• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics

    2022-04-12 03:47:38YaNanLi李亞男PingWu吳平ShiPingZhang張師平YiLiPei裴藝麗JinGuangYang楊金光SenChen陳森andLiWang王立
    Chinese Physics B 2022年4期
    關(guān)鍵詞:吳平金光

    Ya-Nan Li(李亞男) Ping Wu(吳平) Shi-Ping Zhang(張師平) Yi-Li Pei(裴藝麗)Jin-Guang Yang(楊金光) Sen Chen(陳森) and Li Wang(王立)

    1Beijing Key Laboratory for MagnetoPhotoelectrical Composite and Interface Science,School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    2School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: Ca3Co4O9,carbon nanotubes,thermal conductivity,thermoelectric properties

    1. Introduction

    With the increasingly serious energy shortage and environmental pollution,people need to find green energy and energy conversion methods. Thermoelectric materials can realize the direct conversion of thermal energy and electric energy based on Seebeck effect and Peltier effect, and they have attracted much attention in recent years.[1]The conversion efficiency of thermoelectric materials depends on the figure of meritZT=σS2T/k, whereσis the electrical conductivity,Sis the Seebeck coefficient,Tis the absolute temperature,andκis the thermal conductivity.[2]It can be observed from the above formula that high-efficiency thermoelectric conversion requires high electrical conductivity and Seebeck coefficient,as well as low thermal conductivity,which is quite challenging. The optimization of one parameter of thermal conductivity or electrical conductivity usually causes the reduction of the other parameter. In recent years, compared with intermetallic thermoelectric compounds, such as Bi2Te3,[3]PbTe,[4]etc.,thermoelectric oxide material Ca3Co4O9(abbreviated as CCO) has attracted extensive attention because of its good stability, convenient preparation, green environmental protection and low cost.[5]At present, theZTvalue of polycrystalline Ca3Co4O9still cannot meet the requirements of practical application, which limits its commercial application.

    Ca3Co4O9has monoclinic structure, and the chemical formula is[Ca2CoO]b1[CoO2]b2.This represents a monoclinic mismatched sandwich like structure,and a calcium salt disordered layer is mixed between CdI2type CoO2layers,extending along thec-axis. The two layers share the same lattice parameters:a=4.8270(5),c=10.8300(2),β=98.1360(1).The unit cell mismatch changes along theb-axis. The lattice parameterbvalues of Ca2CoO3and CoO2layers areb1=4.5615(2) °A andb2=2.8173(1) °A,respectively,which are usually expressed as[CaCoO][CoO2]1.61.[6]The mismatch and weak connection between Ca2CoO and CoO2layers enhance phonon scattering, reduce thermal conductivity, and lead to significant anisotropy.[7]Due to its unique staggered structure,in order to improve the thermoelectric performance of Ca3Co4O9, the traditional method is to adjust the carrier concentration by doping ions at the Ca position[8-12]or Co position,[13-16]so as to affect the electric transport and phonon scattering. Another strategy is to add nano materials into Ca3Co4O9as the second phase. Theoretically,an appropriate number of composite nanoparticles can enhance the connectivity between grains and grain growth,improving the electrical conductivity. Due to the energy filtration effect, it may help to improve the Seebeck coefficient of the material. Simultaneously, the phonon scattering center is increased, thereby reducing the thermal conductivity. In recent years, the addition of nanoparticle materials to Ca3Co4O9, such as SiC,[17]Bi2O3,[18]NaF,[19]B4C,[20]Ag nanoparticles,[21]etc., has been used to improve the thermoelectric properties of materials. Carbon nanotube (CNT) is a low dimensional material with high conductivity and light weight. Adding carbon nanotubes to reduce the weight of materials for the application of weight sensitive thermoelectric materials is very competitive, for example, microelectronic devices, sensors,etc. Ceramic nano powders are widely used as nano dispersions of thermoelectric nanocomposites because of their low thermal conductivity, but the nanocomposites prepared from these nano dispersions show serious conductivity degradation.In contrast, carbon nanotubes are excellent nano dispersions of thermoelectric nanocomposites because CNTs have high conductivity, and their dispersion in the thermoelectric matrix will not deteriorate the conductivity to the extent caused by ceramic nano powder. Yeoet al.[22]added 0.12% CNTs to (Bi0.2Sb0.8)2Te3, the thermal conductivity of the composite was significantly lower than that of the matrix, which increased theZTvalue by 34%. Kimet al.[23]found that the thermal conductivity decreased significantly by compounding Bi0.5Sb1.5Te3with porous carbon nanomaterials. Theoretically, although carbon nanotubes have high thermal conductivity,the interface between carbon nanotubes and matrix can increase the phonon scattering at the interface and reduce the thermal conductivity, which is expected to improve theZTvalue of the material. Tanget al.previously studied the effect of carbon nanotubes addition on the thermoelectric properties of Ca3Co4O9at low temperature.[24]The thermoelectric properties of carbon nanotubes doped at room temperature and higher temperature have not been studied.

    In this work,Ca3Co4O9/xwt.%CNTs(x=0,3,5,7,10)composite thermoelectric materials were prepared by sol-gel method. The effects of adding carbon nanotubes on the electrical properties and thermal conductivity of Ca3Co4O9were systematically investigated.

    2. Experimental details

    Ca3Co4O9powder samples were prepared by sol-gel method. Weigh the precursor raw materials Ca(NO3)2·4H2O and CO (NO3)2·6H2O at a certain stoichiometric ratio, dissolve the raw materials in deionized water and mix evenly,add a certain amount of citric acid, heat and stir continuously at 352 K until sol is formed. The sol was dried at 393 K for 12 h to obtain the precursor. The precursor was fully ground and sintered at constant temperature of 1073 K for 12 h after selfpropagating treatment.After sintering,the powder sample was evenly mixed with carbon nanotubes(CNTs;0 wt.%,3 wt.%,5 wt.%,7 wt.%,10 wt.%)with a certain mass ratio,and then pressed under the pressure of 30 MPa. Crystallographic structure analysis was performed by Rigaku D/max2500 X diffractometer with CuKαray (λ=1.54056 °A) (40 kV, 200 mA),step size 0.01°,conventional 2θof 10°-60°. The phase composition of the sample was analyzed by angle range diffraction spectrum. The microstructure of the samples was observed by field emission scanning electron microscopy (FESEM,Zeiss supra55). The Seebeck coefficient/electrical conductivity measurement system(Netzsch SBA458)was used to measure the electrical conductivity and Seebeck coefficient of the sample in argon atmosphere. The thermal conductivity of the sample was obtained according tok=DCpd, wheredis the geometric density of the sample. The diffusion coefficientD(Netzsch instruments/LAF457) perpendicular to the pressure direction of the sample was obtained by laser scattering method.

    3. Results and discussion

    3.1. Phase composition and microstructure

    The phase purity and crystallinity of Ca3Co4O9samples with carbon nanotubes addition of different mass ratios were characterized by XRD. Figure 1 shows the XRD spectra of all samples. All samples are single-phase, and the major crystal phase matches with the standard JCPDS card(No. 21-0139) of Ca3Co4O9. No other peaks are detected,indicating that the purity of all samples is very high, and the content of carbon nanotubes is relatively small. It can also be seen from the figure that the diffraction peak in the (00l)plane is relatively strong, while other peaks are relatively weak. The results show that the samples have obvious preferred orientation in thecdirection, which is mainly caused by the preferential growth of grains on the plane perpendicular to the pressure direction during sintering. Simultaneously, with the increase of the amount of carbon nanotubes,the orientation of the sample in the(00l)direction decreases.Figures 2(a)-2(e)show the morphology of the samples added with different proportions of carbon nanotubes. It can be observed from the figure that the sample presents a sheet shape.It is found that the grain size does not change significantly with the increase of carbon nanotubes. The average particle size of the sample is 700-800 nm. Figure 2(f)shows the morphology of the sample with carbon nanotubes doping of 10 wt.% at a higher multiple.The filamentous carbon nanotubes in the sample are circled with a blue circle. The density and atomic ratio of Ca3Co4O9/xwt.% CNTs (x=0, 3, 5, 7, 10) samples are provided in Table 1. The density of the sample decreases with the increase in the content of carbon nanotubes (the theoretical density of Ca3Co4O9is 4.68 g/cm3).[25]After normalizing the atomic ratio,the content of carbon atoms in the sample increases with the increase of the amount of carbon nanotubes.

    Fig.1. XRD pattern of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)sample.

    Table 1. Density and atomic ratio of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Fig.2. SEM images of sintered sample surfaces: (a)Ca3Co4O9,(b)Ca3Co4O9/3 wt.%CNTs(c)Ca3Co4O9/5 wt.%CNTs,(d)Ca3Co4O9/7 wt.%CNTs,(e)Ca3Co4O9/10 wt.%CNTs and(f)filamentous carbon nanotubes in Ca3Co4O9/10 wt.%CNTs are circled with a blue circle.

    3.2. Electrical transport properties

    The relationship between electrical conductivity and temperature of Ca3Co4O9/xwt.%CNTs(x=0,3,5,7,10)samples are exhibited in Fig. 3. Due to the limitation of the stability of carbon nanotubes, the test mainly studies the thermoelectric properties of samples from room temperature to 625 K. It can be observed from the figure that the electrical conductivity of all samples increases with the increase of temperature in the temperature range of 275 K to 625 K,showing significant semiconductor behavior. However, the conductivity of the sample with carbon nanotubes addition is significantly lower than that of the original sample. Although carbon nanotubes have high conductivity, it is mainly reflected along its length. In this study,the orientation of carbon nanotubes added to Ca3Co4O9is random, then its excellent conductivity cannot be brought into full play. The relationship between conductivity and resistivity can be expressed asσ=1/ρ. Adding carbon nanotubes to Ca3Co4O9sample introduces pore structure and interface, which increases the electron scattering center of the composite sample, increases the resistivity of the sample, that is, the electrical conductivity decreases,and the electrical conductivity of the composite decreases with the increase of carbon nanotube content.

    Fig.3. Relationship between the electrical conductivity and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Figure 4 shows the relationship between Seebeck coefficients and temperature of Ca3Co4O9samples with different contents of carbon nanotubes. The Seebeck coefficients of all samples in the figure increase with the increase of temperature.The Seebeck coefficients of all samples are positive,indicating that the samples are p-type semiconductors,dominated by hole conduction. The Seebeck coefficient increases monotonically with the increase of temperature,which may be related to the phonon traction effect,that is,the phonons in the semiconductor flow from the high-temperature end to the low-temperature end. Through the collision with the carriers, the phonons transfer energy to the carriers, forming the flow of carriers in the same direction as the phonon flow,to improve the Seebeck coefficient. Simultaneously,it can be observed from the figure that the Seebeck coefficient of the sample decreases with the increase of carbon nanotubes content. At 625 K,the Seebeck coefficient of the Ca3Co4O9/10 wt.%CNTs sample decreases to 136.85 μV/K, compared with 82.02 μV/K of the undoped samples,reduced by about 40%. For the composite semiconductor material of two substances,the Seebeck coefficient can be expressed as[26]

    whereSTOTrepresents the total Seebeck of the sample,σirepresents the conductivity of different substances, andSirepresents the Seebeck coefficient of different substances. It can be seen from the formula that the conductivity has a great influence on the Seebeck coefficient. Carbon nanotubes have higher conductivity, that is, the denominator becomes larger,while the Seebeck coefficient of carbon nanotubes is smaller,and the molecular change is small.[27]Thus, the Seebeck coefficient of the composite sample is reduced.

    Fig.4. Relationship between the Seebeck coefficient and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Based on the measurement results of electrical conductivity and Seebeck coefficient,to evaluate the electrical properties of thermoelectric materials,the electrical properties part ofZT=σS2T/kis used,σS2,which is called the power factorPF(PF=σS2)of the material.The calculated power factor of Ca3Co4O9/xwt.%CNTs series samples is provided in Fig.5.The power factor increases with the increase of temperature which can be attributed the joint influence of electrical conductivity and Seebeck coefficient. In the whole temperature range,the power factor of the samples with carbon nanotubes added is lower than that of the original samples. At 625 K,the power factor of the undoped samples is 0.98μW/cm·K2. The power factor of Ca3Co4O9/10 wt.%CNTs samples decreases to 0.22μW/cm·K2.The above results show that doping carbon nanotubes will reduce the electrical properties of the materials.

    Fig. 5. Relationship between the power factor and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    3.3. Thermal transport properties

    Figure 6(a) shows the variation of the total thermal conductivity of the sample with temperature. The thermal conductivity of the sample with carbon nanotubes addition is significantly lower than that of the original sample. And the thermal conductivity decreases with the increase of the content of carbon nanotubes. For Ca3Co4O9/xwt.% CNTs system, in general,the total thermal conductivitykof the sample consists of two parts: the carrier thermal conductivitykcand phonon thermal conductivitykp, i.e.,k=kc+kp. The carrier thermal conductivitykcis related to the electrical conductivity via the Wiedemann-Franz equation,kc=LTσ, whereLis the Lorenz constant (L=2.45×10-8V-2·K-2), and the calculated value ofkccan be ignored for its relatively small value(Fig.6(b)). Therefore,kmainly depends onkp(Fig.6(c)). In the low order approximation,kp=1/3cvlp,wherec,vandlprepresent the specific heat capacity, phonon propagation velocity and average free path, respectively. Generally, doping will increasecand decreasevandlp. Moreover, the phonon propagation velocity is positively correlated with the average free path of the phonon. At 625 K, the thermal conductivity of the sample decreases from 1.527 W·m-1·K-1of Ca3Co4O9to 0.408 W·m-1·K-1of Ca3Co4O9/10 wt.% CNTs, which is decreased by about 73%.

    Fig. 6. Relationship between (a) total thermal conductivity k, (b) carrier thermal conductivity kc and (c) phonon thermal conductivity kp of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples with temperature.

    The main factors affecting the thermal conductivity of composites include their own thermal conductivity, particle distribution of added phase, interfacial thermal resistance,porosity and so on. The thermal conductivity of carbon nanotubes is relatively high. The thermal conductivity of multi walled carbon nanotubes reaches 600-4000 W·m-1·K-1at room temperature. When adding high thermal conductivity carbon nanotubes to Ca3Co4O9, it is generally believed that the thermal conductivity will increase, while the actual measurement results decrease with the addition of carbon nanotubes. In this study,the particle phase of the composites obtained by fully mixing carbon nanotubes and Ca3Co4O9can be regarded as uniformly distributed, so the effect of particle distribution on it can be ignored.

    According to Matthiessen’s law,the phonon thermal conductivity mainly depends on point defect scattering, grain boundary scattering,phonon-phonon scattering and resonance scattering.[28,29]The existence of composite interface will inevitably affect the thermal conductivity. Panget al.optimized the series parallel model based on the effective medium thermal conductivity theory, and gave the effective thermal conductivity of composite elements with interfacial thermal resistancekcomas[30]

    wherek2is the thermal conductivity of the matrix material,k1is the thermal conductivity of the additive,V1is the volume fraction of the added phase,Ris the diameter of the added phase particles,andRBis the interfacial thermal resistance of the added phase in the composite. In this study, the particle size of Ca3Co4O9is about 700 nm,while the diameter of carbon nanotubes is only about 5 nm,which is much smaller than that of Ca3Co4O9and can be regarded as spherical particles.The effect of carbon nanotube addition on the effective thermal conductivity of Ca3Co4O9material can be discussed by using the model of formula (2). Therefore, for carbon nanotubes and Ca3Co4O9matrix composites,k2is the thermal conductivity of the matrix Ca3Co4O9without carbon nanotubes,k1is the thermal conductivity of carbon nanotubes,the carbon nanotubes added in the experiment are double-walled carbon nanotubes, the thermal conductivity is about 3000 W·m-1·K-1,V1is the volume fraction of carbon nanotubes,Ris the diameter of carbon nanotubes (5 nm), andRBis the interfacial thermal resistance of carbon nanotubes in the composites,According to a report of Cahill and Keblinski research group,the interfacial thermal resistance of carbon nanotubes is about 8.33×10-8m2·K·W-1.[31]By substituting the corresponding value into formula (2), the effective thermal conductivitykcomof Ca3Co4O9composites with different amounts of carbon nanotubes can be calculated when considering the interfacial thermal resistance. The calculation results are shown in Fig.7.

    Fig.7. Relationship among kcom, keffect and k of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    For ceramic samples, the effect of pores on the thermal conductivity of materials cannot be ignored. To study the effect of pores on thermal conductivity,Panget al.transformed the ideal composite into a single-phase solid material with effective thermal conductivity ofkcomand regarded the pore phase as one phase to build a model based on the model of formula(2),and deduced that the effective thermal conductivity(keffect)of the composite with voids and interfacial thermal resistance is[30]

    wherekairis the thermal conductivity of the stomatal phase,ξis the proportion of pore phase in the unit, that is, porosityξ=(ρ0-ρi)/ρ0,ρ0is the theoretical density of the base material,ρiis the density of each sample. In this study, the carbon nanotube with interface and Ca3Co4O9composite discussed in formula (2) are regarded as a single phase, and the pores are regarded as the second phase,that is,kairis the thermal conductivity of the pore phase(0.023 W·m-1·K-1),ρ0is the theoretical density of Ca3Co4O9(4.68 g/cm3),ρiis given in Table 1. Bring the above values into formula (3) to calculate the effective thermal conductivity of the composite containing pores and interfaces. The calculation results are given in Fig.7.

    As shown in Fig. 7, when only the interfacial thermal resistance is considered, the effective thermal conductivitykcomvalue of carbon nanotubes and Ca3Co4O9composites decreases with the increase of the amount of carbon nanotubes,which is consistent with the experimentalk. The results show that the addition of carbon nanotubes into the interface hinders heat transfer and reduces the thermal conductivity of the composites. When the effects of interfacial thermal resistance and pores on the effective thermal conductivitykeffectof the composites are considered at the same time, the effect value also decreases with the increase of the amount of carbon nanotubes,and the decreasing trend is greater thankcomand closer to the experimental valuek,indicating that pores have a great influence on the effective thermal conductivity of the composites.In conclusion, adding carbon nanotubes to Ca3Co4O9introduces interfacial thermal resistance and pores,which plays an important role in reducing the thermal conductivity,indicating that adding carbon nanotubes is one of the effective ways to reduce the thermal conductivity of Ca3Co4O9.

    3.4. Dimensionless figure of merit

    Figure 8 shows the relationship between theZTvalue and temperature of Ca3Co4O9/xwt.% CNTs (x= 0, 3, 5,7, 10) samples . TheZTvalue is the result of the coupling of electrical conductivity, Seebeck coefficient and thermal conductivity. It can be seen from the calculation results that theZTvalues of the Ca3Co4O9/3 wt.% CNTs and Ca3Co4O9/5 wt.% CNTs samples increase significantly, and that of Ca3Co4O9/7 wt.% CNTs has little change. With the increase of the content of carbon nanotubes, theZTvalue of the Ca3Co4O9/10wt.% CNTs sample decreases. At 625 K,theZTvalue of the sample with the addition content of 3%is the highest, reaching 0.052. Compared with pure Ca3Co4O9samples at the same temperature,theZTvalue is increased by 29%. The sample with 3 wt.%CNTs has the best thermoelectric performance at 625 K.The above results show that an appropriate amount of carbon nanotubes is an effective method to improve the thermoelectric properties of Ca3Co4O9.

    Fig. 8. Relationship between the ZT value and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    4. Conclusions

    We systematically studied the thermoelectric properties of Ca3Co4O9/xwt.% CNTs (x= 0, 3, 5, 7, 10) composite samples prepared by sol-gel method. XRD and SEM showed that the samples were single phase and showed sheet like morphology. The electrical conductivity and Seebeck coefficient of all samples with carbon nanotubes addition were lower than those of the original sample. Proper addition of carbon nanotubes can effectively reduce its thermal conductivity. At 625 K, the thermal conductivity of the sample (Ca3Co4O9/10 wt.% CNTs) decreased from 1.527 W·m-1·K-1of undoped samples to 0.408 W·m-1·K-1,which decreased by about 73%. When the addition content was 3%, theZTvalue reached 0.052, which was 29%higher than that the original sample. These show that an appropriate amount addition of CNTs can reduce the thermal conductivity of Ca3Co4O9ceramic samples and improve the thermoelectric properties.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant No.51836009).

    猜你喜歡
    吳平金光
    午夜繁華
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    吳平:戶外語(yǔ)文課,用觀察擺脫寫作空洞
    金光現(xiàn)代學(xué)徒班感恩教育的實(shí)踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    血染“不出軌保證書”,“武隆好人”婚姻無性
    久久免费观看电影| 欧美日韩av久久| 在线av久久热| 色94色欧美一区二区| 老司机靠b影院| 少妇的丰满在线观看| 欧美精品人与动牲交sv欧美| 欧美精品高潮呻吟av久久| 午夜两性在线视频| 精品国内亚洲2022精品成人 | 国产精品 欧美亚洲| 人成视频在线观看免费观看| 日韩精品免费视频一区二区三区| 激情视频va一区二区三区| 一区二区三区乱码不卡18| 欧美久久黑人一区二区| 桃花免费在线播放| 久久中文字幕一级| 日韩欧美一区二区三区在线观看 | 宅男免费午夜| 亚洲专区中文字幕在线| 国产免费视频播放在线视频| 成人国产av品久久久| 国产日韩欧美在线精品| 国产亚洲av高清不卡| 国产99久久九九免费精品| 777米奇影视久久| 国产成人欧美在线观看 | 午夜精品国产一区二区电影| 亚洲成人免费电影在线观看| 一进一出抽搐动态| 性色av乱码一区二区三区2| 亚洲国产看品久久| 不卡一级毛片| 午夜91福利影院| 精品一区在线观看国产| 人人妻人人澡人人看| 久久ye,这里只有精品| 亚洲人成电影免费在线| 69av精品久久久久久 | 国产在线观看jvid| 12—13女人毛片做爰片一| 下体分泌物呈黄色| 久久国产亚洲av麻豆专区| 欧美国产精品一级二级三级| 18禁黄网站禁片午夜丰满| 久久精品成人免费网站| 最近中文字幕2019免费版| 亚洲男人天堂网一区| 精品一区二区三卡| 国产在线一区二区三区精| 亚洲中文字幕日韩| 咕卡用的链子| 欧美大码av| 日韩中文字幕视频在线看片| 亚洲人成电影免费在线| 超色免费av| 永久免费av网站大全| 久久国产精品大桥未久av| 国产伦理片在线播放av一区| 久久久久久久大尺度免费视频| 亚洲精品国产av成人精品| 91大片在线观看| 一区二区av电影网| 这个男人来自地球电影免费观看| 亚洲人成77777在线视频| 精品少妇黑人巨大在线播放| 午夜福利乱码中文字幕| av天堂在线播放| 国产老妇伦熟女老妇高清| 窝窝影院91人妻| 国产一区二区在线观看av| 国产黄频视频在线观看| 男女免费视频国产| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕人妻丝袜一区二区| 午夜免费观看性视频| av天堂在线播放| 欧美亚洲日本最大视频资源| 99热全是精品| 亚洲熟女毛片儿| 99久久99久久久精品蜜桃| 正在播放国产对白刺激| 美女主播在线视频| 啪啪无遮挡十八禁网站| 在线永久观看黄色视频| 人人妻人人爽人人添夜夜欢视频| 午夜福利,免费看| 亚洲精品国产精品久久久不卡| 亚洲精品久久成人aⅴ小说| 97在线人人人人妻| 久久久久久人人人人人| 亚洲中文字幕日韩| 国产日韩欧美视频二区| 午夜激情av网站| 亚洲欧美精品综合一区二区三区| 国产老妇伦熟女老妇高清| 人妻人人澡人人爽人人| 国产成人a∨麻豆精品| 热re99久久国产66热| 丁香六月欧美| 久久午夜综合久久蜜桃| 亚洲精品国产一区二区精华液| 欧美一级毛片孕妇| 在线av久久热| 国产精品秋霞免费鲁丝片| 中文字幕人妻熟女乱码| 制服诱惑二区| 91国产中文字幕| 亚洲av国产av综合av卡| 性色av乱码一区二区三区2| 91成年电影在线观看| 成人免费观看视频高清| 亚洲男人天堂网一区| 国产又色又爽无遮挡免| 两个人免费观看高清视频| 国产日韩欧美在线精品| 波多野结衣av一区二区av| 国产精品麻豆人妻色哟哟久久| videos熟女内射| 丝袜喷水一区| 国产亚洲精品第一综合不卡| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠躁躁| 黄网站色视频无遮挡免费观看| 国产精品国产三级国产专区5o| 建设人人有责人人尽责人人享有的| 老司机影院成人| 午夜激情av网站| 国产精品国产三级国产专区5o| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻丝袜一区二区| 男女床上黄色一级片免费看| 十八禁网站免费在线| 精品少妇黑人巨大在线播放| 国产欧美日韩精品亚洲av| 国产一区二区激情短视频 | av又黄又爽大尺度在线免费看| 欧美一级毛片孕妇| 国产精品欧美亚洲77777| 亚洲国产精品一区三区| 在线观看舔阴道视频| 9191精品国产免费久久| 久久久久国产一级毛片高清牌| 两人在一起打扑克的视频| 老司机福利观看| 91麻豆av在线| 欧美一级毛片孕妇| 国产成人欧美在线观看 | 国产主播在线观看一区二区| 亚洲av日韩精品久久久久久密| 亚洲九九香蕉| 大陆偷拍与自拍| 国产av精品麻豆| 丝袜美腿诱惑在线| 久久久久久久久久久久大奶| 久久人妻福利社区极品人妻图片| 精品免费久久久久久久清纯 | 999久久久精品免费观看国产| 自线自在国产av| 精品视频人人做人人爽| 另类亚洲欧美激情| 18禁国产床啪视频网站| 亚洲国产日韩一区二区| 免费观看人在逋| 最近最新免费中文字幕在线| 黄片大片在线免费观看| 国产精品亚洲av一区麻豆| 欧美大码av| 国产成人免费无遮挡视频| 国产亚洲精品一区二区www | 在线看a的网站| 一级,二级,三级黄色视频| 亚洲黑人精品在线| 亚洲激情五月婷婷啪啪| 国产一区二区三区av在线| 精品久久蜜臀av无| 亚洲av电影在线观看一区二区三区| 国产成人a∨麻豆精品| 欧美激情久久久久久爽电影 | 亚洲色图 男人天堂 中文字幕| 大香蕉久久成人网| 亚洲美女黄色视频免费看| 后天国语完整版免费观看| 精品国产一区二区久久| 2018国产大陆天天弄谢| 一区二区三区乱码不卡18| 18禁黄网站禁片午夜丰满| 一区二区三区精品91| 桃红色精品国产亚洲av| 久久精品亚洲av国产电影网| 最新的欧美精品一区二区| 久久人妻福利社区极品人妻图片| 狠狠婷婷综合久久久久久88av| 女性生殖器流出的白浆| 女性生殖器流出的白浆| 色94色欧美一区二区| 免费高清在线观看日韩| 国产有黄有色有爽视频| 岛国毛片在线播放| 岛国毛片在线播放| 久久久久精品人妻al黑| 欧美激情极品国产一区二区三区| 午夜福利,免费看| 精品视频人人做人人爽| 日韩欧美一区视频在线观看| 欧美在线黄色| 午夜福利乱码中文字幕| 欧美变态另类bdsm刘玥| 久久中文看片网| 亚洲久久久国产精品| 久久久水蜜桃国产精品网| 黄色视频不卡| 亚洲av日韩精品久久久久久密| 久久女婷五月综合色啪小说| 亚洲av电影在线进入| 老司机影院毛片| 大陆偷拍与自拍| 久久青草综合色| 久久ye,这里只有精品| 久久影院123| 两个人看的免费小视频| 久久 成人 亚洲| 亚洲国产欧美网| 一边摸一边抽搐一进一出视频| 午夜激情av网站| 亚洲欧美激情在线| 性色av一级| 欧美日韩黄片免| 亚洲精品中文字幕在线视频| 国产精品一二三区在线看| 亚洲国产欧美日韩在线播放| 一二三四在线观看免费中文在| 侵犯人妻中文字幕一二三四区| 亚洲欧美日韩另类电影网站| 激情视频va一区二区三区| 女人被躁到高潮嗷嗷叫费观| 狠狠精品人妻久久久久久综合| 好男人电影高清在线观看| 精品国产一区二区三区四区第35| 国产又色又爽无遮挡免| 另类亚洲欧美激情| www.999成人在线观看| 俄罗斯特黄特色一大片| 亚洲九九香蕉| 国产亚洲欧美在线一区二区| 午夜福利免费观看在线| 色94色欧美一区二区| av网站免费在线观看视频| 又大又爽又粗| 日韩有码中文字幕| 可以免费在线观看a视频的电影网站| 日本vs欧美在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产亚洲av麻豆专区| 欧美精品高潮呻吟av久久| 最近最新中文字幕大全免费视频| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| av一本久久久久| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看 | 最新在线观看一区二区三区| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区 | 男人操女人黄网站| 多毛熟女@视频| 国产成+人综合+亚洲专区| 妹子高潮喷水视频| 免费在线观看完整版高清| 日韩人妻精品一区2区三区| 正在播放国产对白刺激| 亚洲三区欧美一区| 久久久欧美国产精品| 亚洲一码二码三码区别大吗| 在线av久久热| 激情视频va一区二区三区| 99国产综合亚洲精品| 午夜久久久在线观看| 欧美精品亚洲一区二区| 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| 久久99一区二区三区| 国产区一区二久久| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃| 人妻一区二区av| a在线观看视频网站| 法律面前人人平等表现在哪些方面 | 亚洲一卡2卡3卡4卡5卡精品中文| 美女扒开内裤让男人捅视频| 欧美性长视频在线观看| 女人高潮潮喷娇喘18禁视频| av有码第一页| 美女主播在线视频| 欧美精品av麻豆av| www日本在线高清视频| 91成人精品电影| 国产精品自产拍在线观看55亚洲 | 一二三四在线观看免费中文在| videos熟女内射| 久久国产精品大桥未久av| 99热国产这里只有精品6| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 色综合欧美亚洲国产小说| 国产免费一区二区三区四区乱码| 韩国精品一区二区三区| 99re6热这里在线精品视频| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 少妇 在线观看| 日韩欧美一区二区三区在线观看 | 亚洲第一欧美日韩一区二区三区 | 老司机午夜十八禁免费视频| 脱女人内裤的视频| 飞空精品影院首页| 亚洲精品粉嫩美女一区| 午夜精品久久久久久毛片777| 国产成人av激情在线播放| 大陆偷拍与自拍| 最新的欧美精品一区二区| 久久久精品94久久精品| 手机成人av网站| 午夜福利一区二区在线看| 老鸭窝网址在线观看| 欧美另类一区| 亚洲中文字幕日韩| 欧美老熟妇乱子伦牲交| 成人手机av| 久久久久精品国产欧美久久久 | 男女午夜视频在线观看| 99精国产麻豆久久婷婷| 国产麻豆69| 女人爽到高潮嗷嗷叫在线视频| 午夜福利视频在线观看免费| 国产伦人伦偷精品视频| 777米奇影视久久| 色老头精品视频在线观看| 亚洲精品久久成人aⅴ小说| 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 大片免费播放器 马上看| 丁香六月天网| 欧美xxⅹ黑人| 午夜成年电影在线免费观看| 又紧又爽又黄一区二区| 国产91精品成人一区二区三区 | av网站免费在线观看视频| 多毛熟女@视频| 丰满饥渴人妻一区二区三| 亚洲久久久国产精品| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区久久| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 又紧又爽又黄一区二区| 在线精品无人区一区二区三| 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 精品亚洲成国产av| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 激情视频va一区二区三区| 亚洲精品美女久久久久99蜜臀| 日本一区二区免费在线视频| 亚洲成人手机| 一个人免费看片子| 欧美精品人与动牲交sv欧美| 欧美另类一区| 欧美日韩黄片免| 久久女婷五月综合色啪小说| 免费不卡黄色视频| 女性被躁到高潮视频| 国产又色又爽无遮挡免| 国产精品 国内视频| 青春草亚洲视频在线观看| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 精品国产一区二区久久| 亚洲精品国产av成人精品| 精品亚洲成国产av| 啪啪无遮挡十八禁网站| www.熟女人妻精品国产| 动漫黄色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久香蕉激情| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 高清黄色对白视频在线免费看| 国产成人啪精品午夜网站| 成年av动漫网址| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 亚洲成人手机| 十八禁高潮呻吟视频| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 欧美成人午夜精品| 女人久久www免费人成看片| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| 91麻豆精品激情在线观看国产 | 欧美日韩一级在线毛片| 高清欧美精品videossex| 日韩欧美一区二区三区在线观看 | 国产精品免费大片| 欧美日韩黄片免| 欧美激情高清一区二区三区| 高清在线国产一区| 亚洲 国产 在线| 在线看a的网站| 午夜免费鲁丝| 精品亚洲成a人片在线观看| 最近最新免费中文字幕在线| 亚洲国产精品一区三区| 老熟女久久久| 久久免费观看电影| 日日摸夜夜添夜夜添小说| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| 丝袜美足系列| 人妻 亚洲 视频| 操出白浆在线播放| 在线十欧美十亚洲十日本专区| 1024香蕉在线观看| 国产成人一区二区三区免费视频网站| 女性被躁到高潮视频| 精品人妻熟女毛片av久久网站| 国产区一区二久久| 精品福利观看| 欧美激情极品国产一区二区三区| 中文精品一卡2卡3卡4更新| 精品国产超薄肉色丝袜足j| 男女之事视频高清在线观看| 人妻久久中文字幕网| 国产精品国产三级国产专区5o| 飞空精品影院首页| 在线永久观看黄色视频| 黄色视频,在线免费观看| 多毛熟女@视频| 12—13女人毛片做爰片一| cao死你这个sao货| 欧美另类亚洲清纯唯美| 久久久久网色| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看| 中文字幕最新亚洲高清| 自线自在国产av| 中国美女看黄片| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 美女国产高潮福利片在线看| 国产欧美亚洲国产| 国产男女内射视频| 亚洲国产成人一精品久久久| 久久精品国产亚洲av高清一级| 色视频在线一区二区三区| 亚洲欧美色中文字幕在线| 国产熟女午夜一区二区三区| 欧美日韩av久久| videosex国产| 黑人猛操日本美女一级片| av在线app专区| 久久九九热精品免费| 欧美激情久久久久久爽电影 | 日日夜夜操网爽| 男女无遮挡免费网站观看| 精品熟女少妇八av免费久了| 老司机亚洲免费影院| 亚洲中文av在线| 国产高清国产精品国产三级| 在线观看人妻少妇| 99精品久久久久人妻精品| 97精品久久久久久久久久精品| 国产精品av久久久久免费| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 久久精品久久久久久噜噜老黄| av免费在线观看网站| 天天添夜夜摸| 看免费av毛片| 国产免费av片在线观看野外av| 日本撒尿小便嘘嘘汇集6| 蜜桃国产av成人99| 男女下面插进去视频免费观看| 色播在线永久视频| 十八禁网站免费在线| 一级毛片电影观看| 好男人电影高清在线观看| 电影成人av| 一本大道久久a久久精品| 在线精品无人区一区二区三| 日本猛色少妇xxxxx猛交久久| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| www.自偷自拍.com| 嫁个100分男人电影在线观看| 国产精品久久久久成人av| 最近中文字幕2019免费版| 精品少妇久久久久久888优播| 日韩视频在线欧美| 夜夜夜夜夜久久久久| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久小说| 欧美+亚洲+日韩+国产| 性少妇av在线| 国产亚洲精品第一综合不卡| 99久久精品国产亚洲精品| 国产片内射在线| 国产淫语在线视频| 午夜成年电影在线免费观看| 精品一区二区三卡| 可以免费在线观看a视频的电影网站| 国产野战对白在线观看| av福利片在线| 12—13女人毛片做爰片一| 免费观看a级毛片全部| 亚洲成人免费电影在线观看| 永久免费av网站大全| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放| av在线播放精品| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利一区二区在线看| 国产区一区二久久| 嫩草影视91久久| 青草久久国产| 热99国产精品久久久久久7| 老熟妇仑乱视频hdxx| 国产欧美日韩综合在线一区二区| 美女国产高潮福利片在线看| 免费观看av网站的网址| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 亚洲欧美清纯卡通| 免费观看av网站的网址| 99国产精品一区二区三区| 男女免费视频国产| www日本在线高清视频| 纵有疾风起免费观看全集完整版| 亚洲国产精品成人久久小说| cao死你这个sao货| 欧美日韩av久久| 18在线观看网站| 午夜激情av网站| 久久久久久久久久久久大奶| 91九色精品人成在线观看| 美女高潮喷水抽搐中文字幕| 成人影院久久| 久久久欧美国产精品| 精品第一国产精品| 十八禁网站网址无遮挡| 啦啦啦中文免费视频观看日本| 国产在线免费精品| 精品久久久精品久久久| 美女脱内裤让男人舔精品视频| 美国免费a级毛片| 人成视频在线观看免费观看| 国产精品国产三级国产专区5o| 制服诱惑二区| 天天躁夜夜躁狠狠躁躁| 亚洲国产av影院在线观看| 男女午夜视频在线观看| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 人人澡人人妻人| 国产欧美亚洲国产| 精品高清国产在线一区| 大陆偷拍与自拍| 不卡av一区二区三区| 69av精品久久久久久 | 国产1区2区3区精品| 久久女婷五月综合色啪小说| 亚洲专区字幕在线| av网站免费在线观看视频| 亚洲成人免费电影在线观看| 波多野结衣一区麻豆| 天天躁夜夜躁狠狠躁躁| 精品一区二区三区四区五区乱码| 丝袜喷水一区| 国产激情久久老熟女| 欧美黑人欧美精品刺激| 国产av国产精品国产| 亚洲av电影在线进入| av不卡在线播放| 亚洲一区二区三区欧美精品| 动漫黄色视频在线观看| 视频区图区小说| av在线老鸭窝| 国产精品欧美亚洲77777| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区 | 91老司机精品| 亚洲av日韩精品久久久久久密| 日韩免费高清中文字幕av| 交换朋友夫妻互换小说| 另类精品久久| 国产麻豆69| 啦啦啦免费观看视频1| 国产高清国产精品国产三级| 美女高潮喷水抽搐中文字幕| 精品高清国产在线一区|