• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analysis for the free-boundary current reversal equilibrium in the AC plasma current operation in a tokamak

    2024-03-19 02:36:40YeminHU胡業(yè)民LiuqingWANG王柳青ShuhangBAI白書(shū)航ZhiYU于治andTianyangXIA夏天陽(yáng)
    Plasma Science and Technology 2024年2期
    關(guān)鍵詞:柳青

    Yemin HU (胡業(yè)民),Liuqing WANG (王柳青),Shuhang BAI (白書(shū)航),Zhi YU (于治) and Tianyang XIA (夏天陽(yáng))

    1 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Institutes of Physical Science and Information Technology,Anhui University,Hefei 230601,People’s Republic of China

    Abstract In recent decades,tokamak discharges with zero total toroidal current have been reported in tokamak experiments,and this is one of the key problems in alternating current (AC) operations.An efficient free-boundary equilibrium code is developed to investigate such advanced tokamak discharges with current reversal equilibrium configuration.The calculation results show that the reversal current equilibrium can maintain finite pressure and also has considerable effects on the position of the X-point and the magnetic separatrix shape,and hence also on the position of the strike point on the divertor plates,which is extremely useful for magnetic design,MHD stability analysis,and experimental data analysis etc.for the AC plasma current operation on tokamaks.

    Keywords: current reversal equilibrium,AC operation,free-boundary equilibrium,tokamak

    1.Introduction

    Alternating current (AC) operation of a tokamak reactor is an attractive way to generate a continuous output of electric energy without the need for a complicated non-inductive current driving system.In recent decades,AC operation experiments have been performed in a number of tokamak devices [1-11].This approach has been demonstrated to be feasible and free from secular degradation in performance.AC tokamak operation is always associated with a magnetic equilibrium in which the current density reverses.It is well known that the first step in tokamak modeling and analysis is the reconstruction of MHD equilibrium and stability calculations.Some active theoretical research activities on the current reversal equilibrium configurations (CRECs) have been done analytically [12-14] and numerically [15-17].However,previous research mainly focused on the existence of the CRECs [12,13,15] and the fixed-boundary CRECs[12,14,15,17],which are important for the understanding of the physics of CRECs but invalid for practical application to experiments on the CRECs reconstruction calculations to determine the magnetic separatrix and X-point locations.In practical experimental equilibria,the position of the plasma boundary is determined by the interaction between the currents in plasmas and in the plasma equilibrium control coils.For the current reversal equilibrium configuration,the plasma magnetic surface is not nested,and the magnetic surface function is not suitable for normalization by the poloidal magnetic flux at the magnetic axis and plasma boundary.It is highly difficult to adjust the plasma current profile using the iterative method adopted by Johnsonet al[18] when the macroscopic plasma parameters are known.Therefore,we must use the finite element method of unstructured mesh and transform the free boundary problem into a series of fixed boundary problems to deal with,that is,the Hagenow and Lackner method [19-21].

    In this paper,we propose an improved Hagenow and Lackner method through which the current reversal equilibrium configuration and the external control coil current can be obtained from the prescribed plasma parameters in the tokamak configuration with plasma surface bounded by a given desired plasma shape or the X-point outside of the torus.In section 2 we describe the plasma equilibrium model and the method of solution.In section 3,the benchmark and some results related to the actual plasma shape are presented for equilibria with current reversal.The summary and conclusions are described in section 4.

    2.Numerical methods of solving the Grad-Shafranov equation with free boundary conditions

    The ideal MHD equilibrium in an unbounded domain can be described by a second-order partial differential equation,i.e.the so-called Grad-Shafranov equation.In axisymmetric geometry,it can be written in cylindrical coordinates (x,?,z)as follows [18,21]:

    with

    When the plasma is surrounded by a vacuum region,j?is nonzero only in the interior of the plasma.We assume that the plasma is in a domain of the cross-section denoted by Ωp,with boundary Γp,and the outside of the plasma is a vacuum region denoted by Ωvwith a rectangular computational boundary Γv.It is worth noting that for the free boundary current reversal equilibrium,the poloidal magnetic flux within the plasma region is non-nested and not monotonic,so the boundary of the plasma and vacuum cannot be determined by comparing the value of the poloidal magnetic flux with a given ψΓpas was done in reference [18],which is widely used by EFIT and other codes etc.In addition,when we want to effectively optimize the plasma current profile to improve the convergence efficiency of the solver,the poloidal magnetic flux at this time cannot be normalized simply as done in reference [18],that is to say,their method does not work efficiently in this case.However,we extend the method of Hagenow and Lackner,and find that it may be an efficient method for the solution of the CREC of equation (1) in an unbounded domain.The solution process can be grouped in the following steps:

    Step 1.Determinej?(x,ψ) by solving equation (1) in the plasma region imposed the Dirichlet conditions along a given closed curve Γp,with ψ on Γpgiven as a constant ψΓp.

    Equation (1) is a nonlinear equation,and both β andfare general functions of ψ.Without the loss of generality,considering ψΓp=0 ,we take the profiles of β andfas the following polynomial of ψ:

    with the same boundary condition as in equation (1) with a toroidal current densityj?=λψ/x,and comparing with equation (2) we can obtain.An equilibrium solution with the nested flux surfaces ψ=const corresponds to the lowest eigenvalue and an eigenfunction without nulls inside the plasma domain.A lot of other eigenfunctions provide a series of equilibria with a different topology of the magnetic surfaces.

    Step 2.Construct the Green’s function of the Grad-Shafranov operator to solve equation (1) in an unbounded domain.

    The known Green’s function in a cylindrical geometry is given by the following [22]:

    whereGsatisfies

    whereK(k) andE(k) are complete elliptic integrals of the first and second kind,and (x′,z′) is the observation point.Using Green's theorem gives

    We integrate the above equation over all space and use Gauss’s theorem to convert the divergences to surface integrals which vanish at infinity,then the expression to obtain ψo(hù)utside or on the computational boundary is

    From the above equation (13),it is clearly found that ψ is composed of the magnetic fluxes induced by the plasma current (the first term on the right hand side (RHS)) and the external coil currents (the second term on the RHS).

    Step 3.Compute the contribution from the plasma currents using the von Hagenow method.

    Consider a function ψg(x,z) which satisfies the same differential equation as equation (1) that ψ does in the interior of the rectangular computational boundary Γv,but which vanishes on the boundary,i.e.:

    The resulting flux-function distribution ψgcan be interpreted as the sum of the field induced by the plasma currents plus the field of the fictitious mirror currents in an unbound domain.In order to solve equation (14) efficiently,we can use interpolation to transformj(x,ψ) intoj(x,z),and equation (14) becomes a linear partial differential equation with very good convergence performance.In the same way as in step 2,we use the following form of Green's theorem:

    Integrating the above equation over the computational domain Ωc=Ωv+Ωp,using ψg|Γv=0,and evaluating the differential surface element related to the differential line element by dS=2πxdl,then we can obtain the identity as follows:

    The second term on the RHS of the above equation represents the fictitious mirror currents in an unbound domain.Substituting equation (17) into equation (13) yields [20]

    which is the solution of equation (1) at a point interior to the computational boundary.

    Step 4.Determine the external coil currents to produce a given plasma shape.

    To determine the necessary external currents,we solve the overdetermined problem of finding the least square error[21,23-25] in the poloidal flux at theNkplasma boundary pointsproduced byNccoils at set locationswithNk>Nc.Assuming that the plasma boundary points lie interior to the computational boundary,we use equation (18)to express the function to be minimized as

    where

    Here γ1and γ2are the regularization parameters which are introduced to stabilize the procedure against large unreal oscillations of the currentIiand the dramatic current change of adjacent coils; and ψbis the desired value of flux at the given boundary points.We minimize ? by ??/?Ii=0,and obtain

    The above algebraic equation can be rewritten in a concise form as follows:

    Finally,we summarize the equilibrium algorithm in figure 1.Initially,we guess a profile for the plasma current.We use this to give a first guess for the desiredIp0,βv0within the desired plasma boundary shape using equations (6)and (4).With these constraints held fixed,we solve equation(1) with fixed plasma boundary.When this converges,we use the current distribution so computed to obtain the poloidal magnetic flux ψ by solving equation (14) with the rectangular computational boundary and its corresponding adjoint Green's function.Secondly,we use the magnetic flux obtained above and the desired boundary flux value,by adjusting parameters γ1and γ2,hold the boundary flux fixed until convergence,and finally determine the coil current in the vacuum outside the plasma.

    3.Benchmark and free-boundary CRECs simulation

    3.1.Benchmark

    According to the above detailed solution process,we developed an Advanced Tokamak Equilibrium Code (ATEC),which is written in MATLAB language.The Grad-Shafranov (G-S) operator solver is from the PDE solver in the MATLAB toolkit.The computational domain is discretized by a triangular mesh finite element method.We directly call the function “initmesh” in the MATLAB mathematical function library to generate triangular mesh,and call the nonlinear PDE solver function “pdenonlin” to solve the nonlinear G-S equation.This code was benchmarked against the wellknown equilibrium code EFIT [26] and TEQ [27] for the normal nested plasma equilibrium configuration.An example of the comparison between the equilibrium results from EFIT,TEQ and ATEC is shown in figure 2,where the plasma parameters,profiles and related equilibrium information all come from the EAST equilibrium data file g070754.003740 calculated by EFIT and the CFETR equilibrium data file g220905.7500_teq calculated by Tequation.The position,size,and turns of the poloidal coils come from table 1 in references [28] and [29].The red lines in figure 2 are the results from ATEC using coil currents given by EFIT(a),ATEC (b) itself for EAST,and TEQ (c),ATEC (d) itself for CFETR.The blue dashed lines in figure 2 are the results from EFIT for EAST ((a) and (b)) and TEQ for CFETR ((c)and (d)).It can be found that the results of ATEC and the other two codes are in good agreement.Tables 1 and 2 show the comparison of the coil currents,the total coil currents,and the errors of the last closed flux surface (LCFS),X-point and magnetic axis calculated by the codes ATEC,EFIT,and TEQ for EAST and CFETR,respectively.

    3.2.Free-boundary CRECs simulation

    Figure 2.Comparison of the magnetic surface calculation results of ATEC,EFIT,and TEQ.Blue: EFIT and TEQ,red: ATEC; EAST:(a) using coil current by EFIT,(b) using coil current by ATEC; CFETR: (c) using coil current by TEQ,(d) using coil current by ATEC.

    In the following section,the second type of free boundary case is considered,and the plasma parameters for simulation are from the EAST data of shot # g070754.003740.The desired LCFS is also the shape reconstructed by magnetic probe diagnosis using EFIT.The main plasma parameters are as follows:R0=1.86 m,ra=0.43,B0=1.80 T and βv=0.02 ,whereR0,ra,B0are the major radius,minor radius,and the vacuum magnetic field at the geometric center of the plasma,respectively.

    Figures 3(a) and (b) are the equilibrium configurations when the plasma current is zero.Figure 3(a) is the high-low field current reversal equilibrium (HL-CREC),whose profile coefficients of plasma currents area1=2.467 e-01,a2=1.8000 e-02,b1= -9.7532e-02 andb2=3.1000e -01 in equations (4) and (5).This equilibrium configuration has been observed experimentally [10].As shown in figure 3(a),the plasma is separated into two magnetic islands balanced with opposite current directions in the left and right,which issomewhat similar to a single spherical mark with zero aspect ratio.The magnetic island triangle is severely distorted,resulting in the existence of three X-points,the top two Xpoints and the bottom one.In addition,the total plasma current is zero,namely the total loop voltage is zero,but in fact,the plasma current density is not locally zero.The high and low field plasma currents are opposite,i.e.there should be an electric potential difference inside the plasma,resulting in a current across the plasma cross section.Figure 3(b)shows the up-down current reversal equilibrium configuration (UD-CREC),and the corresponding profile coefficients of plasma current area1=9.1441e -02,a2=1.5000e-02,b1=1.3201e -03 andb2=2.2000e-01.This UD-CREC and the above-mentioned HL-CREC are both the eigensolutions of the G-S equation.However,the UD-CREC has not been observed experimentally so far,so the existence and stability analysis of this equilibrium need to be further verified by theory and experiment.As shown in figure 3(b),just like that in HL-CREC,the magnetic island triangle is also severely distorted,resulting in the existence of three X-points.For the specific actual device,more deflector plates must be considered.Compared with the HL-CREC,the UD-CREC seems not to be a good choice for tokamak plasmas.Figure 3(c) is the center current reversal equilibrium configuration (CCREC),whose profile coefficients of plasma current area1= -1.1207e-02,a2=4.9015e -02,b1=-1.8829e-02 andb2=1.0000e -01.This configuration is not the eigensolution of the G-S equation.Here,we just adopt the discontinuous current density profile model,which is similar to reference[15] and artificially set the current density in the central region to be negative.It can be seen that there is only one Xpoint at the plasma boundary,just like the nested equilibrium configuration (NEC),but the difference is that there are multiple magnetic islands in the interior of the plasma.Although such a solution exists mathematically,no such configuration has been found in experiments so far.However,the zero-center current is found more frequently and is able to exist stably,and this is called the current-hole equilibrium configuration [30-32].The possible reason is that this type of center reversal current equilibrium is very unstable and is very easily relaxed to the current-hole equilibrium [30].Figure 3(d) is the normal or nested equilibrium configuration (NEC),whose profile coefficients of plasma currents area1= -4.9407e-02,a2= -1.0345e-01,b1=2.0702e-02 andb2=1.2000e-01.Figure 4 shows that the profiles of the normalized poloidal magnetic flux in HLCREC and UD-CREC are reversed with the reversal of the direction of current density,but the pressure profiles are still similar to that in the NEC,and are hollowed in the C-CREC.However,the toroidal magnetic fields in these current reversal configurations are all little changed.Table 3 shows that the total effective coil currentsof the HL-CREC and UD-CREC are a little bigger than those of the nested equilibrium under the same errors of the LCFS.This means that controlling the HL-,UD-,and C-CRECs is a little more costly than controlling the NEC.It is also shown in table 3 that the βpof the CRECs is a little smaller than that of the NEC.In addition,as for AC operation,one of the most critical problems is the maintenance of the plasma when the plasma current is zero.In such a case,people may mainly focus more on the existence and stability of the equilibrium configuration when the plasma current is zero,so if we do not care much about the exact shape of the LCFS and the performance of plasma parameters,we can adjust γ1and γ2to reduce by half or more the total effective control coil currents compared to those for the exact fits of the LCFS to maintain the CRECs with a rough desired shape (as shown in figure 5 and table 4).In order to better understand the equilibrium conditions and the efficiency of the coil current,we also show the absolute plasma currentin table 4.

    Table 1.Comparison of the coil current calculated by the three codes for EAST and CFETR (the unit of Ii is A).PF represents the poloidal field coil,CS represents the central solenoid coil,and DC represents the divertor-configuration coil.

    Table 2.Comparison of the total coil current,and the error of the LCFS calculated by the three codes for EAST and CFETR (the unit of Ii is A).X is the position vector.Here superscript 0 and without superscript represent the results of EFIT/TEQ and ATEC,respectively.The subscripts P,e ,and axis represent the X-point,boundary,and magnetic axis,respectively.

    Figure 3.The figures (a),(b),(c) and (d) represent the HL-CREC,UD-CREC,C-CREC,and NEC,respectively.The fixed total plasma current Ip=0 for the HL-CREC,UD-CREC,Ip=-6e +05 A ,Ip/Ipin=-6 for the C-CREC and Ip=6e+ 05 A for the NEC,where Ipin is the prescribed negative current in the center subdomain of the plasma.The blue solid lines are the desired LCFSs of the plasma,and the red lines are the LCFSs of our numerical results.The horizontal dashed lines are x with z=0 in figures (a)-(d),and the longitudinal dashed line is z=0 with x=x0 in figure (b).

    Figure 4.The profiles of ψ ,j? ,β,and Bt in the HL-CREC,C-CREC,and NEC change along x with z=0 in the plasma (the dashed lines in figures 3(a),(c),and (d)),respectively.The profiles of ψ ,j? ,and β in the UD-CREC change along z with x=x0 in the plasma,and Bt change along x with z=0 (the dashed lines in figure 3(b))

    Table 3.Comparison of the coil currents,the total coil current and βp= calculated by ATEC for CRECs in EAST plasma.

    Table 3.Comparison of the coil currents,the total coil current and βp= calculated by ATEC for CRECs in EAST plasma.

    Coils HL-CREC (A) UD-CREC (A) C-CREC (A) NEC (A)PF1 1.4131e+06 8.7750e+05 1.4433e+06 1.3968e+06 PF2 2.5396e+06 -1.6512e+05 -2.6781e+05 1.0406e+06 PF3 5.3719e+06 3.1279e+06 -1.7004e+06 1.0874e+06 PF4 1.7050e+06 -2.3708e+05 -1.2162e+06 1.2288e+06 PF5 -1.5675e+07 4.8045e+06 -1.1617e+06 1.8051e+06 PF6 -5.3236e+06 -8.2558e+05 -6.3073e+04 2.0526e+06 PF7 3.0715e+07 -3.8904e+05 4.6209e+06 5.9412e+05 PF8 1.5813e+07 1.1429e+06 2.0429e+06 2.2780e+05 PF9 -2.8630e+07 -4.5500e+06 -1.1784e+06 -1.6729e+06 PF10 -1.5845e+07 1.9476e+06 9.8322e+05 -1.4072e+06 PF11 2.2270e+06 2.9918e+06 -1.2139e+06 3.7252e+05 PF12 2.1009e+06 -2.9352e+05 -8.7355e+05 5.4823e+05 PF13 -1.3933e+06 -9.3773e+05 3.8834e+05 2.2159e+05 PF14 -1.3285e+06 -7.8612e+05 -1.8577e+05 -1.6968e+04√∑I2 i 5.0907e+07 8.4196e+06 6.1792e+06 4.3440e+06 βp 1.2630e+00 1.0259e+00 1.1347e+00 1.7049e+00

    Figure 5.The figures (a),(b) represent respectively the HL-CREC and UD-CREC under smaller control coil currents.

    Table 4.Comparison of the single coil currents,the total coil current,and the “absolute current” calculated by ATEC for CRECs in EAST plasma.

    4.Summary and conclusions

    In summary,an advanced tokamak equilibrium calculation code ATEC is developed by using the improved von Hagenow method.This method can transform the free boundary problem into a series of fixed boundary problems,which greatly improves the efficiency of solving G-S equations under more general current profiles.This code can be used for numerical simulation of more general free boundary problems of tokamak plasmas including the current-hole and current-reversal equilibrium.The most critical plasma current zero-crossing equilibrium problem in the AC operation process is investigated using this code.The results show that the configuration control of zero plasma current equilibrium can be achieved under the condition in which the coil control current is of the same order as that of the normal plasma equilibrium.At the same time,the current reversal equilibrium configuration can maintain similar confinement efficiency and related plasma parameters as the conventional configuration under some appropriate current profile conditions.In AC operation mode,the code can provide useful basic numerical analysis tools for the optimization of the equilibrium control coil current,the design of divertor plates,stability analysis,transport research and so on.Therefore,it may lay an important foundation for the successful realization of advanced high-parameter and high-confinement-efficiency AC operation in the future.

    Acknowledgments

    One of the authors (Yemin Hu) would like to express his thanks to Dr.Jiale Chen,Dr.Hang Li,Dr.Yanlong Li,Dr.Yueheng Huang,and Dr.Zhengping Luo for their equilibrium data files and helpful discussions.The authors would also like to acknowledge the ShenMa High Performance Computing Cluster at the Institute of Plasma Physics,Chinese Academy of Sciences.This work was supported by National Natural Science Foundation of China (No.12075276),and also partly by the Comprehensive Research Facility for Fusion Technology Program of China (No.2018-000052-73-01-001228).

    猜你喜歡
    柳青
    點(diǎn)·線·面·體:初中數(shù)學(xué)復(fù)習(xí)教學(xué)的設(shè)計(jì)與實(shí)踐
    志愿者精神 永不落幕
    “無(wú)盡”的《創(chuàng)業(yè)史》——我的父親柳青
    啊,柳青先生
    人民作家柳青的精神形象——評(píng)話劇《柳青》
    新時(shí)代我們向柳青學(xué)習(xí)什么
    柳青凱繪畫(huà)作品
    柳青:沉潛于生活深處
    《柳青在皇甫》《柳青言論集》出版
    柳青:去滴滴付出最大代價(jià),勤奮超出常態(tài)
    金色年華(2016年2期)2016-02-28 01:38:36
    精品国产一区二区三区四区第35| 一级作爱视频免费观看| 99久久国产精品久久久| 又大又爽又粗| 成人18禁高潮啪啪吃奶动态图| 成人精品一区二区免费| 黄网站色视频无遮挡免费观看| 午夜精品国产一区二区电影| 久热这里只有精品99| 美女高潮到喷水免费观看| 免费女性裸体啪啪无遮挡网站| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 国产深夜福利视频在线观看| 在线免费观看的www视频| 中文字幕人妻丝袜制服| 制服诱惑二区| 中文字幕最新亚洲高清| 9热在线视频观看99| 美女视频免费永久观看网站| 亚洲熟妇熟女久久| 国产精华一区二区三区| 高清在线国产一区| a级毛片黄视频| 国产欧美日韩一区二区三区在线| 国产一卡二卡三卡精品| 久久久久国内视频| 成人18禁在线播放| 精品福利观看| tube8黄色片| 中文字幕人妻丝袜一区二区| 这个男人来自地球电影免费观看| 国产麻豆69| 窝窝影院91人妻| 国产精品1区2区在线观看. | 久久精品国产亚洲av高清一级| 久久精品成人免费网站| 成熟少妇高潮喷水视频| 欧美人与性动交α欧美软件| 天天躁夜夜躁狠狠躁躁| 另类亚洲欧美激情| 电影成人av| aaaaa片日本免费| 一级毛片女人18水好多| 老汉色∧v一级毛片| 亚洲第一av免费看| 国产av精品麻豆| 国产欧美日韩一区二区精品| 黑人猛操日本美女一级片| 欧美日韩国产mv在线观看视频| 久久久久久免费高清国产稀缺| 午夜精品国产一区二区电影| 久久天堂一区二区三区四区| 超色免费av| 国产成人欧美在线观看 | 国产不卡一卡二| 女性生殖器流出的白浆| 国产av精品麻豆| 18禁裸乳无遮挡免费网站照片 | 亚洲一区中文字幕在线| videos熟女内射| 19禁男女啪啪无遮挡网站| 亚洲一区二区三区欧美精品| 男女高潮啪啪啪动态图| 亚洲欧美精品综合一区二区三区| 日韩欧美一区视频在线观看| 高清毛片免费观看视频网站 | a级毛片在线看网站| 99热网站在线观看| 精品国产国语对白av| 老汉色∧v一级毛片| 久久天堂一区二区三区四区| 桃红色精品国产亚洲av| 久久热在线av| 王馨瑶露胸无遮挡在线观看| 免费看a级黄色片| 国产精品九九99| 欧美日韩成人在线一区二区| 国产精品欧美亚洲77777| 99国产精品一区二区三区| 亚洲伊人色综图| 91精品三级在线观看| 最新的欧美精品一区二区| aaaaa片日本免费| 精品国内亚洲2022精品成人 | 亚洲视频免费观看视频| 午夜福利在线观看吧| 久久精品国产99精品国产亚洲性色 | 色播在线永久视频| 天天躁夜夜躁狠狠躁躁| 国产男女超爽视频在线观看| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 高潮久久久久久久久久久不卡| 天天躁日日躁夜夜躁夜夜| 丝瓜视频免费看黄片| 亚洲精品国产精品久久久不卡| 久久精品亚洲av国产电影网| 在线播放国产精品三级| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 啪啪无遮挡十八禁网站| 久久久久精品国产欧美久久久| 国产精品免费视频内射| 91麻豆精品激情在线观看国产 | 黄色片一级片一级黄色片| 人人妻人人添人人爽欧美一区卜| 国产高清视频在线播放一区| 午夜福利视频在线观看免费| 日韩欧美一区二区三区在线观看 | 国产av又大| 1024视频免费在线观看| 天天添夜夜摸| 啪啪无遮挡十八禁网站| 精品一区二区三区四区五区乱码| 久久久久视频综合| 久久这里只有精品19| 久9热在线精品视频| 无人区码免费观看不卡| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区| 精品亚洲成a人片在线观看| 天堂√8在线中文| 俄罗斯特黄特色一大片| 日本欧美视频一区| 国产在线一区二区三区精| 一本一本久久a久久精品综合妖精| 午夜福利免费观看在线| 一边摸一边抽搐一进一小说 | 自拍欧美九色日韩亚洲蝌蚪91| av超薄肉色丝袜交足视频| 亚洲男人天堂网一区| 亚洲黑人精品在线| 精品免费久久久久久久清纯 | 午夜福利一区二区在线看| 一本综合久久免费| 国产99白浆流出| 久久精品国产清高在天天线| 亚洲国产欧美一区二区综合| 久久ye,这里只有精品| 欧美激情久久久久久爽电影 | 精品国产乱码久久久久久男人| 18禁国产床啪视频网站| 人人妻人人澡人人爽人人夜夜| 男女免费视频国产| 国产精品偷伦视频观看了| 久久精品成人免费网站| 国产伦人伦偷精品视频| 日韩熟女老妇一区二区性免费视频| 欧美在线黄色| 久久精品国产a三级三级三级| 亚洲中文字幕日韩| 不卡av一区二区三区| 法律面前人人平等表现在哪些方面| 91国产中文字幕| а√天堂www在线а√下载 | 母亲3免费完整高清在线观看| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看| 久久午夜亚洲精品久久| 一区二区三区精品91| 香蕉国产在线看| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜添小说| 下体分泌物呈黄色| 日本五十路高清| 人人妻人人爽人人添夜夜欢视频| 久久精品国产亚洲av高清一级| 久久这里只有精品19| av天堂久久9| 中文字幕精品免费在线观看视频| 黄色 视频免费看| 免费看a级黄色片| 欧美黑人欧美精品刺激| 欧美精品人与动牲交sv欧美| 美女 人体艺术 gogo| 成熟少妇高潮喷水视频| 精品卡一卡二卡四卡免费| 老汉色∧v一级毛片| 人妻 亚洲 视频| 国产三级黄色录像| 久久久国产成人免费| 久久久久精品国产欧美久久久| 国产99白浆流出| 欧美午夜高清在线| 午夜精品在线福利| √禁漫天堂资源中文www| 午夜91福利影院| 久久婷婷成人综合色麻豆| videos熟女内射| 亚洲av日韩精品久久久久久密| 欧美精品人与动牲交sv欧美| 欧美日韩亚洲国产一区二区在线观看 | 麻豆国产av国片精品| 欧美大码av| 成人特级黄色片久久久久久久| 久久狼人影院| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 丰满人妻熟妇乱又伦精品不卡| 少妇 在线观看| 亚洲视频免费观看视频| 少妇裸体淫交视频免费看高清 | 亚洲片人在线观看| 51午夜福利影视在线观看| 精品欧美一区二区三区在线| 中文字幕高清在线视频| www.自偷自拍.com| 老汉色av国产亚洲站长工具| 99riav亚洲国产免费| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 午夜福利欧美成人| 精品国产美女av久久久久小说| 国产有黄有色有爽视频| 国产成人av教育| 午夜免费鲁丝| 色老头精品视频在线观看| 欧美日韩黄片免| 欧美黑人精品巨大| 天堂动漫精品| av网站免费在线观看视频| 亚洲成av片中文字幕在线观看| 免费观看人在逋| 桃红色精品国产亚洲av| 免费av中文字幕在线| 97人妻天天添夜夜摸| 午夜影院日韩av| 丝袜美腿诱惑在线| 精品无人区乱码1区二区| 久久国产亚洲av麻豆专区| 国产亚洲av高清不卡| 精品亚洲成a人片在线观看| 热99久久久久精品小说推荐| 黄色视频,在线免费观看| 久久香蕉国产精品| 中亚洲国语对白在线视频| 国产麻豆69| 淫妇啪啪啪对白视频| 不卡av一区二区三区| 12—13女人毛片做爰片一| 精品一区二区三卡| 国产一区二区三区综合在线观看| 母亲3免费完整高清在线观看| 99热网站在线观看| 久久 成人 亚洲| 激情视频va一区二区三区| 免费在线观看完整版高清| 日韩有码中文字幕| 成年版毛片免费区| 日韩欧美一区视频在线观看| 精品久久蜜臀av无| av免费在线观看网站| 国产欧美日韩精品亚洲av| 视频区图区小说| 曰老女人黄片| 国产欧美亚洲国产| 日韩欧美在线二视频 | 老熟女久久久| 视频在线观看一区二区三区| 9191精品国产免费久久| 欧美黄色片欧美黄色片| 精品欧美一区二区三区在线| 在线观看www视频免费| 中文字幕人妻丝袜制服| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 满18在线观看网站| 免费观看精品视频网站| 丁香欧美五月| 久久久国产成人免费| 热99国产精品久久久久久7| 人妻 亚洲 视频| 色婷婷av一区二区三区视频| 国产亚洲av高清不卡| 色94色欧美一区二区| 久久久久久亚洲精品国产蜜桃av| netflix在线观看网站| 热99久久久久精品小说推荐| 国产精品美女特级片免费视频播放器 | 少妇 在线观看| 久久久久精品人妻al黑| 正在播放国产对白刺激| 久久人人97超碰香蕉20202| 中国美女看黄片| 欧美国产精品va在线观看不卡| 国产免费现黄频在线看| av国产精品久久久久影院| 亚洲视频免费观看视频| 色尼玛亚洲综合影院| 久久国产乱子伦精品免费另类| 精品熟女少妇八av免费久了| 悠悠久久av| 久久久久国内视频| 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 热re99久久国产66热| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看 | 一a级毛片在线观看| 一区在线观看完整版| 高清欧美精品videossex| 高清视频免费观看一区二区| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 国产色视频综合| 香蕉久久夜色| 国产一区二区激情短视频| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 免费看十八禁软件| 不卡av一区二区三区| 捣出白浆h1v1| 午夜久久久在线观看| 精品久久久久久,| 久9热在线精品视频| 水蜜桃什么品种好| 国产亚洲精品久久久久5区| 国产亚洲欧美98| 女人被躁到高潮嗷嗷叫费观| 麻豆av在线久日| 天天躁日日躁夜夜躁夜夜| 一本一本久久a久久精品综合妖精| 少妇的丰满在线观看| 在线观看66精品国产| 精品免费久久久久久久清纯 | 99re在线观看精品视频| 国产极品粉嫩免费观看在线| 激情在线观看视频在线高清 | 日韩免费高清中文字幕av| 国产精品.久久久| 国产一区二区三区综合在线观看| 最新美女视频免费是黄的| 精品国产一区二区三区四区第35| 一级片'在线观看视频| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区| 日本欧美视频一区| 狂野欧美激情性xxxx| 国产精品影院久久| 日本wwww免费看| 老司机靠b影院| 国产精华一区二区三区| 亚洲精品国产区一区二| 久久久国产成人免费| 妹子高潮喷水视频| 制服诱惑二区| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 人妻久久中文字幕网| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av | 亚洲精品美女久久久久99蜜臀| 久久久久视频综合| 伊人久久大香线蕉亚洲五| 国产精品久久久久久人妻精品电影| 久久热在线av| 他把我摸到了高潮在线观看| 欧美丝袜亚洲另类 | 成人免费观看视频高清| 黑人猛操日本美女一级片| 色在线成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美性长视频在线观看| 精品福利永久在线观看| 欧美乱色亚洲激情| 免费高清在线观看日韩| 一本综合久久免费| 亚洲性夜色夜夜综合| 99精品在免费线老司机午夜| 91字幕亚洲| 两性夫妻黄色片| 曰老女人黄片| 最近最新中文字幕大全免费视频| netflix在线观看网站| 一个人免费在线观看的高清视频| 亚洲精品av麻豆狂野| 一进一出好大好爽视频| 在线观看午夜福利视频| 一级毛片高清免费大全| 淫妇啪啪啪对白视频| 18禁裸乳无遮挡动漫免费视频| 麻豆成人av在线观看| 国产精品.久久久| 亚洲国产中文字幕在线视频| 超碰97精品在线观看| 成人亚洲精品一区在线观看| 久久这里只有精品19| 高清欧美精品videossex| 天天影视国产精品| tocl精华| 黄色毛片三级朝国网站| tube8黄色片| 中亚洲国语对白在线视频| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 中亚洲国语对白在线视频| 亚洲精品av麻豆狂野| 精品亚洲成国产av| 亚洲七黄色美女视频| 日韩欧美在线二视频 | 精品一区二区三卡| 精品久久蜜臀av无| 新久久久久国产一级毛片| 国产精品美女特级片免费视频播放器 | 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 水蜜桃什么品种好| 人成视频在线观看免费观看| 一边摸一边抽搐一进一出视频| 国产亚洲精品久久久久5区| 两性午夜刺激爽爽歪歪视频在线观看 | 免费久久久久久久精品成人欧美视频| 在线永久观看黄色视频| 国产精品 欧美亚洲| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 999久久久国产精品视频| 69精品国产乱码久久久| 黄色 视频免费看| 两性夫妻黄色片| 激情在线观看视频在线高清 | 十分钟在线观看高清视频www| 老司机在亚洲福利影院| 18禁美女被吸乳视频| 91精品国产国语对白视频| 在线天堂中文资源库| 一级毛片女人18水好多| 日本精品一区二区三区蜜桃| 精品高清国产在线一区| 国产精品一区二区在线观看99| 看片在线看免费视频| 一二三四社区在线视频社区8| 丰满迷人的少妇在线观看| 宅男免费午夜| 久久影院123| 18禁国产床啪视频网站| 女人被狂操c到高潮| av线在线观看网站| 日本wwww免费看| 丁香欧美五月| 欧美大码av| 亚洲精品美女久久av网站| 精品卡一卡二卡四卡免费| 日韩三级视频一区二区三区| 丝袜美足系列| 女人久久www免费人成看片| 男人操女人黄网站| 日韩三级视频一区二区三区| tocl精华| 午夜91福利影院| 久久中文看片网| 99久久综合精品五月天人人| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人爽人人夜夜| xxx96com| av免费在线观看网站| 一区福利在线观看| 精品熟女少妇八av免费久了| 精品久久久精品久久久| 亚洲男人天堂网一区| 久久这里只有精品19| 成人特级黄色片久久久久久久| 国产欧美亚洲国产| 91麻豆av在线| av线在线观看网站| x7x7x7水蜜桃| 成人av一区二区三区在线看| 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 9色porny在线观看| 人妻 亚洲 视频| 国产激情久久老熟女| 韩国精品一区二区三区| 满18在线观看网站| 美女福利国产在线| 久久久精品免费免费高清| 亚洲人成伊人成综合网2020| 丰满饥渴人妻一区二区三| 满18在线观看网站| 亚洲av片天天在线观看| 99国产精品免费福利视频| 成人18禁在线播放| 国产精品久久久av美女十八| 在线观看免费午夜福利视频| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 国产在线精品亚洲第一网站| 成人特级黄色片久久久久久久| 日本黄色日本黄色录像| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 视频区欧美日本亚洲| 免费久久久久久久精品成人欧美视频| 国产亚洲av高清不卡| 欧美午夜高清在线| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 丰满的人妻完整版| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 91麻豆精品激情在线观看国产 | 亚洲精品美女久久av网站| 亚洲第一欧美日韩一区二区三区| 久久久精品区二区三区| 亚洲九九香蕉| 成年女人毛片免费观看观看9 | 搡老熟女国产l中国老女人| 欧美午夜高清在线| 国产成人免费观看mmmm| 999精品在线视频| 亚洲av日韩在线播放| 久久国产亚洲av麻豆专区| 亚洲片人在线观看| 久久久精品国产亚洲av高清涩受| 午夜激情av网站| 极品教师在线免费播放| 精品高清国产在线一区| 国产一区二区激情短视频| 亚洲精品久久午夜乱码| 日本黄色日本黄色录像| 91在线观看av| 久久久久久免费高清国产稀缺| 亚洲五月天丁香| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 在线国产一区二区在线| 露出奶头的视频| 国产成人免费无遮挡视频| 国产午夜精品久久久久久| 亚洲欧美日韩高清在线视频| 深夜精品福利| 淫妇啪啪啪对白视频| 深夜精品福利| 精品第一国产精品| 久久中文看片网| 黄色丝袜av网址大全| av视频免费观看在线观看| 日韩欧美在线二视频 | 亚洲熟女精品中文字幕| 国产99白浆流出| 制服诱惑二区| 妹子高潮喷水视频| 香蕉国产在线看| 亚洲精品国产区一区二| 后天国语完整版免费观看| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 又紧又爽又黄一区二区| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 亚洲av欧美aⅴ国产| 欧美日韩精品网址| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 国产欧美日韩一区二区三区在线| 成人手机av| 不卡一级毛片| 成年人黄色毛片网站| 身体一侧抽搐| 中文字幕人妻熟女乱码| 大型黄色视频在线免费观看| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 美女 人体艺术 gogo| 99久久人妻综合| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色 | 老熟女久久久| 99热网站在线观看| 日韩成人在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 搡老岳熟女国产| 精品午夜福利视频在线观看一区| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 国产精品国产av在线观看| 亚洲精品国产色婷婷电影| 亚洲,欧美精品.| 怎么达到女性高潮| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 91av网站免费观看| 欧美精品亚洲一区二区| 成年人黄色毛片网站| 久久精品国产a三级三级三级| 可以免费在线观看a视频的电影网站| 在线永久观看黄色视频| 成人18禁高潮啪啪吃奶动态图| 19禁男女啪啪无遮挡网站| 午夜91福利影院| 国产精品久久视频播放| 999精品在线视频| 国产亚洲欧美98| 美女午夜性视频免费| 久久热在线av| 国产av精品麻豆| 成年版毛片免费区| 久久精品亚洲av国产电影网| 身体一侧抽搐| 操美女的视频在线观看| 国产在线观看jvid| 制服人妻中文乱码| 国产一区二区激情短视频| 女性被躁到高潮视频| 大香蕉久久成人网| 91字幕亚洲| 欧美一级毛片孕妇|