• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steady thermal hydraulic characteristics of nuclear steam generatorsbased on the drift flux code model?

    2014-08-05 09:13:26ZHANGXiaoYing張小英CHENHuanDong陳煥棟BAINing白寧ZHUYuanBing朱元兵RENZhiHao任志豪andHUANGKai黃凱
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:志豪

    ZHANG Xiao-Ying(張小英),CHEN Huan-Dong(陳煥棟),BAI Ning(白寧),ZHU Yuan-Bing(朱元兵),REN Zhi-Hao(任志豪),and HUANG Kai(黃凱),

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    Steady thermal hydraulic characteristics of nuclear steam generators
    based on the drift flux code model?

    ZHANG Xiao-Ying(張小英),1CHEN Huan-Dong(陳煥棟),1BAI Ning(白寧),2ZHU Yuan-Bing(朱元兵),2REN Zhi-Hao(任志豪),2and HUANG Kai(黃凱)2,?

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG),a 1D simulation code based on the four-equation drift flux model is developed.The U-tube channels presumably consist mainly of the primary channel,secondary channel,and tube wall.In the sub-cooling regions of the primary and secondary channels,flow is simulated using the single-phase flow model,whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model.The first-order equations of upwind difference are derived based on the staggered grid.Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement.The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%,75%,50%,30%,and 15%power conditions.Analysis results are then compared with the simulation results obtained using RELAP5.

    U-tube steam generator,Thermal hydraulic characteristic,Steady simulation,Four-equation drift flux model

    I.INTRODUCTION

    The U-tube steam generator(SG)is a heat exchanger that connects the primary and secondary coolant loops in a nuclear power plant(NPP).According to worldwide statistics, operational accidents of SG-related pressurized water reactor(PWR)account for a large proportion of all PWR accidents[1].Approximately 1/4 of the unplanned outage cases in PWR NPPs are caused by SG failure.Given that the flow and heat transfer in the primary and secondary loops are closely connected to the safety and stable operation of the SG,it is of importance to understand their thermal hydraulic characteristics.

    The U-tube SG can presumably be a nonlinear,complex system with many flowing parameters.Studies on the thermal hydraulic behavior of SGs have achieved greatly.The followings are examples of SG simulation codes.The THEDA2 code developed in the U.S.uses 3D conservation equations of mass,momentum,and energy for a homogeneous equilibrium mixture(HEM)model[2].The ATHOS code applies either the three-equation HEM model or the four-equation drift flux model with options for 1D,2D,and 3D analyses[3].The THIRST code developed by AECL for 700MWe SG,is a 1D thermal hydraulic[4].Several thermal hydraulic codes for NPP SGs were developed in China.Based on the 1D separated fluid model,the SGTH-2 performs steady analysis of the U-tube SG[5].The MOFS is based on the 1D HEM model[6],while the SG code for high-temperature gas cooling reactors follows the 2D HEM model[7].

    Most of the existing thermal hydraulic codes for NPP SGs utilize the classical HEM model,which treats the two-phaseflow of steam and water as a uniform mixture.However,it usually simulates the flow in the secondary loop with areaaveraged variables.Given that coolant temperature varies significantly from the top to bottom of the U-tube bundles, both temperature and heat transfer coefficients vary considerably in the two flows.To examine the thermal-hydraulic characteristics of NPP SGs thoroughly,a code with a detailed model shall be developed.

    In this paper,we present a thermal hydraulic code for NPP SGs in a geometric model composed of the primary and secondary loops,U-tube,and steam room.The unique secondary loop model is divided into hot and cold sides,and the flow in it is simulated using the four-equation drift flux model and is analyzed thermal-hydraulically through coupling with heat transfer of the tube wall.Finally,the code is used to implement and verify the Qinshan NPP SG.The thermal hydraulic parameters are computed at 100%,75%,50%,30%,and 15% power rates.

    II.GEOMETRIC MODEL

    Given the complicated actual structure,the geometry of the nuclear SG should be simplified in modeling and thermal hydraulic simulation.This work considers the U-tube NPP SG. The primary loop of the SG is assumed as a straight tube of equal length.The secondary loop is circular and consists of the water supply chamber and the descending and ascending channels.The ascending channel consists of the sub-cooling, boiling,and ascent sections.In the secondary loop,the division of hot and cold sides is defined by the flow direction in the primary loop.The side with the primary inlet flow(the hot side)is hotter than the side with the primary outlet flow (the cold side).The SG structure is composed of the primary and secondary loops,heat transfer tube,and steam room,as shown in Fig.1.The straight section of the two loops is 7-mlong.The U-tubes are 0.022m in diameter,with a total length of 16m.

    Fig.1.Simplified geometric frame of the SG.

    III.FIELD EQUATIONS

    In the U-tube SG,the flow types are of the single-and two-phase regions.Specifically,the flow in the primary loop and in sub-cooling sections of the secondary loop remains single-phase,whereas the two-phase region is illustrated by the flow in the boiling sections of the secondary loop.The two-phase regions are complicated in terms of flow and heat transfer.Thus,two sets of governing equations are established to model the single-and two-phase flows.

    A.Balance equations for single-phase regions

    In the sub-cooling sections of the U-tube SG,the singlephase region covers the primary loop,descending channel, and sub-cooling sections of the secondary loop.These regions utilize the single-phase flow model,and the respective balance equations of mass,energy,and momentum are as follows:

    B.Balance equations for two-phase regions

    The two-phase flow is mainly observed in the boiling section of the secondary loop of the U-tube SG.The equation of the four-equation drift flux model governs this region.This equation considers the velocity slipurat the two-phase interface and the variation in void fraction along the flow path.In our work,the 1D,area-averaged governing equations of the four-equation drift flux model used are expressed as[8]:

    where the subscript“m”pertains to fluid mixture parameters;ρmis density;Gmis mass rate;umis velocity;hmis enthalpy; andur=ug?ufis the relative velocity of the liquid and gaseous phases.

    C.Heat transfer model

    We model the heat transfer between the primary and secondary loops in the U-tube SG through the heat conduction of the tube wall.The heat transfer of the U-tube wall can then be simulated through 1D conduction in the cylindrical geometry.The convection heat transfer rate between the wall and the coolant is the source term,and the heat conduction equation is given by

    D.Correlations

    To close the field equations discussed above,we must determine the correlations in the thermal property of the fluid and wall materials,as well as the criteria for the different flow structures,resistances,heat,and mass transfers.Theunknown variables that must be derived from correlations includeρm,cp,m,Γg,hf,hg,τwf,τwg,Uwf,Uwg,Uhf,Uhg,q,ρf, andρg.

    To identify the thermal property of water and steam,we apply the formulas provided by the industrial standard IAPWSIF97[9].The property of the Incoloy-800 alloy is considered for the tube wall.Moreover,we apply the model of Taitel and Dukler in the structural criteria for flow[10].According to their model,bubble flow transitions to slug flow when bubble speedubis greater than Taylor bubble speedutbgiven a low flow rate in the tube with a small diameter tube(Gm<2000kg/(m2s)).This transition occurs when the void fraction is greater than 0.5 at an increased flow rate (Gm>3000kg/(m2s)),as shown by

    The transition from slug flow to annular flow can be determined through the superficial velocity and the Kutateladze (Ku)number of the flow[11].The transition is observed in the flow in the channels with small diameters when gaseous superficial velocity exceeds the critical superficial velocityjg,crit.However,the transition is initiated when the gaseous Ku number is greater than the critical Ku number,as expressed by

    The flow resistance in the U-tube SG considers the resistance to both gravitation and friction.The Darcy formula is applied in relation to the friction resistance of the singlephase flow.The split-phase friction model of Martinelli is employed[11]in relation to the friction resistance in the twophase flow as:

    The convective heat transfer coefficient of the single-phase flow is calculated using the D–B formula with regard to flow in the primary loop and in the pre-heating section of the secondary loop.The D–B formula is calculated according to Chen’s equation for the boiling section of the secondary loop [12],

    The onset of nucleate boiling is computed using the model developed by Bergles and Rohsenow[13]:

    IV.NUMERICAL SCHEMES

    A.Numerical schemes of the flow field

    In our solution,we apply the semi-implicit difference scheme.We treat the convection terms in the mass and energy equations,the pressure gradient,and the two-phase mass transfer in the momentum equation implicitly,whereas all other differential terms are examined explicitly.The staggered grids are applied in discretization,and two groups of control volumes are established in the same flow channel. The control volumes for pressure,void,density,and enthalpy are arranged in a staggered formation along with those for velocity.The mass and energy equations are discretized given thecontrolvolumegroupsi?1,i,andi+1,whicharealsoimplemented by control volume groupsj?1,j,andj+1 given the momentum equation.The values of the flow parameter are presumably uniform in all control volumes.Fig.2 depicts the established staggered grids and control volumes.

    Fig.2.Staggered grids for the discretization of flow conservation equations.

    In relation to the four-equation drift flux model used in the secondary loop,the semi-implicit discretization equations are listed below[13]:

    The discretization equations of the single-phase flow in the primary loop are similar in form to those given above. To solve these discretization equations,we adopt a velocity–pressure correction scheme.First,the unknown pressure of the new time step is assigned a value equal to that of the old time step.Subsequently,the momentum equation is solved to estimate the velocity value of the new time step.Once the mixture mass,gaseous mass,and mixture energy equationsarerearranged,weobtainthefollowingmatrixequations for

    We apply a large time step,such as Δt=106s,for the steady state analysis.In this case,the time-derivative term is very small and can be disregarded in the discretization equations.Thus,the balance equations above can then be applied to the steady-state solution.

    B.Solution for the U-tube wall conduction

    Equation(8)is integrated into cylindrical volume 2πrdrdlat the time step Δtin relation to the heat conduction of the U-tube wall to generate the discretization equation for wall temperature.

    C.Cross-iteration of heat balance and the natural circulation condition

    In the U-tube SG,heat transfer is simultaneous in the primaryandsecondaryloops;thus,flowandheattransferinboth loops must be coupled for solving.We adopt a coupled iteration scheme that converges these factors when both heat balance and the natural circulation condition are satisfied.In heat balance,the heat transfer in the primary loop is equal to that in the secondary loop.In the natural circulation condition,the head of driving pressure must meet the total pressure drop of the entire system,that is,

    In the iteration of heat balance,the heat fluxes in the primary and secondary loops are initially assumed to be a group of values.Subsequently,matrix Eq.(18)is solved to determine the flow parameters.The heat fluxes in the two loops are then computed in turn.In addition,the heat balance condition is validated.If the difference in heat flux between the primary and secondary loops is greater than a preset limit, the temperature of the coolant that enters the primary loop is corrected and a new iteration of heat balance is initiated.

    In the iteration of natural circulation,the dichotomy scheme is applied.First,the value of flow rateWis set,and the difference in pressure head and resistance is computed asf(W)=DH?D.The flow rate is then modified slightly to flip the sign off(W′).The value of the flow rate is updated byWn+1=(W+W′)/2.The corrective iteration ofWcontinues untilf(W)meets a pre-set limit.Based on the theoretical model above,we therefore develop a code for the steady-state thermal hydraulic simulation of the nuclear U-tube SG.A numerical scheme is also established using MATLAB software.

    V.SIMULATION RESULTS

    The steady-state thermal hydraulic characteristics of the SG in the Qinshan 300MW PWR are investigated with respect to the thermal hydraulic code presented for nuclear U-tube SGs.The grid gap measures 1.2m along the U-tube length.Moreover,this study considers five cases under different power conditions,namely,100%,75%,50%, 30%,and 15%.The results at the 100%power condition are compared with those simulated using the RELAP5 code[14]. Table 1 lists the required computation parameters given this power condition.

    Figures 3–7 show the computed steady-state thermal hydraulic parameters at the100%power level.The tube lengths are 0–8m and 8–16m for the hot and cold sides of the secondary loop,respectively.The results of the primary loop are plotted according to full tube length,whereas those of the secondary loop are plotted based on half tube length.Fig.3 presents the temperatures of the coolant in the primary and secondary loops and of the tube wall.The coolant temperature decreases along the tube in the primary loop;in the secondary loop,however,the inlet coolant is slightly sub-cooled.Thus,the coolant temperature increases to saturation level after a short distance.

    TABLE 1.Condition parameters for 100%power.

    Fig.3.Temperatures of the primary fluid(■,□),secondary fluid(?,?),andU-tubewall(▲,△)intheSG.Thesolidsymbolsrepresentsthe results of the current work,and the blank symbols denote the results obtained from RELAP5.

    The simulation results with our code differ only slightly from those obtained with RELAP5.With respect to the coolant temperature of the secondary loop,our results are slightly lower than those derived from RELAP5.This may be attributed to different correlations assigned to the convection coefficient.In RELAP5,a modified correlation of the convection heat transfer coefficient(Nu=2.0+ 0.74Re1/2Pr1/3)is applied to the single-phase liquid and sub-cooled boiling regions[14],whereas our study utilizes the D–B correlation.So,our technique generates a convection coefficient value that is smaller than that obtained with RELAP5.Temperature of the U-tube wall varies along the lengths in a manner that is almost similar to the coolant in the primary loop.This is ascribed to the fact that the heat resistance of the primary loop is much smaller than that of the secondary loop because the latter displays a noticeable fouling resistance.

    Fig.4.Phase velocity in the hot((■,□)and cold((▲,△)channels of the secondary loop under the 100%power condition.The solid symbols represent the results of this work,and the blank symbols denote the results obtained from RELAP5.

    Fig.5.Enthalpy of the fluid in the primary and secondary loops.

    Figure 4 displays the gaseous and liquid velocities of the flow in the secondary loop under the 100%power rate.Both velocities increase continually in the secondary loop from the lower room to the steam room with tube heating and coolant boiling.The two-phase velocities increase in the steam room as a result of the expanding area.Furthermore,gas velocity is always higher than that of liquid because gas phase flow is affected by buoyancy.Nonetheless,the RELAP5 results are 5%higher than those of our code.

    Fig.6.Heat flux on the interior of the U-tube wall.

    Figure 5 exhibits the variation in coolant enthalpy along the tube lengths in the primary and secondary loops.Fig.6 shows the heat flux on the interior of the U-tube wall,which is equal to that of the exterior of the U-tube in steady-state analysis.The coolant enthalpy in the primary loop continues to decrease along the tube length with heat transfer from the primary to the secondary loops,whereas that in the secondary loop continually increases throughout the process as depicted in Fig.5.The heat flux on the interior of the U-tube decreases with tube length as the temperature difference between the tube wall and the coolant decreases along the tube(Fig.6).

    Fig.8.Fluid pressure in the primary and secondary loops under the 100%power.

    Fig.9.Fluid temperature in the primary and secondary loops under the 100%power rate.

    Figure 7 displays the void fraction and the heat transfer coefficient along the tube lengths in the secondary loop.The coolant void fraction is higher in the hot side of secondary loop than that in the cold side given that the heat flux in the hot side is higher.However,the coolant void fractions that enter the steam room from both sides of the secondary loop are similar as a result of lateral mixing.

    Figure 8 depicts the variation in the pressure of the primary and secondary loops.The pressure of the primary loop continually decreases in the ascending part but increases in the descending part with the increase in gravitational potential energy.The pressures are similar at both sides of the secondary loop and continue to progress downward along the tube length.

    Fig.10.Variation in the circulation ratio and in circulation flow with power rate.

    Fig.11.Void fractions inthe cold and hot channels of the secondary loop given different power.

    Figure 9 displays coolant temperatures at five power rates in the primary and secondary loops.In the primary loop,inlet,outlet,and average coolant temperatures increase with the increase in power rate.The temperature of the inlet coolant increases more quickly than that of the outlet coolant.Hence, the variation amplitude of temperature in the primary loop increases with power rate.Fig.10 indicates that the saturation temperature of the coolant decreases when power rate increases.This finding suggests that the cooling capability of the secondary loop has been strengthened.

    Figure 10 presents the variations in circulation ratio and in circulation flow with power rate with regard to the SG.With the increase in power rate from 15%to 100%,the SG circulation flow initially increases at the small power rate but decreases when the power rate exceeds 50%.This result is induced by the coupled effect of driving pressure and circulation resistance.As the boiling length in the secondary loop increases with increasing power rate,the void fraction and driving pressure increase as well.Moreover,the circulation resistance increases with increasing flow rate;hence,the circulation flows downward along the tube length.The circulation ratio continually increases with power rate,as shown in Fig.9.Furthermore,the mass flow of the vapor in the SG continually increases.

    Fig.12.Enthalpy in the(a)primary and(b)secondary loops under different power rates.

    Figure 11 shows the gaseous void fractions in both sides of the secondary loop at 75%,50%,30%and 15%power rates. This fraction increases along the tube lengths of both sides of the secondary loop.In addition,the gaseous void fraction is higher in the hot side than that in the cold side because boiling length is longer in the former.

    Figure 12 depicts the variation in coolant enthalpy with tube length in the primary and secondary loops under15%–75%power rate.The coolant temperature in primary loop decreases along the tube length,where as that in the secondary loop is maximized.The enthalpy variation between the inlet and outlet of the two loops increases with high power rate.This result proves that the heat transfer process from the primary loop to the secondary loop is strengthened.In the secondary loop,coolant enthalpy increases more in the hot side than in the cold side.

    VI.CONCLUSION

    This study presents a steady-state thermal hydraulic code that was developed to thoroughly investigate the thermal hydraulic characteristics of the nuclear U-tube SG.This code is based on the two-zone geometry model of secondary loop. Thermal hydraulic analysis was conducted using the fourequation flux model,and a cross-iteration solution was established to meet the conditions of heat balance and natural circulation.This solution is based on the staggered grids and the first-order scheme of explicit–implicit difference.The steady state thermal hydraulic characteristics of the SG were thus identified using the developed code for the QINSHAN I PWR under 100%,75%,50%,30%and 15%power rates. Moreover,some important thermal and hydraulic parameters were identified for the primary and secondary loops.The results obtained under the100%power rate agree well with the results simulated using RELAP5.Hence,the established theoretical model and numerical scheme can guide the design and safe operation of a nuclear U-tube SG.

    SYMBOL LIST

    ρdensity,kg/m3;

    uvelocity,m/s;

    ttime,s;

    zdistance,m;

    henthalpy,kJ/(kgK);

    Hheat transfer coef fi cient,W/(m2K);

    qheat fl ux,W/m2;

    qvvolume heat,W/m3;

    ggravity,m/s2;

    τwall shearing,Pa;

    Uheat perimeter,m;

    Deequivalent diameter,m;

    ξresistance coef fi cient;

    Φ2two-phase coef fi cient;

    cpspeci fi c heat,J/(kgK);

    Ttemperature,?C;

    rradius,m;

    Ddiameter,m;

    Across section,m2;

    Wmass fl flow,kg/s;

    αvoid fraction;

    xsteam quality;

    λconductivity,W/(m2K);

    Hpressure head,Pa;

    jg,critcritical super fi cial velocity,m/s;

    Tsatsaturation temperature of secondary loop;

    Tpooutlet temperature of primary loop;

    Tpiinlet temperature of primary loop;

    Taveaverage temperature of primary loop;

    SUBSCRIPT

    f liquid;

    g gas;

    p primary loop;

    s secondary loop;

    m mixture;

    w wall;

    b bubble;

    tb Taylor bubble;

    onb bubble onset;

    i,jvolume index;

    a acceleration;

    c Form resistance;

    SUPERSCRIPT

    n,n+1 time step

    [1]James C S and James K A.Nuel Eng Inter,1986,31,83–86.

    [2]Moskal T E,Childerson M T,Carter H R.Amer Contr Conf, 1984,1:85–92.

    [3]Heistand J W and Thakkar J G.ATHOS and FLOW3 simulation of the FRIGG heated rod bundle experiment,Technical Report NP-3541,EPRI,1984.

    [4]Yetisir M,Pietralik J,Mirzai M.Pres Ves P,2003,2:61–69.

    [5]Xue H J and Yan J Q.Nucl P Eng,1989,10:47–50.(in Chinese)

    [6]Xie H,Zhang J L,Jia D N,et al.Nucl P Eng,1998,19:413–418.(in Chinese)

    [7]Yu Y and Ju H M.J Tsinghua Univ(Sci&Tech),2004,44: 1202–1204.(in Chinese)

    [8]Kazimi M and Massoud M.A condensed review of nuclear reactor thermal-hydraulic computer codes for two-phase fl ow analysis.Energy Laboratory Report No.MIT-EL 79-018, February 1980,37–40.

    [9]IAPWS,Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam [OL].Aug.2007,available at http://www.iapws.org.

    [10]Taitel Y,Bornea D,Dukler A E.Aiche J,1980,26:345–354.

    [11]Lockhart R W and Martinelli R C.Chem Eng Prog,1949,1: 39–48.

    [12]Chen J C.Ind Eng Chem Proc DD,1966,5:531–535.

    [13]Bergles A E and Rohsenow W M.J Heat Transf,1964,86: 365–372.

    [14]NUREG/CR-5535/RevP3-VolIV,Relap5mod3.3codemanual volume IV:models and correlations,prepared for the Of fi ce of Nuclear Regulatory Research,US NRC,Washington DC, 2006,42.

    10.13538/j.1001-8042/nst.25.050601

    (Received December 3,2013;accepted in revised form March 3,2014;published online September 20,2014)

    ?Supported by the National Natural Science Foundation of China(Nos. 51376065 and 51176052)

    ?Corresponding author,huangkai@ipp.ac.cn

    猜你喜歡
    志豪
    兵媽媽的腳步
    歌海(2022年4期)2023-01-02 13:29:52
    學(xué)生作品
    火之殤
    大眾攝影(2020年11期)2020-11-02 02:57:36
    黃志豪:尋常生活自有詩(shī)意
    戰(zhàn)友永在我心里
    歌海(2020年1期)2020-03-23 06:05:32
    第二次高考
    青秀山
    歌海(2019年1期)2019-06-11 07:02:15
    基于AHP的外賣商戶綜合評(píng)價(jià)模型
    考試周刊(2018年15期)2018-01-21 10:40:25
    Analyze On—line Star Economy Basing on Models of Entrepreneurship
    等我長(zhǎng)大了,天天背你
    国产色婷婷99| 91精品国产国语对白视频| 国产精品一区二区在线不卡| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 免费观看av网站的网址| 国产亚洲91精品色在线| videossex国产| 久久久久久久国产电影| 欧美人与善性xxx| 国产免费一级a男人的天堂| 街头女战士在线观看网站| 国产精品秋霞免费鲁丝片| 久久久久人妻精品一区果冻| 成年免费大片在线观看| 国产精品人妻久久久久久| 男女免费视频国产| 国产精品国产三级国产av玫瑰| 在线观看美女被高潮喷水网站| 国产成人aa在线观看| 国产色婷婷99| 22中文网久久字幕| av一本久久久久| 下体分泌物呈黄色| 国产精品国产av在线观看| 亚洲av日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 欧美成人a在线观看| 亚洲av综合色区一区| 80岁老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 欧美国产精品一级二级三级 | 成人18禁高潮啪啪吃奶动态图 | 久久精品国产自在天天线| 中文精品一卡2卡3卡4更新| 97热精品久久久久久| 免费黄网站久久成人精品| 久久久久国产网址| 亚洲熟女精品中文字幕| 女人十人毛片免费观看3o分钟| 久久久久精品性色| 久久毛片免费看一区二区三区| 国产高潮美女av| 七月丁香在线播放| 国产亚洲精品久久久com| 99久久人妻综合| 亚洲色图av天堂| 少妇被粗大猛烈的视频| 好男人视频免费观看在线| 狠狠精品人妻久久久久久综合| 亚洲性久久影院| 男人舔奶头视频| 激情五月婷婷亚洲| 亚洲成人一二三区av| 人人妻人人爽人人添夜夜欢视频 | 国内揄拍国产精品人妻在线| 欧美成人a在线观看| 亚洲人成网站在线播| 亚洲色图av天堂| 日本wwww免费看| 女人十人毛片免费观看3o分钟| 91精品国产九色| 免费看光身美女| 日本色播在线视频| av在线播放精品| 亚洲av不卡在线观看| 精品酒店卫生间| 免费播放大片免费观看视频在线观看| 性色avwww在线观看| 久久久a久久爽久久v久久| 你懂的网址亚洲精品在线观看| 亚洲国产精品专区欧美| 亚洲av国产av综合av卡| 精品一区二区免费观看| 久久午夜福利片| 亚洲av不卡在线观看| 亚洲色图av天堂| 男女下面进入的视频免费午夜| 在线观看免费高清a一片| 欧美极品一区二区三区四区| 岛国毛片在线播放| 我的女老师完整版在线观看| a 毛片基地| 99久久精品一区二区三区| 午夜福利高清视频| 99九九线精品视频在线观看视频| 亚洲av不卡在线观看| 成人免费观看视频高清| 一本色道久久久久久精品综合| 日本一二三区视频观看| 日韩欧美一区视频在线观看 | 亚州av有码| 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频| 亚洲一区二区三区欧美精品| 国产高清有码在线观看视频| 日韩成人av中文字幕在线观看| 国产高清国产精品国产三级 | 男的添女的下面高潮视频| 七月丁香在线播放| 亚洲成人手机| 亚洲国产精品国产精品| 国产成人精品久久久久久| 亚洲国产欧美在线一区| 丝袜脚勾引网站| 久久久久久久大尺度免费视频| 国产av国产精品国产| 中文资源天堂在线| 伊人久久国产一区二区| 最近的中文字幕免费完整| 高清欧美精品videossex| 一级毛片我不卡| 下体分泌物呈黄色| 如何舔出高潮| 观看免费一级毛片| 欧美日本视频| 国产精品一区二区在线观看99| 亚洲欧美精品自产自拍| 看非洲黑人一级黄片| 激情五月婷婷亚洲| 亚洲精品日本国产第一区| 欧美 日韩 精品 国产| 精品一区二区三卡| 亚洲成人av在线免费| 亚洲精品乱码久久久久久按摩| 婷婷色综合大香蕉| 嫩草影院入口| 美女中出高潮动态图| 边亲边吃奶的免费视频| 久久99热这里只频精品6学生| 久热久热在线精品观看| 亚洲电影在线观看av| 色吧在线观看| 国产人妻一区二区三区在| 小蜜桃在线观看免费完整版高清| 永久免费av网站大全| 亚洲国产成人一精品久久久| .国产精品久久| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 国产高清三级在线| 男女啪啪激烈高潮av片| 一二三四中文在线观看免费高清| 中文字幕人妻熟人妻熟丝袜美| 国产av精品麻豆| 亚洲欧美成人综合另类久久久| 99九九线精品视频在线观看视频| 国产69精品久久久久777片| 国产欧美亚洲国产| 国产国拍精品亚洲av在线观看| 中文乱码字字幕精品一区二区三区| 午夜视频国产福利| 视频区图区小说| 国产精品久久久久久av不卡| 在线观看免费视频网站a站| 日本与韩国留学比较| 国精品久久久久久国模美| 尤物成人国产欧美一区二区三区| 高清黄色对白视频在线免费看 | 有码 亚洲区| 99热这里只有是精品在线观看| 国产成人精品福利久久| 大片电影免费在线观看免费| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 精品午夜福利在线看| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 国产男女内射视频| 国产深夜福利视频在线观看| 国产高潮美女av| 美女xxoo啪啪120秒动态图| 久久久久久久大尺度免费视频| av.在线天堂| 一级a做视频免费观看| 妹子高潮喷水视频| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级 | 久久人人爽人人爽人人片va| 亚洲av综合色区一区| 熟女电影av网| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品| 久久国产乱子免费精品| 下体分泌物呈黄色| 黑丝袜美女国产一区| 少妇的逼好多水| 热re99久久精品国产66热6| 国产男女超爽视频在线观看| 日韩强制内射视频| 97在线人人人人妻| 国产 一区精品| 亚洲va在线va天堂va国产| 亚洲av中文字字幕乱码综合| 国产成人91sexporn| 51国产日韩欧美| www.av在线官网国产| 久久久久久久久大av| 高清不卡的av网站| 性色avwww在线观看| 99久久精品热视频| 观看美女的网站| 国产淫片久久久久久久久| 国产在线一区二区三区精| av福利片在线观看| 国产欧美另类精品又又久久亚洲欧美| 高清欧美精品videossex| 国产日韩欧美亚洲二区| www.av在线官网国产| 精品久久久久久久久亚洲| 亚洲精品久久午夜乱码| 啦啦啦啦在线视频资源| 免费少妇av软件| 欧美日韩一区二区视频在线观看视频在线| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产av成人精品| 亚洲人成网站高清观看| 午夜福利网站1000一区二区三区| 国产男人的电影天堂91| 18禁裸乳无遮挡免费网站照片| 新久久久久国产一级毛片| 精品国产露脸久久av麻豆| 中国三级夫妇交换| 国产精品一区www在线观看| 欧美人与善性xxx| 草草在线视频免费看| av国产久精品久网站免费入址| 新久久久久国产一级毛片| 国产精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 在线 av 中文字幕| 中国美白少妇内射xxxbb| 国产精品成人在线| 黄色怎么调成土黄色| 久久精品国产鲁丝片午夜精品| 免费观看av网站的网址| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网| 日本黄色日本黄色录像| 婷婷色综合大香蕉| 一级二级三级毛片免费看| 如何舔出高潮| 波野结衣二区三区在线| 久久久久久久久大av| 婷婷色综合www| 黄色欧美视频在线观看| 亚洲精品aⅴ在线观看| 国产成人免费观看mmmm| 欧美zozozo另类| 97精品久久久久久久久久精品| 老师上课跳d突然被开到最大视频| 看十八女毛片水多多多| 日韩中字成人| 国产综合精华液| 麻豆精品久久久久久蜜桃| 久久毛片免费看一区二区三区| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 久久99蜜桃精品久久| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 女人久久www免费人成看片| 国产精品av视频在线免费观看| av国产久精品久网站免费入址| 老熟女久久久| 亚洲精品aⅴ在线观看| 国产免费一区二区三区四区乱码| 岛国毛片在线播放| 久久青草综合色| 国产精品国产av在线观看| av又黄又爽大尺度在线免费看| 久久久久久人妻| 久久99精品国语久久久| 国产精品熟女久久久久浪| 黄色一级大片看看| 舔av片在线| 青春草视频在线免费观看| 少妇人妻 视频| a级毛色黄片| 成人毛片60女人毛片免费| 国产免费一区二区三区四区乱码| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 欧美日本视频| 在线观看国产h片| 精品久久久噜噜| 亚洲国产av新网站| 老熟女久久久| 国产精品秋霞免费鲁丝片| 性色av一级| 午夜福利网站1000一区二区三区| 男人和女人高潮做爰伦理| 人妻制服诱惑在线中文字幕| 九色成人免费人妻av| videos熟女内射| 久久久久精品久久久久真实原创| 中文字幕亚洲精品专区| 国产真实伦视频高清在线观看| 丝袜脚勾引网站| 天堂中文最新版在线下载| videossex国产| 免费看光身美女| 狂野欧美激情性xxxx在线观看| 中文字幕人妻熟人妻熟丝袜美| 少妇被粗大猛烈的视频| 中文字幕亚洲精品专区| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 成人毛片60女人毛片免费| 国产在视频线精品| 国产av码专区亚洲av| 免费观看无遮挡的男女| 色综合色国产| 国产免费视频播放在线视频| 在线精品无人区一区二区三 | 久久久a久久爽久久v久久| 在线观看一区二区三区| 国产亚洲一区二区精品| av在线观看视频网站免费| 国产淫片久久久久久久久| 欧美三级亚洲精品| 国语对白做爰xxxⅹ性视频网站| 精品酒店卫生间| 久久ye,这里只有精品| 日韩视频在线欧美| 免费不卡的大黄色大毛片视频在线观看| av线在线观看网站| 日韩伦理黄色片| 青春草国产在线视频| 日韩人妻高清精品专区| 最近2019中文字幕mv第一页| 午夜福利网站1000一区二区三区| 亚洲国产精品成人久久小说| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 制服丝袜香蕉在线| 男人和女人高潮做爰伦理| 99精国产麻豆久久婷婷| 一级毛片我不卡| 黑丝袜美女国产一区| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜| 亚洲aⅴ乱码一区二区在线播放| 国产在线视频一区二区| 国产免费视频播放在线视频| 国产成人freesex在线| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验| 深爱激情五月婷婷| 麻豆成人av视频| 国产高清国产精品国产三级 | 日日摸夜夜添夜夜爱| 在线精品无人区一区二区三 | 大陆偷拍与自拍| 亚洲,一卡二卡三卡| av免费观看日本| 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕| 免费在线观看成人毛片| 亚洲精品日韩在线中文字幕| 色视频www国产| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 国产成人91sexporn| 国产在线一区二区三区精| 国产伦精品一区二区三区视频9| 亚洲图色成人| 看非洲黑人一级黄片| 嘟嘟电影网在线观看| 黄片无遮挡物在线观看| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 国产乱人偷精品视频| 少妇人妻久久综合中文| 亚洲国产精品国产精品| 亚洲自偷自拍三级| 精品视频人人做人人爽| 国产亚洲最大av| 国产精品人妻久久久久久| 久久影院123| 国产成人一区二区在线| 久久97久久精品| 黄色一级大片看看| 日韩欧美精品免费久久| 日本-黄色视频高清免费观看| 国产精品久久久久成人av| 国产成人精品久久久久久| 中文乱码字字幕精品一区二区三区| 国产免费一级a男人的天堂| 国产人妻一区二区三区在| 日韩人妻高清精品专区| 久久精品久久久久久久性| 91aial.com中文字幕在线观看| 亚洲精品中文字幕在线视频 | 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 肉色欧美久久久久久久蜜桃| 下体分泌物呈黄色| 在线观看免费日韩欧美大片 | 99热全是精品| 日本色播在线视频| 国产在线一区二区三区精| 99久久中文字幕三级久久日本| 久久久久久久亚洲中文字幕| 色哟哟·www| 午夜免费男女啪啪视频观看| 久久久久久久精品精品| av福利片在线观看| 亚洲精品日本国产第一区| 日韩人妻高清精品专区| 超碰97精品在线观看| 婷婷色综合大香蕉| 乱码一卡2卡4卡精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av国产av综合av卡| 国产v大片淫在线免费观看| 免费播放大片免费观看视频在线观看| 观看免费一级毛片| 免费av中文字幕在线| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 欧美zozozo另类| 久久久久久久久久人人人人人人| 国产精品久久久久成人av| 中文天堂在线官网| 成年免费大片在线观看| 最新中文字幕久久久久| 少妇精品久久久久久久| 麻豆国产97在线/欧美| 蜜桃在线观看..| 天美传媒精品一区二区| 大陆偷拍与自拍| 五月天丁香电影| 亚洲av国产av综合av卡| 国产欧美日韩一区二区三区在线 | 国产精品国产三级国产av玫瑰| videos熟女内射| 国产男人的电影天堂91| 熟女av电影| 亚洲aⅴ乱码一区二区在线播放| 99精国产麻豆久久婷婷| 国产 精品1| 日产精品乱码卡一卡2卡三| 亚洲,欧美,日韩| 美女xxoo啪啪120秒动态图| 黄色配什么色好看| 国产亚洲精品久久久com| 国产永久视频网站| 久久精品久久久久久久性| 免费播放大片免费观看视频在线观看| 免费黄频网站在线观看国产| 欧美国产精品一级二级三级 | 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 国产真实伦视频高清在线观看| 亚洲精品国产av蜜桃| 国产成人免费观看mmmm| 久久这里有精品视频免费| 欧美日韩视频高清一区二区三区二| 女性生殖器流出的白浆| 老司机影院成人| 亚洲精品久久久久久婷婷小说| 久热久热在线精品观看| 亚洲精品乱久久久久久| 午夜免费男女啪啪视频观看| 国产成人免费无遮挡视频| 肉色欧美久久久久久久蜜桃| 午夜激情福利司机影院| 久久精品久久久久久噜噜老黄| 国产大屁股一区二区在线视频| 精品久久久久久久久av| 日韩国内少妇激情av| av卡一久久| 高清午夜精品一区二区三区| 狂野欧美激情性bbbbbb| 国产一区二区在线观看日韩| 日本欧美视频一区| 观看美女的网站| 国产男女超爽视频在线观看| 亚洲人与动物交配视频| 久久精品久久久久久噜噜老黄| 一级爰片在线观看| 激情五月婷婷亚洲| 网址你懂的国产日韩在线| 亚洲精品日本国产第一区| 国产黄频视频在线观看| 中文在线观看免费www的网站| 免费av中文字幕在线| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区| 国产黄频视频在线观看| 精品亚洲成a人片在线观看 | 国产成人freesex在线| 精品久久久精品久久久| 男人舔奶头视频| 亚洲精品国产av蜜桃| 欧美精品国产亚洲| 亚洲性久久影院| 一区二区三区乱码不卡18| 午夜福利高清视频| 中文字幕亚洲精品专区| 啦啦啦在线观看免费高清www| 人妻一区二区av| 欧美日韩国产mv在线观看视频 | 熟妇人妻不卡中文字幕| 亚洲欧洲日产国产| 五月开心婷婷网| 女性被躁到高潮视频| 91aial.com中文字幕在线观看| 国产乱人偷精品视频| 成人特级av手机在线观看| 精品酒店卫生间| 亚洲精品日本国产第一区| 亚洲欧美日韩无卡精品| videos熟女内射| 久久影院123| 成人亚洲欧美一区二区av| 黄色视频在线播放观看不卡| 少妇丰满av| 欧美97在线视频| 少妇裸体淫交视频免费看高清| 国产av码专区亚洲av| 日韩一区二区三区影片| 亚洲av.av天堂| 日韩在线高清观看一区二区三区| 18禁在线无遮挡免费观看视频| 久久热精品热| 亚洲不卡免费看| 色哟哟·www| 成人免费观看视频高清| 亚洲欧美一区二区三区国产| 亚洲怡红院男人天堂| 国产伦精品一区二区三区四那| 少妇猛男粗大的猛烈进出视频| 国产永久视频网站| av线在线观看网站| 搡老乐熟女国产| 久久国产精品大桥未久av | 国产成人一区二区在线| 97热精品久久久久久| freevideosex欧美| 国产乱人偷精品视频| 我要看日韩黄色一级片| 欧美老熟妇乱子伦牲交| 最后的刺客免费高清国语| 亚洲精品自拍成人| 日日啪夜夜爽| 国产亚洲最大av| 99视频精品全部免费 在线| 亚洲人与动物交配视频| 亚洲综合色惰| 伦精品一区二区三区| 在现免费观看毛片| 国产一区二区在线观看日韩| 人妻 亚洲 视频| 91精品伊人久久大香线蕉| 国内少妇人妻偷人精品xxx网站| 纯流量卡能插随身wifi吗| 多毛熟女@视频| 亚洲经典国产精华液单| 免费在线观看成人毛片| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区| 精品一区二区三区视频在线| 精品国产三级普通话版| 久热这里只有精品99| videossex国产| 中文欧美无线码| videos熟女内射| 观看美女的网站| 国产免费一级a男人的天堂| 欧美极品一区二区三区四区| 男女国产视频网站| 欧美区成人在线视频| 干丝袜人妻中文字幕| 久久久国产一区二区| 久久鲁丝午夜福利片| 一本久久精品| 一区在线观看完整版| 在线观看免费视频网站a站| 亚洲婷婷狠狠爱综合网| 国产精品国产三级专区第一集| 亚洲人成网站高清观看| 日日摸夜夜添夜夜爱| 亚洲av国产av综合av卡| 国产精品麻豆人妻色哟哟久久| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 高清在线视频一区二区三区| 天堂8中文在线网| 国产高潮美女av| 精品亚洲乱码少妇综合久久| 99九九线精品视频在线观看视频| 高清黄色对白视频在线免费看 | 最近中文字幕2019免费版| 国产无遮挡羞羞视频在线观看| 国产男女内射视频| 久久久久久久久久久免费av| 成年免费大片在线观看| 高清av免费在线| 精品国产一区二区三区久久久樱花 | 亚洲四区av| 视频区图区小说| 色5月婷婷丁香| 国产人妻一区二区三区在| 七月丁香在线播放| 岛国毛片在线播放| 国产视频内射| 国产精品免费大片|