eV/atom.A plane-wave cutoff energy is fixed atEcut=500eV,which is enough for convergence of chemisorption calculations.Nonmagnetic configuration is appropriate for the light actinide U element from the point of total energy,so U 5felectrons are in the delocalized 5f3electronic configuration in the present work.

    Single atom,one per unit cell,is allowed to approach the UN(001)surface along four different symmetrical positions, namely(I)on the middle of the two nearest U atoms(Bridge position),(II)the adsorption atom sees a U atom located on the layer directly below the surface hollow site(Hollow position),(III)directly on top of a U atom(U-top position),and (IV)directly on top of a N atom(N-top position),as shown in Fig.1,whereas only the former three symmetrical chemisorption positions exist for the UN(111)surface(not shown here). Chemisorption energyECis optimized with respect to the heightRof the chemisorbed atom above the surface,and is given by[28]

    Fig.1.UN(001)surface has four symmetrical chemisorption positions,namely Bridge,Hollow,U-top and N-top,whereas only the former three symmetrical chemisorption positions exist for UN(111) surface.

    Fig.2.A configuration model for relaxation calculation.Ri(i=1, 2)anddij(i=1,2,j=1,2)represent U-N bond length in the intralayer and interlayer,respectively.

    whereE(M)is total energy of a bare UN(001)or UN(111) slab,E(X)is the total energy of the isolated atom in reference crystal structure,andE(M+X)is the total energy of the entire chemisorption system.

    The relative change for bond length is utilized to describe thechangeforU-Nbondlengthasaresultofatomchemisorption

    whereRiis the bond length for the central N atom on the UN(001)surface and theithU atom,R0is the original U-N bond length,andΔdenotes the relative change forRi.The serial numbersiare shown in Fig.2.

    III.CONFIGURATIONS FOR UN(001)AND(111) SURFACES

    Fig.3.Convergence test of the vacuum thickness for the UN(001) surface.

    Fig.4.A calculation model for the UN(001)surface.

    TABLE 1.Calculated results for configuration relaxation.Ri(i= 1,2,in nm)anddij(i=1,2,j=1,2,in nm)represent U-N bond length in the intralayer and interlayer,respectively

    To test the validity of the computational parameters,we first cleave the UN(001)surface,then check the convergence of total energy of the UN(001)surface with different vacuum thicknesses.We consider a vacuum thickness test to be convergent as long as change for total energy ΔEis less than 10meV.Test results indicate that the total energy of a system is convergent when vacuum thickness is larger than 1.8nm (Fig.3).Therefore,we add a vacuum layer of 2.0nm onto the unit cell of the periodic slab in order to reduce the influence of the boundary condition on the computation procedure.A model for the UN(001)surface is plotted in Fig.4. face atoms to relax,reconstruct,find a new equilibrium site, and finally lower the total energy of the system.Moreover, this relaxation behavior may also change U-N bond length. A configuration model for relaxation calculation is shown in Fig.2.In our work,relaxation is defined as relative change of U-N bond length,and the calculation result is listed in Table 1.From this table,we can see that the relative relaxationisrelativelysmall(themaximumvalueatmost4.527%), so we fix the atoms in two low-lying layer in the following section,otherwise particularly declaration.For clarity, the configuration model and the relaxation calculation for the UN(111)surface are not shown here.

    IV.RESULTS AND DISCUSSION

    The energy minimum principle demonstrates that the higher the system symmetry,the lower the system energy, and the more stable the system.Therefore,we prefer an atom to be chemisorbed onto the high symmetrical position in the crystal surface.The UN crystal has fcc structure and several high symmetrical chemisorption positions exist on the crystal surface.As discussed above,we consider four representative positions in this work,namely Bridge,Hollow,U-top, and N-top.The chemisorbed atom is directly placed on the top of individual positions to study chemisorption behavior of the atom on these positions,as shown in Fig.1.Chemisorption parameters not only include position,but also the orientation and height of the atom from the UN(001)and(111) surfaces,where chemisorption orientation is associated with the molecule structure and chemisorption height mainly depends on stability of the system.

    A.H atom

    We de fi ne chemisorption heighthas the nearest distance for an H atom from UN(001)and UN(111)surfaces,and express it in terms of fractional coordinates.We optimize the H-UN(001)/UN(111)system with the minimum total energies(Table 2).The results for H chemisorption energies and Mulliken charges of individual configurations are listed in Table 3.As shown in Table 2,chemisorption heights of Bridge position are the same as Hollow position,and chemisorption energy differences are within several MeV.We think Bridge position to be equivalent with Hollow position.Toverify this statement,we still consider Bridge,Hollow,and U-Top positions for C and O chemisorptions.The most stable position for H chemisorptions on the UN(001)and UN(111)surfaces are Hollow position(chemisorption energy 13.06kJ/mol)and Bridge/Hollow position(chemisorption energy 11.532kJ/mol),respectively.

    TABLE 2.Total energies of H-UN(001)/UN(111)systems with different chemisorption positions and heights.Numerical values for H-UN(111)system are listed in parentheses.Meanings for Bridge, Hollow,U-top and N-Top configurations are discussed in the text

    TABLE 3.Chemisorption configurations,chemisorption energiesEC(inkJ/mol)andMullikenchargesQ(ine)forHatom.Numerical values for H-UN(111)system are listed in parentheses.Meanings for Bridge,Hollow,U-top and N-Top configurations are discussed in the text

    To further understand interaction of H atoms with the UN(001)surface,we analyze the projected density of states (PDOS)before and after H chemisorption in terms of electronic structure calculations,as shown in Fig.5(a)–5(c).In fact,the ground state valence electronic configurations of U and N atoms are 5f36d17s2and 2s22p3,respectively.From the point of ionic bonding behavior,the U6dand 7selectrons fill the N2pstates and the three U5felectrons form the highest occupied molecular orbital(HOMO)[29].The characteristic peak of H 1sPDOS in the energy range of 17.157eV and 20.271eV shifts towards lower energy band induced by H chemisorption(Fig.5(a))and expands its peak area,indicating that H atoms gain electrons as a result of chemisorption,which is in agreement with the Mulliken charge analysis (the third row in Table 3).We neglect others,porbitals inU atoms because 6d,5forbitals dominate the structural and electronic properties of the U element.

    Fig.5.Projected density of states(PDOS)of H 1sorbital(a),U 6d,5forbitals(b)and H 1s,U 6d,5forbitals(c)before and after H chemisorption on the Hollow position of UN(001)surface.The Fermi energy(dash line)stands at 0eV.

    Fig.6.Projected density of states(PDOS)of H 1sorbital(a),U 6d,5forbitals(b)and H 1s,U 6d,5forbitals(c)before and after H chemisorption on the Bridge or Hollow positions of UN(111) surface.The Fermi energy(dash line)stands at 0eV.

    We can see that H chemisorption causes the shape of U 5fPDOS with energy of?1.026eV~0eV to slightly change and peak position of U 5fPDOS shifts from 0.353eV to 0.502eV(Fig.5(b)).From this plot we can see that peakvalue decreases from 247.337states/eV to 211.083states/eV and peak area of U 6dPDOS obviously diminishes with energies of?1.042eV and 1.515eV,which show that U 6d,5forbitals both lose electrons,also in agreement with the Mulliken charge analysis(Table 3).Fig.5(c))depicts H 1sand U 6d,5fPDOS.H 1sorbitals remarkably overlap with U 6dorbitals in the energy of?5.043eV and 1.161eV.However, H 1sorbitals almost separate from U 6forbitals with energy intervals of?4.152eV and?1.241eV.It is known that the larger the overlapping area of PDOS,the higher the hybridized bonding.Therefore,the H atom will hybridize with the U atom as a consequence of H chemisorption.Electronic charges of U 6d,5forbitals(mainly U 5forbitals)transfer to the H 1sorbital,which is also consistent with the Mulliken charge analysis(Table 3).

    TABLE 4.Total energies of C-UN(001)/UN(111)systems with different chemisorption positions and heights.Numerical values for C-UN(111)system are listed in parentheses.Meanings for Bridge, Hollow,U-top and N-Top configurations are discussed in the text

    Similarly,PDOSs before and after H chemisorption in Bridge or Hollow positions for the UN(111)surface are shown in Figs.6(a)–6(c).H chemisorption induces an H 1speak around the Fermi level to the energy band in the energy range of?7.374eV to?2.502eV(Fig.6(a)).However, H chemisorption has little effect on U 6d,5fPDOSs.U 6dstates clearly hybridize with U 5fstates between?2.215eV and 2.00eV,as shown in Fig.6(b).H 1sstates clearly overlap with U 6d,5fstates(Fig.6(c)),and acquire electrons from U atom,which is consistent with Mulliken analysis(Table 3).

    B.C atom

    Previous report[2]has shown that U carbides can effectively retard corrosion of U metal.The crystal structure of UN is the same as that of UC(NaCl type,face-centered cubic structure)and the lattice constant is also very close to the latter(lattice constants of UN and UC are 0.4965nm and 0.4889nm,respectively).Therefore,we wonder whether chemisorption behavior of a C atom on UN(001) and UN(111)surfaces is also similar with that of a U monocarbide.

    TABLE 5.Chemisorption configurations,chemisorption energiesEC(in kJ/mol)and Mulliken chargesQ(ine)for C atom.Numerical valuesforC-UN(111)systemarelistedinparentheses.Meaningsfor Bridge,Hollow,U-topandN-Topconfigurationsarediscussedinthe text

    Next we perform electronic structure calculations of total energy for the C-UN(001)/UN(111)systems with different chemisorption positions and heights using the method discussed above and relax different configurations to find the optimal chemisorption positions and heights.The total energy results of the C-UN(001)/UN(111)systems are listed in Table 4.According to the chemisorption energy formula (Eq.(1)),a configuration with the maximum chemisorption energy is the most stable configuration for chemisorption on the UN(001)and UN(111)surface.Therefore,we optimize configurations with the minimum total energy for different chemisorption positions and the optimal configuration is the most stable configuration for certain chemisorption positions.

    ThechemisorptionenergyandMullikenchargeanalysisresults are presented in Table 5.From this table we can see that chemisorption energies reach the maximum value when the C atom chemisorbs or at the Bridge and N-top positions of the UN(001)surface(chemisorption energies are 25.513kJ/mol and 25.502kJ/mol,respectively).The chemisorption energy of the Bridge configuration is very close to that of the N-top configuration.The relaxtion calcultion shows that the former is unstable,and will transform to the latter.Therefore,the most stable configuration for C chemisorption on the UN(001)surface is N-top configuration.Similarly,relaxation result shows that the most stable configuration for C chemisorption on the UN(111)surface is the Bridge or Hollow configurations.

    To further understand the interactions of C with the UN(001)and(111)surfaces,we analyze PDOS before and after C chemisorption in terms of electronic structure calculations,as shown in Figs.7(a)–7(d)and Figs.8(a)–8(d). C 2sand 2pPDOSs shift towards a lower energy band after chemisorption(Fig.7(a)),and the peak area of C 2sand 2pPDOSs obviously increase,indicating that C atoms gain electrons from the adsorbate(UN(001)surface in the present work)as a result of chemisorption,which is in agreement with the Mulliken charge analysis(Table 5).U 6d,5fPDOSs before and after chemisorption are plotted in Fig.7(b).C chemisorption has a negligible effect on U 6dPDOS,however,the peak value of the U 6dPDOS decreases(Fig.7(b)), which shows that U 6dorbitals lose electrons.At the same time,C chemisorption also has a negligible effect on the U 5fPDOS in the energy interval of 0eV~1.520eV.However,a new characteristic peak appears in the energy range of?1.0eV~0.50eV,showing that U 5forbitals hybridize with C 2sor 2porbitals.As shown in Fig.7(b),peak position of U 5fPDOSshiftsfrom0.508eVto0.572eVandpeakvaluedecreases from 241.746states/eV to 227.908states/eV,indicating that U 5forbitals also lose electrons.Figs.7(c)–7(d))depict interactions of U 6d,5forbitals with C 2s,2porbitals.C 2sorbitals and U 6dorbitals produce a remarkable hybridization/mixing peak(Fig.7(c)),while the C 2sPDOS almost separates from the U 5fPDOS.However,C 2porbitals obviously overlap with U 6d,5forbitals(Fig.7(d)),showing that C 2porbitals hybrid with U 6d,5forbitals to form a covalent bond,which is in sharp contrast with Fig.7(c).Therefore, electronic charges of U 6dorbitals transfer to C 2s,2porbitals as a result of C chemisorption on the UN(001)surface and U 5forbitals transfer to C 2porbitals,these results are consistent with the Mulliken charge analysis(Table 5).

    As shown in Fig.8(a),C chemisorption widens the C 2ppeak around the Fermi level,and new C 2sstates appear in the energy interval of?5.241eV~?2.632eV to?21.352eV~?18.471eV(Fig.8(a)).However,C chemisorption also has a negligible effecton U 6d,5fPDOSs (Fig.8(b)).C 2sstates slightly overlap with U 6d,5fstates (Fig.8(c)).However,C 2pstates obviously hybridize with U 6d,5fstates(Fig.8(d))and acquire a majority of electrons (about 2/3)from the U atom,which is consistent with Mulliken analysis(Table 5).

    C.O atom

    Previous report[30]has shown that H2O chemisorption on U metal will result in the formation of UO2passivation film on the metal surface and that this film can prevent U metal from further oxidization.Therefore,investigation of O chemisorption on the UN surface may be helpful for understanding anti-corrosion mechanisms of U metal because UN passivation fi lm is also a well-known corrosion-resistant material.

    According to the minimum energy principle,the total energy of a system would be the minimum value for H2O chemisorption on the optimal position and the system would be the most stable one.Therefore,we first perform total energy calculations for O-UN(001)/UN(111)systems with different chemisorption positions and heights,and then optimize several systems with the minimum energies(Table 6).The calculation results are listed in Table 7.From this table,we can see that the most stable configuration for O chemisorption on the UN(001)surface is Hollow configuration.O chemisorption induces the UN(001)surface to reconstruct,where U atoms move outwards and N atoms move towards the matrix,thereby causing U-N bond length to change.The maximum relative change for U-N bond length reaches 15.79%,indicating that O atom strongly interacts with the UN(001)surface(not shown here).

    Fig.7.Projected density of states(PDOS)of C 2s,2porbital(a),U 6d,5forbital(b),C 2s,U 6d,5forbital(c)and C 2p,U 6d,5forbital (d)before and after C chemisorption on N-top position of the UN(001)surface.The Fermi energy(dash line)stands at 0eV.

    Fig.8.Projected density of states(PDOS)of C 2s,2porbital(a),U 6d,5forbital(b),C 2s,U 6d,5forbital(c)and C 2p,U 6d,5forbital (d)before and after C chemisorption on Bridge or Hollow positions of the UN(111)surface.The Fermi energy(dash line)stands at 0eV.

    Fig.9.Projected density of states(PDOS)of H 1s,O 2s,2porbital(a),U 6d,5forbital(b),O 2s,U 6d,5forbital(c)and O 2p,U 6d,5forbital(d)before and after O2chemisorption on the BU position of the UN(001)surface.The Fermi energy(dash line)stands at 0eV.

    Fig.10.Projected density of states(PDOS)of H 1s,O 2s,2porbital(a),U 6d,5forbital(b),O 2s,U 6d,5forbital(c)and O 2p,U 6d,5forbital(d)before and after H2O chemisorption on Bridge or Hollow positions of the UN(111)surface.The Fermi energy(dash line)stands at 0eV.

    TABLE 6.Chemisorption heights and chemisorption energiesEC(in kJ/mol)for O atom on UN(001)and UN(111)surafces.Numerical values for O-UN(111)system are listed in parentheses.Meanings for Bridge,Hollow,U-top and N-Top configurations are discussed in the text

    TABLE 7.Chemisorption energiesEC(in kJ/mol)and Mulliken chargesQ(ine)for O atom

    V.CONCLUSION

    We also performed electronic structure calculations for O chemisorptionontheUN(001)andUN(111)surfaces,anddepictedthePDOSbeforeandafterchemisorptioninFigs.9(a)–9(d)and Figs.10(a)–10(d).C 2sand 2pPDOSs shift towards a lower energy band after chemisorption(Fig.9(a)) and the peak area of the C 2pPDOS increases,indicating that C atoms gain electrons from the UN(001)as a result of chemisorption,which is in agreement with the Mulliken charge analysis(the third row in Table 7).Peak areas of the U 6d,5fPDOS in the energy of?1.5eV~1.3eV diminish,which shows that U 6d,5felectrons transfer to the O 2sor 2porbitals.However,peak areas of the U 6d,5fPDOS in the energy of?5.0eV~?1.50eV increase,indicating that U 6d,5forbitals may hybridize with O 2sor 2porbitals(Fig.9(b)).The peak position of U 5fPDOS shifts from0.354eVto0.418eV,andthepeakvaluedecreasesfrom 247.361states/eV to 237.268states/eV,implying that U 5forbitals lose electrons.U 6dorbitals and O 2sorbitals form a relatively small overlapping peak,while the U 5fPDOS is almost separate from the O 2sPDOS(Fig.9(c)).However,O 2pPDOSobviouslyoverlapwithU6d,5fPDOSs(Fig.9(d)), particularly the U 6dPDOS,which is in sharp contrast with Fig.9(c).It is shown that the smaller the overlapping area,the weaker the chemical bonding and the lower the transferred charge.Therefore,electronic charges of U 6dorbitals transfer to O 2sand 2porbitals(mainly O 2porbitals)and U 5forbitals transfer to O 2porbitals,which is in agreement with the Mulliken charge analysis(Table 7).

    From Fig.10(a),we can see that O chemisorption shifts the O 2s,2ppeak to a lower energy,and widens O 2pPDOS. However,O chemisorption has an ignorable effect on U 6d, 5fPDOSs(Fig.10(b)).O 2sstates slightly overlap with U 6d,5fstates(Fig.10(c)).However,O 2pstates remarkably hybridize with U 6d,5fstates(Fig.10(d))and acquire electrons from the U atom,which is consistent with Mulliken analysis(Table 7).

    In the present work,we performed density functional theory calculations for H,C,and O chemisorptions on UN(001) and UN(111)surfaces using the generalized gradient approximation(GGA)and revised Perdew-Burke-Ernzerhof(RPBE) exchange-correlation functional at a non-spin polarized level with a periodic slab model.The results show that Hollow, N-top,and Hollow chemisorption sites are the most stable sites for H,C,and O atoms chemisorbed on the UN(001) suraface,respectively.The calculated electronic density of states(DOS)demonstrate electronic charge transfer betweens,porbitals in chemisorbed atoms and U 6d,5forbitals and transferred electronic charges agree with the Mulliken charge analysis.Electronic structure calculations of H,C and O atom chemisorption on Bridge,Hollow,and U-Top positions of the UN(111)surface indicate that Bridge position is equivalent with Hollow position,two symmetrical chemisorption positions exist on UN(111)surface,namely Bridge(or Hollow) and U-Top,and the most stable chemisorption position for H, C,and O atoms is Bridge(or Hollow)position.

    In the future,we plan to investigate the chemisorption of other atoms or molecules on the surface of actinide compounds,especially promising nuclear fuels such as Pu and U compounds,providing corresponding anti-corrosion techniques,and improving operational life and ef fi ciency for nuclear fuel.

    ACKNOWLEDGMENTS

    We would like to thank our colleagues for their helpful comments and suggestions on this manuscript.

    [1]Kotomin E A and Mastrikov Yu A.J Nucl Mater,2008,377: 492–495.

    [2]Bocharov D,Gryaznov D,Zhukovskii Yu F,et al.Surf Sci, 2011,605:396–400.

    [3]Shuai M B,Hu H R,Wang X,et al.J Mol Struc-Theochem, 2011,536:269–276.

    [4]Dholabhai P P and Ray A K.J Alloy Compd,2007,444-445: 356–362.

    [5]Burns C J.Science,2005,309:1823–1824.

    [6]Shibata H,Tsuru T,Hirata M,et al.J Nucl Mater,2010,401: 113–117.

    [7]Weck P F,Kim E,BalakrishnanN,etal.Chem Phys Lett,2007,443:82–86.

    [8]Evarestov R A,Bandura A V,Losev M V,et al.J Comput Chem,2008,29:2079–2087.

    [9]Petit L,Svane A,Szotek Z,et al.Phys Rev B,2009,80: 045124.

    [10]Sunder S and Miller N H.J Alloy Compd,1998,271:568–572.

    [11]Brooks M S and Glotzel D.Physica B,1980,102:51–58.

    [12]Brooks M S.J Phys F Met Phys,1984,14:639–640.

    [13]Sedmidubsky D,Konings R J,Novak P.J Nucl Mater,2005,344:40–44.

    [14]Kotomin E A,Grimes R W,Mastrikov Y,et al.J Phys-Condens Mat,2007,19:106208.

    [15]Evarestov R A,Losev M V,Panin A I,et al.Phys Status Solidi B,2008,245:114–122.

    [16]Czekata M S,Talik E,Troc R,et al.Phys Rev B,2007,76: 144426.

    [17]Fynn R A and Ray A K.Phys Rev B,2007,76:115101.

    [18]Savrasov S Y and Kotliar G.Phys Rev Lett,2000,84:3670–3673.

    [19]Reihl B,Hollinger G,Himpsel F J.Phys Rev B,1983,28: 1490–1494.

    [20]Ritchie A G.J Nucl Mater,1981,102:170–182.

    [21]Winer K,Colmenares C A,Smith R L.Surf Sci,1987,183: 67–99.

    [22]Zhukovskii Yu F,Bocharov D,Kotomin E A,et al.Surf Sci, 2009,603:50–53.

    [23]Zhukovskii Yu F,Bocharov D,Kotomin E A.J Nucl Mater, 2009,393:504–507.

    [24]Tasker P W.J Phys C Solid State,1979,12:4977–4984.

    [25]Wang Y and Sun Y.J Phys-Condens Mat,2000,12:L311–L316.

    [26]Hay P J and Martin R L.J Chem Phys,1998,109:3875–3881.

    [27]Delley B.Phys Rev B,2002,66:155125.

    [28]Huda M N and Ray A K.Physica B,2004,352:5–17.

    [29]Marutzk M,Barkow U,Schoenes J,et al.J Magn Magn Mater, 2006,299:225–230.

    [30]Hodkin E N.J Nucl Mater,1977,67:171–180.

    10.13538/j.1001-8042/nst.25.050502

    (Received March 28,2014;accepted in revised form June 27,2014;published online October 4,2014)

    ?SupportedbyNationalNaturalScienceFoundationofChina (Nos.51401237,51271198 and 11474358)and Self-Topics Fund of Xi’an Research Institute of High Technology(Nos.2014QNJJ018 and YX2012cxpy06)

    ?Corresponding author,rusong231@126.com

    猜你喜歡
    王飛
    滬指失守3000點(diǎn)
    公募基金2023年四季度增倉(cāng)股
    公募基金2023年四季度減倉(cāng)股
    兩市融資統(tǒng)計(jì)(1月12日~1月18日)
    兩市融券統(tǒng)計(jì)(1月12日~1月18日)
    兩市融資統(tǒng)計(jì)(1月5日~1月11日)
    靜水流深
    家人春節(jié)照
    市場(chǎng)觀察(1)
    市場(chǎng)觀察(2)
    我要看日韩黄色一级片| 男人添女人高潮全过程视频| 亚洲av二区三区四区| 国产黄频视频在线观看| 99九九线精品视频在线观看视频| 一本一本综合久久| 国产成人精品一,二区| 女人久久www免费人成看片| 日日啪夜夜撸| 18禁在线播放成人免费| 嘟嘟电影网在线观看| 午夜视频国产福利| 日韩人妻高清精品专区| 久久人人爽人人爽人人片va| 人妻少妇偷人精品九色| 少妇的逼水好多| 边亲边吃奶的免费视频| 国产男人的电影天堂91| 男人和女人高潮做爰伦理| 老师上课跳d突然被开到最大视频| 少妇高潮的动态图| 又大又黄又爽视频免费| 亚洲高清免费不卡视频| videos熟女内射| 国产白丝娇喘喷水9色精品| 日本色播在线视频| 国产高清有码在线观看视频| 啦啦啦啦在线视频资源| 国产成人精品福利久久| av国产免费在线观看| 在线观看美女被高潮喷水网站| 久久人人爽人人片av| 精品一品国产午夜福利视频| 91午夜精品亚洲一区二区三区| 日韩大片免费观看网站| 在线 av 中文字幕| 80岁老熟妇乱子伦牲交| 国产亚洲5aaaaa淫片| 欧美国产精品一级二级三级 | 男女无遮挡免费网站观看| 肉色欧美久久久久久久蜜桃| 亚洲伊人久久精品综合| 亚洲四区av| 老师上课跳d突然被开到最大视频| 亚洲成色77777| 久久精品久久久久久噜噜老黄| 午夜免费鲁丝| 亚洲美女搞黄在线观看| av.在线天堂| 亚洲av.av天堂| 好男人视频免费观看在线| 亚洲图色成人| 精品国产一区二区三区久久久樱花 | 亚洲精品国产色婷婷电影| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 人妻夜夜爽99麻豆av| 国产男女内射视频| 国产精品一二三区在线看| 欧美老熟妇乱子伦牲交| 免费观看a级毛片全部| 色视频在线一区二区三区| 国产无遮挡羞羞视频在线观看| 日日摸夜夜添夜夜添av毛片| av国产免费在线观看| 久久6这里有精品| 亚洲av不卡在线观看| www.av在线官网国产| 男女下面进入的视频免费午夜| 国精品久久久久久国模美| 成年av动漫网址| 色综合色国产| 免费不卡的大黄色大毛片视频在线观看| 最后的刺客免费高清国语| 97在线人人人人妻| 亚洲av欧美aⅴ国产| 日本猛色少妇xxxxx猛交久久| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 国产黄色免费在线视频| 久久青草综合色| 国产精品久久久久久久久免| 欧美人与善性xxx| 成年美女黄网站色视频大全免费 | 男人添女人高潮全过程视频| 国产精品久久久久久久电影| 精品国产三级普通话版| 欧美另类一区| 一区二区三区免费毛片| 国产视频内射| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久成人| 最近中文字幕2019免费版| 免费观看a级毛片全部| 多毛熟女@视频| 免费大片18禁| 好男人视频免费观看在线| 婷婷色综合www| av不卡在线播放| 在线免费观看不下载黄p国产| 91精品国产九色| 少妇高潮的动态图| 啦啦啦在线观看免费高清www| a 毛片基地| 午夜免费男女啪啪视频观看| av国产免费在线观看| 六月丁香七月| 成人综合一区亚洲| 亚洲熟女精品中文字幕| 插阴视频在线观看视频| 人妻 亚洲 视频| 2022亚洲国产成人精品| 久久 成人 亚洲| 国产在线一区二区三区精| 日本-黄色视频高清免费观看| 2018国产大陆天天弄谢| 99热全是精品| 亚洲欧美日韩东京热| 视频区图区小说| 97热精品久久久久久| 99久久人妻综合| 欧美区成人在线视频| 久久久久视频综合| 99热这里只有是精品在线观看| 欧美日本视频| 99久久精品热视频| 久久久久国产精品人妻一区二区| 黄色配什么色好看| 久久久国产一区二区| 最近的中文字幕免费完整| 成人一区二区视频在线观看| 免费观看a级毛片全部| 一区二区三区免费毛片| 久久久欧美国产精品| 久久99蜜桃精品久久| 国产黄片视频在线免费观看| 一个人免费看片子| 免费高清在线观看视频在线观看| av国产久精品久网站免费入址| 国产成人精品一,二区| 日韩一本色道免费dvd| 日韩成人av中文字幕在线观看| 99久久人妻综合| 大话2 男鬼变身卡| 深爱激情五月婷婷| 又黄又爽又刺激的免费视频.| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 国产色爽女视频免费观看| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 亚洲第一av免费看| 观看av在线不卡| 一区二区三区乱码不卡18| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| 国产黄片视频在线免费观看| 在线观看免费视频网站a站| 街头女战士在线观看网站| 91精品国产国语对白视频| 尤物成人国产欧美一区二区三区| 亚洲精品日韩在线中文字幕| 午夜老司机福利剧场| 秋霞伦理黄片| 日韩不卡一区二区三区视频在线| 久久人人爽人人片av| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 水蜜桃什么品种好| 亚洲成色77777| 免费久久久久久久精品成人欧美视频 | 99久久人妻综合| 日韩欧美 国产精品| 成人漫画全彩无遮挡| 直男gayav资源| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 欧美+日韩+精品| 我的女老师完整版在线观看| 亚洲精品中文字幕在线视频 | 国产老妇伦熟女老妇高清| 最近最新中文字幕大全电影3| 男的添女的下面高潮视频| 免费观看性生交大片5| 又爽又黄a免费视频| 91久久精品电影网| 国模一区二区三区四区视频| 伦精品一区二区三区| 亚洲综合色惰| 极品教师在线视频| 永久免费av网站大全| 欧美日韩视频高清一区二区三区二| av黄色大香蕉| 精品人妻视频免费看| 午夜老司机福利剧场| 欧美高清成人免费视频www| 亚洲欧美成人综合另类久久久| 五月天丁香电影| 色5月婷婷丁香| 色婷婷av一区二区三区视频| 国产视频内射| 成人毛片a级毛片在线播放| 久久97久久精品| 国产 一区 欧美 日韩| 亚洲精品视频女| 大片免费播放器 马上看| 日本欧美视频一区| 少妇人妻 视频| 精品人妻熟女av久视频| 久久国产精品大桥未久av | 乱系列少妇在线播放| 国产色爽女视频免费观看| 亚洲真实伦在线观看| 日韩欧美精品免费久久| 成人高潮视频无遮挡免费网站| xxx大片免费视频| 如何舔出高潮| 男女啪啪激烈高潮av片| av国产久精品久网站免费入址| 18+在线观看网站| 亚洲伊人久久精品综合| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 精品少妇久久久久久888优播| tube8黄色片| 国产精品福利在线免费观看| 大香蕉97超碰在线| 亚洲色图av天堂| 91久久精品国产一区二区三区| av黄色大香蕉| 又大又黄又爽视频免费| 欧美3d第一页| 亚洲精品视频女| 亚洲综合精品二区| 国产伦在线观看视频一区| 中国三级夫妇交换| 成年av动漫网址| 午夜日本视频在线| 国产片特级美女逼逼视频| 色综合色国产| 精品少妇久久久久久888优播| 联通29元200g的流量卡| 久久久久久伊人网av| 欧美丝袜亚洲另类| av在线蜜桃| 久久 成人 亚洲| 免费看不卡的av| 一本色道久久久久久精品综合| 免费看av在线观看网站| 国产极品天堂在线| 亚洲国产色片| 久久人妻熟女aⅴ| av国产精品久久久久影院| 久久婷婷青草| 亚洲精品乱久久久久久| 亚洲图色成人| 视频区图区小说| 麻豆成人午夜福利视频| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 免费看不卡的av| 五月玫瑰六月丁香| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 久久久色成人| 你懂的网址亚洲精品在线观看| 午夜免费鲁丝| 国产成人一区二区在线| 成人特级av手机在线观看| 尤物成人国产欧美一区二区三区| 免费播放大片免费观看视频在线观看| 秋霞在线观看毛片| 日韩一本色道免费dvd| 春色校园在线视频观看| 精品国产露脸久久av麻豆| 久久99热这里只频精品6学生| 国产av一区二区精品久久 | 国产精品国产三级国产专区5o| 午夜免费男女啪啪视频观看| 免费观看在线日韩| 免费观看的影片在线观看| 国产中年淑女户外野战色| 岛国毛片在线播放| 亚州av有码| 亚洲欧美日韩另类电影网站 | 两个人的视频大全免费| 亚洲精品国产色婷婷电影| 日本黄色片子视频| av.在线天堂| 精品午夜福利在线看| 秋霞在线观看毛片| 成人亚洲精品一区在线观看 | 亚洲va在线va天堂va国产| 涩涩av久久男人的天堂| 亚洲精品aⅴ在线观看| 久久午夜福利片| 人妻制服诱惑在线中文字幕| 午夜免费鲁丝| 熟女av电影| 亚洲欧洲日产国产| 亚洲丝袜综合中文字幕| 日韩中文字幕视频在线看片 | 在线观看三级黄色| av在线老鸭窝| 日韩大片免费观看网站| 直男gayav资源| 精品久久久久久久久亚洲| a 毛片基地| 亚洲性久久影院| 欧美日韩视频精品一区| 欧美zozozo另类| 国产亚洲av片在线观看秒播厂| 午夜福利在线观看免费完整高清在| 男男h啪啪无遮挡| 免费看光身美女| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 亚洲精品国产色婷婷电影| 成人一区二区视频在线观看| 精品久久久久久久久av| h视频一区二区三区| 精品午夜福利在线看| 中文在线观看免费www的网站| 最新中文字幕久久久久| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| 久久精品国产亚洲av天美| 五月伊人婷婷丁香| 亚洲人成网站在线播| 亚洲欧美日韩无卡精品| 香蕉精品网在线| 少妇人妻一区二区三区视频| 一级av片app| 久久99蜜桃精品久久| 久久精品国产亚洲网站| 免费人妻精品一区二区三区视频| 热re99久久精品国产66热6| 日日啪夜夜撸| 美女高潮的动态| 2022亚洲国产成人精品| 性色av一级| 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 只有这里有精品99| 美女高潮的动态| 一区二区三区精品91| 久久久久国产精品人妻一区二区| 久久久午夜欧美精品| 黄色视频在线播放观看不卡| 日韩人妻高清精品专区| 韩国av在线不卡| 日韩av不卡免费在线播放| 国产 精品1| 两个人的视频大全免费| 狂野欧美激情性bbbbbb| 天天躁夜夜躁狠狠久久av| a 毛片基地| 久久久久久九九精品二区国产| 色婷婷久久久亚洲欧美| 久久热精品热| 黄色视频在线播放观看不卡| 久久久午夜欧美精品| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| 免费看av在线观看网站| 26uuu在线亚洲综合色| 久久久久久久国产电影| 亚洲伊人久久精品综合| 国产一区有黄有色的免费视频| 中国三级夫妇交换| 国产淫语在线视频| 噜噜噜噜噜久久久久久91| 亚洲精品一二三| 中国国产av一级| 国产毛片在线视频| 欧美zozozo另类| 一个人看的www免费观看视频| 亚洲高清免费不卡视频| 欧美三级亚洲精品| 亚洲人成网站在线播| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 日韩制服骚丝袜av| 精品亚洲成国产av| 一级片'在线观看视频| 精品一区二区三卡| av一本久久久久| 午夜免费男女啪啪视频观看| 视频中文字幕在线观看| 国产精品一区二区三区四区免费观看| 免费观看无遮挡的男女| 精品国产一区二区三区久久久樱花 | 久久99热6这里只有精品| 亚洲欧美精品专区久久| 国产欧美日韩一区二区三区在线 | 一区二区三区精品91| 免费看av在线观看网站| 国内揄拍国产精品人妻在线| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 精品一品国产午夜福利视频| 成人18禁高潮啪啪吃奶动态图 | 国产欧美日韩一区二区三区在线 | 观看av在线不卡| 欧美高清性xxxxhd video| 久久久成人免费电影| 在线观看人妻少妇| 亚洲欧洲日产国产| 在线精品无人区一区二区三 | 亚洲第一区二区三区不卡| 久久久色成人| 婷婷色麻豆天堂久久| 国产亚洲一区二区精品| 日韩精品有码人妻一区| 又黄又爽又刺激的免费视频.| 国产亚洲欧美精品永久| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 亚洲国产精品成人久久小说| 国产精品福利在线免费观看| 高清毛片免费看| 亚洲av.av天堂| 日韩视频在线欧美| 成人影院久久| 精品酒店卫生间| 欧美xxxx黑人xx丫x性爽| 成年美女黄网站色视频大全免费 | 日本欧美国产在线视频| 日韩av不卡免费在线播放| 啦啦啦啦在线视频资源| 日韩制服骚丝袜av| 日韩电影二区| 青青草视频在线视频观看| 国产欧美亚洲国产| 99久久精品国产国产毛片| 在线观看av片永久免费下载| 亚洲av综合色区一区| 少妇丰满av| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 国产在线视频一区二区| 亚洲国产最新在线播放| 久久热精品热| 欧美日韩亚洲高清精品| 亚洲av.av天堂| 成年女人在线观看亚洲视频| 伦理电影免费视频| 伦理电影大哥的女人| 日韩免费高清中文字幕av| 两个人的视频大全免费| 免费看av在线观看网站| 日日撸夜夜添| 国产午夜精品一二区理论片| 久久97久久精品| 高清午夜精品一区二区三区| 欧美精品亚洲一区二区| 婷婷色综合大香蕉| 在线观看一区二区三区激情| 狂野欧美激情性xxxx在线观看| 看免费成人av毛片| 丰满少妇做爰视频| 天天躁夜夜躁狠狠久久av| 男人狂女人下面高潮的视频| 99久久中文字幕三级久久日本| 久久精品熟女亚洲av麻豆精品| 国产精品女同一区二区软件| 精品人妻熟女av久视频| 亚洲精品久久久久久婷婷小说| 香蕉精品网在线| 99久久中文字幕三级久久日本| 日韩欧美一区视频在线观看 | 亚洲精品456在线播放app| www.色视频.com| 亚洲丝袜综合中文字幕| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 亚洲精品第二区| 五月伊人婷婷丁香| 久久国产精品男人的天堂亚洲 | 国产高清不卡午夜福利| 国产黄色视频一区二区在线观看| 99热国产这里只有精品6| 一级爰片在线观看| 久久影院123| 一个人看的www免费观看视频| 男人爽女人下面视频在线观看| 国产黄频视频在线观看| 老师上课跳d突然被开到最大视频| 免费av中文字幕在线| 亚洲国产日韩一区二区| 一本一本综合久久| 久久国产乱子免费精品| 国产亚洲av片在线观看秒播厂| 91久久精品国产一区二区三区| 女人久久www免费人成看片| 久久久久网色| av国产免费在线观看| 国产精品麻豆人妻色哟哟久久| 久久影院123| 亚洲成人av在线免费| 久久久久国产精品人妻一区二区| 少妇人妻 视频| 秋霞伦理黄片| 午夜福利视频精品| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久久久免| 国产男人的电影天堂91| 伊人久久精品亚洲午夜| 久久国内精品自在自线图片| 亚洲美女黄色视频免费看| 最近最新中文字幕大全电影3| 国产精品一区二区在线不卡| 黄色日韩在线| 狂野欧美激情性bbbbbb| 国产伦精品一区二区三区视频9| 人妻 亚洲 视频| 午夜福利视频精品| 男女边摸边吃奶| 免费黄网站久久成人精品| 免费久久久久久久精品成人欧美视频 | 亚洲精品,欧美精品| 国产乱人偷精品视频| 91久久精品国产一区二区三区| 亚洲av二区三区四区| 亚洲人与动物交配视频| 99久久精品热视频| 亚洲精品一二三| 一区二区三区乱码不卡18| 蜜臀久久99精品久久宅男| 老熟女久久久| 国产精品一区二区在线不卡| 国产av码专区亚洲av| 日韩一区二区三区影片| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 中文字幕精品免费在线观看视频 | 国产色爽女视频免费观看| 深爱激情五月婷婷| 永久网站在线| 嘟嘟电影网在线观看| 啦啦啦在线观看免费高清www| 亚洲最大成人中文| av女优亚洲男人天堂| 少妇丰满av| 国产av一区二区精品久久 | 熟妇人妻不卡中文字幕| 丰满乱子伦码专区| 波野结衣二区三区在线| 秋霞在线观看毛片| 国产精品国产三级国产av玫瑰| 欧美+日韩+精品| 老司机影院成人| 日韩伦理黄色片| av视频免费观看在线观看| 国产精品久久久久久av不卡| 午夜福利在线在线| av在线app专区| 一级毛片久久久久久久久女| 免费观看在线日韩| 欧美日韩亚洲高清精品| 夫妻午夜视频| 黑丝袜美女国产一区| 国产中年淑女户外野战色| 国产成人免费观看mmmm| 亚洲,欧美,日韩| 亚洲四区av| 看非洲黑人一级黄片| 国产av一区二区精品久久 | 亚洲中文av在线| 亚洲精品第二区| 97超视频在线观看视频| 亚洲欧美日韩东京热| 欧美精品亚洲一区二区| 七月丁香在线播放| 伊人久久精品亚洲午夜| 国产成人aa在线观看| 国产成人91sexporn| 高清视频免费观看一区二区| 精品一区二区三区视频在线| 国产精品成人在线| 成人美女网站在线观看视频| 女人十人毛片免费观看3o分钟| 男女啪啪激烈高潮av片| 老女人水多毛片| 色视频在线一区二区三区| 亚洲av欧美aⅴ国产| 高清在线视频一区二区三区| 综合色丁香网| 国产永久视频网站| 久久精品国产鲁丝片午夜精品| 久久综合国产亚洲精品| 亚洲精品aⅴ在线观看| 久久久久久久久久久丰满| 欧美日韩视频高清一区二区三区二| 边亲边吃奶的免费视频| 精品人妻一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 亚洲国产精品999| 成人影院久久| 99久国产av精品国产电影| 最近中文字幕2019免费版| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 国产精品一二三区在线看| av免费在线看不卡| 中文资源天堂在线| 插阴视频在线观看视频| 国产精品成人在线| 一级爰片在线观看| 噜噜噜噜噜久久久久久91| 久久久久久久久久人人人人人人|