• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and characterization of the antifouling porous membranes from poly(vinylidene fl uoride)-graft-poly(N-vinyl pyrrolidone)powders?

    2014-08-05 09:13:20CHENLiFang陳利芳BIANXiaoKai卞曉鍇HOUZhengChi侯錚遲LIUZhongYing劉忠英QINQiang秦強(qiáng)PANLing潘玲SHENLiGuo申利國SHILiuQing施柳青andLUXiaoFeng陸曉峰
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:柳青

    CHEN Li-Fang(陳利芳),BIAN Xiao-Kai(卞曉鍇),HOU Zheng-Chi(侯錚遲),LIU Zhong-Ying(劉忠英),QIN Qiang(秦強(qiáng)),PAN Ling(潘玲),SHEN Li-Guo(申利國),SHI Liu-Qing(施柳青),and LU Xiao-Feng(陸曉峰),

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Jiading campus,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Preparation and characterization of the antifouling porous membranes from poly(vinylidene fl uoride)-graft-poly(N-vinyl pyrrolidone)powders?

    CHEN Li-Fang(陳利芳),1,2BIAN Xiao-Kai(卞曉鍇),1HOU Zheng-Chi(侯錚遲),1LIU Zhong-Ying(劉忠英),1QIN Qiang(秦強(qiáng)),1PAN Ling(潘玲),1,2SHEN Li-Guo(申利國),1SHI Liu-Qing(施柳青),1,2and LU Xiao-Feng(陸曉峰)1,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Jiading campus,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Porous membranes were prepared using the phase inversion method from poly(vinylidene fl uoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP)powders,which were synthesized via γ-ray induced graft polymerization(pre-irradiation).Chemical compositions,thermal behavior,morphology and hydrophilicity of the membranes were characterized by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,element analysis,thermalgravimetric analysis,differential scanning calorimetry,scanning electron microscopy and contact angle measurements,respectively.Permeation experiments were conducted to evaluate the water fl ux, and the dynamic BSA fouling resistance performances were investigated,too.All the experimental results indicate that the PVDF-g-PVP membranes demonstrate better separation performances over the pristine PVDF membrane.

    Poly(vinylidene fl uoride)-graft-poly(N-vinyl pyrrolidone),Porous membrane,Characterization

    I.INTRODUCTION

    Poly(vinylidene fl uoride)(PVDF)membranes are widely used in micro fi ltration and ultra fi ltration processes due to their good thermal stability,chemical resistance,ultraviolet and radiation resistance,and well-controlled porosity[1–4]. Yet,becauseofthehydrophobicnatureofPVDF,proteinfouling often occurs both on the membrane surface and within the pores when the membranes are exposed to protein containing solutions,which,in turn,restricts the applications of PVDF membranes[5,6].In recent years,membrane researchers have attempted to improve hydrophilicity of PVDF membranes using grafting methods,such as surface living/controlled radical polymerization[7–9],plasma-induced grafting[10–12],UV-assisted graft polymerization[13–16], and radiation-induced graft polymerization[17–21].Hydrophilic functional monomers are grafted onto PVDF main chains or membrane surfaces with the grafting methods.But by grafting the membrane surface directly,the membrane pore size and distribution can be changed,hence the reduction of permeability[22,23].

    In this study,we proposed a routine of graft polymerization of PVDF powders by60Co γ-ray pre-irradiation to fabricate porous membranes.The radicals formed in PVDF powders by γ-rays initiate the graft polymerization of vinyl monomers,and functional graft chains are introduced to endow PVDF with desirable properties[24–26].In our previous work,hydrophilic poly(vinylidene fl uoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP)powders were prepared by graftingN-vinyl pyrrolidone(NVP)onto PVDFpowders using the pre-irradiation method[27].In this paper,the porous membranes are cast from PVDF-g-PVP powders of different degrees of grafting(DG)via the phase inversion method.The chemical compositions,thermal behavior, morphology,hydrophilicity and water fl ux of the membranes are investigated,and antifouling property of the porous membranes is examined.

    II.EXPERIMENTAL

    A.Materials

    PVDF powders(TA-6020)were purchased from Solvay Co.Ltd.(Brussels,Belgium).NVP of analytical grade was obtained from J&K Corp.(Shanghai,China).N-methyl pyrrolidone(NMP),hydrochloric acid of analytical grade,bovine serum albumin(BSA,Mw=67000Da) and phosphate-buffered saline(PBS)were purchased from Sinopharm Reagent Co.Ltd.(Shanghai,China).All the materials were used without further puri fi cation.

    B.Membrane preparation

    The porous membranes were prepared using the immersion precipitation phase inversion method.PVDF and PVDF-g-PVP powders of differentDGs were dissolved in NMP (wt%=16%)at 70?C for 7 days to obtain a homogenous solution.The solution was casted onto a glass plate at (24±1)?C,which was then immersed in a precipitation bath of deionized water maintained at(16±1)?C.The new-born membrane was evaporated in air for 20s.The prepared membranes were immersed into fresh deionized water to remove all the residual solvent before their characterizations.

    C.Membrane characterization

    1.Fourier transform infrared(FTIR)spectroscopy measurements

    The FTIR spectra were recorded on a TENSOR 27 FTIR spectrometer(Bruker Optics,Germany)in attenuated total refl ection(ATR)mode.The samples were placed on the sample holder and all spectra were recorded in the wavenumber range of 4000–600cm?1by cumulating 32 scans at a resolution of 4cm?1.

    2.X-ray photoelectron spectroscopy(XPS)analysis

    XPSanalysiswasperformedwithaKratosAxisUltraDLD XPS instrument(Kratas Analytical Ltd.,Manchester,UK) equipped with a monochromatized Al KαX-ray source at a constantdwellingtimeof100msandapassenergyof160eV. The samples were vacuum-dried before measurement.Peak analysis software was applied to analyze the spectra.

    3.Elemental analysis

    The bulk C,H and N contents of the membranes were determined on a Vario EL III elemental analyzer(Elementar Co.,Hanau,Germany).Each membrane was measured twice.

    4.Thermal behavior analysis

    Thermalgravimetric analysis(TGA)was performed on a Pyris1 TGA thermogravimetric analyzer(Perkin Elmer, USA)between 50?C and 800?C.The samples were heated from 50?C to 100?C at a rate of 40?C/min.In order to eliminate the in fl uence of adsorbed water,all the samples were kept at 100?C for 5min before they were heated to 800?C at a rate of 10?C/min,for their test in an alumina crucible under nitrogen purging at 20mL/min.

    Differential scanning calorimetry(DSC)analysis was performed on a METTLER TOLEDO DSC822e DSC instrument(Mettler-Toledo International Inc.,Zurich,Switzerland) at 25–250?C in a heating rate of 10?C/min under nitrogen gas atmosphere.To eliminate thermal history of the samples,scans were taken twice,and the second scan results were recorded.

    5.Scanning electron microscope(SEM)analysis

    Morphology of the porous membranes was studied on an LEO1530vp SEM(Zeiss,Germany).To obtain the crosssection images,the membranes were immersed in liquid nitrogen and fractured.The samples were attached on a carbon tape,coated with Au by sputtering,and scanned at 25kV and 10mA.

    6.Contact angle measurements

    Contact angles of the membranes were measured on an Attension Theta system(KSV Instruments Ltd.,Finland).A water drop(5.0μL)was lowered onto the membrane surface from a needle tip.A magni fi ed image of the droplet was recordedwithadigitalcamera.Staticcontactangleswerecalculated from the images with a software,and measurements at six points of a membrane were averaged as its contact angle.

    7.Water fl ux measurements

    A self-made micro fi ltration cell apparatus[28]with an effective fi ltration area of 0.002m2was used to measure the fl ux of the membranes.A sample membrane was mounted onto the fi ltration cell and pre-compacted at?10kPa for a certain time until the fl ux maintained a constant value.The fl ux(J)was calculated byJ=V/(A·ΔT),whereVis the volume of permeation water,Ais effective area of the membrane,and ΔTis the time of measurement.

    8.Evaluation of antifouling property

    BSA was chosen as the model protein to evaluate the antifouling property of the membranes.After the water fl ux measurement,pure water was changed to 1g/L BSA solution in PBS(pH=7.4).The sample membrane was kept fi ltering for 4h with BSA solution under stirring.And the permeate f l ux pro fi le with time was recorded to determine the fouling resistance of the membrane.Filtration runs were performed with full recycle of penetrant to the feed tank to maintain the BSA concentration at a constant level.

    Fig.1.FTIR-ATR spectra of PVDF-g-PVP membranes of different DGs.

    Fig.2.XPS wide-scan and C1s core-level spectra of PVDF-g-PVP membranes of differentDGs.

    III.RESULTS AND DISCUSSION

    A.FTIR-ATR spectroscopy

    FTIR-ATR spectra of pristine PVDF membrane and PVDF-g-PVP membranes with differentDGs are compared in Fig.1.A distinctive new band around 1670cm?1can be seen in the spectra of PVDF-g-PVP membranes,and the absorbance increases withDG.This band is from characteristic vibrations attributing to C?O stretching in the grafted PVP chains.The results con fi rmed the existence of PVP chains on PVDF-g-PVP membrane surface.

    B.XPS analysis

    Surface compositions of the PVDF-g-PVP membranes were studied by XPS.Fig.2 shows the wide-scan and C1s core-level spectra of the porous membranes.The wide-scan spectra have signals attributed to C,F and O elements in the PVDF-g-PVP membranes,and the new signal at 399.8eV is attributed to the N element originating from the amide groups in PVP polymer chains.The minuscule amount of O element in PVDF powders may be due to the remaining initiator and surfactant,but the supplier did not provide any information on these details.

    In the C1s core-level spectrum of the pristine PVDF membrane,the peaks at 286.4eV and 290.8eV represent CH2and CF2species,respectively,and the peak at 287.9eV is of the CHF species.For the PVDF-g-PVP membranes,three new peak components appeared in the C1s core-level spectra,which are assigned to the grafted PVP polymer chains, involving BEs at 287.9eV for the N-C-O species,at 284.9eV for the hydrocarbon of the PVP chains,and at 286.4eV for the CN species.The CN and(CH2)(PVDF)peaks overlap to form a single peak in Fig.2,and so do the CHF and N-C-O peaks.

    TABLE 1.Elemental contents(in percentage)of PVDF-g-PVP membranes of differentDGs

    C.Elemental analysis

    Fig.3.TGA curves of pristine and grafted(DG=11.75%)PVDF membranes.

    Fig.4.(Color online)DSC curves of the pristine and grafted PVDF membranes.

    The C,H and N contents of the PVDF-g-PVP membranes are listed in Table 1.The bulk C,H and N contents were determined by elemental analysis,and the surface N contents were calculated from XPS spectra.From Table 1,the bulk and surface N contents increase withDG,and the surface N content of each grafted membrane is much higher than the corresponding bulk N content.That is to say,the PVP polymer concentration of the membrane surface is higher than that of the membrane bulk.This is attributed to surface segregation of the hydrophilic PVP graft chains during membrane fabrication by the phase inversion in the aqueous medium, due to the relatively-low interfacial energy between the PVP graft chains and water[29–31].

    Fig.5.Contact angles of porous membranes as a function ofDG.

    Fig.6.Surface(left)and cross-section(right)SEM images of the pristine and grafted PVDF membrane.

    D.Thermal behavior analysis

    Thermal behavior of the porous membranes was investigated by TGA and DSC measurements.Fig.3 shows the TGA curves of two PVDF membranes.The pristine PVDF membrane has only one thermal decomposition step,commencing at about 460?C,while the PVDF-g-PVP membrane (DG=11.75%)exhibits a two-step thermal decomposition process.The fi rst main weight loss starting at about 340?C is attributed to degradation of the PVP side chains,while the second weight loss beginning at about 460?C is attributed to decomposition of the PVDF main chains.The two-step decomposition of PVDF-g-PVP membranes suggests that the PVP grafts do not alter the inherent decomposition of the matrix PVDF.

    Figure 4 shows the DSC curves of PVDF-g-PVP membranes of differentDGs.Melting temperature of the porous membranes decreased slightly with increasingDGs,being 174.6?C for the pristine PVDF membrane but 173.8?C and 172.1?C for the grafted membranes ofDG=6.06%andDG=11.75%,respectively.This is because that the proportion of PVP increases withDG,and PVP is of lower melting temperature than PVDF.

    E.Surface hydrophilicity analysis

    Surface hydrophilicity of the membranes was obtained by contact angle measurement(Fig.5).Contact angle of the pristine PVDF membrane is 85?because of the intrinsic hydrophobicity of PVDF.Due to the existence of carbonyl groups in the PVP chains,the grafted membranes are relatively hydrophilic,and the contact angles decrease with increasingDGs,being69?atDG=17.43%.So,hydrophilicity of PVDF-g-PVP membranes is obviously improved.

    F.Morphology study

    SEM images of the pristine and grafted PVDF membranes of differentDGs are shown in Fig.6.From the surface images,one sees that the number of pores in PVDF-g-PVP membranes are evidently greater than that of the pristine membrane.The pore sizes of PVDF-g-PVP membranes are larger than those of the pristine.This is due to the enhanced hydrophilicity of PVDF-g-PVP powders,which is bene fi cial for the pore forming during the membrane fabrication process.However,whenDGis higher,the number of pores decreases,especially the pores of smaller size.The grafted PVP chains may plug or cover the membrane pores,resulting in decreased surface porosity[1,32].As evident from the crosssection SEM images,an asymmetric morphology with a skin layer and macrovoids in the support layer can be observed for both the pristine and grafted membranes.However,the pore connectivity of PVDF-g-PVP membranes is greater than that of the pristine.Thickness of PVDF-g-PVP membranes changed a little from that of the pristine.This change may be due to a variable exchange rate between water and the solvent[33].Also,the angle from which the SEM image was taken may cause a difference in the membrane thickness.

    G.Water fl ux

    Figure 7 shows the water fl ux of the porous membranes as a function ofDG.The water fl ux of PVDF-g-PVP membranes is higher than that of the pristine,but it decreases with increasingDGs,being 79.91L/(m2h)atDG=6.06%while just 18.14L/(m2h)atDG=7.43%.In general,the water fl ux of membranes is mainly controlled by the membrane hydrophilicity and the membrane structure.With improved hydrophilicity,a greater number of pores of larger pore size are bene fi cial to the improvement in fl ux[28].Although the hydrophilicity of PVDF-g-PVP membranes increases withDGbased on the contact angle results,the surface SEM images show that the porosity of the grafted membranes reduces with increasingDG.Obviously,the membrane structure in fl uences the water fl uxsigni fi cantly inthis case.Consequently,thewater fl ux of PVDF-g-PVP membranes decrease with increasingDG.

    Fig.7.Water fl ux of porous membranes as a function ofDG.

    H.Antifouling property analysis

    Fig.8.Normalized fl ux of PVDF-g-PVP membranes of differentDGs in 4 h fi ltration of 1g/L BSA solution.

    Antifouling behavior of the porous membranes was investigated with respect to dynamic BSA fouling.The results in terms of permeate fl ux relative to pure water fl ux are shown in Fig.8.It can be seen that both the pristine and grafted membranes exhibit a fl ux decline resulting from fouling.In comparison,the fl uxdeclineofPVDF-g-PVPmembranesisrather mild.For example,after 4h of continuous fi ltration,the fl ux of the pristine and PVDF-g-PVP membrane ofDG=11.75% dropped to 52.78%and 82.54%of its initial pure water fl ux, respectively,indicating improved antifouling property of the grafted PVDF membrane.However,the fl ux of the PVDF-g-PVP membrane ofDG=17.43%dropped to 75.58%of its initial pure water fl ux,which is lower than that of the PVDF-g-PVP membrane ofDG=11.75%.Both hydrophilicity and pore size distribution will affect the BSA fouling on the membrane surface[7,34–36].The PVDF-g-PVP membrane ofDG=17.43%shows the highest hydrophilicity and should exhibit the best antifouling property.However,its mean pore size is the largest of all the porous membranes,which can infl uence the fouling resistance signi fi cantly.Considering the two factors,the PVDF-g-PVP membrane ofDG=11.75% exhibits the best antifouling property.

    IV.CONCLUSION

    The porous membranes were cast from pristine PVDF and PVDF-g-PVP powders with differentDGs by the phase inversion method.The existence of PVP graft chains in PVDF-g-PVP membranes has been demonstrated by FTIRATR and XPS spectroscopy.The hydrophilicity of PVDF-g-PVP membranes was improved compared to the pristine PVDF membrane,due to the existence of the hydrophilic PVP graft chains,which consequently led to a reduced contact angle.Furthermore,the hydrophilicity of PVDF-g-PVP membranes was intensi fi ed with increasingDG.The different PVP polymer concentration in the membrane bulk and on the membrane surface con fi rmed surface segregation of the hydrophilic PVP polymer in the surface region.Thermal behavior analysis showed that the PVDF-g-PVP membranes exhibited a two-step thermal decomposition process, andthemeltingtemperatureofPVDF-g-PVPmembraneswas decreased slightly than the pristine one.SEM images demonstrated that the PVDF-g-PVP membrane with aDGof 6.06% exhibited the greatest porosity,which led to the highest water fl ux,and the pore connectivity of PVDF-g-PVP membranes was greater than that of the pristine PVDF membrane.Filtration performance evaluation indicated that the PVDF-g-PVP membranes had better fouling resistance than the pristine one, and the PVDF-g-PVP membrane with aDGof 11.75%exhibited the best antifouling property.

    [1]Wang D L,Li K,Teo W K.J Membrane Sci,1999,163:211–220.

    [2]Dargaville T R,George G A,Hill D J T,et al.Prog Polym Sci, 2003,28:1355–1376.

    [3]Chiang Y,Chang Y,Higuchi A,et al.J Membrane Sci,2009,339:151–159.

    [4]Su Y L,Liang Y G,Mu C X,et al.Ind Eng Chem Res,2011,50:10525–10532.

    [5]Krishnan S,Weinman C J,Ober C K.J Mater Chem,2008,18: 3405–3413.

    [6]Wang P,Tan K L,Kang E T,et al.J Membrane Sci,2002,195: 103–114.

    [7]Zhai G Q,Kang E T,Neoh K G.Macromolecules,2004,37: 7240–7249.

    [8]Singh N,Husson S M,Zdyrko B,et al.J Membrane Sci,2005,262:81–90.

    [9]Chen Y W,Deng Q,Xiao J C,et al.Polymer,2007,48:7604–7613.

    [10]Kaur S,Ma Z W,Gopal R,et al.Langmuir,2007,23:13085–13092.

    [11]Park Y W,Inagaki N.Polymer,2003,44:1569–1575.

    [12]Duca M D,Plosceanu C L,Pop T.Polym Degrad Stabil,1998,61:65–72.

    [13]Taniguchi M,Belfort G.J Membrane Sci,2004,231:147–157.

    [14]Wu G G,Li Y P,Han M,et al.J Membrane Sci,2006,283: 13–20.

    [15]Asano M,Chen J,Maekawa Y,et al.J Polym Sci A1,2007,45: 2624–2637.

    [16]Rahimpour A,Madaeni S S,Zereshki S,et al.Appl Surf Sci, 2009,255:7455–7461.

    [17]Deng B,Yu Y,Zhang B W,et al.Radiat Phys Chem,2011,80: 159–163.

    [18]Yang X X,Zhang B W,Liu Z Y,et al.J Mater Chem,2011,21: 11908–11915.

    [19]Liu F,Du C H,Zhu B K,et al.Polymer,2007,48:2910–2918.

    [20]Betz N,Begue J,Goncalves M,et al.Nucl Instrum Meth B, 2003,208:434–441.

    [21]Yang X X,Deng B,Liu Z Y,et al.J Membrane Sci,2010,362: 298–305.

    [22]Kaeselev B,Pieracci J,Belfort G.J Membrane Sci,2001,194: 245–261.

    [23]Shi Q,Su Y L,Zhu S P,et al.J Membrane Sci,2007,303: 204–212.

    [24]Ying L,Wang P,Kang E T,et al.Macromolecules,2002,35: 673–679.

    [25]Ying L,Zhai G,Winata A Y,et al.J Colloid Interf Sci,2003,265:396–403.

    [26]Zhai G,Kang E T,Neoh K G.J Membrane Sci,2003,217: 243–259.

    [27]Chen L F,Hou Z C,Lu X F,et al.J Appl Polym Sci,2013,128: 3949–3956.

    [28]Deng B,Yang X X,Xie L D,et al.J Membrane Sci,2009,330: 363–368.

    [29]Hester J F and Mayes A M.J Membrane Sci,2002,202:119–135.

    [30]Bousquet A,Ibarboure E,Labrugere C,et al.Langmuir,2007,23:6879–6882.

    [31]Asatekin A,Menniti A,Kang S,et al.J Membrane Sci,2006,285:81–89.

    [32]Zhang M,Nguyen Q T,Ping Z.J Membrane Sci,2009,327: 78–86.

    [33]Shen L G,Bian X K,Lu X F,et al.Desalination,2012,293: 21–29.

    [34]Liu F,Moghareh A M R,Li K.J Membrane Sci,2011,366: 97–103.

    [35]Ying L,Kang E T,Neoh K G.J Membrane Sci,2002,208: 361–374.

    [36]Chang Y,Shih Y J,Ruaan R C,et al.J Membrane Sci,2008,309:165–174.

    10.13538/j.1001-8042/nst.25.050303

    (Received February 17,2014;accepted in revised form May 12,2014;published online October 6,2014)

    ?Supported by the Shanghai Municipal Science and Technology Committee (No.08231200300)

    ?Corresponding author,luxiaofeng@sinap.ac.cn

    猜你喜歡
    柳青
    Numerical analysis for the free-boundary current reversal equilibrium in the AC plasma current operation in a tokamak
    志愿者精神 永不落幕
    “無盡”的《創(chuàng)業(yè)史》——我的父親柳青
    啊,柳青先生
    人民作家柳青的精神形象——評話劇《柳青》
    新時代我們向柳青學(xué)習(xí)什么
    柳青凱繪畫作品
    詩歌月刊(2019年8期)2019-08-23 13:25:26
    柳青:沉潛于生活深處
    《柳青在皇甫》《柳青言論集》出版
    柳青:去滴滴付出最大代價,勤奮超出常態(tài)
    金色年華(2016年2期)2016-02-28 01:38:36
    avwww免费| 一本色道久久久久久精品综合| 久久久精品94久久精品| 国产精品1区2区在线观看. | 男女国产视频网站| 一级a爱视频在线免费观看| 精品人妻一区二区三区麻豆| 精品国产一区二区三区久久久樱花| 亚洲熟女精品中文字幕| 伦理电影免费视频| 国产老妇伦熟女老妇高清| av天堂在线播放| 大香蕉久久网| 别揉我奶头~嗯~啊~动态视频 | 人人妻人人澡人人爽人人夜夜| 麻豆av在线久日| 免费观看a级毛片全部| 免费在线观看黄色视频的| 亚洲国产av影院在线观看| 欧美黄色淫秽网站| 欧美黄色淫秽网站| 精品一区在线观看国产| 国产成人av激情在线播放| 99久久综合免费| 手机成人av网站| 婷婷色av中文字幕| 久久精品国产a三级三级三级| 在线观看一区二区三区激情| 欧美午夜高清在线| 99re6热这里在线精品视频| 久久中文字幕一级| 国产色视频综合| 久久久久国产一级毛片高清牌| 99九九在线精品视频| 成年av动漫网址| 国产在线视频一区二区| 午夜老司机福利片| 一本久久精品| 亚洲国产看品久久| 在线看a的网站| 久久久久视频综合| 老司机在亚洲福利影院| 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 高潮久久久久久久久久久不卡| 亚洲三区欧美一区| 18禁国产床啪视频网站| 亚洲熟女精品中文字幕| 国产免费一区二区三区四区乱码| 99国产极品粉嫩在线观看| 久久久国产精品麻豆| 精品国产乱码久久久久久小说| 亚洲色图综合在线观看| 人人妻,人人澡人人爽秒播| 欧美日韩中文字幕国产精品一区二区三区 | 美女高潮到喷水免费观看| 午夜精品久久久久久毛片777| 日本av手机在线免费观看| 婷婷成人精品国产| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 亚洲av成人一区二区三| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区精品视频观看| 黄片小视频在线播放| 欧美日韩成人在线一区二区| 久久久久久久精品精品| 悠悠久久av| 在线天堂中文资源库| 国产欧美日韩一区二区精品| 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人爽人人夜夜| 免费不卡黄色视频| a级毛片黄视频| 人妻 亚洲 视频| 麻豆av在线久日| 欧美大码av| 日韩一区二区三区影片| 亚洲精品国产精品久久久不卡| 最黄视频免费看| 美女午夜性视频免费| 久久人妻福利社区极品人妻图片| 中文精品一卡2卡3卡4更新| 老熟妇乱子伦视频在线观看 | 成年女人毛片免费观看观看9 | 亚洲avbb在线观看| 丰满饥渴人妻一区二区三| 一本一本久久a久久精品综合妖精| 青草久久国产| 国产免费一区二区三区四区乱码| 精品视频人人做人人爽| 国产精品偷伦视频观看了| 国产人伦9x9x在线观看| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 亚洲专区国产一区二区| 宅男免费午夜| 国产麻豆69| 亚洲欧美清纯卡通| 国产真人三级小视频在线观看| 亚洲国产欧美一区二区综合| 黄色a级毛片大全视频| 黄色 视频免费看| 国产亚洲欧美在线一区二区| 国产精品免费大片| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 18禁黄网站禁片午夜丰满| 丰满少妇做爰视频| 天天影视国产精品| 嫁个100分男人电影在线观看| 91老司机精品| 丝瓜视频免费看黄片| 中文字幕另类日韩欧美亚洲嫩草| www.精华液| 99热全是精品| 美女高潮到喷水免费观看| 最新在线观看一区二区三区| 国产亚洲av高清不卡| 在线精品无人区一区二区三| av片东京热男人的天堂| 99热全是精品| 美女脱内裤让男人舔精品视频| 精品欧美一区二区三区在线| 老汉色∧v一级毛片| 国产一区二区激情短视频 | 午夜免费成人在线视频| 电影成人av| 欧美久久黑人一区二区| 成年av动漫网址| 美女高潮到喷水免费观看| 欧美黄色淫秽网站| 精品国产超薄肉色丝袜足j| www.999成人在线观看| 久久天躁狠狠躁夜夜2o2o| 国产一区二区 视频在线| 亚洲精品国产av蜜桃| 欧美日韩亚洲综合一区二区三区_| 亚洲综合色网址| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 国产激情久久老熟女| 丝袜脚勾引网站| 91字幕亚洲| 两个人免费观看高清视频| 久久久久精品人妻al黑| 欧美激情高清一区二区三区| 波多野结衣一区麻豆| 欧美少妇被猛烈插入视频| 又黄又粗又硬又大视频| 婷婷色av中文字幕| 久久久精品免费免费高清| 91av网站免费观看| 久久这里只有精品19| 丁香六月欧美| 天堂俺去俺来也www色官网| 在线观看免费视频网站a站| 欧美激情高清一区二区三区| 十分钟在线观看高清视频www| 亚洲av片天天在线观看| 成年av动漫网址| 国产一区二区三区在线臀色熟女 | 国产精品二区激情视频| e午夜精品久久久久久久| 色老头精品视频在线观看| 99精品欧美一区二区三区四区| 久久这里只有精品19| 亚洲国产精品成人久久小说| 大香蕉久久网| 国产高清国产精品国产三级| av天堂在线播放| 久久免费观看电影| 在线观看舔阴道视频| 在线观看免费视频网站a站| 欧美日韩视频精品一区| 亚洲国产精品成人久久小说| 精品久久久久久久毛片微露脸 | 国产野战对白在线观看| 18在线观看网站| 日日摸夜夜添夜夜添小说| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 国产精品久久久久成人av| 亚洲精品一二三| 三级毛片av免费| 久久久久网色| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 涩涩av久久男人的天堂| 后天国语完整版免费观看| av电影中文网址| 久久毛片免费看一区二区三区| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| videosex国产| 搡老乐熟女国产| www.自偷自拍.com| 国产精品成人在线| 精品福利观看| 亚洲九九香蕉| 日日爽夜夜爽网站| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| 国产一区二区三区在线臀色熟女 | av有码第一页| 9色porny在线观看| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 国产精品av久久久久免费| av天堂久久9| 亚洲精品一区蜜桃| tocl精华| 日韩一区二区三区影片| 国产精品久久久久久人妻精品电影 | 国产免费视频播放在线视频| 亚洲成人国产一区在线观看| 成年美女黄网站色视频大全免费| xxxhd国产人妻xxx| 两个人免费观看高清视频| 一区二区av电影网| 久久久久国产精品人妻一区二区| 叶爱在线成人免费视频播放| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产 | 久久久精品免费免费高清| 久久久精品国产亚洲av高清涩受| 精品少妇一区二区三区视频日本电影| 在线看a的网站| 久久 成人 亚洲| 久久亚洲精品不卡| 一本—道久久a久久精品蜜桃钙片| 超碰97精品在线观看| 国产成人精品无人区| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 免费久久久久久久精品成人欧美视频| 亚洲成人免费av在线播放| 视频在线观看一区二区三区| 午夜91福利影院| 美女高潮喷水抽搐中文字幕| 亚洲精品乱久久久久久| 国产在线一区二区三区精| 大香蕉久久成人网| 欧美性长视频在线观看| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| 国产又色又爽无遮挡免| www.精华液| 国产日韩欧美亚洲二区| 欧美日韩福利视频一区二区| 蜜桃国产av成人99| a级毛片在线看网站| 精品久久久精品久久久| 亚洲中文av在线| 男女国产视频网站| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 亚洲精品国产av蜜桃| 汤姆久久久久久久影院中文字幕| av不卡在线播放| 久久精品人人爽人人爽视色| 亚洲欧美日韩高清在线视频 | 1024视频免费在线观看| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 精品国产乱子伦一区二区三区 | 免费一级毛片在线播放高清视频 | 久久精品亚洲av国产电影网| 精品少妇一区二区三区视频日本电影| 母亲3免费完整高清在线观看| 精品国产国语对白av| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 亚洲少妇的诱惑av| 人人妻人人澡人人看| 国产精品国产三级国产专区5o| 免费观看av网站的网址| 精品久久久精品久久久| 大陆偷拍与自拍| 黄色怎么调成土黄色| 久热这里只有精品99| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播| 成人黄色视频免费在线看| 久久国产精品影院| 国产成人精品久久二区二区91| 咕卡用的链子| 色94色欧美一区二区| 9色porny在线观看| 国产精品国产av在线观看| 在线观看免费午夜福利视频| 久久 成人 亚洲| 国产深夜福利视频在线观看| 国产免费现黄频在线看| 国产成人av教育| 啦啦啦啦在线视频资源| 国产色视频综合| 侵犯人妻中文字幕一二三四区| 国产福利在线免费观看视频| 国产精品久久久久成人av| 亚洲人成77777在线视频| 日本av手机在线免费观看| 国产一卡二卡三卡精品| 久久久精品94久久精品| 另类亚洲欧美激情| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| √禁漫天堂资源中文www| 国产在线观看jvid| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 日本一区二区免费在线视频| 久久久久久久大尺度免费视频| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸 | a级片在线免费高清观看视频| 国产男女内射视频| 丝袜喷水一区| 各种免费的搞黄视频| 亚洲av成人不卡在线观看播放网 | 亚洲第一av免费看| 成人国语在线视频| 国产日韩欧美在线精品| 亚洲综合色网址| 国产一区有黄有色的免费视频| av片东京热男人的天堂| 一个人免费看片子| 狂野欧美激情性xxxx| 涩涩av久久男人的天堂| 各种免费的搞黄视频| videos熟女内射| 国产成人av教育| 久久久久久久大尺度免费视频| 欧美成狂野欧美在线观看| 国产精品国产三级国产专区5o| 亚洲激情五月婷婷啪啪| 午夜两性在线视频| 香蕉国产在线看| 建设人人有责人人尽责人人享有的| 电影成人av| 下体分泌物呈黄色| 久久久久久久久久久久大奶| 97精品久久久久久久久久精品| 伊人亚洲综合成人网| www日本在线高清视频| 男女之事视频高清在线观看| 色老头精品视频在线观看| 亚洲精品中文字幕一二三四区 | 天天影视国产精品| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 午夜福利乱码中文字幕| 午夜激情久久久久久久| 午夜福利乱码中文字幕| 伦理电影免费视频| 深夜精品福利| 日本av手机在线免费观看| 在线精品无人区一区二区三| 窝窝影院91人妻| 国产欧美日韩精品亚洲av| 黄片播放在线免费| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 国产精品自产拍在线观看55亚洲 | av在线播放精品| 91精品三级在线观看| 亚洲情色 制服丝袜| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人 | 18禁观看日本| 视频区图区小说| 亚洲av成人不卡在线观看播放网 | 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 深夜精品福利| 久久国产亚洲av麻豆专区| 亚洲av日韩精品久久久久久密| 亚洲中文日韩欧美视频| 成在线人永久免费视频| 超碰成人久久| 母亲3免费完整高清在线观看| 国产精品1区2区在线观看. | 黄色视频不卡| 午夜91福利影院| 人妻久久中文字幕网| 亚洲国产毛片av蜜桃av| 亚洲精品国产一区二区精华液| 午夜福利乱码中文字幕| 国产一区二区 视频在线| 在线精品无人区一区二区三| 91精品伊人久久大香线蕉| 日韩视频一区二区在线观看| 老司机亚洲免费影院| 亚洲一码二码三码区别大吗| 精品少妇一区二区三区视频日本电影| 久久久久国内视频| 丝袜在线中文字幕| 99久久国产精品久久久| 国产一区有黄有色的免费视频| 午夜激情久久久久久久| 1024香蕉在线观看| 啦啦啦在线免费观看视频4| 亚洲av日韩精品久久久久久密| 午夜91福利影院| 性色av乱码一区二区三区2| a级毛片黄视频| 久久精品成人免费网站| 飞空精品影院首页| 亚洲国产av新网站| 国产在线观看jvid| 亚洲欧洲精品一区二区精品久久久| 久久av网站| 亚洲精品av麻豆狂野| 日韩熟女老妇一区二区性免费视频| 欧美日韩国产mv在线观看视频| 黄频高清免费视频| 侵犯人妻中文字幕一二三四区| 91国产中文字幕| 丝袜在线中文字幕| av片东京热男人的天堂| 精品一品国产午夜福利视频| 丰满人妻熟妇乱又伦精品不卡| 美女高潮喷水抽搐中文字幕| 啦啦啦视频在线资源免费观看| 大陆偷拍与自拍| www日本在线高清视频| 麻豆av在线久日| 婷婷成人精品国产| 精品一区二区三区四区五区乱码| 亚洲第一av免费看| 中国国产av一级| 捣出白浆h1v1| 91九色精品人成在线观看| 久久99一区二区三区| 亚洲欧美日韩另类电影网站| 久久香蕉激情| 涩涩av久久男人的天堂| 免费av中文字幕在线| 亚洲,欧美精品.| 免费在线观看日本一区| 夜夜夜夜夜久久久久| 国产日韩欧美亚洲二区| 多毛熟女@视频| 99re6热这里在线精品视频| 精品高清国产在线一区| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| 亚洲国产av影院在线观看| 免费少妇av软件| 国产精品 欧美亚洲| 亚洲成av片中文字幕在线观看| 亚洲中文日韩欧美视频| cao死你这个sao货| 久久久精品区二区三区| 老司机午夜十八禁免费视频| 亚洲国产看品久久| 中文字幕最新亚洲高清| 欧美午夜高清在线| 青春草亚洲视频在线观看| 男女午夜视频在线观看| 久热这里只有精品99| 久9热在线精品视频| 日韩中文字幕欧美一区二区| 人成视频在线观看免费观看| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 一区二区av电影网| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 99九九在线精品视频| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 欧美av亚洲av综合av国产av| 99热国产这里只有精品6| 性色av一级| 超色免费av| 欧美日韩精品网址| 狠狠狠狠99中文字幕| 9191精品国产免费久久| 女人久久www免费人成看片| 50天的宝宝边吃奶边哭怎么回事| 国产不卡av网站在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 国产成人一区二区三区免费视频网站| 三上悠亚av全集在线观看| tocl精华| 老司机靠b影院| 久久九九热精品免费| 99久久综合免费| 黄网站色视频无遮挡免费观看| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 免费高清在线观看日韩| 丝袜美足系列| 欧美激情极品国产一区二区三区| 我的亚洲天堂| 黄片小视频在线播放| 国产高清videossex| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 最黄视频免费看| 欧美国产精品va在线观看不卡| 国产欧美日韩精品亚洲av| av天堂久久9| 亚洲精品一区蜜桃| a在线观看视频网站| 亚洲中文字幕日韩| 日韩人妻精品一区2区三区| 在线十欧美十亚洲十日本专区| 性色av乱码一区二区三区2| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| 欧美激情久久久久久爽电影 | 首页视频小说图片口味搜索| 免费在线观看完整版高清| 一区二区三区乱码不卡18| 欧美亚洲 丝袜 人妻 在线| av在线app专区| 久久久久精品国产欧美久久久 | 黄色a级毛片大全视频| 久久人妻熟女aⅴ| 婷婷色av中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品美女久久久久99蜜臀| netflix在线观看网站| 麻豆av在线久日| 日本五十路高清| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花| 日韩一区二区三区影片| 首页视频小说图片口味搜索| 十八禁网站免费在线| 女性被躁到高潮视频| 欧美日韩一级在线毛片| 久久久精品免费免费高清| 午夜日韩欧美国产| 超色免费av| 欧美av亚洲av综合av国产av| 看免费av毛片| 母亲3免费完整高清在线观看| 成人国产一区最新在线观看| 国产片内射在线| 午夜福利在线免费观看网站| 久久久久国产精品人妻一区二区| 99热网站在线观看| 日本精品一区二区三区蜜桃| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄| 80岁老熟妇乱子伦牲交| 欧美乱码精品一区二区三区| 亚洲美女黄色视频免费看| 亚洲成人免费av在线播放| 精品国产乱子伦一区二区三区 | 免费在线观看影片大全网站| 国产精品免费大片| 久久国产精品大桥未久av| 建设人人有责人人尽责人人享有的| 一本—道久久a久久精品蜜桃钙片| 男女床上黄色一级片免费看| av不卡在线播放| 免费在线观看黄色视频的| 久久毛片免费看一区二区三区| 美国免费a级毛片| 一区在线观看完整版| 男女无遮挡免费网站观看| 丝袜美足系列| 国产色视频综合| 亚洲国产看品久久| 亚洲av片天天在线观看| 亚洲精品久久久久久婷婷小说| 亚洲国产毛片av蜜桃av| 亚洲精品av麻豆狂野| 亚洲av国产av综合av卡| 欧美精品高潮呻吟av久久| 久久99热这里只频精品6学生| 一级片免费观看大全| 极品少妇高潮喷水抽搐| 精品少妇久久久久久888优播| 美女大奶头黄色视频| 777久久人妻少妇嫩草av网站| 99久久精品国产亚洲精品| 91精品三级在线观看| 黄色视频在线播放观看不卡| 两人在一起打扑克的视频| 精品人妻熟女毛片av久久网站| av免费在线观看网站| 日韩大片免费观看网站| 国产欧美亚洲国产| 国产视频一区二区在线看| 久久久久视频综合| 性高湖久久久久久久久免费观看| 又紧又爽又黄一区二区| 日韩中文字幕视频在线看片| 久久久国产精品麻豆| 精品国产超薄肉色丝袜足j| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品在线电影| 999久久久精品免费观看国产| 日本猛色少妇xxxxx猛交久久| 俄罗斯特黄特色一大片| 国产高清视频在线播放一区 | 亚洲精品国产精品久久久不卡| 99热全是精品|