• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of Nb additive on Te-induced stress corrosion cracking in Ni alloy:a fi rst-principles calculation?

    2014-08-05 09:13:28LIUWenGuan劉文冠HANHan韓晗RENCuiLan任翠蘭YINHuiQin陰慧琴HUAIPing懷平ZOUYang鄒楊andXUHongJie徐洪杰
    Nuclear Science and Techniques 2014年5期

    LIU Wen-Guan(劉文冠),HAN Han(韓晗),REN Cui-Lan(任翠蘭),YIN Hui-Qin(陰慧琴),HUAI Ping(懷平),ZOU Yang(鄒楊),and XU Hong-Jie(徐洪杰),

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences,Shanghai 201800,China

    3Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences,Shanghai 201800,China

    The effect of Nb additive on Te-induced stress corrosion cracking in Ni alloy:a fi rst-principles calculation?

    LIU Wen-Guan(劉文冠),1,2HAN Han(韓晗),1,2REN Cui-Lan(任翠蘭),1,3YIN Hui-Qin(陰慧琴),1,2HUAI Ping(懷平),1,2ZOU Yang(鄒楊),1,2and XU Hong-Jie(徐洪杰)1,2,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences,Shanghai 201800,China

    3Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences,Shanghai 201800,China

    Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement. First-principles calculations are performed to research this mechanism by simulating the Ni(111)surface and the∑5(012)grain boundary.The calculated adsorption energy suggests that Te atoms prefer diffusing along the grain boundary to forming the surface-reaction layer with Nb on surface of the Ni alloy.First-principles tensile tests show that the Nb segregation can enhance the cohesion of grain boundary.The strong Nb-Ni bonding can prevent the Te migration into the inside of the alloy.According to the Rice-Wang model,the strengthening/embrittling energies of Nb and Te are calculated,along with their mechanical and chemical components. The chemical bonds and electronic structures are analyzed to uncover the physical origin of the different effects of Te and Nb.Our work sheds lights on the effect of Nb additive on the Te-induced intergranular embrittlement in Hastelloy N alloy on the atomic and electronic level.

    Nb,Hastelloy N,Te,First-principles calculations,Stress corrosion cracking,Molten salt reactor

    I.INTRODUCTION

    Molten Salt Reactor(MSR)is the only liquid-fueled reactor in the six most promising Generation IV reactor concepts[1].As the structural material developed specially for MSR,Hastelloy N,a Ni-based alloy,has excellent corrosion resistance against molten salt,and was used in Molten Salt Reactor Experiment(MSRE)of the Oak Ridge National Laboratory(ORNL,USA).However,MSRE revealed that the usefulness of Hastelloy N is limited by its susceptibility to stress corrosion cracking(SCC)induced by Te,which is a most dangerous problem of Hastelloy N[2,3].Te,a fission product in fuel salt,tends to diffuse along the surface grain boundaries(GBs)of Hastelloy N and causes intergranular cracking eventually,which is related closely with SCC.

    To tackle this problem,a straightforward approach is to modify Hastelloy N by added alloying materials.MSRE foundthataddingNb(1%~2%)toHastelloyNwasbeneficial in reducing intergranular Te cracking,but still,it embrittled[4,5].The mechanism of the Nb effect on the Teinduced SCC is unknown:Nb may form a stable and innocuous telluride compound,or Nb hypothetically forms surfacereaction layers with Te in preference to the Te diffusion intothe alloy along the GBs,and so on[4,5].So,studies on this mechanism shall be helpful for developing more advanced Ni alloys,with adequate resistance to Te,for MSR.

    First-principles calculation is suitable to mechanism investigations at atomic level.It was used successfully in studying effects of dopants or impurities in GB[6–9].In this paper,we perform a first-principles calculation to clarify this mechanism by simulating aP5(012)Ni GB[7,10]and the Ni(111)surface with the coexistence of Te and Nb.The results about the effects of Te on Ni GB are in accordance with our previous work[9].

    II.COMPUTATIONAL DETAILS

    Figure 1 is a schematic diagram of aP5(012)Ni GB unit cell.It contains two reversely oriented grains with 80 Ni atoms.The atom layer is distinguished by the distance between the layer and the GB plane.The GB0 layer represents the hollow sites.There are four equivalent atomic sites in each layer.The geometry optimization calculation of GB was performed including cell optimization.We adopted the GB model in Ref.[7],and performed further optimization(including cell optimization)to find a more accurate GB model.

    The Ni(111)surface is modeled by a slab with a(4×4) surface periodic cell,which contains six layers of Ni atoms. The calculated lattice constant of bulk Ni used to build the Ni(111)surface is 3.52?A,which is in good agreement with the experimental result.The bottom layer without Te or Nb is fixed to its optimal bulk position to mimic the bulk.The vacuum layer is about 12?A thick.The Nb-Ni(111)surface,with a Nb atom substituted for a Ni atom in the topmost layer ofthe Ni(111)surface(Fig.1(c)),are also calculated to compare with the Ni(111)surface.

    Fig.1.(Color online)Schematic diagram of(a)unit cell of∑5(012)Ni GB.The atomic sites are labeled by numbers counted from the GB plane.For clarity,the gray and black balls represent atoms in layers with x=0(in the paper plane)and x=0.25(beneath the paper plane)along the〈100〉direction,respectively.The other atoms with x=0.5 and x=0.75 are not shown.The right parts show the adsorption sites on the(111)surfaces of pure Ni(b) and Ni-Nb system(c):(1)(5)(1)top site;(2)bridge site;(3)hcp site;(4)fcc site.

    Spin-polarized electronic state calculations were performed within the DFT[11,12]using Vienna ab-initio simulation package(VASP)[13].Projector-augmented planewave(PAW)[14]methods were employed with the PBE generalized gradient approximation(GGA)[15].The wave functions were expanded in a plane-wave basis set with a cutoff energy of 350eV.The Brillouin zone was sampled using a 3×3×1 k-point mesh.

    First-principles tensile tests were carried out to study the GB strength with Te or Nb in GB region.To simplify the calculations,the lattice dimensions in the GB plane were fixed to neglect the Poisson’s ratio.A uniaxial tensile strain was exerted in the GB normal direction(i.e.the〈012〉direction). In each strain step,the starting atomic configuration is taken from the relaxed configuration of the preceding step by an increment of 2%to ensure the continuous strain path.

    III.RESULTS AND DISCUSSION

    A.Adsorption energy of Te

    The adsorption energies of Te,Ead,on the Ni(111)and Nb-Ni(111)surfaces are calculated by:

    where ETe-sub,Eatom,Teand Esubrefer to the calculated total energies of the optimized substrate with the adsorbate(i.e. a Te atom),one isolated Te atom,and the clean substrate, respectively.A strongly negative value of Eadmeans intense binding between the Te atom and the substrate.

    AsshowninFig.1,thetop,bridge,hexagonalclose-packed (hcp),and face-centered cubic(fcc)sites were considered for the adsorption.Table 1 shows the calculated adsorption energies(in eV)of Te at each site on surface of Ni(111)and Nb-Ni(111),and the two data groups in three site types are roughly the same.These kinds of substitution of Nb for Ni do not change too much of the adsorption energy of Te,whereas the hcp site of Nb-Ni(111)is unstable for Te adsorption due to the existence of the Nb atom,and the Te atom is repelled to move from the hcp site to a farther site(Site 5 in Fig.1(c)). As a result,Te atoms do not preferentially form the strong binding with Nb atoms on the surface of Ni-Nb alloy.So, the resistance of Nb to the Te-induced SCC in Hastelloy N cannot be attributed to the hypothetical formation of surfacereaction layers between Te and Nb.And Te would prefer to diffuse into the alloy along the GBs.The Nb effect in GB with the coexistence of Te will be discussed later.

    TABLE 1.Adsorption energies(eV)of Te at different sites on the Ni(111)and Nb-Ni(111)surfaces(See Fig.1 for the atomic sites)

    B.First-principles tensile tests

    To further understand how the Nb additive affects the Ni GBatpresenceofTe,first-principlestensiletestswerecarried out to investigate the maximum strength of the GB and its fracture process.Te and Nb atoms,which are greater in size than Ni,prefer to occupy substitution sites(Site 1 in Fig.1) rather than interstitial sites(Site 0 in Fig.1)on the GB plane. So only the substitution case is considered.There are four sites in Layer 1.For simplification,the comparison was made amongthecleanGB,theGB+Nblayer(4NbatomsinLayer 1),the GB+mixed layer of Nb and Te(2 Nb and 2 Te in Layer 1),and the GB+Te layer.

    As shown in Fig.2,the GB+Nb layer has the largest tensile strength(21.3GPa)at the strain of 28%,while that of the clean GB case is a little lower.On the other hand,the maximum strength of the GB+Te layer is about one-half of the case of GB+Nb layer.However,when the four sites in Layer 1 are occupied by 2 Nb and 2 Te atoms,the maximum GB strength increases to 16.4GPa at the strain of 20%, which is obviously improved compared with the GB+Te layer.Clearly,Nb segregation enhances the Ni GB cohesion, and Te in the GB region induces the Ni GB embrittlement, hence the inhibition of the Te-induced SCC in Ni GB by the segregated Nb atoms.

    Fig.2.(Color online)Calculated tensile stress as a function of strain for the clean GB,GB+Nb layer(4 Nb atoms in Layer 1),GB+ mixed layer of Nb and Te(2 Nb and 2 Te atoms in Layer 1),and GB +Te layer.

    In the region of strain<28%,the elastic deformation occurs for the GB+Nb layer.From strain=32%~36%,this GB undergoes the plastic deformation,and positions of the atoms in the GB cell are not layer by layer any longer.For the clean GB,GB+Te layer and GB+2(Nb+Te),the fracture surface of the GB is indeed the GB plane.However,the fracture surface of the GB+Nb layer is not the GB plane but the plane between the Layers 2 and 3(See Fig.1).As a result,the Nb(1)–Ni(2)bonds are stronger than the Ni(2)-Ni(3) bonds in the GB+Nb layer,and the corresponding Ni(1)-Ni(2)bonds in the clean GB.

    C.Strengthening/embrittling energy

    According to the Rice-Wang model[16],effects of the various elements on the GB cohesion can be determined by the strengthening/embrittling energy,ΔE,which is defined as

    where,EGB,doped,EGB,EFS,dopedandEFSrepresent the total energies of the doped-GB,clean GB,doped-free surface(FS) and clean FS,respectively.A positive value of ΔEmeans embrittlement of the GB,and a negative value indicates enhancement of the GB.

    Togainadeeperunderstanding,thestrengthening/embrittling energy can be decomposed into the mechanical and chemical components.The procedure of decomposition in Refs.[10,17–19]was used to perform the analysis.

    The calculated ΔEand its mechanical and chemical components for Te and Nb are listed in Table 2.According to the calculated strengthening/embrittling energy,Te,with a positive value,is an embrittler,and Nb,with a negative value,is a cohesionenhancer.ThemechanicalcomponentsofTeandNb are both positive.This is due to that the bigger atomic sizes of Te and Nb cause the GB expansion.On the other hand,the chemical component of Nb is strongly negative and plays a dominant role in the strengthening/embrittling energy.However,Te has a small value of the chemical component,whichhas little effect on the strengthening/embrittling energy.So, the contrary effects of Te and Nb are mainly attributed to the difference between their chemical components.The results of our work agree well with the previous calculations[10,20] (Table 2).

    TABLE 2.Adsorption energies(eV)of Te at different sites on the Ni(111)and Nb-Ni(111)surfaces.(See Fig.1 for the atomic sites.)

    Fig.3.(Color online)Calculated interatomic distances(?A)in the GB region for(a)clean GB,and(b)GB+4 Nb in Layer 1(a Nb layer)and the GB+4 Te in Layer 1(a Te layer).The data for the case of Te are given in parenthesis.The atoms are marked by their site numbers.

    D.Chemical bonds and electronic structures

    The atomic and electronic structures were studied for mechanisms of the different effects of Te and Nb on Ni GB. The calculated interatomic distances in the GB region are shown in Fig.3 for the comparison.Being bigger than Ni in atomic radius,Te and Nb induce the GB expansion,as shown in Fig.3.For example,comparing with in the clean GB,the Ni(3)-Ni(-3)distances in the GBs+Te layer andGBs+Nb layer are elongated by 0.58?A and 0.24?A,respectively.The expansion can impair the GB cohesion,which is in accordance with the positive values of the strengthening/embrittling energies for Te and Nb.Also,it can be seen in Fig.3 that the Te-induced GB expansion is more serious than the Nb-induced expansion,as the larger positive mechanical component of Te is bigger than Nb.

    Fig.4.(Color online)Calculated charge density distribution(electron/Bohr3)in the(100)plane for(a)clean GB,(b)GB+Te layer and(c) GB+Nb layer.The atoms of interest are marked by their site numbers.

    The chemical component of the strengthening/embrittling energy is thought to be induced by the charge redistribution due to the existence of the doped atoms[10].With only a small difference in mechanical components for Te and Nb (see Table 2),their chemical components are comparable. Fig.4 shows the calculated charge density distributions for the clean GB,GB+Te layer and GB+Nb layer.The Te(1)-Ni(2)/Ni(-2)bondinFig.4(b)andNb(1)-Ni(2)/Ni(-2)bondin Fig.4(c)are stronger than the corresponding Ni(1)-Ni(2)/Ni(-2)bond in Fig.4(a),as judged by the charge densities along these bonds.But these strong Te-Ni bonds cannot enhance the GB cohesion that much,since directions of the bonds are almost in parallel with the GB plane.On the other hand,the Ni(2)-Ni(-2)and Ni(1)-Ni(4)/Ni(-4)bonds are normal to the GB plane and exert the main cohesive force to hold the two grains together as displayed in Fig.4(a).Replacing Ni with Te in Fig.4(b)makes the Ni(2)-Ni(-2)bond much weaker than the corresponding Ni(2)-Ni(-2)bond in Fig.4(a).However,for the GB with a Nb layer in Fig.4(c),the Ni(2)-Ni(-2) bond is a little weaker than the corresponding Ni(2)-Ni(-2) bond in Fig.4(a),but the Nb(1)-Ni(4)/Ni(-4)bond is obviously stronger than the Ni(1)-Ni(4)/Ni(-4)bond in Fig.4(a). As a result,the remarkable differences between the chemical components of the strengthening/embrittling energies for Te and Nb are induced by these charge redistributions.The charge density for the GB+Te layer in Fig.4(b)is in accordance with the result in Ref.[10].

    As the conjugation interface between two misoriented grains,GB severs an ideal channel for migration of corrosive elements(e.g.Te in our case)to induce the SCC.As an additive to the alloy,Nb can segregate to the GB and enhance the GB cohesion,which can reduce the intergranular Te cracking.The strong Nb-Ni bonds in the GB region can also prevent the migration of Te along the GB to the inside of the alloy.In the meanwhile,MSRE found that Nb can also improve the resistance of Ni-based Hastelloy N to irradiation embrittlement,but this effect of Nb is likely not useful at operating temperatures much above 650?C[4,5].Our work sheds lights on the effect of Nb additive on the Te-induced SCC in Hastelloy N on the atomic and electronic level,and is very helpful to the design of modified Hastelloy N with new additive that can further improve the resistances to intergranular embrittlement by Te and irradiation embrittlement at elevated temperature simultaneously.

    IV.CONCLUSION

    First-principles calculations were performed to research the effect of Nb additive on the Te-induced GB embrittlement in Ni alloy.Energetic studies have shown that Te atoms don’t tend to form the surface-reaction layer with Nb on the surface of Ni alloy.And Nb atoms on the surface cannot prevent the preferred diffusion of Te atoms along the GBs.On the other hand,the first-principles tensile tests have shown that the Nb segregation in GB can inhibit the Te-induced GB embrittlement.The strong Nb-Ni bonds in the GB region can improve the GB cohesion and prevent the migration of Te along the GBs.The strengthening/embrittling energies of Nb and Te were calculated.The chemical bonds and electronic structures were analyzed to uncover the physical origin of the mechanical and chemical components of the strengthening/embrittling energies.

    [1]Generation IV International Forum.A Technology Roadmap for Generation IV Nuclear Energy Systems.U.S.DOE,GIF-002-00,Dec.2002.

    [2]Rosenthal M W,Briggs R B,Haubenreich P N.Molten-salt reactor program,semiannual progress report,ORNL-4782.Oak Ridge,Tennessee,USA,1972.

    [3]Rosenthal M W,Haubenreich P N,Briggs R B.The development status of molten-salt breeder reactors,ORNL-4812.Oak Ridge,Tennessee,USA,1972.

    [4]Keiser J R.Status of tellurium-Hastelloy N studies in molten fl uoride salts,ORNL/TM-6002.Oak Ridge,Tennessee,USA, 1977.

    [5]McCoy H E Jr.Status of materials development for molten salt reactors,ORNL/TM-5920.Oak Ridge,Tennessee,USA,1978.

    [6]Wu R Q,Freeman A J,Olson G B.Science,1994,265:376–380.

    [7]Yamaguchi M,Shiga M,Kaburaki H.Science.2005,307:393–397.

    [8]Yuasa M and Mabuchi M.Phys Rev B,2010,82:094108.

    [9]Liu W G,Han H,Ren C L,et al.Comp Mater Sci,2014,88: 22–27.

    [10]Vsianska M and Sob M.Prog Mater Sci,2011,56:817–840.

    [11]Hohenberg P,ohn W.Phys Rev B,1964,136:864–871.

    [12]Kohn W and Sham L J.Phys Rev,1965,140:A1133–A1138.

    [13]Kresse G and Furthmuller J.Phys Rev B,1996,54:11169–11186.

    [14]Blochl P E.Phys Rev B,1994,50:17953–17979.

    [15]Perdew J P,Chevary J A,Vosko S H,et al.Phys Rev B,1992,46:6671–6687.

    [16]Rice J R and Wang J S.Mat Sci Eng A-Struct,1989,107:23–40.

    [17]Geng W T,Freeman A J,Wu R,et al.Phys Rev B,1999,60: 7149–7155.

    [18]Lozovoi A Y,Paxton A T,Finnis M W.Phys Rev B,2006,74: 155416.

    [19]Wachowicz E,Ossowshi T,Kiejna A.Phys Rev B,2010,81: 094104.

    [20]Geng W T,Freeman A J,Olson G B.Phys Rev B,2001,63: 165415.

    10.13538/j.1001-8042/nst.25.050603

    (Received December 31,2013;accepted in revised form March 25,2014;published online September 25,2014)

    ?Supported by Science and Technology Commission of Shanghai Municipality(No.11JC1414900),Project supported by the National Basic Research Program of China(No.2010CB934501),Thorium Molten Salts Reactor Fund(No.XDA02000000),the National Natural Science Foundation of China(No.11005148),the Special Presidential Foundation of the Chinese Academy of Science,China(No.29),and the National Natural Science Foundation of China(No.51371188)

    ?Corresponding author,xuhongjie@sinap.ac.cn

    国产免费av片在线观看野外av| 精品国产乱码久久久久久小说| 97人妻天天添夜夜摸| 一级黄色大片毛片| av天堂久久9| 在线播放国产精品三级| 亚洲情色 制服丝袜| 伦理电影免费视频| 日本撒尿小便嘘嘘汇集6| 啪啪无遮挡十八禁网站| 男女下面插进去视频免费观看| av超薄肉色丝袜交足视频| 美女高潮喷水抽搐中文字幕| 99在线人妻在线中文字幕 | 亚洲国产av新网站| 美女主播在线视频| 天天操日日干夜夜撸| 色综合婷婷激情| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 欧美激情极品国产一区二区三区| 国产av一区二区精品久久| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩一区二区三| 国产野战对白在线观看| 中文字幕制服av| 丝瓜视频免费看黄片| 国产欧美日韩一区二区三区在线| 999久久久国产精品视频| 成人精品一区二区免费| 91大片在线观看| 国产在线精品亚洲第一网站| 亚洲 欧美一区二区三区| 最近最新中文字幕大全电影3 | 欧美国产精品va在线观看不卡| 色婷婷久久久亚洲欧美| 九色亚洲精品在线播放| 成人特级黄色片久久久久久久 | 最新美女视频免费是黄的| 国产高清videossex| 午夜成年电影在线免费观看| 正在播放国产对白刺激| 亚洲成a人片在线一区二区| 可以免费在线观看a视频的电影网站| 国产精品电影一区二区三区 | 99久久精品国产亚洲精品| 欧美一级毛片孕妇| 男女高潮啪啪啪动态图| 精品一区二区三区四区五区乱码| 久久精品国产99精品国产亚洲性色 | 超碰成人久久| 午夜福利视频精品| 精品国产乱子伦一区二区三区| 夜夜夜夜夜久久久久| 99久久国产精品久久久| 欧美乱妇无乱码| 国产色视频综合| 国产福利在线免费观看视频| 91成年电影在线观看| 黑丝袜美女国产一区| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡| 18禁观看日本| 日韩欧美免费精品| 亚洲人成伊人成综合网2020| 一级毛片女人18水好多| 少妇粗大呻吟视频| 国产精品国产av在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲一码二码三码区别大吗| 国产精品秋霞免费鲁丝片| 美女福利国产在线| 精品一区二区三区视频在线观看免费 | 日韩三级视频一区二区三区| 中国美女看黄片| 18禁裸乳无遮挡动漫免费视频| 成人精品一区二区免费| 黄网站色视频无遮挡免费观看| tube8黄色片| 免费在线观看完整版高清| 18禁美女被吸乳视频| 人人妻人人澡人人看| 中文字幕最新亚洲高清| 国产精品久久久久久精品电影小说| 久久久久久人人人人人| 99精品欧美一区二区三区四区| 老司机影院毛片| 亚洲免费av在线视频| 脱女人内裤的视频| 亚洲熟女毛片儿| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| av片东京热男人的天堂| 女人爽到高潮嗷嗷叫在线视频| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 在线看a的网站| 无人区码免费观看不卡 | 国产一卡二卡三卡精品| 69av精品久久久久久 | 日韩成人在线观看一区二区三区| 免费在线观看完整版高清| 亚洲av欧美aⅴ国产| 如日韩欧美国产精品一区二区三区| 国产一区二区在线观看av| 中文字幕最新亚洲高清| 夜夜骑夜夜射夜夜干| 欧美av亚洲av综合av国产av| 人人妻人人澡人人爽人人夜夜| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 老熟妇乱子伦视频在线观看| 成人国产一区最新在线观看| 亚洲精品美女久久av网站| 免费黄频网站在线观看国产| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 久久99热这里只频精品6学生| a级毛片黄视频| 一个人免费看片子| videosex国产| 一区二区av电影网| 激情在线观看视频在线高清 | 午夜福利一区二区在线看| 欧美激情高清一区二区三区| tocl精华| 99九九在线精品视频| 国产成人欧美| 蜜桃在线观看..| 亚洲性夜色夜夜综合| 在线观看免费午夜福利视频| 伦理电影免费视频| 中文字幕精品免费在线观看视频| 亚洲av美国av| 波多野结衣一区麻豆| 国产精品一区二区在线不卡| 亚洲成人免费电影在线观看| 亚洲成av片中文字幕在线观看| 狠狠狠狠99中文字幕| 午夜久久久在线观看| 91九色精品人成在线观看| 免费在线观看影片大全网站| 大香蕉久久网| 国产熟女午夜一区二区三区| 岛国在线观看网站| 亚洲第一av免费看| 交换朋友夫妻互换小说| 自拍欧美九色日韩亚洲蝌蚪91| 99久久99久久久精品蜜桃| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线观看99| 欧美日韩视频精品一区| 怎么达到女性高潮| 亚洲美女黄片视频| 欧美激情高清一区二区三区| 国产精品亚洲av一区麻豆| 久久青草综合色| 韩国精品一区二区三区| 久久中文字幕人妻熟女| 欧美久久黑人一区二区| 女人被躁到高潮嗷嗷叫费观| 露出奶头的视频| 久久香蕉激情| 中文字幕高清在线视频| 亚洲精品在线观看二区| 肉色欧美久久久久久久蜜桃| 久久久久国内视频| 69精品国产乱码久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产aⅴ精品一区二区三区波| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人影院久久av| tocl精华| 高清av免费在线| 国产在线精品亚洲第一网站| 一本久久精品| 中文亚洲av片在线观看爽 | 后天国语完整版免费观看| 一区二区av电影网| 国产在线精品亚洲第一网站| 黑人操中国人逼视频| 成人国产一区最新在线观看| 欧美变态另类bdsm刘玥| 亚洲精品美女久久久久99蜜臀| 肉色欧美久久久久久久蜜桃| 久久亚洲真实| 精品久久蜜臀av无| 美女福利国产在线| 女同久久另类99精品国产91| 777久久人妻少妇嫩草av网站| 不卡一级毛片| av天堂在线播放| 久久国产精品男人的天堂亚洲| av视频免费观看在线观看| 久久久水蜜桃国产精品网| 精品国产一区二区三区久久久樱花| 十八禁网站免费在线| 国产在线免费精品| 久久九九热精品免费| tocl精华| 91麻豆av在线| 伦理电影免费视频| 看免费av毛片| 国产在视频线精品| 亚洲精品在线美女| 老熟女久久久| 日韩欧美一区视频在线观看| kizo精华| 狠狠狠狠99中文字幕| av网站在线播放免费| 欧美人与性动交α欧美软件| 757午夜福利合集在线观看| 又紧又爽又黄一区二区| 美女扒开内裤让男人捅视频| 乱人伦中国视频| 1024视频免费在线观看| 黄色毛片三级朝国网站| 欧美激情 高清一区二区三区| 国产色视频综合| 我的亚洲天堂| 亚洲少妇的诱惑av| 成人免费观看视频高清| 自拍欧美九色日韩亚洲蝌蚪91| 激情在线观看视频在线高清 | 国产又色又爽无遮挡免费看| a在线观看视频网站| 国产伦理片在线播放av一区| 丝袜人妻中文字幕| 精品少妇久久久久久888优播| 999久久久国产精品视频| 国产欧美亚洲国产| 精品国产乱码久久久久久小说| 欧美日韩精品网址| 亚洲成人国产一区在线观看| 69精品国产乱码久久久| 亚洲欧美一区二区三区久久| 日韩视频在线欧美| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| 国产福利在线免费观看视频| 国产亚洲午夜精品一区二区久久| 久久精品亚洲熟妇少妇任你| 精品人妻熟女毛片av久久网站| bbb黄色大片| 大片免费播放器 马上看| 美女国产高潮福利片在线看| 纯流量卡能插随身wifi吗| 精品一品国产午夜福利视频| 国产精品二区激情视频| 亚洲av第一区精品v没综合| 天天操日日干夜夜撸| 成人手机av| 成年女人毛片免费观看观看9 | 久久久久精品人妻al黑| 99国产精品一区二区蜜桃av | 黄频高清免费视频| tocl精华| 一本大道久久a久久精品| 成年动漫av网址| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 国产欧美亚洲国产| 欧美久久黑人一区二区| 免费少妇av软件| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 国产av一区二区精品久久| 欧美乱妇无乱码| 亚洲精品av麻豆狂野| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区二区三区在线观看 | 视频在线观看一区二区三区| 黄色怎么调成土黄色| h视频一区二区三区| 久久九九热精品免费| 曰老女人黄片| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 丰满少妇做爰视频| 亚洲久久久国产精品| 免费在线观看黄色视频的| 亚洲中文字幕日韩| 国产免费现黄频在线看| 午夜免费鲁丝| 国产精品麻豆人妻色哟哟久久| 男女之事视频高清在线观看| 黄色怎么调成土黄色| av线在线观看网站| 久久久国产成人免费| 国产在视频线精品| 国产欧美日韩精品亚洲av| 两人在一起打扑克的视频| 色老头精品视频在线观看| 国产av精品麻豆| 欧美国产精品一级二级三级| 久久久精品区二区三区| 18在线观看网站| 亚洲色图综合在线观看| 国产伦理片在线播放av一区| 热99re8久久精品国产| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩精品网址| 免费观看人在逋| 日韩大码丰满熟妇| 欧美精品av麻豆av| 欧美+亚洲+日韩+国产| 99久久99久久久精品蜜桃| 国产男女内射视频| 91精品国产国语对白视频| 丁香六月天网| 99国产综合亚洲精品| 成人国产av品久久久| 99re在线观看精品视频| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 99国产精品99久久久久| 亚洲中文字幕日韩| 日本黄色日本黄色录像| 18在线观看网站| 国产亚洲欧美精品永久| 亚洲欧美一区二区三区久久| 亚洲精品成人av观看孕妇| 欧美黄色片欧美黄色片| 国产精品 国内视频| 亚洲成a人片在线一区二区| 91精品国产国语对白视频| 精品一区二区三区视频在线观看免费 | 成人国产一区最新在线观看| 嫁个100分男人电影在线观看| 真人做人爱边吃奶动态| 色94色欧美一区二区| 亚洲国产中文字幕在线视频| 新久久久久国产一级毛片| 最黄视频免费看| av不卡在线播放| 亚洲熟妇熟女久久| 一级毛片电影观看| 免费黄频网站在线观看国产| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 男人操女人黄网站| 成年人午夜在线观看视频| 人人妻人人澡人人爽人人夜夜| 大香蕉久久成人网| 狠狠婷婷综合久久久久久88av| 成人免费观看视频高清| 母亲3免费完整高清在线观看| 成人国语在线视频| 99国产精品99久久久久| 午夜视频精品福利| 久久亚洲精品不卡| 国产av又大| 两个人看的免费小视频| 国产精品免费视频内射| 亚洲成人免费av在线播放| 女人久久www免费人成看片| 18禁黄网站禁片午夜丰满| 9色porny在线观看| 在线观看免费视频日本深夜| 男女无遮挡免费网站观看| tocl精华| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费 | 精品国产一区二区三区久久久樱花| 国精品久久久久久国模美| 精品一区二区三卡| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 香蕉国产在线看| 国产精品久久久久久精品古装| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品久久午夜乱码| 日韩三级视频一区二区三区| 国产aⅴ精品一区二区三区波| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 99久久人妻综合| 日本wwww免费看| 精品国产超薄肉色丝袜足j| 国产精品.久久久| 99国产精品99久久久久| 亚洲视频免费观看视频| 久久热在线av| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 成人精品一区二区免费| 十八禁网站免费在线| 国产99久久九九免费精品| 精品人妻在线不人妻| 国产精品 欧美亚洲| 丁香六月天网| 国产精品偷伦视频观看了| 精品国产亚洲在线| 99riav亚洲国产免费| 国产亚洲av高清不卡| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 国产有黄有色有爽视频| 国精品久久久久久国模美| 成人免费观看视频高清| 久久ye,这里只有精品| 午夜福利,免费看| 老司机福利观看| 两个人免费观看高清视频| 人人妻人人澡人人看| 丝瓜视频免费看黄片| 在线观看免费日韩欧美大片| 亚洲欧美日韩高清在线视频 | 亚洲人成电影观看| 黑人操中国人逼视频| 亚洲久久久国产精品| 欧美国产精品一级二级三级| 亚洲av美国av| 国产亚洲午夜精品一区二区久久| 久久天堂一区二区三区四区| 色婷婷av一区二区三区视频| 国产日韩欧美在线精品| e午夜精品久久久久久久| 曰老女人黄片| 国产成人影院久久av| 中文字幕精品免费在线观看视频| 人成视频在线观看免费观看| 不卡av一区二区三区| 电影成人av| 色婷婷久久久亚洲欧美| 免费看十八禁软件| 9热在线视频观看99| 丝袜人妻中文字幕| 亚洲自偷自拍图片 自拍| 日韩三级视频一区二区三区| 9191精品国产免费久久| 99精品欧美一区二区三区四区| 国精品久久久久久国模美| 午夜福利欧美成人| av又黄又爽大尺度在线免费看| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 一级,二级,三级黄色视频| 国产精品成人在线| 最新美女视频免费是黄的| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 国产成人欧美在线观看 | 18在线观看网站| 在线十欧美十亚洲十日本专区| 少妇被粗大的猛进出69影院| 亚洲天堂av无毛| 18禁观看日本| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 丝袜人妻中文字幕| 丝袜美足系列| 中文字幕另类日韩欧美亚洲嫩草| 欧美乱码精品一区二区三区| 精品人妻熟女毛片av久久网站| 亚洲av成人一区二区三| 19禁男女啪啪无遮挡网站| 丰满少妇做爰视频| 99热网站在线观看| 国产主播在线观看一区二区| 国产97色在线日韩免费| 精品一品国产午夜福利视频| 色综合欧美亚洲国产小说| 亚洲精品一二三| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 久久久久视频综合| 男女午夜视频在线观看| 18禁黄网站禁片午夜丰满| 999久久久精品免费观看国产| 欧美在线一区亚洲| 国产精品一区二区精品视频观看| 久久人妻福利社区极品人妻图片| 美国免费a级毛片| 欧美黄色片欧美黄色片| 丝袜美足系列| 亚洲熟妇熟女久久| 热99国产精品久久久久久7| 久久毛片免费看一区二区三区| av国产精品久久久久影院| www.熟女人妻精品国产| 欧美精品av麻豆av| 欧美乱妇无乱码| 国产欧美亚洲国产| 国产精品av久久久久免费| 男女床上黄色一级片免费看| 久久av网站| 午夜福利在线免费观看网站| 又大又爽又粗| 久久久精品国产亚洲av高清涩受| 国产色视频综合| 老司机午夜福利在线观看视频 | 天堂8中文在线网| 啦啦啦在线免费观看视频4| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品av麻豆狂野| 欧美 亚洲 国产 日韩一| 又紧又爽又黄一区二区| 国产男靠女视频免费网站| 久久中文看片网| 亚洲精华国产精华精| 人人妻人人澡人人看| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影 | 最新在线观看一区二区三区| 亚洲人成电影观看| 久9热在线精品视频| 久久影院123| 久久国产精品影院| 精品亚洲成国产av| 亚洲熟妇熟女久久| 两性夫妻黄色片| 欧美精品av麻豆av| 国产精品熟女久久久久浪| 国产精品免费视频内射| 免费看a级黄色片| 午夜福利欧美成人| 成人亚洲精品一区在线观看| 国产色视频综合| 欧美久久黑人一区二区| 亚洲色图av天堂| 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 熟女少妇亚洲综合色aaa.| 9191精品国产免费久久| 精品亚洲成国产av| 久久天躁狠狠躁夜夜2o2o| 一本—道久久a久久精品蜜桃钙片| 一本久久精品| 国产又爽黄色视频| 黄片大片在线免费观看| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 久久久久久久久免费视频了| 国产淫语在线视频| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 天天操日日干夜夜撸| 国产成+人综合+亚洲专区| 国产精品.久久久| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| 国产一区二区在线观看av| 999精品在线视频| 亚洲av国产av综合av卡| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 淫妇啪啪啪对白视频| 久久久精品免费免费高清| 91麻豆av在线| av天堂在线播放| 99热国产这里只有精品6| 另类精品久久| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 欧美午夜高清在线| 日本一区二区免费在线视频| 日日摸夜夜添夜夜添小说| 日本欧美视频一区| 18禁黄网站禁片午夜丰满| 美国免费a级毛片| 丝袜喷水一区| 色精品久久人妻99蜜桃| 久久精品国产99精品国产亚洲性色 | 美女高潮到喷水免费观看| 国产单亲对白刺激| 麻豆乱淫一区二区| 国产深夜福利视频在线观看| 久久精品国产亚洲av高清一级| 久久影院123| 久久久久久人人人人人| 日韩视频一区二区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 激情在线观看视频在线高清 | 91精品国产国语对白视频| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 免费av中文字幕在线| 亚洲国产欧美日韩在线播放| 成在线人永久免费视频| 国产激情久久老熟女| 亚洲欧美激情在线| 天堂动漫精品| 午夜老司机福利片| 王馨瑶露胸无遮挡在线观看| 丝袜喷水一区| 一级片免费观看大全| 高潮久久久久久久久久久不卡| av天堂在线播放| av网站免费在线观看视频| av一本久久久久| 91字幕亚洲| 纵有疾风起免费观看全集完整版| 日本撒尿小便嘘嘘汇集6| 天天添夜夜摸| 国产高清国产精品国产三级| 不卡av一区二区三区| 1024香蕉在线观看| 美女主播在线视频| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品亚洲av| 91国产中文字幕| 国产av国产精品国产| 国产不卡一卡二| 欧美日韩福利视频一区二区| 一区二区三区国产精品乱码| 少妇精品久久久久久久|