• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and characterization of the antifouling porous membranes from poly(vinylidene fl uoride)-graft-poly(N-vinyl pyrrolidone)powders?

    2014-08-05 09:13:20CHENLiFang陳利芳BIANXiaoKai卞曉鍇HOUZhengChi侯錚遲LIUZhongYing劉忠英QINQiang秦強(qiáng)PANLing潘玲SHENLiGuo申利國SHILiuQing施柳青andLUXiaoFeng陸曉峰
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:柳青

    CHEN Li-Fang(陳利芳),BIAN Xiao-Kai(卞曉鍇),HOU Zheng-Chi(侯錚遲),LIU Zhong-Ying(劉忠英),QIN Qiang(秦強(qiáng)),PAN Ling(潘玲),SHEN Li-Guo(申利國),SHI Liu-Qing(施柳青),and LU Xiao-Feng(陸曉峰),

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Jiading campus,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Preparation and characterization of the antifouling porous membranes from poly(vinylidene fl uoride)-graft-poly(N-vinyl pyrrolidone)powders?

    CHEN Li-Fang(陳利芳),1,2BIAN Xiao-Kai(卞曉鍇),1HOU Zheng-Chi(侯錚遲),1LIU Zhong-Ying(劉忠英),1QIN Qiang(秦強(qiáng)),1PAN Ling(潘玲),1,2SHEN Li-Guo(申利國),1SHI Liu-Qing(施柳青),1,2and LU Xiao-Feng(陸曉峰)1,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Jiading campus,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Porous membranes were prepared using the phase inversion method from poly(vinylidene fl uoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP)powders,which were synthesized via γ-ray induced graft polymerization(pre-irradiation).Chemical compositions,thermal behavior,morphology and hydrophilicity of the membranes were characterized by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,element analysis,thermalgravimetric analysis,differential scanning calorimetry,scanning electron microscopy and contact angle measurements,respectively.Permeation experiments were conducted to evaluate the water fl ux, and the dynamic BSA fouling resistance performances were investigated,too.All the experimental results indicate that the PVDF-g-PVP membranes demonstrate better separation performances over the pristine PVDF membrane.

    Poly(vinylidene fl uoride)-graft-poly(N-vinyl pyrrolidone),Porous membrane,Characterization

    I.INTRODUCTION

    Poly(vinylidene fl uoride)(PVDF)membranes are widely used in micro fi ltration and ultra fi ltration processes due to their good thermal stability,chemical resistance,ultraviolet and radiation resistance,and well-controlled porosity[1–4]. Yet,becauseofthehydrophobicnatureofPVDF,proteinfouling often occurs both on the membrane surface and within the pores when the membranes are exposed to protein containing solutions,which,in turn,restricts the applications of PVDF membranes[5,6].In recent years,membrane researchers have attempted to improve hydrophilicity of PVDF membranes using grafting methods,such as surface living/controlled radical polymerization[7–9],plasma-induced grafting[10–12],UV-assisted graft polymerization[13–16], and radiation-induced graft polymerization[17–21].Hydrophilic functional monomers are grafted onto PVDF main chains or membrane surfaces with the grafting methods.But by grafting the membrane surface directly,the membrane pore size and distribution can be changed,hence the reduction of permeability[22,23].

    In this study,we proposed a routine of graft polymerization of PVDF powders by60Co γ-ray pre-irradiation to fabricate porous membranes.The radicals formed in PVDF powders by γ-rays initiate the graft polymerization of vinyl monomers,and functional graft chains are introduced to endow PVDF with desirable properties[24–26].In our previous work,hydrophilic poly(vinylidene fl uoride)-graftpoly(N-vinyl pyrrolidone)(PVDF-g-PVP)powders were prepared by graftingN-vinyl pyrrolidone(NVP)onto PVDFpowders using the pre-irradiation method[27].In this paper,the porous membranes are cast from PVDF-g-PVP powders of different degrees of grafting(DG)via the phase inversion method.The chemical compositions,thermal behavior, morphology,hydrophilicity and water fl ux of the membranes are investigated,and antifouling property of the porous membranes is examined.

    II.EXPERIMENTAL

    A.Materials

    PVDF powders(TA-6020)were purchased from Solvay Co.Ltd.(Brussels,Belgium).NVP of analytical grade was obtained from J&K Corp.(Shanghai,China).N-methyl pyrrolidone(NMP),hydrochloric acid of analytical grade,bovine serum albumin(BSA,Mw=67000Da) and phosphate-buffered saline(PBS)were purchased from Sinopharm Reagent Co.Ltd.(Shanghai,China).All the materials were used without further puri fi cation.

    B.Membrane preparation

    The porous membranes were prepared using the immersion precipitation phase inversion method.PVDF and PVDF-g-PVP powders of differentDGs were dissolved in NMP (wt%=16%)at 70?C for 7 days to obtain a homogenous solution.The solution was casted onto a glass plate at (24±1)?C,which was then immersed in a precipitation bath of deionized water maintained at(16±1)?C.The new-born membrane was evaporated in air for 20s.The prepared membranes were immersed into fresh deionized water to remove all the residual solvent before their characterizations.

    C.Membrane characterization

    1.Fourier transform infrared(FTIR)spectroscopy measurements

    The FTIR spectra were recorded on a TENSOR 27 FTIR spectrometer(Bruker Optics,Germany)in attenuated total refl ection(ATR)mode.The samples were placed on the sample holder and all spectra were recorded in the wavenumber range of 4000–600cm?1by cumulating 32 scans at a resolution of 4cm?1.

    2.X-ray photoelectron spectroscopy(XPS)analysis

    XPSanalysiswasperformedwithaKratosAxisUltraDLD XPS instrument(Kratas Analytical Ltd.,Manchester,UK) equipped with a monochromatized Al KαX-ray source at a constantdwellingtimeof100msandapassenergyof160eV. The samples were vacuum-dried before measurement.Peak analysis software was applied to analyze the spectra.

    3.Elemental analysis

    The bulk C,H and N contents of the membranes were determined on a Vario EL III elemental analyzer(Elementar Co.,Hanau,Germany).Each membrane was measured twice.

    4.Thermal behavior analysis

    Thermalgravimetric analysis(TGA)was performed on a Pyris1 TGA thermogravimetric analyzer(Perkin Elmer, USA)between 50?C and 800?C.The samples were heated from 50?C to 100?C at a rate of 40?C/min.In order to eliminate the in fl uence of adsorbed water,all the samples were kept at 100?C for 5min before they were heated to 800?C at a rate of 10?C/min,for their test in an alumina crucible under nitrogen purging at 20mL/min.

    Differential scanning calorimetry(DSC)analysis was performed on a METTLER TOLEDO DSC822e DSC instrument(Mettler-Toledo International Inc.,Zurich,Switzerland) at 25–250?C in a heating rate of 10?C/min under nitrogen gas atmosphere.To eliminate thermal history of the samples,scans were taken twice,and the second scan results were recorded.

    5.Scanning electron microscope(SEM)analysis

    Morphology of the porous membranes was studied on an LEO1530vp SEM(Zeiss,Germany).To obtain the crosssection images,the membranes were immersed in liquid nitrogen and fractured.The samples were attached on a carbon tape,coated with Au by sputtering,and scanned at 25kV and 10mA.

    6.Contact angle measurements

    Contact angles of the membranes were measured on an Attension Theta system(KSV Instruments Ltd.,Finland).A water drop(5.0μL)was lowered onto the membrane surface from a needle tip.A magni fi ed image of the droplet was recordedwithadigitalcamera.Staticcontactangleswerecalculated from the images with a software,and measurements at six points of a membrane were averaged as its contact angle.

    7.Water fl ux measurements

    A self-made micro fi ltration cell apparatus[28]with an effective fi ltration area of 0.002m2was used to measure the fl ux of the membranes.A sample membrane was mounted onto the fi ltration cell and pre-compacted at?10kPa for a certain time until the fl ux maintained a constant value.The fl ux(J)was calculated byJ=V/(A·ΔT),whereVis the volume of permeation water,Ais effective area of the membrane,and ΔTis the time of measurement.

    8.Evaluation of antifouling property

    BSA was chosen as the model protein to evaluate the antifouling property of the membranes.After the water fl ux measurement,pure water was changed to 1g/L BSA solution in PBS(pH=7.4).The sample membrane was kept fi ltering for 4h with BSA solution under stirring.And the permeate f l ux pro fi le with time was recorded to determine the fouling resistance of the membrane.Filtration runs were performed with full recycle of penetrant to the feed tank to maintain the BSA concentration at a constant level.

    Fig.1.FTIR-ATR spectra of PVDF-g-PVP membranes of different DGs.

    Fig.2.XPS wide-scan and C1s core-level spectra of PVDF-g-PVP membranes of differentDGs.

    III.RESULTS AND DISCUSSION

    A.FTIR-ATR spectroscopy

    FTIR-ATR spectra of pristine PVDF membrane and PVDF-g-PVP membranes with differentDGs are compared in Fig.1.A distinctive new band around 1670cm?1can be seen in the spectra of PVDF-g-PVP membranes,and the absorbance increases withDG.This band is from characteristic vibrations attributing to C?O stretching in the grafted PVP chains.The results con fi rmed the existence of PVP chains on PVDF-g-PVP membrane surface.

    B.XPS analysis

    Surface compositions of the PVDF-g-PVP membranes were studied by XPS.Fig.2 shows the wide-scan and C1s core-level spectra of the porous membranes.The wide-scan spectra have signals attributed to C,F and O elements in the PVDF-g-PVP membranes,and the new signal at 399.8eV is attributed to the N element originating from the amide groups in PVP polymer chains.The minuscule amount of O element in PVDF powders may be due to the remaining initiator and surfactant,but the supplier did not provide any information on these details.

    In the C1s core-level spectrum of the pristine PVDF membrane,the peaks at 286.4eV and 290.8eV represent CH2and CF2species,respectively,and the peak at 287.9eV is of the CHF species.For the PVDF-g-PVP membranes,three new peak components appeared in the C1s core-level spectra,which are assigned to the grafted PVP polymer chains, involving BEs at 287.9eV for the N-C-O species,at 284.9eV for the hydrocarbon of the PVP chains,and at 286.4eV for the CN species.The CN and(CH2)(PVDF)peaks overlap to form a single peak in Fig.2,and so do the CHF and N-C-O peaks.

    TABLE 1.Elemental contents(in percentage)of PVDF-g-PVP membranes of differentDGs

    C.Elemental analysis

    Fig.3.TGA curves of pristine and grafted(DG=11.75%)PVDF membranes.

    Fig.4.(Color online)DSC curves of the pristine and grafted PVDF membranes.

    The C,H and N contents of the PVDF-g-PVP membranes are listed in Table 1.The bulk C,H and N contents were determined by elemental analysis,and the surface N contents were calculated from XPS spectra.From Table 1,the bulk and surface N contents increase withDG,and the surface N content of each grafted membrane is much higher than the corresponding bulk N content.That is to say,the PVP polymer concentration of the membrane surface is higher than that of the membrane bulk.This is attributed to surface segregation of the hydrophilic PVP graft chains during membrane fabrication by the phase inversion in the aqueous medium, due to the relatively-low interfacial energy between the PVP graft chains and water[29–31].

    Fig.5.Contact angles of porous membranes as a function ofDG.

    Fig.6.Surface(left)and cross-section(right)SEM images of the pristine and grafted PVDF membrane.

    D.Thermal behavior analysis

    Thermal behavior of the porous membranes was investigated by TGA and DSC measurements.Fig.3 shows the TGA curves of two PVDF membranes.The pristine PVDF membrane has only one thermal decomposition step,commencing at about 460?C,while the PVDF-g-PVP membrane (DG=11.75%)exhibits a two-step thermal decomposition process.The fi rst main weight loss starting at about 340?C is attributed to degradation of the PVP side chains,while the second weight loss beginning at about 460?C is attributed to decomposition of the PVDF main chains.The two-step decomposition of PVDF-g-PVP membranes suggests that the PVP grafts do not alter the inherent decomposition of the matrix PVDF.

    Figure 4 shows the DSC curves of PVDF-g-PVP membranes of differentDGs.Melting temperature of the porous membranes decreased slightly with increasingDGs,being 174.6?C for the pristine PVDF membrane but 173.8?C and 172.1?C for the grafted membranes ofDG=6.06%andDG=11.75%,respectively.This is because that the proportion of PVP increases withDG,and PVP is of lower melting temperature than PVDF.

    E.Surface hydrophilicity analysis

    Surface hydrophilicity of the membranes was obtained by contact angle measurement(Fig.5).Contact angle of the pristine PVDF membrane is 85?because of the intrinsic hydrophobicity of PVDF.Due to the existence of carbonyl groups in the PVP chains,the grafted membranes are relatively hydrophilic,and the contact angles decrease with increasingDGs,being69?atDG=17.43%.So,hydrophilicity of PVDF-g-PVP membranes is obviously improved.

    F.Morphology study

    SEM images of the pristine and grafted PVDF membranes of differentDGs are shown in Fig.6.From the surface images,one sees that the number of pores in PVDF-g-PVP membranes are evidently greater than that of the pristine membrane.The pore sizes of PVDF-g-PVP membranes are larger than those of the pristine.This is due to the enhanced hydrophilicity of PVDF-g-PVP powders,which is bene fi cial for the pore forming during the membrane fabrication process.However,whenDGis higher,the number of pores decreases,especially the pores of smaller size.The grafted PVP chains may plug or cover the membrane pores,resulting in decreased surface porosity[1,32].As evident from the crosssection SEM images,an asymmetric morphology with a skin layer and macrovoids in the support layer can be observed for both the pristine and grafted membranes.However,the pore connectivity of PVDF-g-PVP membranes is greater than that of the pristine.Thickness of PVDF-g-PVP membranes changed a little from that of the pristine.This change may be due to a variable exchange rate between water and the solvent[33].Also,the angle from which the SEM image was taken may cause a difference in the membrane thickness.

    G.Water fl ux

    Figure 7 shows the water fl ux of the porous membranes as a function ofDG.The water fl ux of PVDF-g-PVP membranes is higher than that of the pristine,but it decreases with increasingDGs,being 79.91L/(m2h)atDG=6.06%while just 18.14L/(m2h)atDG=7.43%.In general,the water fl ux of membranes is mainly controlled by the membrane hydrophilicity and the membrane structure.With improved hydrophilicity,a greater number of pores of larger pore size are bene fi cial to the improvement in fl ux[28].Although the hydrophilicity of PVDF-g-PVP membranes increases withDGbased on the contact angle results,the surface SEM images show that the porosity of the grafted membranes reduces with increasingDG.Obviously,the membrane structure in fl uences the water fl uxsigni fi cantly inthis case.Consequently,thewater fl ux of PVDF-g-PVP membranes decrease with increasingDG.

    Fig.7.Water fl ux of porous membranes as a function ofDG.

    H.Antifouling property analysis

    Fig.8.Normalized fl ux of PVDF-g-PVP membranes of differentDGs in 4 h fi ltration of 1g/L BSA solution.

    Antifouling behavior of the porous membranes was investigated with respect to dynamic BSA fouling.The results in terms of permeate fl ux relative to pure water fl ux are shown in Fig.8.It can be seen that both the pristine and grafted membranes exhibit a fl ux decline resulting from fouling.In comparison,the fl uxdeclineofPVDF-g-PVPmembranesisrather mild.For example,after 4h of continuous fi ltration,the fl ux of the pristine and PVDF-g-PVP membrane ofDG=11.75% dropped to 52.78%and 82.54%of its initial pure water fl ux, respectively,indicating improved antifouling property of the grafted PVDF membrane.However,the fl ux of the PVDF-g-PVP membrane ofDG=17.43%dropped to 75.58%of its initial pure water fl ux,which is lower than that of the PVDF-g-PVP membrane ofDG=11.75%.Both hydrophilicity and pore size distribution will affect the BSA fouling on the membrane surface[7,34–36].The PVDF-g-PVP membrane ofDG=17.43%shows the highest hydrophilicity and should exhibit the best antifouling property.However,its mean pore size is the largest of all the porous membranes,which can infl uence the fouling resistance signi fi cantly.Considering the two factors,the PVDF-g-PVP membrane ofDG=11.75% exhibits the best antifouling property.

    IV.CONCLUSION

    The porous membranes were cast from pristine PVDF and PVDF-g-PVP powders with differentDGs by the phase inversion method.The existence of PVP graft chains in PVDF-g-PVP membranes has been demonstrated by FTIRATR and XPS spectroscopy.The hydrophilicity of PVDF-g-PVP membranes was improved compared to the pristine PVDF membrane,due to the existence of the hydrophilic PVP graft chains,which consequently led to a reduced contact angle.Furthermore,the hydrophilicity of PVDF-g-PVP membranes was intensi fi ed with increasingDG.The different PVP polymer concentration in the membrane bulk and on the membrane surface con fi rmed surface segregation of the hydrophilic PVP polymer in the surface region.Thermal behavior analysis showed that the PVDF-g-PVP membranes exhibited a two-step thermal decomposition process, andthemeltingtemperatureofPVDF-g-PVPmembraneswas decreased slightly than the pristine one.SEM images demonstrated that the PVDF-g-PVP membrane with aDGof 6.06% exhibited the greatest porosity,which led to the highest water fl ux,and the pore connectivity of PVDF-g-PVP membranes was greater than that of the pristine PVDF membrane.Filtration performance evaluation indicated that the PVDF-g-PVP membranes had better fouling resistance than the pristine one, and the PVDF-g-PVP membrane with aDGof 11.75%exhibited the best antifouling property.

    [1]Wang D L,Li K,Teo W K.J Membrane Sci,1999,163:211–220.

    [2]Dargaville T R,George G A,Hill D J T,et al.Prog Polym Sci, 2003,28:1355–1376.

    [3]Chiang Y,Chang Y,Higuchi A,et al.J Membrane Sci,2009,339:151–159.

    [4]Su Y L,Liang Y G,Mu C X,et al.Ind Eng Chem Res,2011,50:10525–10532.

    [5]Krishnan S,Weinman C J,Ober C K.J Mater Chem,2008,18: 3405–3413.

    [6]Wang P,Tan K L,Kang E T,et al.J Membrane Sci,2002,195: 103–114.

    [7]Zhai G Q,Kang E T,Neoh K G.Macromolecules,2004,37: 7240–7249.

    [8]Singh N,Husson S M,Zdyrko B,et al.J Membrane Sci,2005,262:81–90.

    [9]Chen Y W,Deng Q,Xiao J C,et al.Polymer,2007,48:7604–7613.

    [10]Kaur S,Ma Z W,Gopal R,et al.Langmuir,2007,23:13085–13092.

    [11]Park Y W,Inagaki N.Polymer,2003,44:1569–1575.

    [12]Duca M D,Plosceanu C L,Pop T.Polym Degrad Stabil,1998,61:65–72.

    [13]Taniguchi M,Belfort G.J Membrane Sci,2004,231:147–157.

    [14]Wu G G,Li Y P,Han M,et al.J Membrane Sci,2006,283: 13–20.

    [15]Asano M,Chen J,Maekawa Y,et al.J Polym Sci A1,2007,45: 2624–2637.

    [16]Rahimpour A,Madaeni S S,Zereshki S,et al.Appl Surf Sci, 2009,255:7455–7461.

    [17]Deng B,Yu Y,Zhang B W,et al.Radiat Phys Chem,2011,80: 159–163.

    [18]Yang X X,Zhang B W,Liu Z Y,et al.J Mater Chem,2011,21: 11908–11915.

    [19]Liu F,Du C H,Zhu B K,et al.Polymer,2007,48:2910–2918.

    [20]Betz N,Begue J,Goncalves M,et al.Nucl Instrum Meth B, 2003,208:434–441.

    [21]Yang X X,Deng B,Liu Z Y,et al.J Membrane Sci,2010,362: 298–305.

    [22]Kaeselev B,Pieracci J,Belfort G.J Membrane Sci,2001,194: 245–261.

    [23]Shi Q,Su Y L,Zhu S P,et al.J Membrane Sci,2007,303: 204–212.

    [24]Ying L,Wang P,Kang E T,et al.Macromolecules,2002,35: 673–679.

    [25]Ying L,Zhai G,Winata A Y,et al.J Colloid Interf Sci,2003,265:396–403.

    [26]Zhai G,Kang E T,Neoh K G.J Membrane Sci,2003,217: 243–259.

    [27]Chen L F,Hou Z C,Lu X F,et al.J Appl Polym Sci,2013,128: 3949–3956.

    [28]Deng B,Yang X X,Xie L D,et al.J Membrane Sci,2009,330: 363–368.

    [29]Hester J F and Mayes A M.J Membrane Sci,2002,202:119–135.

    [30]Bousquet A,Ibarboure E,Labrugere C,et al.Langmuir,2007,23:6879–6882.

    [31]Asatekin A,Menniti A,Kang S,et al.J Membrane Sci,2006,285:81–89.

    [32]Zhang M,Nguyen Q T,Ping Z.J Membrane Sci,2009,327: 78–86.

    [33]Shen L G,Bian X K,Lu X F,et al.Desalination,2012,293: 21–29.

    [34]Liu F,Moghareh A M R,Li K.J Membrane Sci,2011,366: 97–103.

    [35]Ying L,Kang E T,Neoh K G.J Membrane Sci,2002,208: 361–374.

    [36]Chang Y,Shih Y J,Ruaan R C,et al.J Membrane Sci,2008,309:165–174.

    10.13538/j.1001-8042/nst.25.050303

    (Received February 17,2014;accepted in revised form May 12,2014;published online October 6,2014)

    ?Supported by the Shanghai Municipal Science and Technology Committee (No.08231200300)

    ?Corresponding author,luxiaofeng@sinap.ac.cn

    猜你喜歡
    柳青
    Numerical analysis for the free-boundary current reversal equilibrium in the AC plasma current operation in a tokamak
    志愿者精神 永不落幕
    “無盡”的《創(chuàng)業(yè)史》——我的父親柳青
    啊,柳青先生
    人民作家柳青的精神形象——評話劇《柳青》
    新時代我們向柳青學(xué)習(xí)什么
    柳青凱繪畫作品
    詩歌月刊(2019年8期)2019-08-23 13:25:26
    柳青:沉潛于生活深處
    《柳青在皇甫》《柳青言論集》出版
    柳青:去滴滴付出最大代價,勤奮超出常態(tài)
    金色年華(2016年2期)2016-02-28 01:38:36
    久久精品影院6| 国产熟女xx| 亚洲第一欧美日韩一区二区三区| 国产片内射在线| 级片在线观看| 婷婷丁香在线五月| 国产视频一区二区在线看| 一本大道久久a久久精品| 超碰成人久久| av国产精品久久久久影院| 99国产精品免费福利视频| 亚洲国产精品sss在线观看 | 成人影院久久| 国产亚洲av高清不卡| 咕卡用的链子| 美女国产高潮福利片在线看| 午夜免费鲁丝| 97碰自拍视频| 窝窝影院91人妻| 久久国产精品人妻蜜桃| 人人妻人人澡人人看| 日韩有码中文字幕| 成年人黄色毛片网站| 91国产中文字幕| 欧美人与性动交α欧美精品济南到| 午夜精品久久久久久毛片777| 99精品久久久久人妻精品| 99精品久久久久人妻精品| 亚洲成a人片在线一区二区| 正在播放国产对白刺激| 在线观看免费视频日本深夜| 日韩欧美三级三区| 午夜福利在线观看吧| √禁漫天堂资源中文www| 欧美激情高清一区二区三区| 啪啪无遮挡十八禁网站| 成熟少妇高潮喷水视频| a级毛片黄视频| 日韩 欧美 亚洲 中文字幕| 日本a在线网址| 十分钟在线观看高清视频www| 午夜91福利影院| 亚洲伊人色综图| 国产黄a三级三级三级人| 久9热在线精品视频| xxx96com| 大型黄色视频在线免费观看| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 亚洲三区欧美一区| 国产一区二区三区综合在线观看| 热99re8久久精品国产| 国产成人免费无遮挡视频| 女同久久另类99精品国产91| 亚洲男人天堂网一区| 国产精华一区二区三区| 真人做人爱边吃奶动态| 亚洲国产精品sss在线观看 | 色婷婷av一区二区三区视频| 色老头精品视频在线观看| 99re在线观看精品视频| a在线观看视频网站| 国产高清videossex| 水蜜桃什么品种好| 亚洲熟妇中文字幕五十中出 | 一夜夜www| 中亚洲国语对白在线视频| 亚洲男人的天堂狠狠| 亚洲色图av天堂| 婷婷六月久久综合丁香| 日韩高清综合在线| 国产在线精品亚洲第一网站| 久久欧美精品欧美久久欧美| 丝袜美腿诱惑在线| 99久久国产精品久久久| netflix在线观看网站| 午夜免费成人在线视频| 琪琪午夜伦伦电影理论片6080| 热99re8久久精品国产| 脱女人内裤的视频| 757午夜福利合集在线观看| 91在线观看av| 午夜福利,免费看| 美女高潮喷水抽搐中文字幕| www.999成人在线观看| 午夜免费成人在线视频| 少妇的丰满在线观看| 两人在一起打扑克的视频| 夜夜爽天天搞| 男女之事视频高清在线观看| 丝袜人妻中文字幕| 国产麻豆69| 国产精品一区二区在线不卡| 亚洲av片天天在线观看| 久久精品亚洲熟妇少妇任你| 黑人操中国人逼视频| 91老司机精品| 欧美国产精品va在线观看不卡| 曰老女人黄片| 曰老女人黄片| 一进一出抽搐gif免费好疼 | 这个男人来自地球电影免费观看| 如日韩欧美国产精品一区二区三区| 色婷婷av一区二区三区视频| 国产高清videossex| 成人精品一区二区免费| 国产精品国产高清国产av| 久久婷婷成人综合色麻豆| 午夜影院日韩av| 精品久久久久久久毛片微露脸| 久久久久久亚洲精品国产蜜桃av| av免费在线观看网站| 亚洲第一青青草原| 真人一进一出gif抽搐免费| 一级毛片精品| 午夜福利欧美成人| 一级作爱视频免费观看| 午夜91福利影院| 国产成人系列免费观看| 啪啪无遮挡十八禁网站| 黄色毛片三级朝国网站| 国产三级在线视频| 十八禁人妻一区二区| 欧美最黄视频在线播放免费 | 极品教师在线免费播放| 欧美激情极品国产一区二区三区| 免费一级毛片在线播放高清视频 | 操出白浆在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲情色 制服丝袜| 又黄又爽又免费观看的视频| 999久久久精品免费观看国产| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区二区三区在线观看| 亚洲av电影在线进入| 国产精品久久久久久人妻精品电影| 欧美日韩福利视频一区二区| 亚洲男人的天堂狠狠| 日韩国内少妇激情av| 乱人伦中国视频| 性色av乱码一区二区三区2| 免费久久久久久久精品成人欧美视频| 热re99久久精品国产66热6| 女性生殖器流出的白浆| www.熟女人妻精品国产| 亚洲成人久久性| 亚洲九九香蕉| 国产日韩一区二区三区精品不卡| 欧美日本亚洲视频在线播放| 在线观看免费日韩欧美大片| av电影中文网址| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品综合一区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 妹子高潮喷水视频| 日本免费a在线| 亚洲精品国产色婷婷电影| 国产成人欧美| 亚洲黑人精品在线| 99国产精品99久久久久| 丰满的人妻完整版| 免费在线观看亚洲国产| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 麻豆成人av在线观看| 天堂动漫精品| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频 | 黄色女人牲交| 成人国产一区最新在线观看| 国产一区在线观看成人免费| 精品乱码久久久久久99久播| 88av欧美| 亚洲国产精品一区二区三区在线| av有码第一页| 91麻豆av在线| 国产精品免费视频内射| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| 色在线成人网| 99精品久久久久人妻精品| 黄色a级毛片大全视频| 国产成+人综合+亚洲专区| 亚洲五月色婷婷综合| 男女午夜视频在线观看| 成人亚洲精品一区在线观看| 后天国语完整版免费观看| 满18在线观看网站| 精品人妻1区二区| 男女下面进入的视频免费午夜 | 日韩欧美免费精品| 国产精品美女特级片免费视频播放器 | 在线播放国产精品三级| 99国产精品99久久久久| 精品国产亚洲在线| 亚洲片人在线观看| 欧美在线一区亚洲| 欧美大码av| 午夜免费成人在线视频| 后天国语完整版免费观看| 无限看片的www在线观看| 欧美老熟妇乱子伦牲交| av网站在线播放免费| 免费在线观看影片大全网站| 国产成人精品无人区| 脱女人内裤的视频| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 999久久久精品免费观看国产| 精品国产乱码久久久久久男人| 久久影院123| 国产三级在线视频| 操出白浆在线播放| 一区二区三区激情视频| 国产av精品麻豆| 91大片在线观看| 亚洲美女黄片视频| 视频在线观看一区二区三区| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 久久人人精品亚洲av| 大陆偷拍与自拍| 在线av久久热| 日日摸夜夜添夜夜添小说| 女人被躁到高潮嗷嗷叫费观| 日韩精品免费视频一区二区三区| 国产精品九九99| 成年人黄色毛片网站| 夜夜躁狠狠躁天天躁| 国产无遮挡羞羞视频在线观看| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 18禁观看日本| 制服诱惑二区| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 免费一级毛片在线播放高清视频 | 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 久久亚洲精品不卡| 精品久久蜜臀av无| 亚洲精品一区av在线观看| 亚洲五月天丁香| 夫妻午夜视频| 成人18禁在线播放| 99在线视频只有这里精品首页| 国产激情久久老熟女| 搡老熟女国产l中国老女人| 亚洲一区二区三区色噜噜 | 国产蜜桃级精品一区二区三区| 亚洲五月婷婷丁香| av国产精品久久久久影院| 村上凉子中文字幕在线| 免费在线观看黄色视频的| 一级a爱视频在线免费观看| av在线天堂中文字幕 | 婷婷精品国产亚洲av在线| 久久精品国产亚洲av高清一级| 精品久久蜜臀av无| 欧美日韩精品网址| 在线视频色国产色| 国产av精品麻豆| 久久精品国产99精品国产亚洲性色 | 国产精品 国内视频| 制服人妻中文乱码| 黄色 视频免费看| 亚洲av第一区精品v没综合| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| xxx96com| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 少妇 在线观看| 琪琪午夜伦伦电影理论片6080| 十分钟在线观看高清视频www| 曰老女人黄片| 久久人人精品亚洲av| 国产精品爽爽va在线观看网站 | 亚洲三区欧美一区| a级毛片在线看网站| 美国免费a级毛片| 亚洲精品国产精品久久久不卡| 国产人伦9x9x在线观看| 久热这里只有精品99| 久久精品国产99精品国产亚洲性色 | 老司机在亚洲福利影院| 亚洲av熟女| 午夜91福利影院| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看| 宅男免费午夜| 亚洲男人的天堂狠狠| 色在线成人网| 十分钟在线观看高清视频www| 午夜精品国产一区二区电影| 日本免费a在线| 精品欧美一区二区三区在线| 少妇 在线观看| 婷婷六月久久综合丁香| 久久精品成人免费网站| 亚洲五月天丁香| 欧美一级毛片孕妇| 黄色成人免费大全| 国产一区二区激情短视频| 十分钟在线观看高清视频www| 一边摸一边抽搐一进一出视频| 亚洲,欧美精品.| 精品一区二区三区四区五区乱码| 9热在线视频观看99| 手机成人av网站| 又紧又爽又黄一区二区| 天堂√8在线中文| 欧美丝袜亚洲另类 | 一区二区三区国产精品乱码| 欧美一区二区精品小视频在线| 国产三级黄色录像| 久久精品国产99精品国产亚洲性色 | 午夜免费激情av| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 免费不卡黄色视频| 亚洲精品一区av在线观看| 操出白浆在线播放| 18禁观看日本| 国产成人一区二区三区免费视频网站| 成人国产一区最新在线观看| 精品国产一区二区久久| 婷婷精品国产亚洲av在线| 日本一区二区免费在线视频| 精品电影一区二区在线| 国产国语露脸激情在线看| 免费在线观看影片大全网站| 国产精华一区二区三区| 亚洲精品国产区一区二| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 美女 人体艺术 gogo| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 国产精品美女特级片免费视频播放器 | 国产又爽黄色视频| 亚洲五月婷婷丁香| 国产成+人综合+亚洲专区| 在线天堂中文资源库| 亚洲欧美日韩高清在线视频| 欧美黄色片欧美黄色片| 我的亚洲天堂| 欧美日本中文国产一区发布| 丁香六月欧美| 国产黄a三级三级三级人| xxxhd国产人妻xxx| 五月开心婷婷网| 亚洲欧美日韩高清在线视频| 黄色视频不卡| 一级毛片高清免费大全| 天天添夜夜摸| 欧美人与性动交α欧美软件| 亚洲av熟女| 757午夜福利合集在线观看| 黄频高清免费视频| 国产精品国产高清国产av| 亚洲国产精品一区二区三区在线| 成年版毛片免费区| 国产黄色免费在线视频| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 亚洲成人免费电影在线观看| 欧美日韩视频精品一区| 18禁观看日本| 桃色一区二区三区在线观看| 无遮挡黄片免费观看| aaaaa片日本免费| 日韩欧美国产一区二区入口| 色婷婷av一区二区三区视频| 亚洲国产毛片av蜜桃av| 亚洲欧美精品综合久久99| 久久国产乱子伦精品免费另类| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩一区二区三区在线| 国产精品秋霞免费鲁丝片| 久久久久亚洲av毛片大全| aaaaa片日本免费| 欧美日本亚洲视频在线播放| 亚洲第一欧美日韩一区二区三区| 午夜a级毛片| svipshipincom国产片| av中文乱码字幕在线| 亚洲五月婷婷丁香| а√天堂www在线а√下载| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 久久中文看片网| 久久久久九九精品影院| 黄色毛片三级朝国网站| 啦啦啦免费观看视频1| 视频在线观看一区二区三区| 午夜91福利影院| 欧美在线黄色| 欧美色视频一区免费| 国产精品98久久久久久宅男小说| 少妇被粗大的猛进出69影院| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品999在线| 亚洲国产欧美一区二区综合| 91在线观看av| 亚洲av成人av| 成人手机av| 欧美一级毛片孕妇| 日本五十路高清| 日韩有码中文字幕| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 成人18禁高潮啪啪吃奶动态图| 日本欧美视频一区| 无人区码免费观看不卡| 777久久人妻少妇嫩草av网站| 极品教师在线免费播放| 高潮久久久久久久久久久不卡| 国产高清激情床上av| 亚洲一区高清亚洲精品| 亚洲专区中文字幕在线| 午夜福利在线观看吧| av电影中文网址| 成在线人永久免费视频| 欧美不卡视频在线免费观看 | 国产精品国产高清国产av| 国产精品久久视频播放| 久久婷婷成人综合色麻豆| 国产国语露脸激情在线看| 免费看a级黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| 看免费av毛片| 久久亚洲精品不卡| 精品国产一区二区久久| 色哟哟哟哟哟哟| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 午夜福利在线免费观看网站| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 桃色一区二区三区在线观看| 18禁观看日本| 青草久久国产| 亚洲精品成人av观看孕妇| 亚洲aⅴ乱码一区二区在线播放 | 91字幕亚洲| 久久久久国内视频| 欧美性长视频在线观看| 露出奶头的视频| 啦啦啦在线免费观看视频4| 女人精品久久久久毛片| 午夜福利欧美成人| 91老司机精品| 黄色视频,在线免费观看| 久久久久国产精品人妻aⅴ院| 日韩大码丰满熟妇| 看免费av毛片| 国产91精品成人一区二区三区| 久久青草综合色| 久久中文字幕人妻熟女| 91九色精品人成在线观看| 亚洲七黄色美女视频| 一边摸一边做爽爽视频免费| 国产成人av教育| 国产又爽黄色视频| 9色porny在线观看| av在线天堂中文字幕 | 亚洲狠狠婷婷综合久久图片| 9热在线视频观看99| 男女下面插进去视频免费观看| 黄网站色视频无遮挡免费观看| a在线观看视频网站| 黄色成人免费大全| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 欧美成人性av电影在线观看| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频网站a站| 精品日产1卡2卡| 无遮挡黄片免费观看| 极品人妻少妇av视频| 大型黄色视频在线免费观看| 国产熟女午夜一区二区三区| 亚洲精品在线美女| 国产精品成人在线| 亚洲精品中文字幕在线视频| 91国产中文字幕| 黄网站色视频无遮挡免费观看| 在线观看免费日韩欧美大片| 久久香蕉激情| 看免费av毛片| 黄色视频不卡| 中文字幕av电影在线播放| 深夜精品福利| 午夜免费鲁丝| avwww免费| 狂野欧美激情性xxxx| 欧美日本亚洲视频在线播放| tocl精华| 久久精品91蜜桃| 亚洲人成电影观看| 精品国产亚洲在线| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃| av片东京热男人的天堂| 老熟妇仑乱视频hdxx| 99热国产这里只有精品6| 国产高清视频在线播放一区| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 久久亚洲真实| 岛国在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产区一区二| 久久九九热精品免费| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 在线观看66精品国产| 在线观看午夜福利视频| 国产精品99久久99久久久不卡| 久久亚洲真实| 欧美日韩av久久| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点 | 亚洲国产精品一区二区三区在线| 91在线观看av| 久久久久久大精品| 一级毛片精品| 美女高潮到喷水免费观看| 国产成人av激情在线播放| 国产成年人精品一区二区 | 亚洲精品一二三| 精品久久久久久电影网| 国产三级在线视频| 欧美丝袜亚洲另类 | 最近最新中文字幕大全电影3 | 亚洲男人的天堂狠狠| 在线永久观看黄色视频| 久久国产精品人妻蜜桃| 国产真人三级小视频在线观看| 免费在线观看亚洲国产| 一进一出抽搐gif免费好疼 | 午夜福利影视在线免费观看| 亚洲精品国产精品久久久不卡| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 久久香蕉国产精品| 亚洲 欧美一区二区三区| 黄色视频不卡| 黑人操中国人逼视频| 国产免费现黄频在线看| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 黄色成人免费大全| 日韩高清综合在线| 亚洲精品在线美女| 久久香蕉激情| 99久久久亚洲精品蜜臀av| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 99久久综合精品五月天人人| 日韩欧美一区二区三区在线观看| 制服人妻中文乱码| 88av欧美| 色播在线永久视频| 成人亚洲精品一区在线观看| 一级毛片精品| 国产av精品麻豆| 美女国产高潮福利片在线看| 电影成人av| 久久 成人 亚洲| 国产精品免费视频内射| 免费高清在线观看日韩| 两性午夜刺激爽爽歪歪视频在线观看 | 精品熟女少妇八av免费久了| 中文亚洲av片在线观看爽| 中国美女看黄片| 午夜视频精品福利| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 久久午夜综合久久蜜桃| 国产成年人精品一区二区 | 亚洲av美国av| 亚洲国产欧美网| 啪啪无遮挡十八禁网站| 夜夜看夜夜爽夜夜摸 | 好看av亚洲va欧美ⅴa在| 高清黄色对白视频在线免费看| 变态另类成人亚洲欧美熟女 | 精品午夜福利视频在线观看一区| 国产精品免费一区二区三区在线| 中文字幕av电影在线播放| 亚洲九九香蕉| av免费在线观看网站| 成年人黄色毛片网站| 久久久久亚洲av毛片大全| 精品久久久久久成人av| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 免费人成视频x8x8入口观看| 欧美日韩亚洲高清精品|