• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steady thermal hydraulic characteristics of nuclear steam generatorsbased on the drift flux code model?

    2014-08-05 09:13:26ZHANGXiaoYing張小英CHENHuanDong陳煥棟BAINing白寧ZHUYuanBing朱元兵RENZhiHao任志豪andHUANGKai黃凱
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:志豪

    ZHANG Xiao-Ying(張小英),CHEN Huan-Dong(陳煥棟),BAI Ning(白寧),ZHU Yuan-Bing(朱元兵),REN Zhi-Hao(任志豪),and HUANG Kai(黃凱),

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    Steady thermal hydraulic characteristics of nuclear steam generators
    based on the drift flux code model?

    ZHANG Xiao-Ying(張小英),1CHEN Huan-Dong(陳煥棟),1BAI Ning(白寧),2ZHU Yuan-Bing(朱元兵),2REN Zhi-Hao(任志豪),2and HUANG Kai(黃凱)2,?

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG),a 1D simulation code based on the four-equation drift flux model is developed.The U-tube channels presumably consist mainly of the primary channel,secondary channel,and tube wall.In the sub-cooling regions of the primary and secondary channels,flow is simulated using the single-phase flow model,whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model.The first-order equations of upwind difference are derived based on the staggered grid.Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement.The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%,75%,50%,30%,and 15%power conditions.Analysis results are then compared with the simulation results obtained using RELAP5.

    U-tube steam generator,Thermal hydraulic characteristic,Steady simulation,Four-equation drift flux model

    I.INTRODUCTION

    The U-tube steam generator(SG)is a heat exchanger that connects the primary and secondary coolant loops in a nuclear power plant(NPP).According to worldwide statistics, operational accidents of SG-related pressurized water reactor(PWR)account for a large proportion of all PWR accidents[1].Approximately 1/4 of the unplanned outage cases in PWR NPPs are caused by SG failure.Given that the flow and heat transfer in the primary and secondary loops are closely connected to the safety and stable operation of the SG,it is of importance to understand their thermal hydraulic characteristics.

    The U-tube SG can presumably be a nonlinear,complex system with many flowing parameters.Studies on the thermal hydraulic behavior of SGs have achieved greatly.The followings are examples of SG simulation codes.The THEDA2 code developed in the U.S.uses 3D conservation equations of mass,momentum,and energy for a homogeneous equilibrium mixture(HEM)model[2].The ATHOS code applies either the three-equation HEM model or the four-equation drift flux model with options for 1D,2D,and 3D analyses[3].The THIRST code developed by AECL for 700MWe SG,is a 1D thermal hydraulic[4].Several thermal hydraulic codes for NPP SGs were developed in China.Based on the 1D separated fluid model,the SGTH-2 performs steady analysis of the U-tube SG[5].The MOFS is based on the 1D HEM model[6],while the SG code for high-temperature gas cooling reactors follows the 2D HEM model[7].

    Most of the existing thermal hydraulic codes for NPP SGs utilize the classical HEM model,which treats the two-phaseflow of steam and water as a uniform mixture.However,it usually simulates the flow in the secondary loop with areaaveraged variables.Given that coolant temperature varies significantly from the top to bottom of the U-tube bundles, both temperature and heat transfer coefficients vary considerably in the two flows.To examine the thermal-hydraulic characteristics of NPP SGs thoroughly,a code with a detailed model shall be developed.

    In this paper,we present a thermal hydraulic code for NPP SGs in a geometric model composed of the primary and secondary loops,U-tube,and steam room.The unique secondary loop model is divided into hot and cold sides,and the flow in it is simulated using the four-equation drift flux model and is analyzed thermal-hydraulically through coupling with heat transfer of the tube wall.Finally,the code is used to implement and verify the Qinshan NPP SG.The thermal hydraulic parameters are computed at 100%,75%,50%,30%,and 15% power rates.

    II.GEOMETRIC MODEL

    Given the complicated actual structure,the geometry of the nuclear SG should be simplified in modeling and thermal hydraulic simulation.This work considers the U-tube NPP SG. The primary loop of the SG is assumed as a straight tube of equal length.The secondary loop is circular and consists of the water supply chamber and the descending and ascending channels.The ascending channel consists of the sub-cooling, boiling,and ascent sections.In the secondary loop,the division of hot and cold sides is defined by the flow direction in the primary loop.The side with the primary inlet flow(the hot side)is hotter than the side with the primary outlet flow (the cold side).The SG structure is composed of the primary and secondary loops,heat transfer tube,and steam room,as shown in Fig.1.The straight section of the two loops is 7-mlong.The U-tubes are 0.022m in diameter,with a total length of 16m.

    Fig.1.Simplified geometric frame of the SG.

    III.FIELD EQUATIONS

    In the U-tube SG,the flow types are of the single-and two-phase regions.Specifically,the flow in the primary loop and in sub-cooling sections of the secondary loop remains single-phase,whereas the two-phase region is illustrated by the flow in the boiling sections of the secondary loop.The two-phase regions are complicated in terms of flow and heat transfer.Thus,two sets of governing equations are established to model the single-and two-phase flows.

    A.Balance equations for single-phase regions

    In the sub-cooling sections of the U-tube SG,the singlephase region covers the primary loop,descending channel, and sub-cooling sections of the secondary loop.These regions utilize the single-phase flow model,and the respective balance equations of mass,energy,and momentum are as follows:

    B.Balance equations for two-phase regions

    The two-phase flow is mainly observed in the boiling section of the secondary loop of the U-tube SG.The equation of the four-equation drift flux model governs this region.This equation considers the velocity slipurat the two-phase interface and the variation in void fraction along the flow path.In our work,the 1D,area-averaged governing equations of the four-equation drift flux model used are expressed as[8]:

    where the subscript“m”pertains to fluid mixture parameters;ρmis density;Gmis mass rate;umis velocity;hmis enthalpy; andur=ug?ufis the relative velocity of the liquid and gaseous phases.

    C.Heat transfer model

    We model the heat transfer between the primary and secondary loops in the U-tube SG through the heat conduction of the tube wall.The heat transfer of the U-tube wall can then be simulated through 1D conduction in the cylindrical geometry.The convection heat transfer rate between the wall and the coolant is the source term,and the heat conduction equation is given by

    D.Correlations

    To close the field equations discussed above,we must determine the correlations in the thermal property of the fluid and wall materials,as well as the criteria for the different flow structures,resistances,heat,and mass transfers.Theunknown variables that must be derived from correlations includeρm,cp,m,Γg,hf,hg,τwf,τwg,Uwf,Uwg,Uhf,Uhg,q,ρf, andρg.

    To identify the thermal property of water and steam,we apply the formulas provided by the industrial standard IAPWSIF97[9].The property of the Incoloy-800 alloy is considered for the tube wall.Moreover,we apply the model of Taitel and Dukler in the structural criteria for flow[10].According to their model,bubble flow transitions to slug flow when bubble speedubis greater than Taylor bubble speedutbgiven a low flow rate in the tube with a small diameter tube(Gm<2000kg/(m2s)).This transition occurs when the void fraction is greater than 0.5 at an increased flow rate (Gm>3000kg/(m2s)),as shown by

    The transition from slug flow to annular flow can be determined through the superficial velocity and the Kutateladze (Ku)number of the flow[11].The transition is observed in the flow in the channels with small diameters when gaseous superficial velocity exceeds the critical superficial velocityjg,crit.However,the transition is initiated when the gaseous Ku number is greater than the critical Ku number,as expressed by

    The flow resistance in the U-tube SG considers the resistance to both gravitation and friction.The Darcy formula is applied in relation to the friction resistance of the singlephase flow.The split-phase friction model of Martinelli is employed[11]in relation to the friction resistance in the twophase flow as:

    The convective heat transfer coefficient of the single-phase flow is calculated using the D–B formula with regard to flow in the primary loop and in the pre-heating section of the secondary loop.The D–B formula is calculated according to Chen’s equation for the boiling section of the secondary loop [12],

    The onset of nucleate boiling is computed using the model developed by Bergles and Rohsenow[13]:

    IV.NUMERICAL SCHEMES

    A.Numerical schemes of the flow field

    In our solution,we apply the semi-implicit difference scheme.We treat the convection terms in the mass and energy equations,the pressure gradient,and the two-phase mass transfer in the momentum equation implicitly,whereas all other differential terms are examined explicitly.The staggered grids are applied in discretization,and two groups of control volumes are established in the same flow channel. The control volumes for pressure,void,density,and enthalpy are arranged in a staggered formation along with those for velocity.The mass and energy equations are discretized given thecontrolvolumegroupsi?1,i,andi+1,whicharealsoimplemented by control volume groupsj?1,j,andj+1 given the momentum equation.The values of the flow parameter are presumably uniform in all control volumes.Fig.2 depicts the established staggered grids and control volumes.

    Fig.2.Staggered grids for the discretization of flow conservation equations.

    In relation to the four-equation drift flux model used in the secondary loop,the semi-implicit discretization equations are listed below[13]:

    The discretization equations of the single-phase flow in the primary loop are similar in form to those given above. To solve these discretization equations,we adopt a velocity–pressure correction scheme.First,the unknown pressure of the new time step is assigned a value equal to that of the old time step.Subsequently,the momentum equation is solved to estimate the velocity value of the new time step.Once the mixture mass,gaseous mass,and mixture energy equationsarerearranged,weobtainthefollowingmatrixequations for

    We apply a large time step,such as Δt=106s,for the steady state analysis.In this case,the time-derivative term is very small and can be disregarded in the discretization equations.Thus,the balance equations above can then be applied to the steady-state solution.

    B.Solution for the U-tube wall conduction

    Equation(8)is integrated into cylindrical volume 2πrdrdlat the time step Δtin relation to the heat conduction of the U-tube wall to generate the discretization equation for wall temperature.

    C.Cross-iteration of heat balance and the natural circulation condition

    In the U-tube SG,heat transfer is simultaneous in the primaryandsecondaryloops;thus,flowandheattransferinboth loops must be coupled for solving.We adopt a coupled iteration scheme that converges these factors when both heat balance and the natural circulation condition are satisfied.In heat balance,the heat transfer in the primary loop is equal to that in the secondary loop.In the natural circulation condition,the head of driving pressure must meet the total pressure drop of the entire system,that is,

    In the iteration of heat balance,the heat fluxes in the primary and secondary loops are initially assumed to be a group of values.Subsequently,matrix Eq.(18)is solved to determine the flow parameters.The heat fluxes in the two loops are then computed in turn.In addition,the heat balance condition is validated.If the difference in heat flux between the primary and secondary loops is greater than a preset limit, the temperature of the coolant that enters the primary loop is corrected and a new iteration of heat balance is initiated.

    In the iteration of natural circulation,the dichotomy scheme is applied.First,the value of flow rateWis set,and the difference in pressure head and resistance is computed asf(W)=DH?D.The flow rate is then modified slightly to flip the sign off(W′).The value of the flow rate is updated byWn+1=(W+W′)/2.The corrective iteration ofWcontinues untilf(W)meets a pre-set limit.Based on the theoretical model above,we therefore develop a code for the steady-state thermal hydraulic simulation of the nuclear U-tube SG.A numerical scheme is also established using MATLAB software.

    V.SIMULATION RESULTS

    The steady-state thermal hydraulic characteristics of the SG in the Qinshan 300MW PWR are investigated with respect to the thermal hydraulic code presented for nuclear U-tube SGs.The grid gap measures 1.2m along the U-tube length.Moreover,this study considers five cases under different power conditions,namely,100%,75%,50%, 30%,and 15%.The results at the 100%power condition are compared with those simulated using the RELAP5 code[14]. Table 1 lists the required computation parameters given this power condition.

    Figures 3–7 show the computed steady-state thermal hydraulic parameters at the100%power level.The tube lengths are 0–8m and 8–16m for the hot and cold sides of the secondary loop,respectively.The results of the primary loop are plotted according to full tube length,whereas those of the secondary loop are plotted based on half tube length.Fig.3 presents the temperatures of the coolant in the primary and secondary loops and of the tube wall.The coolant temperature decreases along the tube in the primary loop;in the secondary loop,however,the inlet coolant is slightly sub-cooled.Thus,the coolant temperature increases to saturation level after a short distance.

    TABLE 1.Condition parameters for 100%power.

    Fig.3.Temperatures of the primary fluid(■,□),secondary fluid(?,?),andU-tubewall(▲,△)intheSG.Thesolidsymbolsrepresentsthe results of the current work,and the blank symbols denote the results obtained from RELAP5.

    The simulation results with our code differ only slightly from those obtained with RELAP5.With respect to the coolant temperature of the secondary loop,our results are slightly lower than those derived from RELAP5.This may be attributed to different correlations assigned to the convection coefficient.In RELAP5,a modified correlation of the convection heat transfer coefficient(Nu=2.0+ 0.74Re1/2Pr1/3)is applied to the single-phase liquid and sub-cooled boiling regions[14],whereas our study utilizes the D–B correlation.So,our technique generates a convection coefficient value that is smaller than that obtained with RELAP5.Temperature of the U-tube wall varies along the lengths in a manner that is almost similar to the coolant in the primary loop.This is ascribed to the fact that the heat resistance of the primary loop is much smaller than that of the secondary loop because the latter displays a noticeable fouling resistance.

    Fig.4.Phase velocity in the hot((■,□)and cold((▲,△)channels of the secondary loop under the 100%power condition.The solid symbols represent the results of this work,and the blank symbols denote the results obtained from RELAP5.

    Fig.5.Enthalpy of the fluid in the primary and secondary loops.

    Figure 4 displays the gaseous and liquid velocities of the flow in the secondary loop under the 100%power rate.Both velocities increase continually in the secondary loop from the lower room to the steam room with tube heating and coolant boiling.The two-phase velocities increase in the steam room as a result of the expanding area.Furthermore,gas velocity is always higher than that of liquid because gas phase flow is affected by buoyancy.Nonetheless,the RELAP5 results are 5%higher than those of our code.

    Fig.6.Heat flux on the interior of the U-tube wall.

    Figure 5 exhibits the variation in coolant enthalpy along the tube lengths in the primary and secondary loops.Fig.6 shows the heat flux on the interior of the U-tube wall,which is equal to that of the exterior of the U-tube in steady-state analysis.The coolant enthalpy in the primary loop continues to decrease along the tube length with heat transfer from the primary to the secondary loops,whereas that in the secondary loop continually increases throughout the process as depicted in Fig.5.The heat flux on the interior of the U-tube decreases with tube length as the temperature difference between the tube wall and the coolant decreases along the tube(Fig.6).

    Fig.8.Fluid pressure in the primary and secondary loops under the 100%power.

    Fig.9.Fluid temperature in the primary and secondary loops under the 100%power rate.

    Figure 7 displays the void fraction and the heat transfer coefficient along the tube lengths in the secondary loop.The coolant void fraction is higher in the hot side of secondary loop than that in the cold side given that the heat flux in the hot side is higher.However,the coolant void fractions that enter the steam room from both sides of the secondary loop are similar as a result of lateral mixing.

    Figure 8 depicts the variation in the pressure of the primary and secondary loops.The pressure of the primary loop continually decreases in the ascending part but increases in the descending part with the increase in gravitational potential energy.The pressures are similar at both sides of the secondary loop and continue to progress downward along the tube length.

    Fig.10.Variation in the circulation ratio and in circulation flow with power rate.

    Fig.11.Void fractions inthe cold and hot channels of the secondary loop given different power.

    Figure 9 displays coolant temperatures at five power rates in the primary and secondary loops.In the primary loop,inlet,outlet,and average coolant temperatures increase with the increase in power rate.The temperature of the inlet coolant increases more quickly than that of the outlet coolant.Hence, the variation amplitude of temperature in the primary loop increases with power rate.Fig.10 indicates that the saturation temperature of the coolant decreases when power rate increases.This finding suggests that the cooling capability of the secondary loop has been strengthened.

    Figure 10 presents the variations in circulation ratio and in circulation flow with power rate with regard to the SG.With the increase in power rate from 15%to 100%,the SG circulation flow initially increases at the small power rate but decreases when the power rate exceeds 50%.This result is induced by the coupled effect of driving pressure and circulation resistance.As the boiling length in the secondary loop increases with increasing power rate,the void fraction and driving pressure increase as well.Moreover,the circulation resistance increases with increasing flow rate;hence,the circulation flows downward along the tube length.The circulation ratio continually increases with power rate,as shown in Fig.9.Furthermore,the mass flow of the vapor in the SG continually increases.

    Fig.12.Enthalpy in the(a)primary and(b)secondary loops under different power rates.

    Figure 11 shows the gaseous void fractions in both sides of the secondary loop at 75%,50%,30%and 15%power rates. This fraction increases along the tube lengths of both sides of the secondary loop.In addition,the gaseous void fraction is higher in the hot side than that in the cold side because boiling length is longer in the former.

    Figure 12 depicts the variation in coolant enthalpy with tube length in the primary and secondary loops under15%–75%power rate.The coolant temperature in primary loop decreases along the tube length,where as that in the secondary loop is maximized.The enthalpy variation between the inlet and outlet of the two loops increases with high power rate.This result proves that the heat transfer process from the primary loop to the secondary loop is strengthened.In the secondary loop,coolant enthalpy increases more in the hot side than in the cold side.

    VI.CONCLUSION

    This study presents a steady-state thermal hydraulic code that was developed to thoroughly investigate the thermal hydraulic characteristics of the nuclear U-tube SG.This code is based on the two-zone geometry model of secondary loop. Thermal hydraulic analysis was conducted using the fourequation flux model,and a cross-iteration solution was established to meet the conditions of heat balance and natural circulation.This solution is based on the staggered grids and the first-order scheme of explicit–implicit difference.The steady state thermal hydraulic characteristics of the SG were thus identified using the developed code for the QINSHAN I PWR under 100%,75%,50%,30%and 15%power rates. Moreover,some important thermal and hydraulic parameters were identified for the primary and secondary loops.The results obtained under the100%power rate agree well with the results simulated using RELAP5.Hence,the established theoretical model and numerical scheme can guide the design and safe operation of a nuclear U-tube SG.

    SYMBOL LIST

    ρdensity,kg/m3;

    uvelocity,m/s;

    ttime,s;

    zdistance,m;

    henthalpy,kJ/(kgK);

    Hheat transfer coef fi cient,W/(m2K);

    qheat fl ux,W/m2;

    qvvolume heat,W/m3;

    ggravity,m/s2;

    τwall shearing,Pa;

    Uheat perimeter,m;

    Deequivalent diameter,m;

    ξresistance coef fi cient;

    Φ2two-phase coef fi cient;

    cpspeci fi c heat,J/(kgK);

    Ttemperature,?C;

    rradius,m;

    Ddiameter,m;

    Across section,m2;

    Wmass fl flow,kg/s;

    αvoid fraction;

    xsteam quality;

    λconductivity,W/(m2K);

    Hpressure head,Pa;

    jg,critcritical super fi cial velocity,m/s;

    Tsatsaturation temperature of secondary loop;

    Tpooutlet temperature of primary loop;

    Tpiinlet temperature of primary loop;

    Taveaverage temperature of primary loop;

    SUBSCRIPT

    f liquid;

    g gas;

    p primary loop;

    s secondary loop;

    m mixture;

    w wall;

    b bubble;

    tb Taylor bubble;

    onb bubble onset;

    i,jvolume index;

    a acceleration;

    c Form resistance;

    SUPERSCRIPT

    n,n+1 time step

    [1]James C S and James K A.Nuel Eng Inter,1986,31,83–86.

    [2]Moskal T E,Childerson M T,Carter H R.Amer Contr Conf, 1984,1:85–92.

    [3]Heistand J W and Thakkar J G.ATHOS and FLOW3 simulation of the FRIGG heated rod bundle experiment,Technical Report NP-3541,EPRI,1984.

    [4]Yetisir M,Pietralik J,Mirzai M.Pres Ves P,2003,2:61–69.

    [5]Xue H J and Yan J Q.Nucl P Eng,1989,10:47–50.(in Chinese)

    [6]Xie H,Zhang J L,Jia D N,et al.Nucl P Eng,1998,19:413–418.(in Chinese)

    [7]Yu Y and Ju H M.J Tsinghua Univ(Sci&Tech),2004,44: 1202–1204.(in Chinese)

    [8]Kazimi M and Massoud M.A condensed review of nuclear reactor thermal-hydraulic computer codes for two-phase fl ow analysis.Energy Laboratory Report No.MIT-EL 79-018, February 1980,37–40.

    [9]IAPWS,Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam [OL].Aug.2007,available at http://www.iapws.org.

    [10]Taitel Y,Bornea D,Dukler A E.Aiche J,1980,26:345–354.

    [11]Lockhart R W and Martinelli R C.Chem Eng Prog,1949,1: 39–48.

    [12]Chen J C.Ind Eng Chem Proc DD,1966,5:531–535.

    [13]Bergles A E and Rohsenow W M.J Heat Transf,1964,86: 365–372.

    [14]NUREG/CR-5535/RevP3-VolIV,Relap5mod3.3codemanual volume IV:models and correlations,prepared for the Of fi ce of Nuclear Regulatory Research,US NRC,Washington DC, 2006,42.

    10.13538/j.1001-8042/nst.25.050601

    (Received December 3,2013;accepted in revised form March 3,2014;published online September 20,2014)

    ?Supported by the National Natural Science Foundation of China(Nos. 51376065 and 51176052)

    ?Corresponding author,huangkai@ipp.ac.cn

    猜你喜歡
    志豪
    兵媽媽的腳步
    歌海(2022年4期)2023-01-02 13:29:52
    學(xué)生作品
    火之殤
    大眾攝影(2020年11期)2020-11-02 02:57:36
    黃志豪:尋常生活自有詩(shī)意
    戰(zhàn)友永在我心里
    歌海(2020年1期)2020-03-23 06:05:32
    第二次高考
    青秀山
    歌海(2019年1期)2019-06-11 07:02:15
    基于AHP的外賣商戶綜合評(píng)價(jià)模型
    考試周刊(2018年15期)2018-01-21 10:40:25
    Analyze On—line Star Economy Basing on Models of Entrepreneurship
    等我長(zhǎng)大了,天天背你
    国产成人精品久久二区二区91| 免费在线观看黄色视频的| 亚洲在线自拍视频| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 免费久久久久久久精品成人欧美视频| 夜夜躁狠狠躁天天躁| 黄片播放在线免费| 多毛熟女@视频| 亚洲第一欧美日韩一区二区三区| 欧美黄色淫秽网站| 欧美黄色淫秽网站| x7x7x7水蜜桃| 久久久国产精品麻豆| 国产伦人伦偷精品视频| 午夜精品在线福利| 满18在线观看网站| 久久99一区二区三区| 亚洲国产欧美一区二区综合| 叶爱在线成人免费视频播放| 一夜夜www| 亚洲精品粉嫩美女一区| 99在线人妻在线中文字幕 | 免费高清在线观看日韩| 波多野结衣av一区二区av| 女人被躁到高潮嗷嗷叫费观| 成人特级黄色片久久久久久久| 不卡av一区二区三区| 免费在线观看日本一区| 中文字幕最新亚洲高清| 中文字幕最新亚洲高清| 咕卡用的链子| 国产精品99久久99久久久不卡| 亚洲自偷自拍图片 自拍| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久久久免费视频 | 在线十欧美十亚洲十日本专区| 十八禁高潮呻吟视频| 99国产精品免费福利视频| 老汉色av国产亚洲站长工具| 深夜精品福利| 高清黄色对白视频在线免费看| a在线观看视频网站| 久久精品国产亚洲av高清一级| 交换朋友夫妻互换小说| 狠狠婷婷综合久久久久久88av| 欧美日韩亚洲综合一区二区三区_| 亚洲av熟女| 在线观看日韩欧美| 亚洲国产欧美网| 大型黄色视频在线免费观看| 99re在线观看精品视频| 亚洲av成人av| 国产成人精品无人区| 精品无人区乱码1区二区| 国产精品美女特级片免费视频播放器 | av线在线观看网站| 日韩免费av在线播放| 亚洲五月色婷婷综合| 一二三四在线观看免费中文在| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 欧美老熟妇乱子伦牲交| 久久天堂一区二区三区四区| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆| 精品卡一卡二卡四卡免费| ponron亚洲| 人人妻人人爽人人添夜夜欢视频| 丝袜美腿诱惑在线| 黄色视频,在线免费观看| 国产欧美亚洲国产| 国产精华一区二区三区| 欧美黄色淫秽网站| 欧美大码av| 亚洲专区字幕在线| 国产高清激情床上av| 欧美在线一区亚洲| 高清在线国产一区| 丝袜在线中文字幕| 香蕉丝袜av| 狂野欧美激情性xxxx| 9色porny在线观看| 欧美人与性动交α欧美软件| 无限看片的www在线观看| 国产精品98久久久久久宅男小说| 国产精品一区二区免费欧美| 精品久久久精品久久久| 日日夜夜操网爽| 人妻丰满熟妇av一区二区三区 | 三上悠亚av全集在线观看| 国产一卡二卡三卡精品| 制服诱惑二区| 黄色毛片三级朝国网站| 精品一区二区三卡| 99国产综合亚洲精品| 麻豆国产av国片精品| 最近最新中文字幕大全免费视频| 欧美精品人与动牲交sv欧美| 少妇粗大呻吟视频| 亚洲欧美激情在线| 乱人伦中国视频| 精品亚洲成国产av| 一进一出好大好爽视频| 捣出白浆h1v1| 极品教师在线免费播放| 亚洲五月天丁香| 18在线观看网站| 99精品久久久久人妻精品| 免费不卡黄色视频| 欧美丝袜亚洲另类 | 最近最新免费中文字幕在线| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区欧美精品| 国产极品粉嫩免费观看在线| 色综合欧美亚洲国产小说| av网站在线播放免费| 国产日韩一区二区三区精品不卡| 久久精品成人免费网站| 一a级毛片在线观看| 国产精品免费一区二区三区在线 | 18禁美女被吸乳视频| e午夜精品久久久久久久| 1024视频免费在线观看| 法律面前人人平等表现在哪些方面| 老司机亚洲免费影院| 国产在线一区二区三区精| 久久久久久久午夜电影 | 国产麻豆69| 一区二区三区国产精品乱码| 欧美 日韩 精品 国产| 久久亚洲精品不卡| 亚洲性夜色夜夜综合| 麻豆国产av国片精品| 怎么达到女性高潮| 久久国产精品影院| 黄网站色视频无遮挡免费观看| 老熟女久久久| 一二三四社区在线视频社区8| 夜夜爽天天搞| 国产97色在线日韩免费| 日日夜夜操网爽| 国产亚洲一区二区精品| 日韩精品免费视频一区二区三区| 午夜福利在线免费观看网站| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 日韩免费高清中文字幕av| 三上悠亚av全集在线观看| 欧美黄色片欧美黄色片| 免费人成视频x8x8入口观看| 午夜老司机福利片| av片东京热男人的天堂| 美女 人体艺术 gogo| 国产激情欧美一区二区| 亚洲国产欧美日韩在线播放| 在线免费观看的www视频| 国产午夜精品久久久久久| 免费高清在线观看日韩| 久久九九热精品免费| 人妻久久中文字幕网| 热re99久久国产66热| 国产精品一区二区精品视频观看| 三上悠亚av全集在线观看| 午夜福利一区二区在线看| 精品久久久久久久毛片微露脸| 日韩大码丰满熟妇| 欧美中文综合在线视频| 99国产精品一区二区三区| 亚洲少妇的诱惑av| 90打野战视频偷拍视频| 国产国语露脸激情在线看| 美女扒开内裤让男人捅视频| 欧美 日韩 精品 国产| 国产av精品麻豆| 高清av免费在线| 精品国产亚洲在线| 免费女性裸体啪啪无遮挡网站| 国内久久婷婷六月综合欲色啪| 黑人巨大精品欧美一区二区mp4| 国产淫语在线视频| 天天添夜夜摸| 亚洲免费av在线视频| 久久国产精品影院| 香蕉丝袜av| 中文字幕最新亚洲高清| 国产精品影院久久| 欧美亚洲 丝袜 人妻 在线| 伦理电影免费视频| 亚洲五月色婷婷综合| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 久久久国产成人免费| 国产精品 欧美亚洲| 欧美日韩av久久| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸| 99热国产这里只有精品6| 黄片播放在线免费| 亚洲精品国产区一区二| 欧美日本中文国产一区发布| 亚洲熟女精品中文字幕| 久久精品国产99精品国产亚洲性色 | 人人妻人人添人人爽欧美一区卜| 一级a爱视频在线免费观看| 啦啦啦免费观看视频1| 啪啪无遮挡十八禁网站| 免费av中文字幕在线| 亚洲精品粉嫩美女一区| 天天添夜夜摸| 免费在线观看亚洲国产| 日日摸夜夜添夜夜添小说| 成年版毛片免费区| 国产精品国产av在线观看| 日韩大码丰满熟妇| 久久ye,这里只有精品| 婷婷成人精品国产| 91精品三级在线观看| 女警被强在线播放| 午夜日韩欧美国产| 亚洲 国产 在线| 一个人免费在线观看的高清视频| 亚洲精品乱久久久久久| av国产精品久久久久影院| 亚洲精品中文字幕在线视频| 十八禁网站免费在线| 男女下面插进去视频免费观看| www.精华液| 侵犯人妻中文字幕一二三四区| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 精品少妇一区二区三区视频日本电影| 国产淫语在线视频| 在线看a的网站| 成人三级做爰电影| 免费日韩欧美在线观看| 精品亚洲成国产av| 亚洲av熟女| 国产男女内射视频| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| 啪啪无遮挡十八禁网站| 成人18禁在线播放| 在线观看免费视频日本深夜| 欧美黑人精品巨大| cao死你这个sao货| www.熟女人妻精品国产| 国产一区二区三区视频了| 亚洲片人在线观看| 久久久久久亚洲精品国产蜜桃av| 纯流量卡能插随身wifi吗| 69av精品久久久久久| 国产1区2区3区精品| 极品少妇高潮喷水抽搐| 免费人成视频x8x8入口观看| 搡老乐熟女国产| 天堂俺去俺来也www色官网| 久久亚洲精品不卡| 亚洲精品自拍成人| 制服人妻中文乱码| 手机成人av网站| 国产欧美日韩一区二区三| 国产精品偷伦视频观看了| 99精品在免费线老司机午夜| 久久久久久久国产电影| 免费看十八禁软件| 97人妻天天添夜夜摸| 极品教师在线免费播放| 热re99久久国产66热| 在线永久观看黄色视频| 波多野结衣一区麻豆| 我的亚洲天堂| 99久久人妻综合| 国产精品自产拍在线观看55亚洲 | 老熟女久久久| 中文字幕人妻丝袜制服| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩精品网址| 国产精品香港三级国产av潘金莲| 午夜福利在线观看吧| 亚洲情色 制服丝袜| ponron亚洲| 国产有黄有色有爽视频| 欧洲精品卡2卡3卡4卡5卡区| 黄网站色视频无遮挡免费观看| 久久久久精品人妻al黑| 99热国产这里只有精品6| 国产亚洲精品一区二区www | 久久久国产成人精品二区 | 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 99久久综合精品五月天人人| 一区二区三区激情视频| 亚洲片人在线观看| 十八禁人妻一区二区| 啦啦啦在线免费观看视频4| 日韩免费av在线播放| 18禁裸乳无遮挡免费网站照片 | 露出奶头的视频| 亚洲情色 制服丝袜| 国产成人系列免费观看| 日韩大码丰满熟妇| 色播在线永久视频| 国产又色又爽无遮挡免费看| 十分钟在线观看高清视频www| 在线观看66精品国产| 在线天堂中文资源库| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 亚洲av美国av| 国产有黄有色有爽视频| 久久久精品免费免费高清| 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 久久精品亚洲熟妇少妇任你| 国产xxxxx性猛交| 国产成人精品久久二区二区91| 18禁裸乳无遮挡免费网站照片 | 国产91精品成人一区二区三区| 满18在线观看网站| 亚洲综合色网址| 亚洲少妇的诱惑av| 操美女的视频在线观看| 国产男靠女视频免费网站| 国产精品美女特级片免费视频播放器 | 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 日本vs欧美在线观看视频| 大型黄色视频在线免费观看| 中文欧美无线码| 黑人巨大精品欧美一区二区mp4| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产av精品麻豆| 看黄色毛片网站| 19禁男女啪啪无遮挡网站| 淫妇啪啪啪对白视频| 午夜福利一区二区在线看| 久久久国产一区二区| 色在线成人网| 夜夜夜夜夜久久久久| 大型黄色视频在线免费观看| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 又大又爽又粗| 天天躁日日躁夜夜躁夜夜| 亚洲成人国产一区在线观看| 色婷婷av一区二区三区视频| 国产视频一区二区在线看| 免费黄频网站在线观看国产| 精品久久久精品久久久| 十八禁网站免费在线| 夫妻午夜视频| 亚洲专区中文字幕在线| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 亚洲 国产 在线| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 他把我摸到了高潮在线观看| 很黄的视频免费| 欧美日韩精品网址| 捣出白浆h1v1| 最近最新中文字幕大全电影3 | 婷婷成人精品国产| 91av网站免费观看| 成人18禁高潮啪啪吃奶动态图| 天天躁夜夜躁狠狠躁躁| 亚洲欧美一区二区三区黑人| 久久精品亚洲熟妇少妇任你| 亚洲国产精品一区二区三区在线| 亚洲色图av天堂| 在线看a的网站| 免费日韩欧美在线观看| 久久久久久久久久久久大奶| 女同久久另类99精品国产91| 两性夫妻黄色片| 国产99白浆流出| 男人的好看免费观看在线视频 | 黄片小视频在线播放| av一本久久久久| 国产av一区二区精品久久| 国内久久婷婷六月综合欲色啪| 两个人免费观看高清视频| 国产精品 欧美亚洲| 国产蜜桃级精品一区二区三区 | 国产三级黄色录像| 在线国产一区二区在线| 国内毛片毛片毛片毛片毛片| www日本在线高清视频| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 亚洲国产欧美一区二区综合| 成人特级黄色片久久久久久久| 青草久久国产| 老熟妇仑乱视频hdxx| 女警被强在线播放| 91成人精品电影| 亚洲一区高清亚洲精品| avwww免费| www.熟女人妻精品国产| 男女床上黄色一级片免费看| 91精品国产国语对白视频| 色94色欧美一区二区| 在线观看舔阴道视频| 国产亚洲精品久久久久5区| 午夜91福利影院| 狠狠婷婷综合久久久久久88av| 免费日韩欧美在线观看| 中国美女看黄片| 亚洲成人免费电影在线观看| 欧美人与性动交α欧美精品济南到| 三上悠亚av全集在线观看| 午夜老司机福利片| 国产在线观看jvid| 国产精品永久免费网站| 99国产精品免费福利视频| 窝窝影院91人妻| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | 天天添夜夜摸| www日本在线高清视频| 母亲3免费完整高清在线观看| 一二三四在线观看免费中文在| 欧美日韩成人在线一区二区| 纯流量卡能插随身wifi吗| 免费在线观看亚洲国产| 精品一区二区三卡| 国产aⅴ精品一区二区三区波| 天堂动漫精品| netflix在线观看网站| 久久人妻熟女aⅴ| 亚洲午夜精品一区,二区,三区| 久久天躁狠狠躁夜夜2o2o| 中文亚洲av片在线观看爽 | 在线视频色国产色| 成人18禁在线播放| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 亚洲av日韩精品久久久久久密| 亚洲人成电影观看| 久久香蕉精品热| 久久九九热精品免费| 12—13女人毛片做爰片一| 亚洲人成伊人成综合网2020| 精品国产一区二区三区四区第35| 欧美精品av麻豆av| 欧美激情极品国产一区二区三区| 精品国产国语对白av| 国产有黄有色有爽视频| 一二三四在线观看免费中文在| 成年人黄色毛片网站| 好男人电影高清在线观看| 十分钟在线观看高清视频www| av在线播放免费不卡| 成人18禁高潮啪啪吃奶动态图| 国产欧美亚洲国产| 久久精品亚洲精品国产色婷小说| 色精品久久人妻99蜜桃| 少妇粗大呻吟视频| 国产单亲对白刺激| av视频免费观看在线观看| 最新美女视频免费是黄的| 欧美激情极品国产一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品久久视频播放| 纯流量卡能插随身wifi吗| 亚洲免费av在线视频| 国产高清激情床上av| 50天的宝宝边吃奶边哭怎么回事| 午夜福利免费观看在线| 老司机深夜福利视频在线观看| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三区在线| 久久草成人影院| 久久精品国产清高在天天线| 国产精品一区二区免费欧美| 成在线人永久免费视频| 国产精品免费视频内射| 免费在线观看黄色视频的| 丁香欧美五月| 久久热在线av| 18禁国产床啪视频网站| 精品高清国产在线一区| 国产精品久久久久久人妻精品电影| 久久久久久免费高清国产稀缺| 欧美乱妇无乱码| 999精品在线视频| 国产亚洲欧美98| 久热这里只有精品99| 国产99久久九九免费精品| 免费观看人在逋| 在线观看免费视频日本深夜| 精品国产一区二区久久| 久久精品aⅴ一区二区三区四区| 精品少妇久久久久久888优播| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 如日韩欧美国产精品一区二区三区| 99久久人妻综合| 女人被狂操c到高潮| 日本五十路高清| 亚洲一区高清亚洲精品| 日韩欧美三级三区| av电影中文网址| 一边摸一边抽搐一进一小说 | 免费久久久久久久精品成人欧美视频| 日本黄色日本黄色录像| 欧美人与性动交α欧美软件| 久久九九热精品免费| 91成人精品电影| 成人影院久久| 日韩视频一区二区在线观看| 侵犯人妻中文字幕一二三四区| 黄色片一级片一级黄色片| 国产不卡一卡二| 脱女人内裤的视频| 18禁美女被吸乳视频| 精品国产超薄肉色丝袜足j| 国产亚洲欧美98| 1024香蕉在线观看| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| 午夜91福利影院| 丝袜人妻中文字幕| 涩涩av久久男人的天堂| 欧美大码av| 黑丝袜美女国产一区| 亚洲精品成人av观看孕妇| 人人妻人人澡人人看| 人妻 亚洲 视频| 精品高清国产在线一区| 麻豆av在线久日| 国产精品影院久久| 成人影院久久| 久久人妻福利社区极品人妻图片| 精品国产超薄肉色丝袜足j| 女人被狂操c到高潮| 99精品欧美一区二区三区四区| 一本大道久久a久久精品| 中文欧美无线码| 亚洲欧美色中文字幕在线| 亚洲欧美日韩高清在线视频| 高清黄色对白视频在线免费看| 免费在线观看影片大全网站| 高清av免费在线| 美女高潮到喷水免费观看| 老司机在亚洲福利影院| 国产精品秋霞免费鲁丝片| 精品国产美女av久久久久小说| 亚洲av片天天在线观看| 亚洲人成电影观看| 欧美av亚洲av综合av国产av| xxxhd国产人妻xxx| 国产精品久久久久久人妻精品电影| 亚洲专区中文字幕在线| 国内久久婷婷六月综合欲色啪| 亚洲人成77777在线视频| 一边摸一边做爽爽视频免费| 国产精品亚洲av一区麻豆| 99re6热这里在线精品视频| 老司机亚洲免费影院| 欧美日韩一级在线毛片| 久久精品国产亚洲av香蕉五月 | 色精品久久人妻99蜜桃| 日本五十路高清| 国产在线精品亚洲第一网站| 亚洲av日韩在线播放| 天天躁夜夜躁狠狠躁躁| 国产人伦9x9x在线观看| 久久人妻福利社区极品人妻图片| 999精品在线视频| 免费久久久久久久精品成人欧美视频| 久久精品人人爽人人爽视色| 中文亚洲av片在线观看爽 | 深夜精品福利| 岛国在线观看网站| 人人妻人人澡人人看| 宅男免费午夜| 免费在线观看视频国产中文字幕亚洲| 久久久国产成人免费| 80岁老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 麻豆国产av国片精品| 日韩欧美一区视频在线观看| 搡老熟女国产l中国老女人| 国产av又大| 久久亚洲精品不卡| 在线观看舔阴道视频| 国产av又大| 久久久精品免费免费高清| 91九色精品人成在线观看| 男人操女人黄网站| 在线观看免费视频网站a站| 亚洲av成人一区二区三| 欧美成狂野欧美在线观看| 精品视频人人做人人爽| 精品国产国语对白av| 亚洲色图 男人天堂 中文字幕| av欧美777| 欧美日韩国产mv在线观看视频| 亚洲色图 男人天堂 中文字幕| 欧美黑人精品巨大| av电影中文网址| av福利片在线| 国产91精品成人一区二区三区| 国产精品乱码一区二三区的特点 | 亚洲熟女精品中文字幕| 人妻 亚洲 视频| 免费在线观看视频国产中文字幕亚洲| 国产极品粉嫩免费观看在线| 在线免费观看的www视频|