• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics

    2022-04-12 03:47:38YaNanLi李亞男PingWu吳平ShiPingZhang張師平YiLiPei裴藝麗JinGuangYang楊金光SenChen陳森andLiWang王立
    Chinese Physics B 2022年4期
    關(guān)鍵詞:吳平金光

    Ya-Nan Li(李亞男) Ping Wu(吳平) Shi-Ping Zhang(張師平) Yi-Li Pei(裴藝麗)Jin-Guang Yang(楊金光) Sen Chen(陳森) and Li Wang(王立)

    1Beijing Key Laboratory for MagnetoPhotoelectrical Composite and Interface Science,School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    2School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: Ca3Co4O9,carbon nanotubes,thermal conductivity,thermoelectric properties

    1. Introduction

    With the increasingly serious energy shortage and environmental pollution,people need to find green energy and energy conversion methods. Thermoelectric materials can realize the direct conversion of thermal energy and electric energy based on Seebeck effect and Peltier effect, and they have attracted much attention in recent years.[1]The conversion efficiency of thermoelectric materials depends on the figure of meritZT=σS2T/k, whereσis the electrical conductivity,Sis the Seebeck coefficient,Tis the absolute temperature,andκis the thermal conductivity.[2]It can be observed from the above formula that high-efficiency thermoelectric conversion requires high electrical conductivity and Seebeck coefficient,as well as low thermal conductivity,which is quite challenging. The optimization of one parameter of thermal conductivity or electrical conductivity usually causes the reduction of the other parameter. In recent years, compared with intermetallic thermoelectric compounds, such as Bi2Te3,[3]PbTe,[4]etc.,thermoelectric oxide material Ca3Co4O9(abbreviated as CCO) has attracted extensive attention because of its good stability, convenient preparation, green environmental protection and low cost.[5]At present, theZTvalue of polycrystalline Ca3Co4O9still cannot meet the requirements of practical application, which limits its commercial application.

    Ca3Co4O9has monoclinic structure, and the chemical formula is[Ca2CoO]b1[CoO2]b2.This represents a monoclinic mismatched sandwich like structure,and a calcium salt disordered layer is mixed between CdI2type CoO2layers,extending along thec-axis. The two layers share the same lattice parameters:a=4.8270(5),c=10.8300(2),β=98.1360(1).The unit cell mismatch changes along theb-axis. The lattice parameterbvalues of Ca2CoO3and CoO2layers areb1=4.5615(2) °A andb2=2.8173(1) °A,respectively,which are usually expressed as[CaCoO][CoO2]1.61.[6]The mismatch and weak connection between Ca2CoO and CoO2layers enhance phonon scattering, reduce thermal conductivity, and lead to significant anisotropy.[7]Due to its unique staggered structure,in order to improve the thermoelectric performance of Ca3Co4O9, the traditional method is to adjust the carrier concentration by doping ions at the Ca position[8-12]or Co position,[13-16]so as to affect the electric transport and phonon scattering. Another strategy is to add nano materials into Ca3Co4O9as the second phase. Theoretically,an appropriate number of composite nanoparticles can enhance the connectivity between grains and grain growth,improving the electrical conductivity. Due to the energy filtration effect, it may help to improve the Seebeck coefficient of the material. Simultaneously, the phonon scattering center is increased, thereby reducing the thermal conductivity. In recent years, the addition of nanoparticle materials to Ca3Co4O9, such as SiC,[17]Bi2O3,[18]NaF,[19]B4C,[20]Ag nanoparticles,[21]etc., has been used to improve the thermoelectric properties of materials. Carbon nanotube (CNT) is a low dimensional material with high conductivity and light weight. Adding carbon nanotubes to reduce the weight of materials for the application of weight sensitive thermoelectric materials is very competitive, for example, microelectronic devices, sensors,etc. Ceramic nano powders are widely used as nano dispersions of thermoelectric nanocomposites because of their low thermal conductivity, but the nanocomposites prepared from these nano dispersions show serious conductivity degradation.In contrast, carbon nanotubes are excellent nano dispersions of thermoelectric nanocomposites because CNTs have high conductivity, and their dispersion in the thermoelectric matrix will not deteriorate the conductivity to the extent caused by ceramic nano powder. Yeoet al.[22]added 0.12% CNTs to (Bi0.2Sb0.8)2Te3, the thermal conductivity of the composite was significantly lower than that of the matrix, which increased theZTvalue by 34%. Kimet al.[23]found that the thermal conductivity decreased significantly by compounding Bi0.5Sb1.5Te3with porous carbon nanomaterials. Theoretically, although carbon nanotubes have high thermal conductivity,the interface between carbon nanotubes and matrix can increase the phonon scattering at the interface and reduce the thermal conductivity, which is expected to improve theZTvalue of the material. Tanget al.previously studied the effect of carbon nanotubes addition on the thermoelectric properties of Ca3Co4O9at low temperature.[24]The thermoelectric properties of carbon nanotubes doped at room temperature and higher temperature have not been studied.

    In this work,Ca3Co4O9/xwt.%CNTs(x=0,3,5,7,10)composite thermoelectric materials were prepared by sol-gel method. The effects of adding carbon nanotubes on the electrical properties and thermal conductivity of Ca3Co4O9were systematically investigated.

    2. Experimental details

    Ca3Co4O9powder samples were prepared by sol-gel method. Weigh the precursor raw materials Ca(NO3)2·4H2O and CO (NO3)2·6H2O at a certain stoichiometric ratio, dissolve the raw materials in deionized water and mix evenly,add a certain amount of citric acid, heat and stir continuously at 352 K until sol is formed. The sol was dried at 393 K for 12 h to obtain the precursor. The precursor was fully ground and sintered at constant temperature of 1073 K for 12 h after selfpropagating treatment.After sintering,the powder sample was evenly mixed with carbon nanotubes(CNTs;0 wt.%,3 wt.%,5 wt.%,7 wt.%,10 wt.%)with a certain mass ratio,and then pressed under the pressure of 30 MPa. Crystallographic structure analysis was performed by Rigaku D/max2500 X diffractometer with CuKαray (λ=1.54056 °A) (40 kV, 200 mA),step size 0.01°,conventional 2θof 10°-60°. The phase composition of the sample was analyzed by angle range diffraction spectrum. The microstructure of the samples was observed by field emission scanning electron microscopy (FESEM,Zeiss supra55). The Seebeck coefficient/electrical conductivity measurement system(Netzsch SBA458)was used to measure the electrical conductivity and Seebeck coefficient of the sample in argon atmosphere. The thermal conductivity of the sample was obtained according tok=DCpd, wheredis the geometric density of the sample. The diffusion coefficientD(Netzsch instruments/LAF457) perpendicular to the pressure direction of the sample was obtained by laser scattering method.

    3. Results and discussion

    3.1. Phase composition and microstructure

    The phase purity and crystallinity of Ca3Co4O9samples with carbon nanotubes addition of different mass ratios were characterized by XRD. Figure 1 shows the XRD spectra of all samples. All samples are single-phase, and the major crystal phase matches with the standard JCPDS card(No. 21-0139) of Ca3Co4O9. No other peaks are detected,indicating that the purity of all samples is very high, and the content of carbon nanotubes is relatively small. It can also be seen from the figure that the diffraction peak in the (00l)plane is relatively strong, while other peaks are relatively weak. The results show that the samples have obvious preferred orientation in thecdirection, which is mainly caused by the preferential growth of grains on the plane perpendicular to the pressure direction during sintering. Simultaneously, with the increase of the amount of carbon nanotubes,the orientation of the sample in the(00l)direction decreases.Figures 2(a)-2(e)show the morphology of the samples added with different proportions of carbon nanotubes. It can be observed from the figure that the sample presents a sheet shape.It is found that the grain size does not change significantly with the increase of carbon nanotubes. The average particle size of the sample is 700-800 nm. Figure 2(f)shows the morphology of the sample with carbon nanotubes doping of 10 wt.% at a higher multiple.The filamentous carbon nanotubes in the sample are circled with a blue circle. The density and atomic ratio of Ca3Co4O9/xwt.% CNTs (x=0, 3, 5, 7, 10) samples are provided in Table 1. The density of the sample decreases with the increase in the content of carbon nanotubes (the theoretical density of Ca3Co4O9is 4.68 g/cm3).[25]After normalizing the atomic ratio,the content of carbon atoms in the sample increases with the increase of the amount of carbon nanotubes.

    Fig.1. XRD pattern of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)sample.

    Table 1. Density and atomic ratio of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Fig.2. SEM images of sintered sample surfaces: (a)Ca3Co4O9,(b)Ca3Co4O9/3 wt.%CNTs(c)Ca3Co4O9/5 wt.%CNTs,(d)Ca3Co4O9/7 wt.%CNTs,(e)Ca3Co4O9/10 wt.%CNTs and(f)filamentous carbon nanotubes in Ca3Co4O9/10 wt.%CNTs are circled with a blue circle.

    3.2. Electrical transport properties

    The relationship between electrical conductivity and temperature of Ca3Co4O9/xwt.%CNTs(x=0,3,5,7,10)samples are exhibited in Fig. 3. Due to the limitation of the stability of carbon nanotubes, the test mainly studies the thermoelectric properties of samples from room temperature to 625 K. It can be observed from the figure that the electrical conductivity of all samples increases with the increase of temperature in the temperature range of 275 K to 625 K,showing significant semiconductor behavior. However, the conductivity of the sample with carbon nanotubes addition is significantly lower than that of the original sample. Although carbon nanotubes have high conductivity, it is mainly reflected along its length. In this study,the orientation of carbon nanotubes added to Ca3Co4O9is random, then its excellent conductivity cannot be brought into full play. The relationship between conductivity and resistivity can be expressed asσ=1/ρ. Adding carbon nanotubes to Ca3Co4O9sample introduces pore structure and interface, which increases the electron scattering center of the composite sample, increases the resistivity of the sample, that is, the electrical conductivity decreases,and the electrical conductivity of the composite decreases with the increase of carbon nanotube content.

    Fig.3. Relationship between the electrical conductivity and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Figure 4 shows the relationship between Seebeck coefficients and temperature of Ca3Co4O9samples with different contents of carbon nanotubes. The Seebeck coefficients of all samples in the figure increase with the increase of temperature.The Seebeck coefficients of all samples are positive,indicating that the samples are p-type semiconductors,dominated by hole conduction. The Seebeck coefficient increases monotonically with the increase of temperature,which may be related to the phonon traction effect,that is,the phonons in the semiconductor flow from the high-temperature end to the low-temperature end. Through the collision with the carriers, the phonons transfer energy to the carriers, forming the flow of carriers in the same direction as the phonon flow,to improve the Seebeck coefficient. Simultaneously,it can be observed from the figure that the Seebeck coefficient of the sample decreases with the increase of carbon nanotubes content. At 625 K,the Seebeck coefficient of the Ca3Co4O9/10 wt.%CNTs sample decreases to 136.85 μV/K, compared with 82.02 μV/K of the undoped samples,reduced by about 40%. For the composite semiconductor material of two substances,the Seebeck coefficient can be expressed as[26]

    whereSTOTrepresents the total Seebeck of the sample,σirepresents the conductivity of different substances, andSirepresents the Seebeck coefficient of different substances. It can be seen from the formula that the conductivity has a great influence on the Seebeck coefficient. Carbon nanotubes have higher conductivity, that is, the denominator becomes larger,while the Seebeck coefficient of carbon nanotubes is smaller,and the molecular change is small.[27]Thus, the Seebeck coefficient of the composite sample is reduced.

    Fig.4. Relationship between the Seebeck coefficient and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Based on the measurement results of electrical conductivity and Seebeck coefficient,to evaluate the electrical properties of thermoelectric materials,the electrical properties part ofZT=σS2T/kis used,σS2,which is called the power factorPF(PF=σS2)of the material.The calculated power factor of Ca3Co4O9/xwt.%CNTs series samples is provided in Fig.5.The power factor increases with the increase of temperature which can be attributed the joint influence of electrical conductivity and Seebeck coefficient. In the whole temperature range,the power factor of the samples with carbon nanotubes added is lower than that of the original samples. At 625 K,the power factor of the undoped samples is 0.98μW/cm·K2. The power factor of Ca3Co4O9/10 wt.%CNTs samples decreases to 0.22μW/cm·K2.The above results show that doping carbon nanotubes will reduce the electrical properties of the materials.

    Fig. 5. Relationship between the power factor and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    3.3. Thermal transport properties

    Figure 6(a) shows the variation of the total thermal conductivity of the sample with temperature. The thermal conductivity of the sample with carbon nanotubes addition is significantly lower than that of the original sample. And the thermal conductivity decreases with the increase of the content of carbon nanotubes. For Ca3Co4O9/xwt.% CNTs system, in general,the total thermal conductivitykof the sample consists of two parts: the carrier thermal conductivitykcand phonon thermal conductivitykp, i.e.,k=kc+kp. The carrier thermal conductivitykcis related to the electrical conductivity via the Wiedemann-Franz equation,kc=LTσ, whereLis the Lorenz constant (L=2.45×10-8V-2·K-2), and the calculated value ofkccan be ignored for its relatively small value(Fig.6(b)). Therefore,kmainly depends onkp(Fig.6(c)). In the low order approximation,kp=1/3cvlp,wherec,vandlprepresent the specific heat capacity, phonon propagation velocity and average free path, respectively. Generally, doping will increasecand decreasevandlp. Moreover, the phonon propagation velocity is positively correlated with the average free path of the phonon. At 625 K, the thermal conductivity of the sample decreases from 1.527 W·m-1·K-1of Ca3Co4O9to 0.408 W·m-1·K-1of Ca3Co4O9/10 wt.% CNTs, which is decreased by about 73%.

    Fig. 6. Relationship between (a) total thermal conductivity k, (b) carrier thermal conductivity kc and (c) phonon thermal conductivity kp of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples with temperature.

    The main factors affecting the thermal conductivity of composites include their own thermal conductivity, particle distribution of added phase, interfacial thermal resistance,porosity and so on. The thermal conductivity of carbon nanotubes is relatively high. The thermal conductivity of multi walled carbon nanotubes reaches 600-4000 W·m-1·K-1at room temperature. When adding high thermal conductivity carbon nanotubes to Ca3Co4O9, it is generally believed that the thermal conductivity will increase, while the actual measurement results decrease with the addition of carbon nanotubes. In this study,the particle phase of the composites obtained by fully mixing carbon nanotubes and Ca3Co4O9can be regarded as uniformly distributed, so the effect of particle distribution on it can be ignored.

    According to Matthiessen’s law,the phonon thermal conductivity mainly depends on point defect scattering, grain boundary scattering,phonon-phonon scattering and resonance scattering.[28,29]The existence of composite interface will inevitably affect the thermal conductivity. Panget al.optimized the series parallel model based on the effective medium thermal conductivity theory, and gave the effective thermal conductivity of composite elements with interfacial thermal resistancekcomas[30]

    wherek2is the thermal conductivity of the matrix material,k1is the thermal conductivity of the additive,V1is the volume fraction of the added phase,Ris the diameter of the added phase particles,andRBis the interfacial thermal resistance of the added phase in the composite. In this study, the particle size of Ca3Co4O9is about 700 nm,while the diameter of carbon nanotubes is only about 5 nm,which is much smaller than that of Ca3Co4O9and can be regarded as spherical particles.The effect of carbon nanotube addition on the effective thermal conductivity of Ca3Co4O9material can be discussed by using the model of formula (2). Therefore, for carbon nanotubes and Ca3Co4O9matrix composites,k2is the thermal conductivity of the matrix Ca3Co4O9without carbon nanotubes,k1is the thermal conductivity of carbon nanotubes,the carbon nanotubes added in the experiment are double-walled carbon nanotubes, the thermal conductivity is about 3000 W·m-1·K-1,V1is the volume fraction of carbon nanotubes,Ris the diameter of carbon nanotubes (5 nm), andRBis the interfacial thermal resistance of carbon nanotubes in the composites,According to a report of Cahill and Keblinski research group,the interfacial thermal resistance of carbon nanotubes is about 8.33×10-8m2·K·W-1.[31]By substituting the corresponding value into formula (2), the effective thermal conductivitykcomof Ca3Co4O9composites with different amounts of carbon nanotubes can be calculated when considering the interfacial thermal resistance. The calculation results are shown in Fig.7.

    Fig.7. Relationship among kcom, keffect and k of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    For ceramic samples, the effect of pores on the thermal conductivity of materials cannot be ignored. To study the effect of pores on thermal conductivity,Panget al.transformed the ideal composite into a single-phase solid material with effective thermal conductivity ofkcomand regarded the pore phase as one phase to build a model based on the model of formula(2),and deduced that the effective thermal conductivity(keffect)of the composite with voids and interfacial thermal resistance is[30]

    wherekairis the thermal conductivity of the stomatal phase,ξis the proportion of pore phase in the unit, that is, porosityξ=(ρ0-ρi)/ρ0,ρ0is the theoretical density of the base material,ρiis the density of each sample. In this study, the carbon nanotube with interface and Ca3Co4O9composite discussed in formula (2) are regarded as a single phase, and the pores are regarded as the second phase,that is,kairis the thermal conductivity of the pore phase(0.023 W·m-1·K-1),ρ0is the theoretical density of Ca3Co4O9(4.68 g/cm3),ρiis given in Table 1. Bring the above values into formula (3) to calculate the effective thermal conductivity of the composite containing pores and interfaces. The calculation results are given in Fig.7.

    As shown in Fig. 7, when only the interfacial thermal resistance is considered, the effective thermal conductivitykcomvalue of carbon nanotubes and Ca3Co4O9composites decreases with the increase of the amount of carbon nanotubes,which is consistent with the experimentalk. The results show that the addition of carbon nanotubes into the interface hinders heat transfer and reduces the thermal conductivity of the composites. When the effects of interfacial thermal resistance and pores on the effective thermal conductivitykeffectof the composites are considered at the same time, the effect value also decreases with the increase of the amount of carbon nanotubes,and the decreasing trend is greater thankcomand closer to the experimental valuek,indicating that pores have a great influence on the effective thermal conductivity of the composites.In conclusion, adding carbon nanotubes to Ca3Co4O9introduces interfacial thermal resistance and pores,which plays an important role in reducing the thermal conductivity,indicating that adding carbon nanotubes is one of the effective ways to reduce the thermal conductivity of Ca3Co4O9.

    3.4. Dimensionless figure of merit

    Figure 8 shows the relationship between theZTvalue and temperature of Ca3Co4O9/xwt.% CNTs (x= 0, 3, 5,7, 10) samples . TheZTvalue is the result of the coupling of electrical conductivity, Seebeck coefficient and thermal conductivity. It can be seen from the calculation results that theZTvalues of the Ca3Co4O9/3 wt.% CNTs and Ca3Co4O9/5 wt.% CNTs samples increase significantly, and that of Ca3Co4O9/7 wt.% CNTs has little change. With the increase of the content of carbon nanotubes, theZTvalue of the Ca3Co4O9/10wt.% CNTs sample decreases. At 625 K,theZTvalue of the sample with the addition content of 3%is the highest, reaching 0.052. Compared with pure Ca3Co4O9samples at the same temperature,theZTvalue is increased by 29%. The sample with 3 wt.%CNTs has the best thermoelectric performance at 625 K.The above results show that an appropriate amount of carbon nanotubes is an effective method to improve the thermoelectric properties of Ca3Co4O9.

    Fig. 8. Relationship between the ZT value and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    4. Conclusions

    We systematically studied the thermoelectric properties of Ca3Co4O9/xwt.% CNTs (x= 0, 3, 5, 7, 10) composite samples prepared by sol-gel method. XRD and SEM showed that the samples were single phase and showed sheet like morphology. The electrical conductivity and Seebeck coefficient of all samples with carbon nanotubes addition were lower than those of the original sample. Proper addition of carbon nanotubes can effectively reduce its thermal conductivity. At 625 K, the thermal conductivity of the sample (Ca3Co4O9/10 wt.% CNTs) decreased from 1.527 W·m-1·K-1of undoped samples to 0.408 W·m-1·K-1,which decreased by about 73%. When the addition content was 3%, theZTvalue reached 0.052, which was 29%higher than that the original sample. These show that an appropriate amount addition of CNTs can reduce the thermal conductivity of Ca3Co4O9ceramic samples and improve the thermoelectric properties.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant No.51836009).

    猜你喜歡
    吳平金光
    午夜繁華
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    吳平:戶外語(yǔ)文課,用觀察擺脫寫作空洞
    金光現(xiàn)代學(xué)徒班感恩教育的實(shí)踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    血染“不出軌保證書”,“武隆好人”婚姻無性
    青青草视频在线视频观看| 狂野欧美白嫩少妇大欣赏| 亚洲18禁久久av| 国产乱人视频| 黄色配什么色好看| 午夜久久久久精精品| 男人的好看免费观看在线视频| 久久久久久国产a免费观看| 纵有疾风起免费观看全集完整版 | 乱人视频在线观看| 日本五十路高清| 18+在线观看网站| 久久久久久久国产电影| 一级二级三级毛片免费看| 热99在线观看视频| 身体一侧抽搐| 欧美日韩国产亚洲二区| 国产一区有黄有色的免费视频 | 欧美xxxx黑人xx丫x性爽| 欧美日本亚洲视频在线播放| 久久亚洲国产成人精品v| 少妇人妻精品综合一区二区| 国产精品一区二区三区四区久久| 91午夜精品亚洲一区二区三区| a级一级毛片免费在线观看| 国产精品国产三级国产专区5o | 丝袜喷水一区| 成人鲁丝片一二三区免费| 插阴视频在线观看视频| 免费看美女性在线毛片视频| 综合色av麻豆| 国产不卡一卡二| 高清午夜精品一区二区三区| 日韩成人伦理影院| 国产日韩欧美在线精品| 午夜福利成人在线免费观看| 免费在线观看成人毛片| 国产片特级美女逼逼视频| 男插女下体视频免费在线播放| 乱人视频在线观看| 99在线人妻在线中文字幕| 99久久中文字幕三级久久日本| 1000部很黄的大片| 国产黄片美女视频| av在线亚洲专区| 国产欧美日韩精品一区二区| 亚洲美女搞黄在线观看| 男人狂女人下面高潮的视频| 又粗又硬又长又爽又黄的视频| 欧美人与善性xxx| 国产在线男女| 久久这里有精品视频免费| 亚洲人成网站高清观看| 高清在线视频一区二区三区 | 国产精品麻豆人妻色哟哟久久 | 婷婷色av中文字幕| 亚洲欧美一区二区三区国产| 一夜夜www| 波多野结衣巨乳人妻| 亚洲中文字幕日韩| 伦精品一区二区三区| 亚洲不卡免费看| 老司机影院成人| 欧美性猛交╳xxx乱大交人| 只有这里有精品99| 国产一级毛片七仙女欲春2| a级一级毛片免费在线观看| 中文字幕制服av| 2021少妇久久久久久久久久久| 嫩草影院精品99| 久久热精品热| 久久久久久久久久久免费av| 国产乱人偷精品视频| 狂野欧美白嫩少妇大欣赏| 亚洲综合精品二区| 99久久无色码亚洲精品果冻| 亚洲精品色激情综合| 自拍偷自拍亚洲精品老妇| 大话2 男鬼变身卡| 热99re8久久精品国产| 日韩大片免费观看网站 | 99热这里只有是精品50| 99热6这里只有精品| 欧美性猛交╳xxx乱大交人| 黄片无遮挡物在线观看| 亚洲精品,欧美精品| 国产午夜福利久久久久久| 高清视频免费观看一区二区 | 18禁在线无遮挡免费观看视频| 亚洲国产欧美人成| 菩萨蛮人人尽说江南好唐韦庄 | 婷婷六月久久综合丁香| 国产爱豆传媒在线观看| 天天一区二区日本电影三级| 黄色欧美视频在线观看| 中文字幕亚洲精品专区| 午夜爱爱视频在线播放| 狠狠狠狠99中文字幕| 亚洲av.av天堂| 免费观看a级毛片全部| 22中文网久久字幕| 亚洲色图av天堂| 91精品一卡2卡3卡4卡| kizo精华| 中文字幕亚洲精品专区| 精品人妻熟女av久视频| 久久午夜福利片| 久久久久久国产a免费观看| 高清日韩中文字幕在线| 国产精品国产三级专区第一集| 18+在线观看网站| 中文字幕亚洲精品专区| 国产精品熟女久久久久浪| 欧美精品国产亚洲| 26uuu在线亚洲综合色| 夫妻性生交免费视频一级片| 十八禁国产超污无遮挡网站| 中文字幕精品亚洲无线码一区| 青春草亚洲视频在线观看| 亚洲怡红院男人天堂| 国产一区二区三区av在线| av在线蜜桃| 成年版毛片免费区| 91精品一卡2卡3卡4卡| 国产淫语在线视频| 亚洲人成网站高清观看| 国产淫语在线视频| 欧美日韩国产亚洲二区| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 欧美+日韩+精品| 成年版毛片免费区| 国产精品一区二区在线观看99 | 日本免费一区二区三区高清不卡| 精品不卡国产一区二区三区| 色5月婷婷丁香| 十八禁国产超污无遮挡网站| 日韩视频在线欧美| 亚洲精品一区蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 内地一区二区视频在线| 日韩欧美国产在线观看| 一本久久精品| av国产久精品久网站免费入址| 18禁在线播放成人免费| 床上黄色一级片| 日韩中字成人| 日本与韩国留学比较| 91午夜精品亚洲一区二区三区| 美女脱内裤让男人舔精品视频| 国产又色又爽无遮挡免| 久久精品国产鲁丝片午夜精品| 成人av在线播放网站| 成人性生交大片免费视频hd| 精品久久久久久久末码| 日韩中字成人| 91午夜精品亚洲一区二区三区| 白带黄色成豆腐渣| 国产精品不卡视频一区二区| 亚洲美女搞黄在线观看| 国产精品久久久久久精品电影小说 | 亚洲欧美中文字幕日韩二区| 69av精品久久久久久| 有码 亚洲区| 精品国产三级普通话版| 日本五十路高清| 欧美日韩一区二区视频在线观看视频在线 | 麻豆国产97在线/欧美| av免费在线看不卡| 少妇人妻一区二区三区视频| 久久欧美精品欧美久久欧美| 波多野结衣高清无吗| 少妇人妻一区二区三区视频| 国产精品国产三级专区第一集| 欧美一区二区精品小视频在线| 国产精品1区2区在线观看.| 老司机影院毛片| 国内精品一区二区在线观看| 天堂网av新在线| 色视频www国产| 亚洲精品国产av成人精品| 久久午夜福利片| 欧美成人a在线观看| 日本av手机在线免费观看| 成人午夜高清在线视频| 丰满乱子伦码专区| 日韩三级伦理在线观看| 国产精品人妻久久久影院| 日本wwww免费看| 99热网站在线观看| 高清av免费在线| 精品国产三级普通话版| 国产成人91sexporn| 国产成人精品婷婷| 99国产精品一区二区蜜桃av| 日日干狠狠操夜夜爽| 国产高清国产精品国产三级 | 国产成人午夜福利电影在线观看| 黄色欧美视频在线观看| 国产av一区在线观看免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美一区二区三区国产| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜爱| 淫秽高清视频在线观看| 日韩三级伦理在线观看| 草草在线视频免费看| 亚洲自拍偷在线| 日韩一本色道免费dvd| av在线亚洲专区| 午夜免费男女啪啪视频观看| 免费观看精品视频网站| av线在线观看网站| 亚洲av不卡在线观看| 国产片特级美女逼逼视频| 国产精品久久视频播放| 亚洲高清免费不卡视频| 九色成人免费人妻av| 七月丁香在线播放| 最新中文字幕久久久久| 亚洲精品成人久久久久久| 人人妻人人澡欧美一区二区| 美女脱内裤让男人舔精品视频| 亚洲成色77777| 成人高潮视频无遮挡免费网站| 我的女老师完整版在线观看| 亚洲精品亚洲一区二区| 国产免费一级a男人的天堂| 在线天堂最新版资源| 亚洲成色77777| 成人毛片60女人毛片免费| 全区人妻精品视频| 小说图片视频综合网站| .国产精品久久| 人体艺术视频欧美日本| 亚洲av二区三区四区| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩东京热| av天堂中文字幕网| 日本黄色视频三级网站网址| 亚洲国产精品合色在线| 国内精品一区二区在线观看| 九草在线视频观看| 欧美高清成人免费视频www| kizo精华| 久久久久久久久久久丰满| 亚洲av电影不卡..在线观看| 国产一级毛片在线| 水蜜桃什么品种好| 国产美女午夜福利| 麻豆成人午夜福利视频| 中文乱码字字幕精品一区二区三区 | 久久久久九九精品影院| 在现免费观看毛片| 水蜜桃什么品种好| 色视频www国产| 成年av动漫网址| 精品久久久久久久末码| 国产老妇伦熟女老妇高清| 精品99又大又爽又粗少妇毛片| 高清日韩中文字幕在线| 亚洲欧美精品专区久久| 日本wwww免费看| 长腿黑丝高跟| 少妇裸体淫交视频免费看高清| 女人十人毛片免费观看3o分钟| 免费搜索国产男女视频| 国产精品精品国产色婷婷| 亚洲高清免费不卡视频| 日韩欧美精品免费久久| 欧美成人a在线观看| 99久久精品国产国产毛片| 国产精品嫩草影院av在线观看| 国产淫片久久久久久久久| 国产人妻一区二区三区在| 日本欧美国产在线视频| 国产真实乱freesex| 国产精品久久久久久久久免| 高清毛片免费看| a级毛色黄片| 九九爱精品视频在线观看| 亚洲久久久久久中文字幕| 天堂影院成人在线观看| 91精品国产九色| 国产精品一区www在线观看| 内地一区二区视频在线| 夜夜爽夜夜爽视频| 麻豆乱淫一区二区| 美女高潮的动态| 亚洲国产精品成人久久小说| 99热这里只有是精品在线观看| 国产精品一二三区在线看| 欧美高清性xxxxhd video| 欧美潮喷喷水| 国产老妇女一区| 日韩人妻高清精品专区| 国产午夜精品久久久久久一区二区三区| 精品国产三级普通话版| 国产一区亚洲一区在线观看| 有码 亚洲区| 亚洲av.av天堂| 高清av免费在线| 一级二级三级毛片免费看| 搡老妇女老女人老熟妇| 久久99热这里只频精品6学生 | 成人毛片60女人毛片免费| 欧美精品一区二区大全| 亚洲精品自拍成人| 国产精品国产三级专区第一集| 日本色播在线视频| 亚洲欧洲国产日韩| 菩萨蛮人人尽说江南好唐韦庄 | 五月伊人婷婷丁香| 婷婷六月久久综合丁香| 国产av不卡久久| 国产视频首页在线观看| 校园人妻丝袜中文字幕| 岛国在线免费视频观看| 熟女人妻精品中文字幕| 中文在线观看免费www的网站| 成人一区二区视频在线观看| 91狼人影院| 精品熟女少妇av免费看| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲国产日韩| 中文字幕熟女人妻在线| 一本久久精品| 嘟嘟电影网在线观看| 青春草视频在线免费观看| 亚洲经典国产精华液单| 精品人妻视频免费看| 精品一区二区免费观看| 中文字幕熟女人妻在线| 国模一区二区三区四区视频| 又爽又黄无遮挡网站| 尤物成人国产欧美一区二区三区| kizo精华| 22中文网久久字幕| 国产私拍福利视频在线观看| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 久久精品国产亚洲网站| 蜜桃久久精品国产亚洲av| 可以在线观看毛片的网站| www.av在线官网国产| 精品人妻偷拍中文字幕| 色噜噜av男人的天堂激情| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 好男人视频免费观看在线| 亚洲精品国产av成人精品| 97热精品久久久久久| 国内精品宾馆在线| 我要看日韩黄色一级片| 欧美zozozo另类| 春色校园在线视频观看| 久久99热6这里只有精品| 国产久久久一区二区三区| 一级爰片在线观看| 欧美日本视频| 看片在线看免费视频| 成年版毛片免费区| 欧美一区二区精品小视频在线| 插逼视频在线观看| 久久热精品热| 国产极品精品免费视频能看的| 亚洲激情五月婷婷啪啪| av国产免费在线观看| 丰满人妻一区二区三区视频av| 精品一区二区免费观看| 淫秽高清视频在线观看| 久久久久网色| 女的被弄到高潮叫床怎么办| 大又大粗又爽又黄少妇毛片口| 网址你懂的国产日韩在线| 亚洲精品自拍成人| 亚洲欧美成人综合另类久久久 | 欧美日本亚洲视频在线播放| 国产精品一及| 亚洲av男天堂| 亚洲av熟女| 男人狂女人下面高潮的视频| 日韩 亚洲 欧美在线| 国产精品久久电影中文字幕| 国产精品人妻久久久久久| 内射极品少妇av片p| 身体一侧抽搐| 国产私拍福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 精品一区二区三区人妻视频| 爱豆传媒免费全集在线观看| 一边摸一边抽搐一进一小说| 在线播放国产精品三级| 高清视频免费观看一区二区 | 午夜激情福利司机影院| 国产高清三级在线| 亚洲av二区三区四区| 免费看a级黄色片| 精品久久久久久久久av| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 精品国内亚洲2022精品成人| 小说图片视频综合网站| eeuss影院久久| 国产高清国产精品国产三级 | 人人妻人人看人人澡| 精品一区二区三区人妻视频| 亚洲av男天堂| 99久久无色码亚洲精品果冻| 男人狂女人下面高潮的视频| 中文资源天堂在线| 日韩一本色道免费dvd| 亚洲欧美日韩卡通动漫| 亚洲美女搞黄在线观看| 免费看光身美女| 欧美bdsm另类| 一区二区三区免费毛片| 国产亚洲av片在线观看秒播厂 | 日本免费a在线| 如何舔出高潮| 日韩国内少妇激情av| 日本wwww免费看| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 99热这里只有是精品50| 国产精品电影一区二区三区| 搞女人的毛片| 日韩精品青青久久久久久| 亚洲精品乱久久久久久| 婷婷色综合大香蕉| 久久久久国产网址| 99热网站在线观看| 水蜜桃什么品种好| 久久精品国产亚洲av涩爱| 精品久久久久久电影网 | 国产日韩欧美在线精品| 22中文网久久字幕| 一级毛片久久久久久久久女| 99久久人妻综合| 久久热精品热| 一个人观看的视频www高清免费观看| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| 青青草视频在线视频观看| 日本三级黄在线观看| 三级国产精品欧美在线观看| 搡女人真爽免费视频火全软件| 成人午夜高清在线视频| 国产亚洲av嫩草精品影院| 99久久人妻综合| 色视频www国产| 欧美变态另类bdsm刘玥| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 久久人人爽人人爽人人片va| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 国内精品宾馆在线| 久久久精品大字幕| 成人亚洲欧美一区二区av| 国产av在哪里看| 亚洲av免费在线观看| 99久久精品国产国产毛片| 男女那种视频在线观看| 午夜福利在线观看免费完整高清在| 国产精品国产三级国产av玫瑰| 最近视频中文字幕2019在线8| 乱系列少妇在线播放| 国产成人精品一,二区| 高清视频免费观看一区二区 | 国产一区二区在线av高清观看| 男人的好看免费观看在线视频| 成年av动漫网址| 国产精品国产高清国产av| 日本黄大片高清| 97超视频在线观看视频| 国模一区二区三区四区视频| 直男gayav资源| 成年版毛片免费区| 亚洲久久久久久中文字幕| 国内精品一区二区在线观看| 精品久久久久久久久亚洲| 免费观看人在逋| 中文字幕制服av| 最近中文字幕2019免费版| 亚洲一级一片aⅴ在线观看| 国产老妇伦熟女老妇高清| 麻豆一二三区av精品| 男人舔奶头视频| 亚洲av一区综合| 亚洲国产精品久久男人天堂| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 久久99热这里只频精品6学生 | 丝袜美腿在线中文| 欧美成人精品欧美一级黄| 寂寞人妻少妇视频99o| 国产精品一区二区三区四区久久| 欧美成人一区二区免费高清观看| 久久久久久久亚洲中文字幕| 九九在线视频观看精品| 亚洲av成人av| 欧美成人a在线观看| 久久久a久久爽久久v久久| 人人妻人人澡人人爽人人夜夜 | 搡老妇女老女人老熟妇| 99热这里只有精品一区| 91精品一卡2卡3卡4卡| 国产午夜精品久久久久久一区二区三区| 欧美性猛交黑人性爽| 久久精品国产99精品国产亚洲性色| 欧美+日韩+精品| 成人国产麻豆网| 久久久久九九精品影院| 99热精品在线国产| 国产免费福利视频在线观看| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 日本熟妇午夜| www日本黄色视频网| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 长腿黑丝高跟| 日本黄色片子视频| 少妇熟女aⅴ在线视频| 免费av毛片视频| 国产精品熟女久久久久浪| 欧美高清成人免费视频www| 深夜a级毛片| 国模一区二区三区四区视频| 精品国内亚洲2022精品成人| 亚洲欧洲国产日韩| 色综合亚洲欧美另类图片| 亚洲精品影视一区二区三区av| 赤兔流量卡办理| 欧美一区二区国产精品久久精品| 亚洲天堂国产精品一区在线| 黄片wwwwww| 青春草国产在线视频| 国产女主播在线喷水免费视频网站 | av黄色大香蕉| 26uuu在线亚洲综合色| 欧美丝袜亚洲另类| 亚洲欧美精品自产自拍| 一个人观看的视频www高清免费观看| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 一卡2卡三卡四卡精品乱码亚洲| 国产av在哪里看| 水蜜桃什么品种好| 日本黄大片高清| 国产在视频线精品| 国产黄片美女视频| 久久99热这里只频精品6学生 | 你懂的网址亚洲精品在线观看 | 91精品一卡2卡3卡4卡| 麻豆国产97在线/欧美| 男女那种视频在线观看| 国产精品久久久久久精品电影| 老司机福利观看| 国产 一区精品| 久久精品久久久久久久性| 又粗又爽又猛毛片免费看| 免费观看的影片在线观看| av.在线天堂| 亚洲精品影视一区二区三区av| 黄色日韩在线| 免费搜索国产男女视频| 人妻制服诱惑在线中文字幕| 亚洲av一区综合| 欧美日韩国产亚洲二区| 中文字幕熟女人妻在线| 日韩欧美在线乱码| 一级毛片电影观看 | 人人妻人人澡人人爽人人夜夜 | 自拍偷自拍亚洲精品老妇| 三级国产精品片| 欧美又色又爽又黄视频| 欧美xxxx性猛交bbbb| 1000部很黄的大片| 国产亚洲精品久久久com| 插逼视频在线观看| 毛片一级片免费看久久久久| 九草在线视频观看| 久久韩国三级中文字幕| 黄色日韩在线| 亚洲精品影视一区二区三区av| 白带黄色成豆腐渣| 最近中文字幕高清免费大全6| 免费av观看视频| 乱人视频在线观看| 国产伦理片在线播放av一区| 久久久精品欧美日韩精品| 日韩在线高清观看一区二区三区| 欧美性猛交黑人性爽| 日韩欧美在线乱码| 激情 狠狠 欧美| 色5月婷婷丁香| 一个人免费在线观看电影| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 日韩,欧美,国产一区二区三区 | 麻豆一二三区av精品| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 有码 亚洲区| 午夜免费男女啪啪视频观看| 亚洲最大成人av| 高清视频免费观看一区二区 | 色哟哟·www| 日韩一区二区视频免费看|