張?bào)w強(qiáng),胡樹國(guó),韓 橋
(中國(guó)計(jì)量科學(xué)研究院,北京 100029)
高靈敏度、高選擇性及高速分析一直是質(zhì)譜分析的優(yōu)勢(shì)[1],質(zhì)譜技術(shù)已被廣泛應(yīng)用于化學(xué)、生物、刑偵、航天、化工、醫(yī)藥、食品安全、環(huán)境保護(hù)等多個(gè)領(lǐng)域。在半導(dǎo)體工業(yè)中,質(zhì)譜亦有非常重要的用途。高純、超高純氣體在半導(dǎo)體器件生產(chǎn)中有著極其重要的地位,既作為保護(hù)氣又充當(dāng)原材料,且氣體純度隨著半導(dǎo)體工業(yè)的發(fā)展要求越來(lái)越高,即雜質(zhì)含量越來(lái)越低。為此,質(zhì)譜儀器在大型半導(dǎo)體生產(chǎn)工廠幾乎成為最重要的可以用來(lái)對(duì)超高純氣體雜質(zhì)進(jìn)行有效監(jiān)測(cè)的設(shè)備,這種質(zhì)譜技術(shù)即大氣壓電離質(zhì)譜(APIMS)。
20世紀(jì)70年代,出現(xiàn)第一臺(tái)商業(yè)化的大氣壓電離質(zhì)譜[2]。經(jīng)過(guò)數(shù)年的研究,可在大氣壓下電離工作的質(zhì)譜有了很大的發(fā)展,用于分析的樣品除了純物質(zhì)外,復(fù)雜基體的樣品也可以用于直接分析[3-7],大氣壓電離質(zhì)譜的范疇有了很大的延展,但在氣體純度分析領(lǐng)域,依然習(xí)慣沿用傳統(tǒng)的稱謂即大氣壓電離(API)質(zhì)譜。受益于半導(dǎo)體工業(yè)的高速發(fā)展,APIMS的分析能力得以充分的挖掘。尤其是20世紀(jì)90年代前后,國(guó)外針對(duì)APIMS的氣體純度分析方面開展了大量的研究工作,并獲得了十分顯著的成果,使得APIMS成為應(yīng)用于國(guó)際半導(dǎo)體設(shè)備與材料協(xié)會(huì)(SEMI)標(biāo)準(zhǔn)中的一種關(guān)鍵設(shè)備。進(jìn)入21世紀(jì)以來(lái),在痕量、超痕量氣體雜質(zhì)分析領(lǐng)域,新的技術(shù)不斷獲得突破,如光腔衰蕩光譜技術(shù)[8-9]、離子淌度質(zhì)譜技術(shù)[10-11]等,相比之下,APIMS的發(fā)展趨于緩慢,在分析更多超高純氣體(如腐蝕性的電子特氣)方面也面臨一定挑戰(zhàn)。盡管如此,由于具備多個(gè)雜質(zhì)同時(shí)測(cè)定的能力及極高的檢測(cè)靈敏度(適合檢測(cè)10-9μmol/mol水平及以下的雜質(zhì)[12-16]),APIMS在超高純氣體純度分析中仍然占有極其重要的地位,且隨著工業(yè)生產(chǎn)對(duì)氣體純度要求的進(jìn)一步提高,APIMS的性能有待得到更深的發(fā)掘并獲得一定的技術(shù)突破。
作為一種可對(duì)超高純氣體中痕量雜質(zhì)進(jìn)行測(cè)定的質(zhì)譜技術(shù),APIMS儀器的結(jié)構(gòu)(電離源、質(zhì)量分析器、氣體進(jìn)樣與校正系統(tǒng))不僅要適用于高純氣體分析,而且要產(chǎn)生足夠高的靈敏度。
電離源是質(zhì)譜儀中最關(guān)鍵的部分,APIMS常用的電離源有兩種:電暈放電電離源[17-19]及63Ni放射電離源[20-22],二者均可在大氣壓下工作,并產(chǎn)生大量的試劑離子。質(zhì)量分析器通常配備四極桿,少數(shù)質(zhì)譜裝配三重四極桿[23-24]用于對(duì)質(zhì)量數(shù)相同的離子加以區(qū)分。氣體進(jìn)樣及校正系統(tǒng)[24]是用于純氣分析的大氣壓電離質(zhì)譜與常規(guī)質(zhì)譜結(jié)構(gòu)的不同之處,整個(gè)系統(tǒng)必須非常潔凈,并且氣密性良好。
在兩種電離源中,底氣或載氣分子可產(chǎn)生大量的試劑離子。在這個(gè)過(guò)程中,痕量的雜質(zhì)也會(huì)有一小部分被電離。接下來(lái),大量的試劑離子會(huì)與其他未被電離的雜質(zhì)分子發(fā)生碰撞,通過(guò)電荷傳遞[25]、質(zhì)子轉(zhuǎn)移[25]、去質(zhì)子化[21]及形成團(tuán)簇離子[26-27]等途徑將余下的雜質(zhì)分子電離。由于電離發(fā)生在大氣壓或接近大氣壓的條件下,此時(shí)的分子自由程相對(duì)較短,因此試劑離子與雜質(zhì)分子碰撞的幾率會(huì)大大增加,且電荷轉(zhuǎn)移反應(yīng)速率較快(速率常數(shù)約10-9cm3/s[27]),從而大大提高了雜質(zhì)的電離效率。APIMS的靈敏度通常比電子轟擊電離質(zhì)譜(EI-MS)高104~106倍[28]。
常見的高純、超高純氣體(如N2、Ar)制備時(shí)容易殘留空氣成分,因此N2、O2、CO、H2O等是常見的雜質(zhì)氣體,屬于無(wú)機(jī)成分,除此之外,因制備方法的不同,雜質(zhì)中還可能包含CH4等有機(jī)成分。APIMS的通用性較好,無(wú)機(jī)雜質(zhì)及有機(jī)雜質(zhì)均可被電離。電離主要依靠電荷傳遞反應(yīng)進(jìn)行,對(duì)于不能通過(guò)電荷傳遞反應(yīng)電離的雜質(zhì),如該雜質(zhì)的電離能接近的底氣的電離能,電荷傳遞效率較低,則可根據(jù)情況應(yīng)用質(zhì)子轉(zhuǎn)移反應(yīng)及形成團(tuán)簇離子的反應(yīng),二者是對(duì)電荷傳遞反應(yīng)電離很好的補(bǔ)充。
電荷傳遞反應(yīng)是APIMS中最常見的電離方式。電離時(shí),電荷由高電離能的底氣高效傳遞到低電離能的雜質(zhì),即底氣與雜質(zhì)的電離能應(yīng)該有一定的差距。由于N2、Ar氣體的電離能較高,因此N2、Ar中的大部分雜質(zhì)可以依靠電荷傳遞反應(yīng)電離。
2.1.1底氣N2中雜質(zhì)的檢測(cè)
多種雜質(zhì)同時(shí)測(cè)定是APIMS的一個(gè)優(yōu)勢(shì),Siefering等[28]完成了對(duì)N2中7種無(wú)機(jī)雜質(zhì)的測(cè)定工作,各雜質(zhì)檢出限為:H2O 2 pmol/mol,O240 pmol/mol,CH430 pmol/mol,CO24 pmol/mol,CO 3 nmol/mol,Ar 2 μmol/mol。除Ar外,其余6種雜質(zhì)的靈敏度都很高。Ar靈敏度差的原因在于Ar與N2的電離能十分接近,不利于二者之間電荷的傳遞。除無(wú)機(jī)雜質(zhì)外,APIMS亦可以對(duì)有機(jī)雜質(zhì)進(jìn)行測(cè)定,Ridgeway等[31]測(cè)定了N2中多種有機(jī)物雜質(zhì)CH4、C2H6、C3H8、丙酮及異丙醇,檢出限分別為20、50、110、125及200 pmol/mol。APIMS還可以對(duì)氣體中痕量雜質(zhì)H2O進(jìn)行測(cè)定,在Mitsui等[32]報(bào)道中,N2中的雜質(zhì)H2O實(shí)際可測(cè)含量為40 pmol/mol,而Irie等[33]測(cè)定N2中的雜質(zhì)H2O的檢出限可達(dá)5 pmol/mol。在我國(guó)也開展過(guò)APIMS對(duì)N2中雜質(zhì)測(cè)定方法的研究,李暢開等[34-36]測(cè)定了N2中的雜質(zhì)O2及CO2,可檢出濃度約為幾十nmol/mol。
N2作為一種最為常用的氣體,對(duì)其純度分析的研究相對(duì)較多。表1總結(jié)了文獻(xiàn)中報(bào)道的N2作為底氣或載氣時(shí),APIMS對(duì)其中雜質(zhì)檢出的種類及其檢出限。顯然,多種無(wú)機(jī)雜質(zhì)及有機(jī)雜質(zhì)的檢出,說(shuō)明APIMS具備多種雜質(zhì)的檢測(cè)能力,通用性較好;同時(shí),極低的檢出限說(shuō)明APIMS具備極高的靈敏度,適用于極低含量雜質(zhì)的檢測(cè)。
表1 APIMS對(duì)N2中雜質(zhì)的檢出限
2.1.2底氣Ar中雜質(zhì)的檢測(cè)
Ar的電離能為15.76 eV,在氣體中電離能是很高的。因此,底氣Ar中的多種雜質(zhì)可用電荷傳遞反應(yīng)進(jìn)行檢測(cè)。Siefering等[28]報(bào)道了對(duì)Ar中多種雜質(zhì)的測(cè)定結(jié)果,可獲得較好的檢出限:H2O 9 pmol/mol,O2200 pmol/mol,CH440 pmol/mol,CO26 pmol/mol,CO 10 nmol/mol。
2.1.3載氣CO2中雜質(zhì)的檢測(cè)
質(zhì)子轉(zhuǎn)移反應(yīng)是APIMS技術(shù)又一常用的電離方式[39],反應(yīng)得以順利進(jìn)行的基礎(chǔ)是依靠質(zhì)子親和勢(shì)的差異。該反應(yīng)應(yīng)用于氣體雜質(zhì)的測(cè)定時(shí)通常與H2有關(guān),如應(yīng)用于底氣H2中雜質(zhì)的測(cè)定,或通過(guò)添加H2,提高Ar中N2雜質(zhì)的檢測(cè)靈敏度。
2.2.1底氣H2中雜質(zhì)的檢測(cè)
2.2.2Ar中N2雜質(zhì)的檢測(cè)
質(zhì)子轉(zhuǎn)移是反應(yīng)速率較快的一類反應(yīng),在滿足反應(yīng)條件時(shí),分子與含質(zhì)子的離子的每次碰撞幾乎都會(huì)發(fā)生質(zhì)子轉(zhuǎn)移。在APIMS中運(yùn)用質(zhì)子轉(zhuǎn)移反應(yīng)是對(duì)電荷傳遞方式很好的補(bǔ)充,盡管添加H2會(huì)使測(cè)定方案復(fù)雜,但上述Hunter等[40]的方法無(wú)疑對(duì)無(wú)法通過(guò)電荷傳遞電離雜質(zhì)的測(cè)定提供了一個(gè)很好的思路。
氣體雜質(zhì)種類繁多,電荷傳遞反應(yīng)及質(zhì)子轉(zhuǎn)移反應(yīng)并不能適用所有的雜質(zhì),因此需根據(jù)不同物質(zhì)的理化特性,針對(duì)某些雜質(zhì)設(shè)計(jì)出合適的電離反應(yīng),以提高檢測(cè)靈敏度。
2.3.1O2中雜質(zhì)的檢測(cè)
2.3.2NH3中H2O雜質(zhì)的檢測(cè)
APIMS以其極高的靈敏度,在超高純氣體雜質(zhì)分析中占有非常重要的地位。雜質(zhì)的電離以電荷傳遞反應(yīng)為主,其他如質(zhì)子轉(zhuǎn)移反應(yīng)及生成復(fù)合物等的反應(yīng)也得到了應(yīng)用。分析時(shí),針對(duì)不同的底氣及所含的雜質(zhì),以最大限度地提高檢測(cè)靈敏度為目的,可以依據(jù)不同的電離方式,設(shè)計(jì)不同的測(cè)定方法。
隨著儀器與方法的改進(jìn),APIMS的性能逐漸提高,但也有其自身的缺點(diǎn)及局限性:一是不可以直接測(cè)量雜質(zhì)含量較高的氣體,氣體進(jìn)樣前必須經(jīng)過(guò)高效純化器將雜質(zhì)純化至更低的合適量級(jí);二是APIMS需要非常潔凈的內(nèi)部環(huán)境,因此需要專門的氣體管路及大量的氣體吹掃,分析成本相對(duì)較高;三是在通常的雜質(zhì)檢測(cè)時(shí),電離能差異較小的雜質(zhì),其靈敏度不高。
盡管存在若干不足之處,然而基于對(duì)痕量、超痕量雜質(zhì)極強(qiáng)的測(cè)定能力,APIMS在超高純氣體純度分析中依然是不可替代的。目前,APIMS的分析多針對(duì)非腐蝕性氣體,如常用的N2、Ar等,然而,許多需要雜質(zhì)含量定值的電子特氣卻具有腐蝕性、毒性,因此,對(duì)電子特氣的分析將是APIMS面臨的技術(shù)挑戰(zhàn)之一。此外,從文獻(xiàn)報(bào)道方面顯示,我國(guó)在運(yùn)用APIMS分析超高純氣體雜質(zhì)方面研究的氣種單一,檢出限還有待改善,因此需要進(jìn)一步開展更加系統(tǒng)、深入的研究工作。
4 參考文獻(xiàn)
[1] Alberici R M,Simas R C,Sanvido G B,Romao W,Lalli P M,Benassi M,Cunha I B S,Eberlin M N.Ambient mass spectrometry: Bringing ms into the ‘real world’[J].AnalyticalandBioanalyticalChemistry,2010,398(1): 265-294.
[2] Caroll D I,Wernlund R F,Cohen M J.Apparatus and methods employing ion-molecule reactions in batch analysis of volatile materials: United States,3639757 [P/OL].1972.
[3] Harris G A,Galhena A S,Fernndez F M.Ambient sampling/ionization mass spectrometry: Applications and current trends[J].AnalyticalChemistry,2011,83(12): 4508-4538.
[4] Huang M Z,Cheng S C,Cho Y T,Shiea J.Ambient ionization mass spectrometry: A tutorial[J].AnalyticaChimicaActa,2011,702(1): 1-15.
[5] Shelley J T,Hieftje G M.Ambient mass spectrometry: Approaching the chemical analysis of things as they are[J].JournalofAnalyticalAtomicSpectrometry,2011,26(11): 2153-2159.
[6] Ray A,Mosely J.Ambient ionisation in mass spectro-metry[J].LabAsia,2013,20(1): 10-11.
[7] Huang M Z,Yuan C H,Cheng S C,Cho Y T,Shiea J.Ambient ionization mass spectrometry[J].AnnualReviewofAnalyticalChemistry,2010,3: 43-65.
[8] Stacewicz T,Wojtas J,Bielecki Z,Nowakowski M,Mikolajczyk J,Medrzycki R,Rutecka B.Cavity ring down spectroscopy: Detection of trace amounts of substance[J].Opto-ElectronicsReview,2012,20(1): 53-60.
[9] Long D A,Cygan A,Van Zee R D,Okumura M,Miller C E,Lisak D,Hodges J T.Frequency-stabilized cavity ring-down spectroscopy[J].ChemicalPhysicsLetters,2012,536: 1-8.
[10] Sabo M,Klas M,Wang H,Huang C,Chu Y,Matejcik S.Positive corona discharge ion source with IMS/MS to detect impurities in high purity nitrogen[J].EuropeanPhysicalJournal-appliedPhysics,2011,55: 1-5.
[11] Sabo M,Matejcik S.Ion mobility spectrometry for monitoring high-purity oxygen[J].AnalyticalChemistry,2011,83(6): 1985-1989.
[12] Dobi A,Hall C,Slutsky S,Yen Y R,Aharmin B,Auger M,Barbeau P S,Benitez-Medina C,Breidenbach M,Cleveland B,Conley R,Cook J,Cook S,Counts I,Craddock W,Daniels T,Davis C G,Davis J,Devoe R,Dixit M,Dolinski M J,Donato K,Fairbank Jr W,Farine J,Fierlinger P,Franco D,Giroux G,Gornea R,Graham K,Gratta G,Green C,Hagemann C,Hall K,Hallman D,Hargrove C,Herrin S,Hughes M,Hodgson J,Juget F,Karelin A,Kaufman L J,Kuchenkov A,Kumar K,Leonard D S,Lutter G,Mackay D,Maclellan R,Marino M,Mong B,Montero Díez M,Morgan P,Müller A R,Neilson R,Odian A,O'sullivan K,Piepke A,Pocar A,Prescott C Y,Pushkin K,Rivas A,Rollin E,Rowson P C,Sabourov A,Sinclair D,Skarpaas K,Stekhanov V,Strickland V,Swift M,Twelker K,Vuilleumier J L,Vuilleumier J M,Weber M,Wichoski U,Wodin J,Wright J D,Yang L.Xenon purity analysis for exo-200 via mass spectrometry[J].NuclearInstrumentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquipment,2012,675: 40-46.
[13] Bossard P,Mettes J,Gornick F,Breziner L.Novel sensor for measuring trace impurities in ultra pure hydrogen[C]//.Proceedings of the 2012 AIChE Annual Meeting. Pittsburgh,2012.
[14] Dobi A,Davis C,Hall C,Langford T,Slutsky S,Yen Y R.Detection of krypton in xenon for dark matter applications[J].NuclearInstrumentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquipment,2011,665: 1-6.
[15] Zhdan V T,Kozlovskii A V,Mozhaev A N,Pilyugin I I. Use of time-of-flight mass spectrometry for monitoring helium microcontamination in the industrial manufacture of extra high purity inert gases[J].JournalofAnalyticalChemistry,2010,65(14): 1532-1536.
[16] Leonard D S,Dobi A,Hall L J K C,Langford T,Slutsky S,Yen Y R.A simple high-sensitivity technique for purity analysis of xenon gas[J].NuclearInstrumentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquipment,2010,621(1-3): 678-684.
[17] Juneja H S.Removal of Adsorbed Moisture and Organics from Surfaces and Nanostructures in Semiconductor Manufacturing [D].Tucson: The University of Arizona,2008.
[18] Mitsui Y,Kambara H,Kojima M,Tomita H,Katoh K,Satoh K.Determination of trace impurities in highly purified nitrogen gas by atmospheric-pressure ionization mass-spectrometry[J].AnalyticalChemistry,1983,55(3): 477-481.
[19] Kambara H,Ogawa Y,Mitsui Y,Kanomata I.Carbon-monoxide detection in nitrogen gas by atmospheric-pressure ionization mass-spectrometry[J].AnalyticalChemistry,1980,52(9): 1500-1503.
[20] Horning E C,Horning M G,Carroll D I,Dzidic I,Stillwell R N.New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure[J].AnalyticalChemistry,1973,45(6): 936-943.
[21] Carroll D,Dzidic I,Stillwell R,Horning M,Horning E.Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization(API) mass spectrometry[J].AnalyticalChemistry,1974,46(6): 706-710.
[22] Dzidic I,Carroll D I,Stillwell R N,Horning E C.Comparison of positive ions formed in nickel-63 and corona discharge ion sources using nitrogen,argon,isobutane,ammonia and nitric oxide as reagents in atmospheric pressure ionization mass spectrometry[J].AnalyticalChemistry,1976,48(12): 1763-1768.
[23] Ketkar S N,Dulak J G,Fite W L,Buchner J D,Dheandhanoo S.Atmospheric pressure ionization tandem mass spectrometric system for real-time detection of low-level pollutants in air[J].AnalyticalChemistry,1989,61(3): 260-264.
[24] Siefering K,Berger H.Improved APIMS Methods 1. Analysis of nonstandard contaminants in nitrogen and argon[J].JournaloftheElectrochemicalSociety,1992,139(5): 1442-1445.
[25] Proctor C J,Todd J F J.Atmospheric pressure ionization mass spectrometry[J].OrganicMassSpectrometry,1983,18(12): 509-516.
[26] Bandy A R,Ridgeway R G,Mitchell G M.Negative ion atmospheric pressure ionization and selected ion mass spectrometry using a63Ni electron source,US 6956206 [P/OL].2005.
[27] Scott J A D,Hunter E J,Ketkar S N.Use of a clustering reaction to detect low levels of moisture in bulk oxygen using an atmospheric pressure ionization mass spectrometer[J].AnalyticalChemistry,1998,70(9): 1802-1804.
[28] Siefering K,Berger H,Whitlock W.Quantitative ana-lysis of contaminants in ultrapure gases at the parts-per-trillion level using atmospheric-pressure ionization mass-spectroscopy[J].JournalofVacuumScience&TechnologyA—VacuumSurfacesandFilms,1993,11(4): 1593-1597.
[29] Kambara H,Kanomata I.Determination of impurities in gases by atmospheric pressure ionization mass spectrometry[J].AnalyticalChemistry,1977,49(2): 270-275.
[30] Kato K,Wang L Z,Tomita H,Sato K.Determination of trace amounts of oxygen in high-purity nitrogen by atmospheric ionization mass-spectrometry[J].BunsekiKagaku,1988,37(8): 430-434.
[31] Ridgeway R G,Ketkar S N,Depinillos J V M.Use of atmospheric-pressure ionization mass-spectrometry to monitor hydrocarbon type impurities in bulk nitrogen[J].JournaloftheElectrochemicalSociety,1994,141(9): 2478-2482.
[32] Mitsui Y,Irie T,Mizokami K,Kuriyama K,Nakano K,Nakamura Y.Quantitative-analysis of trace water in highly purified nitrogen gas by atmospheric-pressure ionization mass-spectrometer[J].JapaneseJournalofAppliedPhysics,1995,34: 4991-4996.
[33] Irie T,Mitsui Y,Iijima S,Mizokami K,Kuriyama K.A new atmospheric-pressure ionization mass-spectrometer for the analysis of trace gas impurities in silicon source gases used for semiconductor fabrication[J].JapaneseJournalofAppliedPhysics,1995,34: 359-364.
[34] 李暢開,諶永華.大氣壓離子質(zhì)譜法測(cè)定高純氮中痕量氧[J].低溫與特氣,1997(1): 49-52.
[35] 李暢開,諶永華.用大氣壓離子質(zhì)譜法測(cè)量高純氮中的氧[J].現(xiàn)代計(jì)量測(cè)試,1997,5(2): 42-46.
[36] 李暢開,諶永華.大氣壓離子質(zhì)譜儀及高純氮中二氧化碳的質(zhì)譜分析[J].質(zhì)譜學(xué)報(bào),1997,18(4): 29-33.
[37] Mitsui Y,Irie T,Okuhira H,Saiki A.Quantitative-analysis of trace hydrogen in highly purified nitrogen gas-using rapid reactions in atmospheric-pressure ionization mass-spectrometer[J].JapaneseJournalofAppliedPhysics,1993,32: 2886-2891.
[38] Kinoue T,Asai S,Ishii Y,Ishikawa K,Fujii M,Nakano K,Hasumi K.Direct determination of trace nitrogen dioxide by atmospheric pressure ionization mass spectrometry(APIMS) without conversion to nitric oxide[J].EnvironmentalHealthandPreventiveMedicine,2000,5(3): 97-102.
[39] Shimosaka T.Highly sensitive method for trace gas ana-lysis[J].BunsekiKagaku,2008,57(9): 715-740.
[40] Hunter E J,Homyak A R,Ketkar S N.Detection of trace nitrogen in bulk argon using proton transfer reactions[J].JournalofVacuumScience&TechnologyA—VacuumSurfacesandFilms,1998,16(5): 3127-3130.