• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PIVMeasurementforRayleighConvectionandItsEffectonMassTransfer☆Wei Chen,Shuyong Chen,Xigang Yuan*,Huishu Zhang,Botan Liu,Kuotsung Yu

    2014-07-25 11:29:32StateKeyLaboratoryofChemicalEngineeringandSchoolofChemicalEngineeringandTechnologyTianjinUniversityTianjin300072China
    Chinese Journal of Chemical Engineering 2014年10期

    State Key Laboratory of Chemical Engineering and School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    Fluid Dynamics and Transport Phenomena

    PIVMeasurementforRayleighConvectionandItsEffectonMassTransfer☆Wei Chen,Shuyong Chen,Xigang Yuan*,Huishu Zhang,Botan Liu,Kuotsung Yu

    State Key Laboratory of Chemical Engineering and School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    A R T I C L EI N F O

    Article history:

    Rayleigh convection

    Particle image velocimetry

    Mass transfer coeff i cient

    Enhancement of mass transfer

    The velocity distribution in Rayleigh convection caused by acetone volatilization in acetone-ethyl acetate binary system was observed in a vertical cross section of an initially quiescent liquid layer by utilizing particle image velocimetry.Obvious turbulent vortexes that were induced by Rayleigh convection appeared in the bulk liquid, and its statistic features indicated thatRayleigh convection became moreintensewith theincrease of Ranumber and ReGnumber.Mass transfer coeff i cient was measured and the computed enhancement factor indicated that Rayleigh convection could promote the surface renewal of the liquid phase and intensify the interfacial mass transfer signif i cantly.A method was proposed for the prediction of mass transfer coeff i cient based on the measured velocity vector,and the predicted mass transfer coeff i cients are in reasonable agreement with the experimental results.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Rayleigh convection phenomenon has long been investigated since the work of Rayleigh[1]and Bénard[2].In gas-liquid or liquid-liquid mass transfer processes,when the liquid concentration gradient near the interface generated by species diffusion across the interface leads to a density gradient opposite to the direction of gravity,the system is said to be Rayleigh instable.When the density gradient attains a critical value,the denser liquid layer at the interface may collapse,and convection occurs near the interface.Such a density gradient driven convection,termed as Rayleigh convection,def i nitely affects the mass transfer in chemical engineering processes such as absorption,extraction,and distillation[3-6].

    AgooddealliteratureelaboratedtheconvectionpatternsofRayleigh convection,for instance,Okhotsimskii andHozawa[7],Sha et al.[8]and Kutepov et al.[9]observed differentinterfacial convective f l ow patterns by using optical methods,such as the Schlieren technique,and describedthestructuresofconvectionpatternsingas-liquidmasstransfer processes.Lotsof researchers analyzedtheeffectof Rayleighconvection on the interfacial mass or heat transfer.Atmane et al.[10]discussed the f l ow characteristics and heat f l ux around a horizontal cylinder with Rayleigh convection.Arendt et al.[11]investigated the effect of Rayleigh convection and Marangoni convection on mass transfer of CO2-water system.Sun et al.[12]analyzed the enhancement of mass transferbyinterfacialconvectioninthephysicalabsorptionanddesorption of CO2into and from nonaqueous solvents.Guo[13]investigated the liquid phase concentration distribution via the real-time laser holographic interferometry,and near-interface turbulence and periodic burstwereobservedinthevicinityoftheinterface.Also,numericalsimulations of interfacial convection can be found in literature[14-16].

    However,most of the previous studies focused on the investigation of macroscopic convective f l ow patterns caused by interfacial convection in gas or liquid phases,limited in qualitative analysis.In recent years,the local hydrodynamics of interfacial convection,such as liquid velocity distribution and turbulent structures,have been quantitatively investigated by experimental measurements.Buffone and Sef i ane[17] undertook an experimental study on evaporation driven convection in a vertically oriented capillary tube by using a μ-PIV(particle image velocimetry)technique.Corvaro and Paroncini[18]performed an experimental analysis by PIV to study the Rayleigh convection induced by heat transfer in a square cavity heated from below and cooled by the sidewalls,and indicated that the velocity module grew up with the increase of the Rayleigh number while the velocity distribution did not show the main differences.Baumann and Mühlfriedel[19] described the measurement of concentration prof i les near the liquidliquid phase boundary by the laser induced f l uorescence and computed the diffusion coeff i cient of the plain interface between two immiscible liquids.Xu et al.[20]measured the velocity distribution of near-surface turbulence by PIV and proposed an empirical correlation relating the mass transfer coeff i cient across the turbulent interface to the gradient of the vertical f l uctuating velocity(Hanratty's β).

    However,the mechanism of interfacial convective hydrodynamics and the inf l uence of interfacial convection on mass transfer are still not clear.There are many models to depict the mass transfer across the gas-liquid interface in literature,but most models fail to take the randomness of interfacial instability and complexity of mass transfer mechanism across the interface into account.The previous experimental studies did not quantitatively observe the detailed f l ow structures ofinterfacialturbulence,andthereforecouldnotbeabletorevealtherelationship between interfacial convection and mass transfer.

    In this study,Rayleigh convection in the gas-liquid mass transfer of acetone volatilization in acetone-ethyl acetate binary system is quantitatively measured utilizing PIV.The liquid mass transfer coeff i cient is obtained by measuring the liquid concentration change during the mass transfer process,and the mass transfer enhancement factor is analyzed to investigate the inf l uence of Rayleigh convection on gasliquid mass transfer.According to the velocity distribution obtained by PIV,the surface residence time,an important parameter for theoretical models of mass transfer,is computed based on the characteristic scale and surface velocity and used to predict the mass transfer coeff i cient via penetration theory.Then the predicted mass transfer coeff i cients are compared with the experimental data.

    2.Experimental

    With the volatilization of acetone from the liquid,the liquid density increases in the vicinity of the interface and Rayleigh instability is induced.The intensity of Rayleigh effectcan be characterized by a dimensionless Rayleigh number

    wheredisthecharacteristiclength,whichisthethicknessofliquidlayer here,g is the gravity acceleration,Δρ is the liquid density difference between liquid surface and bulk liquid,D is the diffusivity of diffusing species in the liquid phase,and μ is the liquid viscosity.A positive Ra number is the necessary condition for Rayleigh convection.

    The experimental apparatus,as illustrated schematically in Fig.1, consists of a gas-liquid interfacial mass transfer system and a PIV measurementsystem.Theinterfacialmasstransferappearsintheinterfacial mass transfer simulator with initially quiescent liquid of acetone-ethyl acetate solution and nitrogen gas f l owing above.

    ThePIVsystemusedinthisstudywasmadebyLaVisionCorporation (Germany),and a double cavity Nd-YAG laser(made by Beamtech Optronics Corporation,China)with a maximum energy of 200 mJ and a wavelength of 532 nm was used as the light source.The laser beam, with 10 ns duration of the pulsed illumination,had a variable pulse frequency up to 15 Hz.The laser was also equipped with a lens system to produce a diverging laser sheet with a thickness not exceeding 1 mm. A CCD camera with a resolution of 1376×1040 pixels was used to capture the images,and was equipped with a f i lter with a wavelength of 532 nm to capture only the light scattered from the laser lightened particles.Hollow glass microspheres with diameters of 8?12 μm were seeded in the liquid as tracer particles.In the experiments,the laser was run at 4 Hz and the measurement time was 30 s.The PIV system grabbed and processed the digital particle images utilizing the crosscorrelation approach of the FlowMaster software to give the measured velocity vector distribution.

    The interfacial mass transfer simulator was made of quartz glass with an inner size of 200 mm in length,20 mm in width and 40 mm in height.The determination of the width of the simulator was to conf i netheconvective vortexes distributingin the center of the simulator but avoid limiting the development of Rayleigh vortexes in that direction[21].The liquid was initially quiescent in the simulator with a thickness of 10 mm.Nitrogen gas successively passed through activated carbon,silica gel and molecular sieve to remove the impurities and water,and then presaturated by the solvent in a tank in order to reduce the inf l uence of solvent evaporation.The liquid was likewise presaturated by nitrogen gasto avoid the gas absorption into the liquid. The reagents were provided by Kewei Chemical Corporation(Tianjin, China)with a declared purity of 99.5%.And the purity of the nitrogen gas was 99.99%(mass content).The liquid concentrations near the gas inlet and outlet positions of the simulator were measured via the gas chromatography(HP 4890,Agilent Technologies,USA)to analyze the liquid side mass transfer coeff i cient.

    PIV system was used to measure the f l ow velocity distribution in a centralverticalcrosssectionoftheliquidphaseparalleltothegasf l owing direction(the sheet with green dots shown in Fig.1)by observing the motions of the tracer particles lightened by the laser sheet.

    Theexperiments were carried out ata pressure of 101.325 kPa and a temperature of 298.2 K.Under such a condition,the densities of acetone and ethyl acetate are 785 and 895 kg·m?3,respectively.In our experiments,the density of the liquid solution was estimated based on isochoric mixing of the two species.It is diff i cult to estimate the solute concentration and the liquid density at the interface in the desorption process.However,a low concentration of thesoluteat the liquid surface could be expected because the acetone concentration in the gas side should be very low due to the nitrogen gas continuously f l owing by.In an extreme case,the liquid at the surface could be pure solvent.A nominal density difference Δρ of the liquid phase in Eq.(1)could be characterized as the density difference between the solvent and the solution.

    3.Results and Discussion

    Fig.1.Schematic diagram of the apparatus for PIV experiments.1—nitrogen vessel;2—gas purif i er and presaturator;3—rotameter;4—interfacial mass transfer simulator;5—laser sheet;6—laser head;7—computer;8—CCD camera.

    3.1.Velocity vector distribution

    Desorption of acetone from the system increases the liquid density at the surface,and as a result,the liquid surface becomes instable and the denser liquid tends to descend into the bulk liquid by gravity.

    From the measured velocity vector distribution in the acetone desorption process via PIV at different time shown in Fig.2,the occurrence and development of Rayleigh convection can be observed.At t=5 s,an evident two-celled convection pattern appears near the interface.The convection cells develop into the bulk liquid at t=15 s. At t=25 s,the old convection cells vanish and new convection cells occur.

    Fig.3 depicts the velocity distribution in the measured cross section of the liquid at 10 s for theacetonedesorption process with different Ra and ReGnumbers.The velocity vector becomes greater and the convective vortexes go into chaos with the increases of Ra number and ReGnumber.Theconvection patternsshowninFig.3 areingood agreement with the Schlieren images obtained by Sha et al.[8,22]for Rayleigh convection,whichexhibittypicallyaninverse-mushroomconvectivestructure with two symmetrical vortexes.

    In our experiments,the momentum attributed to the initial injection of liquid and sweeping effects of gas will generate bulk f l ow in the liquid,so the velocity distributions shown in Figs.2 and 3 are the ensemble results of both the Rayleigh convection and the bulk f l ow induced by the initial liquid injection and gas sweeping.Generally,the characteristic scale of Rayleigh convection should be much smaller than that of the unavoidable bulk f l ow.

    In order to capture f l ow patterns of Rayleigh convection in terms of vertex,a f i ltering approach based on large eddy simulation(LES) decomposition[23,24]is employed to f i lter out the velocity of the unavoidable bulk f l ow.According to LES decomposition,the measured velocity can be decomposed into a f i ltered velocity that forms large eddies and remaining velocity that forms small eddies[24]:

    where U is the two dimensional velocity measured by PIV,U is the fi ltered(large-scale)velocity,U′is the remaining(small-scale)velocity,x and y are the coordinates,t is the time,f is the fi ltering kernel function, whichis Gaussian fi lter[24]inthis paper,and D is thedomainof thevelocity fi eld.According to the size of the simulator,the characteristic scale of the Rayleigh convection should be the minimum size of the liquid layer,i.e.,the thickness of the liquid layer 10 mm.

    Fig.2.The velocity vector distribution at different times measured via PIV for Ra= 2.66×108and ReG=13.7.

    Fig.3.The measured velocity vector distribution via PIV at 10 s.

    Itshouldbenotedthat,forstabilityanalysis,thecharacteristiclength d*in the Rayleigh number is def i ned as the thickness of the liquid surface layer in which veritable density gradient develops before the onsetofRayleighconvection.However,becauseitisdiff i culttomeasure the concentration distribution,we simply take the thickness of the entire liquid layer 10 mm as the characteristic length d.Such way of handling d forestimatingRa by Eq.(1)is valid if thecharacteristic lengthd* is assumed constant,since for constant d*,Ra by Eq.(1)is proportional to Ra*that is based on the characteristic length d*,and all the variation behavior(averaged velocities forexample)withrespecttoRa shouldberetainedforthosewithrespecttoRa*,ofwhichtheonly differencefrom Ra is in their magnitudes.

    Fig.4 shows the original velocity f i eld and small-scale velocity f i eld based on the LES decomposition.The small-scale velocity f i eld shows thestructuresofmeasuredRayleighconvectioninmoredetail.Symmetrical vortexes of Rayleigh convection with scales of about 2?6 mm are clear,and the vortex center is about 1-3 mm below the liquid surface.

    3.2.Average velocity

    In the ga-liquid mass transfer process studied in the present paper, the convection in bulk liquid was inf l uenced by both Ra and ReGnumbers.Because the Rayleigh convection is caused by the density gradient in the gravitational direction,the f l ow along the gravitational direction (vertical direction in this paper)will play a dominant role[25].In the experiments here,the Rayleigh convection developed continuously in the measurement time of 30 s.Therefore,the time-space averaged vertical velocity for the measured velocity f i eld in 30 s is employed to characterize the Rayleigh convection.

    Fig.5showsthetime-spaceaveragedverticalvelocityvs.Ranumber with different ReGnumbers.It is found that Vavgis exponentially related to the Ra number and the regression equations are listed in Table 1.The pre-exponential factor is larger with the increase of ReGnumber.Thus Vavgincreases with the increase of the Ra number and ReGnumber, and the gas f l ow also inf l uences the interfacial convection signif i cantly with a large ReGnumber.The explanation on the positive effect of ReGontheverticalvelocityisthatthegasf l owcouldrenewthegasattheinterface and increase the concentration gradient at the liquid surface. Therefore,both high liquid concentration and gas f l ow rate promote the volatilization of acetone and intensify the Rayleigh convection,promoting the mass transfer signif i cantly.

    3.3.Characteristic scale

    Accordingtotheturbulentcascadetheory,thescaleofturbulentvortexes can be separated into three ranges[26]:injective range where the turbulent energy is injected by external forces,inertial sub-range where the energy is conserved and transported to smaller scales,and dissipative range(Kolmogorov range)where the viscous dissipation overcomes the movements and stops the cascade.In this paper,the characteristic scale is de fi ned as the size of the largest turbulent eddy which could be computed by velocity vector.To reduce the in fl uences of liquid injection and gas sweeping,the small-scale velocity fi eld decomposedbyLESdecompositionisusedtocomputethecharacteristic scale.The characteristic scale L can be decompounded into Lu,x,Lv,x,Lu,yand Lv,y,where the fi rst subscript corresponds to velocity components u or v and the second subscript means along coordinates x or y [26,27].Taking Lu,xand Lu,yfor example,root mean square values u″of fl uctuating velocity and autocorrelation coef fi cients Ru,x,Ru,yof each point in the fl ow fi eld can be computed as follows.

    Fig.4.LES decomposition of measured velocity distribution for Ra=1.2×108and ReG=69.0 at t=10 s.

    Fig.5.Time-space averaged vertical velocity in different experiments.

    where u′is the f l uctuating velocities based on time averaged velocity, and n is the number of total images(n=120 in this study,images were grabbed by PIV measurement at 4 Hz for 30 s);

    Table 1Correlations for time-space averaged vertical velocity vs.Ra number

    Finally,L can be computed by orthogonal synthesis of Lu,x,Lv,x,Lu,yand Lv,y.A time-space averaged characteristic scale Lavgis computed toinvestigate the features of Rayleigh convection at different Ra and ReGnumbers.

    Fig.6 shows the time-space averaged characteristic scale Lavgvs.Ra number for different ReGnumbers,and the regression equations are listed in Table 2.Lavgdecreases exponentially with the increase of Ra number and also decreases with the increase of ReGnumber.With the increase of Ra and ReGnumbers,the gas-liquid system is more instable and the induced Rayleigh convection is more intense,so that the convective vortexes become smaller.This result is in accordance with that discussed for the averaged vertical velocity in Section 3.2. The computed characteristic scale of the system can be further used to compute the surface residence time for the penetration mass transfer model.

    4.Inf l uence of Rayleigh Convection on Mass Transfer

    The liquid mass transfer coeff i cientis obtained bymeasuringthedesorption amount of acetone from the liquid phase,and the enhancement factor is then computed based on the theoretically predicted mass transfer coeff i cient without convection.Additionally,a method for mass transfer coeff i cient prediction is developed based on the measured velocity vector via PIV.

    4.1.Mass transfer coeff i cient and enhancement factor

    Withthe measured liquid concentrationsfor theacetonedesorption process of acetone-ethyl acetate system,the mean mass transfer coeff icient KL,expduring 30 s can be computed:

    whereVListheliquidvolume,CL,0istheinitialconcentrationofsolution, CL,tis the concentration of solution at t=30 s,which is estimated by averaging the liquid concentrations near the gas inlet and outlet of the simulator with the sampling positions 5 mm below the interface,A is the mass transfer area,is the averaged mass transfer driven force at t=0 s and t=30 s,and(CL?is the logarithmic mean driven force at the gas inlet and outlet:

    Fig.6.Characteristic scales in different experiments.

    Table 2Correlations for characteristic scale vs.Ra number

    where the interfacial concentrations are[28]

    where m is the phase equilibrium constant,m=CGeq/CL,and CGeqis the gas concentration in equilibrium with the liquid concentration CL.In this study the inlet concentration of gaseous solute is zero and its outlet concentration is computed via the material balance.

    For mass transfer process by means of molecular diffusion,Zhang et al.derived a model for the liquid mass transfer coeff i cient KL,theobased on the Higbie penetration theory[28]:

    where τtheois the theoretical surface residence time.

    Under the realistic condition considered in this paper,the liquid mass transfer coeff i cient should be enhanced by the interfacial convection compared with the hypothetical prediction.Thus an enhancement factor F,which indicates the inf l uence of interfacial convection on mass transfer,is def i ned as the ratio of experimentally measured liquid mass transfer coeff i cient to that predicted by Eq.(11):

    Fig.7 displays the relationship between enhancement factor F and Ra number onsemilog coordinate for differentReGnumbers.F increases with Ra number and ReGnumber,and then becomes f l at.Theresults indicatethattheRayleighconvectionpromotes theliquidsurfacerenewal andintensifythemasstransfersignif i cantly,andtheexplanationforthe inf l uence of gas f l ow is the same as those for Figs.5 and 6.The results given in Fig.7 conf i rm the conclusion in Section 3.

    By f i tting the experimental data,a new correlation for estimation of mass transfer coeff i cient is proposed for this system,

    This correlation could predict the Sh number fairly well for this system as presented in Fig.8,with the average relative error of 8.2%and correlation coeff i cient of 0.95.

    It should be noted that,according to the def i nition of Ra number by Eq.(1),Ranumberincorrelation(13)representsjusttheRayleighinstability of the gas-liquid systemitself,becauseΔρ used in thedef i nition is the density difference between the pure solvent and the bulk solution.The density difference attributing to Rayleigh convection in the real process should be smaller than Δρ and is affected by the gas fl ow that de fi nes the ReGnumber.Thus ReGin Eq.(13)re fl ects the interfacial instability under the operating condition.It should be also note d that,the Ra number,with a magnitude of 106-108in Eq.(13),is much greater than the ReGnumber,so the Rayleigh instability determined by the system is dominant in the enhancement of interfacial mass transfer.

    4.2.Mass transfer coeff i cient prediction

    It is diff i cult to obtain the surface residence time of the liquid for masstransferprocesses.Inthispaper,itcanbecomputedbytheaverage interfacialvelocityandtheaveragecharacteristicscale[29],whichisthe realgas-liquidcontacttimewithinterfacialconvection.Basedontheassumption that the liquid surface renewal is controlled by the large scale vortex,the surface residence time can be def i ned as

    Fig.7.Enhancement factors for different cases.

    With the real surface residence time,the liquid mass transfer coef ficient can be computed by using the Higbie penetration theory:

    Fig.8.The graph of Shfitvs.Shexp.

    Fig.9.Predicted and measured values of mass transfer coeff i cient for different cases.

    Fig.9 compares the predicted mass transfer coeff i cients based on the calculated surface residence time with the experimental data.The characteristic scale for surface residence time calculation is computed by the measured velocity vectors as described in Section 3.3.The mass transfer coef fi cients computed via the Higbie penetration theory are in reasonable agreement with the experimental data.Therefore,the mass transfer enhancement is attributed to thepromotion of liquid surface renewal by interfacial Rayleigh convection.The computed mass transfer coef fi cients are well accorded with the experimental data for low ReGnumber.However,the deviations increase with the increase of ReGnumber.For the method proposed here,the mass transfer coef ficientpredictionis basedonthePIVmeasurementdata inacross section in the center of the simulator with the weakest boundary effect and the strongest turbulence,so the predicted mass transfer coef fi cients should be greater than the experimental data.For the case of low ReGnumber, thesweepingeffectofthegas fl owontheliquidsurfaceisweak,andthe liquid fl ow at liquid surface is mainly induced by Rayleigh convection. For the case of rather high ReGnumber,such as panels(e)and(f)in Fig.9,thegas fl owmightinduceevidentliquid fl owattheliquidsurface. Thus the average tangential liquid velocity at the liquid surface used in Eq.(14)is the combined effect of gas sweeping effect and Rayleigh convection,and the measured uiavgshould be larger than that caused by Rayleigh convection.The estimated value of surface residence time is lower,which would make the calculated mass transfer coef fi cient larger than the measured value.Additionally,Rayleigh convective vortexes would become chaos with high impetus but not in a symmetricalstructure as we assumed.These limits in PIV measurements will introduce inevitable deviations into the predicted results.

    5.Conclusions

    The two-dimensional velocity f i eld of Rayleigh convection for acetone-ethyl acetate system was investigated via PIV.Rayleigh convection was found to have an inverse-mushroom convection pattern and a maximum convective vortex about 6-7 mm in the 10 mm thick liquid layer.Statistical analysis on the velocity vector indicates that both Ra number and ReGnumber have signif i cant inf l uence on Rayleigh convection:with the increase of the two numbers,the average vertical velocity increases and the average characteristic scale decreases.These results suggest that both high concentration and high gas f l ow rate could induce a great density gradient between the interface and bulk liquid,leading to intense Rayleigh convection.

    According to the measurements of mass transfer,the enhancement factor of mass transfer increases with the Ra number and ReGnumber.And the mass transfer coeff i cient could be increased up to four-fold by Rayleigh convection.With a proposed method, the mass transfer coeff i cient estimated based on the surface residence time computed from characteristic scales is in satisfactory agreement with the experimental data especially for the case of small ReGnumber.However,with the limitation in our experiment, the two-dimensional velocity distributions were used in the mass transfer estimation,which is the main sources of the errors in estimating mass transfer coeff i cient and will be improved in our future work.

    [1]L.Rayleigh,On convection currents in a horizontal layer of f l uid,when the higher temperature is on the under side,Phil.Mag.32(1)(1916)529-546.

    [2]H.Bénard,Les tourbillons cellulaires dans une nappe liquide.-Méthodes optiques d'observation et d'enregistrement,J.Phys.Ther.Appl.10(1)(1901)254-266 (in French).

    [3]R.J.Goldstein,E.M.Sparrow,D.C.Jones,Natural convection mass transfer adjacent to horizontal plates,Int.J.Heat Mass Transfer 16(5)(1973)1025-1035.

    [4]E.D.Burger,L.M.Blair,J.A.Quinn,Intermittent convection:conf i rmation of a model for mass transfer into stratif i ed f l uid layers,Chem.Eng.Sci.29(7)(1974) 1545-1555.

    [5]Z.F.Sun,K.T.Yu,Rayleigh-Benard-Marangoni cellular convection:expressions for heat and mass transfer rates,Chem.Eng.Res.Des.84(3)(2006)185-191.

    [6]Y.Guo,X.G.Yuan,A.W.Zeng,G.C.Yu,Measurement of liquid concentration f i elds near interface with cocurrent gas-liquid f l ow absorption using holographic interferometry,Chin.J.Chem.Eng.14(6)(2006)747-753.

    [7]A.Okhotsimskii,M.Hozawa,Schlieren visualization of natural convection in binary gas-liquid systems,Chem.Eng.Sci.53(14)(1998)2547-2573.

    [8]Y.Sha,H.Cheng,X.G.Yuan,Optical study on concentration-driven Rayleigh-Bénard-Marangoni convection,Trans Tianjin Univ.8(1)(2002)22-26.

    [9]A.M.Kutepov,B.G.Pokusaev,D.A.Kazenin,S.P.Karlov,A.V.Vyaz'min,Interfacial mass transfer in the liquid-gas system:an optical study,Theor.Found.Chem.Eng. 35(3)(2001)213-216.

    [10]M.A.Atmane,V.S.S.Chan,D.B.Murray,Naturalconvectionaroundahorizontalheated cylinder:the effects of vertical conf i nement,Int.J.Heat Mass Transfer 46(19)(2003) 3661-3672.

    [11]B.Arendt,D.Dittmar,R.Eggers,Interaction of interfacial convection and mass transfer effects in the system CO2-water,Int.J.Heat Mass Transfer 47(17-18) (2004)3649-3657.

    [12]Z.F.Sun,K.T.Yu,S.Y.Wang,Y.Z.Miao,Absorption and Desorption of carbon dioxide into and from organic solvents:effects of Rayleigh and Marangoni instability,Ind. Eng.Chem.Res.41(7)(2002)1905-1913.

    [13]Y.Guo,Study on mass transfer phenomena across a moving interface of gas-liquid system,Ph.D.Dissertation School of Chemical Engineering and Technology,Tianjin University,Tianjin,China,2006.

    [14]E.Bilgen,H.Oztop,Naturalconvection heattransferinpartially open inclinedsquare cavities,Int.J.Heat Mass Transfer 48(8)(2005)1470-1479.

    [15]M.Corcione,E.Habib,Multi-Prandtl correlating equations for free convection heat transfer from a horizontal tube of elliptic cross-section,Int.J.Heat Mass Transfer 52(5-6)(2009)1353-1364.

    [16]A.A.Mohamad,M.El-Ganaoui,R.Bennacer,Lattice Boltzmann simulation of natural convection in an open ended cavity,Int.J.Therm.Sci.48(10)(2009) 1870-1875.

    [17]C.Buffone,K.Sef i ane,Controlling evaporative thermocapillary convection using external heating:an experimental investigation,Exp.Thermal Fluid Sci.32(6) (2008)1287-1300.

    [18]F.Corvaro,M.Paroncini,Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques,Exp.Thermal Fluid Sci.31(7)(2007)721-739.

    [19]K.H.Baumann,K.Mühlfriedel,Mass transfer and concentration prof i les near phase boundaries,Int.J.Therm.Sci.40(5)(2001)425-436.

    [20]Z.F.Xu,B.C.Khoo,K.Carpenter,Mass transfer across the turbulent gas-water interface,AICHE J.52(10)(2006)3363-3374.

    [21]F.Corvaro,M.Paroncini,An experimental study of natural convection in a differentially heated cavity through a 2D-PIV system,Int.J.Heat Mass Transfer 52(1-2) (2009)355-365.

    [22]Y.H.Yu,Y.Sha,H.Cheng,Observation ofinterfacial turbulence structure inthe single diffusion process,Chem.J.Chin.Univ.17(2)(2003)212-215.

    [23]X.G.Shi,Turbulence,Tianjin University Press,Tianjin,1994.1-255(in Chinese).

    [24]R.J.Adrian,K.T.Christensen,Z.C.Liu,Analysis and interpretation of instantaneous turbulent velocity f i elds,Exp.Fluids 29(3)(2000)275-290.

    [25]B.Fu,X.G.Yuan,B.T.Liu,S.Y.Chen,H.S.Zhang,A.W.Zeng,G.C.Yu,Characterization of Rayleigh convection in interfacial mass transfer by lattice Boltzmann simulation and experimental verif i cation,Chin.J.Chem.Eng.19(5)(2011)845-854.

    [26]Z.S.Zhang,G.X.Cui,C.X.Xu,TheoryandModelingofTurbulence,TsinghuaUniversity Press,Beijing,2005.1-279(in Chinese).

    [27]Y.Li,H.Zhao,B.Leach,T.Ma,N.Ladommatos,Characterization of an in-cylinder fl ow structure in a high-tumble spark ignition engine,Int.J.Engine Res.5(5) (2004)375-400.

    [28]S.H.Zhang,Z.M.Wang,Y.F.Su,Mass transfer and interfacial turbulence in a laminar fi lm:study of transferring two solutes separately and simultaneously through liquid-liquid interface,Chem.Eng.Res.Des.68(1)(1990)84-92.

    [29]Y.Sha,Study on Rayleigh-Bénard-Marangoni convection driven by the mass transfer,(Ph.D.Dissertation)School of Chemical Engineering and Technology,Tianjin University,Tianjin,China,2002.

    21 November 2012

    ☆Supported by the National Natural Science Foundation of China(20736005).

    *Corresponding author.

    E-mail address:yuanxg@tju.edu.cn(X.Yuan).

    http://dx.doi.org/10.1016/j.cjche.2014.06.022

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 14 March 2013 Accepted 24 March 2013

    Available online 18 September 2014

    亚洲av成人不卡在线观看播放网| 色播在线永久视频| 一级,二级,三级黄色视频| 国产午夜精品久久久久久| 人人妻人人爽人人添夜夜欢视频| 在线观看免费视频网站a站| 日韩成人在线观看一区二区三区| 亚洲美女黄片视频| 99国产极品粉嫩在线观看| av线在线观看网站| 91字幕亚洲| 村上凉子中文字幕在线| 天天影视国产精品| 欧美激情 高清一区二区三区| 亚洲中文av在线| 国产黄色免费在线视频| 一级片'在线观看视频| 天天躁日日躁夜夜躁夜夜| 国产精品综合久久久久久久免费 | 婷婷丁香在线五月| 亚洲情色 制服丝袜| 免费在线观看视频国产中文字幕亚洲| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 亚洲七黄色美女视频| 国产麻豆69| av国产精品久久久久影院| 精品国产亚洲在线| 日韩欧美一区二区三区在线观看 | 免费一级毛片在线播放高清视频 | 亚洲国产精品合色在线| 村上凉子中文字幕在线| 成在线人永久免费视频| 精品熟女少妇八av免费久了| 9色porny在线观看| 一级a爱视频在线免费观看| 国产真人三级小视频在线观看| 国产有黄有色有爽视频| 久久这里只有精品19| 日日夜夜操网爽| 999精品在线视频| 亚洲男人天堂网一区| 日韩大码丰满熟妇| 丰满人妻熟妇乱又伦精品不卡| 欧美不卡视频在线免费观看 | 香蕉丝袜av| 免费在线观看亚洲国产| 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 美国免费a级毛片| av天堂在线播放| 亚洲av电影在线进入| 视频区图区小说| 99国产精品99久久久久| 亚洲全国av大片| 黄色视频不卡| 久久久国产成人免费| 国内久久婷婷六月综合欲色啪| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 看黄色毛片网站| 久久久久久久国产电影| 日韩三级视频一区二区三区| 欧美日韩视频精品一区| 国产精品一区二区免费欧美| 欧美不卡视频在线免费观看 | 亚洲aⅴ乱码一区二区在线播放 | 免费日韩欧美在线观看| 亚洲国产毛片av蜜桃av| 久久人妻熟女aⅴ| 少妇的丰满在线观看| 搡老熟女国产l中国老女人| 亚洲少妇的诱惑av| 99精国产麻豆久久婷婷| 女人被狂操c到高潮| 午夜福利影视在线免费观看| 涩涩av久久男人的天堂| 丝袜美腿诱惑在线| 夜夜夜夜夜久久久久| 女人爽到高潮嗷嗷叫在线视频| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 色婷婷av一区二区三区视频| 久久精品亚洲精品国产色婷小说| 亚洲成人免费av在线播放| 国产有黄有色有爽视频| 中文字幕色久视频| 亚洲国产精品合色在线| 一区二区日韩欧美中文字幕| 一级,二级,三级黄色视频| 久久午夜综合久久蜜桃| 日韩中文字幕欧美一区二区| 国产精品二区激情视频| 99精品久久久久人妻精品| 啦啦啦视频在线资源免费观看| 精品电影一区二区在线| 日韩熟女老妇一区二区性免费视频| 成人黄色视频免费在线看| √禁漫天堂资源中文www| 色综合婷婷激情| 亚洲精品一卡2卡三卡4卡5卡| 黑人巨大精品欧美一区二区mp4| 高潮久久久久久久久久久不卡| 成人永久免费在线观看视频| 三上悠亚av全集在线观看| av天堂在线播放| 亚洲精品一二三| 国产精品.久久久| 一级片免费观看大全| 国产欧美日韩一区二区精品| 精品欧美一区二区三区在线| 正在播放国产对白刺激| 女人爽到高潮嗷嗷叫在线视频| 久久久精品区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 人妻一区二区av| 精品免费久久久久久久清纯 | 久久精品国产综合久久久| 亚洲五月色婷婷综合| 国产又爽黄色视频| 大香蕉久久网| 亚洲五月天丁香| 别揉我奶头~嗯~啊~动态视频| 亚洲免费av在线视频| 高清在线国产一区| 咕卡用的链子| 在线观看www视频免费| 成年动漫av网址| 国产免费现黄频在线看| 日韩人妻精品一区2区三区| 日本wwww免费看| 欧美精品av麻豆av| 高清欧美精品videossex| 国产高清视频在线播放一区| 久久精品aⅴ一区二区三区四区| 午夜亚洲福利在线播放| 一区在线观看完整版| 热re99久久国产66热| 丁香欧美五月| 午夜福利在线观看吧| 亚洲在线自拍视频| 国产精品影院久久| 亚洲av日韩在线播放| 国产高清videossex| 国产精品久久久久久精品古装| 国产精品.久久久| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 欧美激情 高清一区二区三区| 久99久视频精品免费| 欧美乱码精品一区二区三区| 国产一区在线观看成人免费| 黄片大片在线免费观看| 热re99久久国产66热| 亚洲第一av免费看| 久久精品成人免费网站| 人妻丰满熟妇av一区二区三区 | 大香蕉久久成人网| 真人做人爱边吃奶动态| 波多野结衣av一区二区av| 一级片免费观看大全| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 国产成人精品无人区| 制服人妻中文乱码| 18禁观看日本| 男女之事视频高清在线观看| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 亚洲熟妇熟女久久| 别揉我奶头~嗯~啊~动态视频| 最近最新中文字幕大全电影3 | 亚洲av成人一区二区三| 国产精品亚洲一级av第二区| 午夜福利一区二区在线看| 国产精品久久视频播放| 国产片内射在线| 国产精品一区二区精品视频观看| 12—13女人毛片做爰片一| 午夜福利一区二区在线看| 国产成人精品久久二区二区91| 免费在线观看亚洲国产| 免费观看精品视频网站| 亚洲三区欧美一区| 久久亚洲精品不卡| 亚洲七黄色美女视频| 国产单亲对白刺激| 亚洲欧美一区二区三区久久| 国产成人欧美| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 久久久久视频综合| 女人爽到高潮嗷嗷叫在线视频| av中文乱码字幕在线| 中亚洲国语对白在线视频| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| 国产精品成人在线| 午夜91福利影院| 热99久久久久精品小说推荐| 黄色片一级片一级黄色片| 激情在线观看视频在线高清 | 精品第一国产精品| 老熟妇仑乱视频hdxx| 满18在线观看网站| 精品少妇久久久久久888优播| 国产日韩欧美亚洲二区| 最新的欧美精品一区二区| 午夜日韩欧美国产| 久久久精品免费免费高清| 国产成人av教育| 国产乱人伦免费视频| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 精品国产超薄肉色丝袜足j| 国内毛片毛片毛片毛片毛片| 国产精品一区二区在线不卡| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲欧美激情综合另类| 亚洲欧美精品综合一区二区三区| 岛国毛片在线播放| 精品午夜福利视频在线观看一区| 99久久99久久久精品蜜桃| 亚洲国产精品sss在线观看 | 免费高清在线观看日韩| 国内久久婷婷六月综合欲色啪| www.自偷自拍.com| 免费看十八禁软件| 一级毛片高清免费大全| 极品少妇高潮喷水抽搐| 中文字幕人妻丝袜制服| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女| 99久久国产精品久久久| 国产成人免费无遮挡视频| 每晚都被弄得嗷嗷叫到高潮| 91精品三级在线观看| 一区二区三区精品91| 亚洲情色 制服丝袜| 一区二区三区激情视频| 亚洲成人国产一区在线观看| 99riav亚洲国产免费| 亚洲情色 制服丝袜| 超碰97精品在线观看| 欧美黑人欧美精品刺激| 女警被强在线播放| 9191精品国产免费久久| 黄色 视频免费看| 日韩大码丰满熟妇| 午夜免费鲁丝| 日韩欧美国产一区二区入口| 欧美日韩乱码在线| 校园春色视频在线观看| 日本黄色视频三级网站网址 | 多毛熟女@视频| 中文字幕制服av| 成人亚洲精品一区在线观看| 国产亚洲欧美精品永久| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 国产精品免费大片| 激情视频va一区二区三区| 国产野战对白在线观看| 叶爱在线成人免费视频播放| 18在线观看网站| 我的亚洲天堂| 国产成人欧美| 宅男免费午夜| 麻豆av在线久日| 美女扒开内裤让男人捅视频| 久久久久精品国产欧美久久久| 国产精品亚洲一级av第二区| 大陆偷拍与自拍| 欧美精品av麻豆av| 建设人人有责人人尽责人人享有的| 国产主播在线观看一区二区| 91国产中文字幕| 日日爽夜夜爽网站| 极品少妇高潮喷水抽搐| 亚洲五月天丁香| 国产日韩一区二区三区精品不卡| 久久国产乱子伦精品免费另类| 亚洲av日韩在线播放| 在线播放国产精品三级| 亚洲精品中文字幕在线视频| 日韩视频一区二区在线观看| svipshipincom国产片| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯 | 丁香六月欧美| 成年动漫av网址| 国产成人影院久久av| 搡老乐熟女国产| 国产成人欧美| 国产精品自产拍在线观看55亚洲 | 国产男靠女视频免费网站| 日韩人妻精品一区2区三区| 怎么达到女性高潮| 两个人看的免费小视频| 欧美日韩国产mv在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 一级片免费观看大全| 91老司机精品| 乱人伦中国视频| 夜夜爽天天搞| 黄色毛片三级朝国网站| 亚洲第一av免费看| 天天操日日干夜夜撸| 色尼玛亚洲综合影院| 日韩中文字幕欧美一区二区| 国产欧美亚洲国产| 亚洲免费av在线视频| 九色亚洲精品在线播放| 久久中文看片网| 在线观看免费午夜福利视频| 成人精品一区二区免费| 日本欧美视频一区| 亚洲五月婷婷丁香| 国产精品国产高清国产av | 国产亚洲精品一区二区www | 国产亚洲精品一区二区www | 好看av亚洲va欧美ⅴa在| 国产精品二区激情视频| 夫妻午夜视频| 国产在线观看jvid| 麻豆国产av国片精品| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 午夜福利视频在线观看免费| 男女下面插进去视频免费观看| 国产精品电影一区二区三区 | 桃红色精品国产亚洲av| 免费久久久久久久精品成人欧美视频| 免费久久久久久久精品成人欧美视频| 老司机在亚洲福利影院| 欧美老熟妇乱子伦牲交| 久99久视频精品免费| 国产精品久久久久成人av| 午夜福利一区二区在线看| 后天国语完整版免费观看| 免费一级毛片在线播放高清视频 | 香蕉国产在线看| 亚洲国产欧美网| av在线播放免费不卡| 国产色视频综合| 色综合婷婷激情| 午夜福利欧美成人| 国产色视频综合| 香蕉久久夜色| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 国产一区有黄有色的免费视频| 日本wwww免费看| 悠悠久久av| 超色免费av| 国产亚洲av高清不卡| 国产精品 国内视频| 国产乱人伦免费视频| 人成视频在线观看免费观看| 手机成人av网站| 交换朋友夫妻互换小说| 久久久久国产精品人妻aⅴ院 | 午夜两性在线视频| 欧美日韩成人在线一区二区| 色综合婷婷激情| 欧美激情 高清一区二区三区| 亚洲成a人片在线一区二区| av免费在线观看网站| 19禁男女啪啪无遮挡网站| 少妇的丰满在线观看| 国产亚洲av高清不卡| 一个人免费在线观看的高清视频| 国产精品 欧美亚洲| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 色老头精品视频在线观看| 女性生殖器流出的白浆| www.熟女人妻精品国产| 欧美人与性动交α欧美软件| 精品久久蜜臀av无| 精品一区二区三区视频在线观看免费 | 香蕉国产在线看| 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索| 久热爱精品视频在线9| videosex国产| 伦理电影免费视频| 亚洲少妇的诱惑av| 午夜福利在线观看吧| 久久青草综合色| 国产一卡二卡三卡精品| tocl精华| 国产精品久久久久成人av| 国产精品.久久久| 在线播放国产精品三级| 国产一区在线观看成人免费| 国产精品成人在线| 曰老女人黄片| 国产精品自产拍在线观看55亚洲 | 国产又色又爽无遮挡免费看| 国产精品秋霞免费鲁丝片| 欧美日韩瑟瑟在线播放| www.999成人在线观看| 18禁裸乳无遮挡动漫免费视频| 变态另类成人亚洲欧美熟女 | 久久久久国产精品人妻aⅴ院 | 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月 | 韩国精品一区二区三区| 国产黄色免费在线视频| 一本综合久久免费| 天堂√8在线中文| 伦理电影免费视频| 涩涩av久久男人的天堂| 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 黑丝袜美女国产一区| √禁漫天堂资源中文www| www.自偷自拍.com| 国产成人免费观看mmmm| 亚洲国产看品久久| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀| 免费一级毛片在线播放高清视频 | 看黄色毛片网站| 欧美日韩亚洲高清精品| 免费人成视频x8x8入口观看| 亚洲av成人一区二区三| 99re6热这里在线精品视频| 国产精品免费大片| 久久久国产欧美日韩av| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 嫁个100分男人电影在线观看| 久久精品亚洲熟妇少妇任你| 国产精品 欧美亚洲| 99国产精品免费福利视频| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 一区二区三区国产精品乱码| 欧美黑人欧美精品刺激| 国产精品永久免费网站| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| 国产精品综合久久久久久久免费 | av不卡在线播放| 热99久久久久精品小说推荐| 国产成人免费观看mmmm| 亚洲全国av大片| 欧美精品一区二区免费开放| 国产乱人伦免费视频| 久久中文字幕人妻熟女| 亚洲国产欧美网| 啦啦啦免费观看视频1| 啪啪无遮挡十八禁网站| 欧美性长视频在线观看| 亚洲人成77777在线视频| 免费在线观看日本一区| 黄色女人牲交| 国产精品久久电影中文字幕 | 国产成人精品无人区| 中文字幕精品免费在线观看视频| 老司机影院毛片| 亚洲精品久久午夜乱码| 欧美黑人精品巨大| www.精华液| 在线观看免费视频网站a站| 欧美一级毛片孕妇| 久久久国产欧美日韩av| 国产亚洲av高清不卡| 男人的好看免费观看在线视频 | 亚洲一区二区三区欧美精品| 美女国产高潮福利片在线看| 69av精品久久久久久| 黄色a级毛片大全视频| 欧美老熟妇乱子伦牲交| 可以免费在线观看a视频的电影网站| 男女午夜视频在线观看| 亚洲一区高清亚洲精品| 久久久久久人人人人人| tocl精华| 欧美成人午夜精品| 亚洲精品自拍成人| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载 | 欧美日韩中文字幕国产精品一区二区三区 | 黑人操中国人逼视频| 俄罗斯特黄特色一大片| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 法律面前人人平等表现在哪些方面| 国产亚洲精品第一综合不卡| 国产成人免费观看mmmm| 亚洲欧美色中文字幕在线| 精品午夜福利视频在线观看一区| 80岁老熟妇乱子伦牲交| 国产高清videossex| 久久精品aⅴ一区二区三区四区| www.熟女人妻精品国产| 久久久精品免费免费高清| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 啪啪无遮挡十八禁网站| 9热在线视频观看99| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 亚洲av欧美aⅴ国产| 一区二区三区国产精品乱码| 精品人妻熟女毛片av久久网站| 精品少妇久久久久久888优播| 国产又爽黄色视频| 国产精品 欧美亚洲| 亚洲av成人av| 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情| 美女扒开内裤让男人捅视频| 亚洲精华国产精华精| 麻豆成人av在线观看| 成人黄色视频免费在线看| 亚洲av成人不卡在线观看播放网| 99久久国产精品久久久| 亚洲少妇的诱惑av| 精品午夜福利视频在线观看一区| 久久久精品免费免费高清| 91大片在线观看| 日本黄色日本黄色录像| 色综合婷婷激情| 亚洲av成人av| 美女福利国产在线| 精品国产乱码久久久久久男人| 国产精品久久久久成人av| 久久99一区二区三区| 中文字幕精品免费在线观看视频| 男女之事视频高清在线观看| 中文字幕精品免费在线观看视频| 欧美日韩乱码在线| 成年版毛片免费区| 亚洲一区二区三区欧美精品| 动漫黄色视频在线观看| 国产精华一区二区三区| 国产在视频线精品| 18禁美女被吸乳视频| 水蜜桃什么品种好| 国产成人影院久久av| 亚洲一区中文字幕在线| 18在线观看网站| 激情视频va一区二区三区| 久久性视频一级片| 欧美 日韩 精品 国产| 18禁美女被吸乳视频| 欧美日韩瑟瑟在线播放| 久久久久久久久久久久大奶| 黄色成人免费大全| 国产精品自产拍在线观看55亚洲 | 久久久精品免费免费高清| 成人三级做爰电影| 亚洲欧美激情综合另类| 国产男靠女视频免费网站| av欧美777| 在线av久久热| 午夜福利乱码中文字幕| 人人澡人人妻人| 天天添夜夜摸| 手机成人av网站| 午夜精品久久久久久毛片777| 精品人妻1区二区| 久久久国产成人精品二区 | 精品久久久精品久久久| 日韩成人在线观看一区二区三区| 成熟少妇高潮喷水视频| 国产一卡二卡三卡精品| 亚洲情色 制服丝袜| 亚洲av成人av| 黑人操中国人逼视频| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 男人的好看免费观看在线视频 | 老司机福利观看| 成年动漫av网址| 成人影院久久| 国产精品二区激情视频| 精品国产乱子伦一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久国产精品人妻aⅴ院 | 水蜜桃什么品种好| 在线观看免费日韩欧美大片| 久久久久久人人人人人| 国产区一区二久久| 一区二区日韩欧美中文字幕| 人人妻人人添人人爽欧美一区卜| 久久中文看片网| 99久久99久久久精品蜜桃| 91av网站免费观看| 一边摸一边做爽爽视频免费| 69精品国产乱码久久久| 亚洲美女黄片视频| 伦理电影免费视频| 日韩三级视频一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 色老头精品视频在线观看| 这个男人来自地球电影免费观看| 纯流量卡能插随身wifi吗|