• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of KHX Impeller in a Low-shear Stirred Bioreactor☆

    2014-07-25 11:29:34ShifangYangXiangyangLiGangDengChaoYangZaishaMao
    Chinese Journal of Chemical Engineering 2014年10期

    Shifang Yang,Xiangyang Li*,Gang Deng,Chao Yang*,Zaisha Mao

    Fluid Dynamics and Transport Phenomena

    Application of KHX Impeller in a Low-shear Stirred Bioreactor☆

    Shifang Yang,Xiangyang Li*,Gang Deng,Chao Yang*,Zaisha Mao

    Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    A R T I C L EI N F O

    Article history:

    Bioleaching reactor

    Draft tube

    Mass transfer coeff i cient

    Ore suspension

    Shear stress

    In our previous work,a low-shear stirred bioreactor was explored.With a pitched blade turbine impeller downf l ow(PBTD)used,the shear stress generated is high compared with that in some low shear axial f l ow impellers.KHX impeller is an eff i cient axial f l ow impeller,which provides large onf l ow diffusivity and low shear force.In this work,the KHX impeller wasappliedina lower-shearbioreactor and theperformance of this reactor was evaluatedand comparedwith that of thePBTDimpeller.Theexperimental results show thatthe KHX impeller can disperse gas at lower power consumption and gives greater gas-liquid volumetric mass transfer coeff icients than PBTD at the same power consumption.An empirical correlation for evaluating the mass transfer coeff i cient of the KHX impeller in the bioreactor is presented to provide reference for its industrial application. ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    In our earlier work[1],a low shear stirred tank bioreactor was designedbasedonthespecif i cfeaturescharacterizingbioleachingreactors andconventionalstirredtankreactors.Experimentalstudiesonsuspension of solid particles in gas-liquid-solid systems were conducted to simulate a real bioleaching system to examine the performance of this novel reactor.The results show that the f l ow f i eld in the reactor will be more uniform with a draft tube installed,reducing the maximal shear rate and the deviation from the average shear rate,which is benef i cial to a bioreactor.However,with the pitched blade turbine downf l ow(PBTD)impeller used,the average shear stress is high compared to that in some low shear axial impellers.

    Based on the mechanism of solid suspension and gas dispersion,the solid suspension relies mainly on the turbulence generated by the impeller toward the bottom.When the downward discharge of theimpeller goes to the vessel bottom directly and turns toward the side walls, the liquid and solid particles are directed upwards to make particles suspend[2-5].For gas dispersion,radial impellers can offer a high rate of shear to liquid f l ow,which helps in dispersing the gas sparged into the reactor to smaller gas bubbles,increasing interfacial area between liquidandgasphases[6-8].Inagas-liquid-solidsystem,bothsolidsuspension and gas dispersion are important.In order to compromise the demand for low shear and large discharge,the ratios of power numbers andf l ownumbers,Np/Nqd,ofsomedifferenttypesofimpellersarecompared in Table 1.A high ratio means low discharge capacity and a low ratio represents low shear performance.

    The KHX impeller(devised by Zhejiang Great Wall Reducer Co., Wenzhou,China)is an eff i cient axial f l ow impeller with power number of1andf l ownumberof0.75,whichcanprovidelargeonf l owdiffusivity and low shear force.In this work,a KHX impeller is installed in the previously tested lower-shear bioreactor[1]and the performance such as critical impeller speed,power consumption and gas-liquid volumetric mass transfer coeff i cient kLa of this reactor conf i guration is evaluatedandcomparedwiththatofusingthePBTDimpellerintheearlier work.

    2.Experimental

    2.1.Experimental setup

    TheexperimentalsetupusedinthisstudyisshowninFig.1.Thebioreactor conf i guration is the same as that in[1]and has been depictedthere.The diameter(DT)of the bioreactor is 0.3 m and the height of the tank(HT)is 0.45 m.The water height(Hw)is equal to 0.42 m.Based on the rule of thumb that the cross-sectional area of channels is equal or nearly equal along the path of fl ow,the diameter of the draft tube is fi xedtobe0.2m.Theheightofthedrafttube(Hd)is0.31m,andthedistance(H1)betweenthetopofthedrafttubeandthefreesurfaceisabout 0.05 m before air sparging.A six-bladed 45°PBTD and a four-bladed KHX impeller downward pumping(as shown in Fig.2),both with diameter(DI)of 0.4 DT,are used in this study.Tap water,air and quartz are used as the liquid,gas and solid phases and the properties of solids and liquid are shown in Table 2.

    Table 1Ratio of power numbers and f l ow numbers of different impellers[9,10]

    Fig.2.Four-bladed KHX impeller.

    Table 2Variations of solids and liquid

    Fig.1.Experimentalsetup.1—bottleofNa2SO3solution;2—f l owmeter;3—stirredtank;4—drafttube;5—impeller;6—ringsparger;7—ovalbottom;8—oxygenprobe;9—dissolved oxygen meter;10—rotary torque transducer;11—motor;12—amplif i er;13—computer.

    2.2.Methods of performance evaluation

    2.2.1.Power consumption

    The power consumed by the impeller was measured by a shafttorque method[11]using a dynamic torque sensor(model SN-1000, China Academy of Aerospace Aerodynamics,Beijing)installed between the impeller shaft and the gearbox.

    2.2.2.Gas-liquid mass transfer

    The gas-liquid volumetric mass transfer coeff i cient kLa was measured by the steady-state sulf i te feeding method[12].It is based on the measurement of dissolved oxygen concentrations under steadystate conditionswith theequilibrium between sulf i te additionand oxygen dissolution[13].The kLa value is calculated by

    whereQsisthefeedrateofsul fi tesolution,Csistheconcentrationofsulfi te in the feed,and CAiis the equilibrium oxygen concentration in water,calculated according to Henry constant H and oxygen partial pressure.For the air-water system,CAican be calculated by

    where CAis the oxygen concentration measured in water at steady state with the sulf i te solution fed continuously,and the Henry constant H for oxygen in water can be found in a physicochemical handbook.

    In order to eliminate the inf l uence of temperature,the results are converted into the mass transfer coeff i cients at 20°C as follows:

    2.2.3.Critical speed

    Both NCDand Njsgwere measured by visual observation.Njsgis defi ned as the speed at which the solid particles deposit on the tank bottom is just eliminated[14]instead of the 1-2 s criterion proposed by Zweitering[15]and NCDis determined as the impeller speed above which all bubbles rise spirally around the shaft and small bubbles are uniformly distributed in the bulk fl ow[16].Several readings were taken to get the average for NCDand Njsg,and the error is about 1-2 r·min?1.

    3.Results and Discussion

    3.1.Critical impeller speed and power consumption

    3.1.1.Critical impeller speed

    For a three-phase stirred vessel bioreactor,simultaneous gas dispersion and solid suspension are very important.This requires that the impeller speed is greater than NCDand Njsg.Power consumption per volumetric liquid is an important index to the performance of a bioreactor.Since the differences between power numbers for different impellers may be more than 10 times[17],the power consumption of an agitator corresponding to a lower critical impeller speed can be possibly greater than that with higher critical impeller speed.In this study,the values of NCDand Njsgand the power consumption were measured with agitation by KHX and PBTD impellers (α=20%,Vs=7.35×10?4-2.21×10?3m·s?1)with or without a draft tube.

    TheexperimentalresultsofNCDandNjsgareshowninTables3and4. Njsgof KHX is greater than that of PBTD while NCDis lower,because the fl ow patterns induced by PBTD and KHX are different.As discussed before,axial fl ow is more bene fi cial to suspending solids[17]and radial fl ow is more suitable for gas dispersion[6].Because PBTD and KHX are both axial impellers,the difference of Njsgis small.Since the curved blade of KHX facilitates the fl uid fl ow along the radial direction,the intensity of axial fl ow generated by KHX is weaker than that by PBTD,so that the values of Njsgwith KHX are greater than those with PBTD.For gas dispersion,the radial fl ow generated by KHX disperses gas sparging into the vessel to reach the wall easier,leading to lower values of NCDthan that by PBTD.

    Considering that the power number of KHX is smaller than that of PBTD and the values of Njsgare higher than that of NCD,the power consumption for just suspending solids is calculated and the results are listed in Table 5.Even when the values of Njsgwith KHX are higher than those with PBTD,the power consumption of KHX is lower owing to a much smaller power number.By the criterion based on critical power consumption to characterizethe mixingin multiphase processes [18],KHX has more excellent performance for solid suspension and gas dispersion.

    Table 3Results of NCDand Njsgwithout draft tube stirred by KHX and PBTD(α=20%)

    Table 4Results of NCDand Njsgwith draft tube stirred by KHX and PBTD(α=20%)

    Table 5Powerconsumption(W·m?3)corresponding to Njsgwith andwithouta draft tube stirred by KHX and PBTD(α=20%)

    These results show that the critical impeller speed and power consumption are decreased obviously with a draft tube installed. This is because a draft tube can improve the f l ow pattern in a stirred reactor effectively.With a draft tube,the radial discharge from the impeller is restricted and the axial downward velocity is promoted, which favors to disperse solids and gas.Thus,an eff i cient top-tobottom circulation pattern is formed and the f l ow becomes more uniform[1].

    3.1.2.Power consumption

    As shown in Fig.3,power consumption decreases with increasing volumetric gas f l ow rates at a f i xed solid mass fraction.This is due to the formation of gas cavities behind the blades,which blocks transfer of energy from the agitator toward the liquid and the effect becomes stronger with increasing gas f l ow rates[19,20].The difference of power consumption between PBTDand KHX is shown in Fig.4.Because of the lower power number of KHX,the power consumption with KHX is much lower than that with PBTD under the same conditions and the effect of draft tube on power consumption for different impellers is the same,which would increase the power consumption in the agitator at a moderate rate.

    Fig.3.Effect of gas f l ow rate on power consumption stirred by KHX(α=25%).■Vs= 7.35×10?4m·s?1;●Vs=1.47×10?3m·s?1;▲Vs=2.21×10?3m·s?1.

    3.2.Gas-liquid mass transfer

    3.2.1.Gas-liquid mass transfer coeff i cient

    Fig.5 shows the experimental results of the gas-liquid volumetric mass transfer coeff i cient kLa in this low shear bioreactor stirred by theKHX impeller and the PBTD impeller.Because the impeller speed is higher than the critical impeller speed,the gas sparged through the agitator could be dispersed immediately and the gas holdup increases with gas f l ow rates,resulting in higher gas-liquid volumetric mass transfer coeff i cients.Stirred by the KHX impeller,greater values of kLa can be obtained at the same power consumption,because the KHX impeller has much wider impeller blades and breaks bubbles suff i ciently,increasing the gas-liquid interfacial area.On the other hand,the curved blades of the KHX impeller generate a radial f l ow pattern,which is conducive to gas dispersion.As shown in Fig.5,the values of kLa are higher with a draft tube because the local density of power consumption in the impeller zone is greater than that without a draft tube,leading to better gas dispersion.In conclusion,the KHX impeller has more excellent gas dispersion performance in such a stirred bioreactor.

    3.2.2.Correlation of kLa

    Many researchers have established empirical correlations in predicting the gas-liquid mass transfer coeff i cients in stirred tank reactors with different conf i gurations.The following type of correlation is often found in literature[21-25]:

    Fig.4.Power consumption per volumetric liquid vs.impeller speed stirred by KHX and PBTD(α=20%,Vs=2.21×10?3m·s?1).■PBTD without draft tube;●KHX without draft tube;▲PBTD with draft tube;▼KHX with draft tube.

    where P/VLis the power consumption per volumetric liquid (W·m?3),Vsis the superf i cial velocity of gas(m·s?1),and constants A,x and y depend on the conf i guration and geometry of the reactor.

    As the values of exponent are different for the reactors with different geometries and impellers,a new correlation is established based on a regression analysis of the experimental data,which is suitable for the gas f l ow rate Vs=7.35×10?4-2.21×10?3m·s?1and solid mass fraction α=15%-25%.The correlation for the gasliquid mass transfer coeff i cients of the KHX and PBTD impellers in this low shear stirred bioreactor is as follows and the exponent values are shown in Table 6.

    From the correlations it is known that the mass fraction of solids infl uences the gas-liquid mass transfer rate negatively[23].It seems that the solids added increase the viscosity of slurry,increasing the effect of bubble coalescence and lowering the specif i c area(a),further reducing kLa.It is noted from the large exponents for the power consumption per volumetric liquid that it has strong impact on the mass transfer coeff i cient.

    Fig.5.Gas-liquidmasstransfervs.powerconsumptionwithdrafttubestirredbyKHXand PBTD(α=20%).■PBTDwithoutdrafttube;●KHXwithoutdrafttube;▲PBTDwithdraft tube;▼KHX with draft tube.

    In order to demonstrate the signif i cance and accuracy of the correlation on mass transfer,the coeff i cients are recalculated throughregressive computation when exponents x,y and z are f i xed at their respective averages.The regression results in

    Table 6Values of the exponents in Eq.(5)

    and the mean relative deviations are shown in Table 7.It is more intuitive that KHX is more effective than PBTD as judged by kLa and a higher value of kLa can be obtained with a draft tube.

    Table 7Regression for the coeff i cients in Eq.(6)with f i xed exponents

    3.2.3.Correlation of power consumption

    Power consumption is an important parameter to evaluate the mixingstatusina stirred tank.Many researchers have obtained correlations of power consumption for different impellers in single-and twophase systems[26,27].Dohi et al.[28]proposed a correlation for power consumption in a gas-liquid-solid three-phase reactor agitated by large-scale impellers:

    where FrNis the Froude number and Frgis the Froude number for gas sparged.

    BecauseoftheratiosofDIandDTforKHXandPBTDusedinthiswork are the same,the inf l uence of impeller diameter is not considered here and a newcorrelation of power consumption inthe presentgas-liquidsolid systems for KHX and PBTD is established:

    whichissuitableforthegasf l owrateVs=7.35×10?4-2.21×10?3m·s?1and solid mass fraction α=15%-25%as shown in Table 8.

    Table 8Regression coeff i cients in power consumption correlations

    The predicted values by Eq.(8)and the experimental results are compared in Fig.6.The predictions f i t the experimental data well. Comparison of the exponent values in the correlations shows that the power consumption decreases with gas sparging and increases with stirring speed. 4.Conclusions

    Fig.6.Comparison of P/VLin gas-liquid-solid three-phase systems for KHX and PBTD between experimental results and correlations.■PBTD without draft tube;●KHX without draft tube;▲PBTD with draft tube;▼KHX with draft tube.

    In a low shear stirred bioreactor,the performance of KHX impeller was studied.The following conclusions are obtained.

    (1)The KHX impeller could disperse gas at lower power consumption than PBTD in the same bioreactor.

    (2)Greater values of kLa can be obtained with a draft tube at the same power consumption.

    (3)Powerconsumptionintheagitatordecreaseswithincreasing gas fl ow rates and it is larger with a draft tube.

    (4)The KHX impeller is more effective than PBTD as judged by kLa because of its excellent gas dispersion performance.

    (5)The established empirical correlation can be used for evaluating the mass transfer coef fi cient and the power consumption of the KHX impeller in such a low shear stirred bioreactor,providing a reference for its industrial scale-up.

    [1]X.Y.Li,C.Yang,G.J.Zhang,Z.-S.Mao,H.B.Zhou,Experimental studies on suspension of solid particles in a low shear stirred vessel,Chem.Eng.Technol.34(9)(2011) 1581-1586.

    [2]M.Kraume,Mixing time in stirred suspensions,Chem.Eng.Technol.15(5)(1992) 313-318.

    [3]W.Bujalski,K.Takenaka,S.Paolini,Suspensions and liquid homogenisation in high solids concentration stirred chemical reactor,Trans.IChemE 77(3)(1999)241-247.

    [4]J.Wu,Y.Zhu,P.C.Bandopadhayay,Solids suspension with axial- fl ow impellers, AIChE J.46(3)(2000)647-650.

    [5]I.Ayranci,M.B.Machado,A.M.Madej,J.J.Derksen,D.S.Nobes,S.M.Kresta,Effect of geometry on the mechanisms for off-bottom solids suspension in a stirred tank, Chem.Eng.Sci.79(2012)163-176.

    [6]P.R.Gogate,A.A.C.M.Beenackers,A.B.Pandit,Multiple-impellers systems with a special emphasis on bioreactors:a critical review,Biochem.Eng.6(2)(2000)109-144.

    [7]A.R.Khopkar,J.Aubin,C.Xuereb,Gas-liquid fl ow generated by a pitched-blade turbine:particle image velocimetry measurements and computational fl uid dynamics simulations,Ind.Eng.Chem.Res.42(21)(2003)5318-5332.

    [8]J.Zhao,Z.M.Gao,Y.Y.Bao,Effects of the blade shape on the trailing vortices in liquid lf ow generated by disc turbines,Chin.J.Chem.Eng.19(2)(2011)232-242.

    [9]R.J.Weetman,J.Y.Oldshue,Comparison of mass transfer characteristics of radial and axial fl ow impellers,Proc.6th European Conf.on Mixing,Pavia,Italy,1988, pp.24-26.

    [10]J.H.Rushton,E.W.Costich,H.J.Everett,Power characteristics of mixing impellers, Chem.Eng.Prog.46(9)(1950)467-476.

    [11]T.Wang,G.Z.Yu,Y.M.Yong,C.Yang,Z.S.Mao,Hydrodynamic characteristics ofdualimpeller conf i gurations in a multiple-phase stirred tank,Ind.Eng.Chem.Res.49(3) (2010)1001-1009.

    [12]Y.Imai,H.Takei,M.Matsumura,A simple Na2SO3feeding method for kLa measurement in fermentors,Biotech.Bioeng.29(8)(1987)982-993.

    [13]H.Wu,An issue on applications of a disk turbine for gas-liquid mass transfer,Chem. Eng.Sci.50(17)(1995)2801-2811.

    [14]C.M.Chapman,A.W.Nienow,M.Cooke,Particle-gas-liquid mixing in stirred vessels:part III.Three phase mixing,Chem.Eng.Res.Des.61(3)(1983)167-181.

    [15]T.N.Zweitering,Suspending solid particle in liquid by agitators,Chem.Eng.Sci.8 (3-4)(1958)244-253.

    [16]Q.B.Cai,G.C.Dai,Flooding characteristics of hydrofoil impeller in a two-and threephase stirred tank,Chin.J.Chem.Eng.18(3)(2010)355-361.

    [17]J.Wu,Y.Zhu,P.C.Bandopadhayay,L.Pullum,I.C.Shepherd,Solids suspension with axial-f l ow impellers,AIChE J.6(2)(2000)109-144.

    [18]G.Deng,X.Y.Li,C.Yang,Z.-S.Mao,Critical power criterion for characterizing mixing in multiphase stirred vessels,Comput.Appl.Chem.29(4)(2012)383-386(in Chinese).

    [19]N.Harnby,M.F.Edwards,A.W.Nienow,Mixing in the process industries,Powder Technol.47(1)(1986)101-102.

    [20]R.P.Fishwick,J.M.Winterbottom,E.H.Stitt,Effect of gassing rate on solid-liquid mass transfer coeff i cients and particle slip velocities in stirred tank reactors,Chem. Eng.Sci.58(3-6)(2003)1087-1093.

    [21]J.H.Rushton,J.J.Bimbinet,Holdup and f l ooding inair liquidmixing,Can.J.Chem.Eng. 46(1)(1968)16-21.

    [22]H.Wu,V.Arcella,M.Malavasi,A study of gas-liquid mass transfer in reactors with two disk turbines,Chem.Eng.Sci.53(5)(1998)1089-1095.

    [23]B.?zbek,S.Gayik,The studies on the oxygen mass transfer coeff i cient in a bioreactor,Proc.Biochem.36(8-9)(2001)729-741.

    [24]K.Van't Riet,Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels,Ind.Eng.Chem.Process.Des.Dev.18(3)(1979) 357-360.

    [25]V.Linek,P.Benes,J.Sinkule,Critical assessment of the steady-state Na2SO3feeding method for kLa measurement in fermenters,Biotechnol.Bioeng.35(8)(1990) 766-770.

    [26]N.Dohi,Y.Matsuda,N.Itano,K.Shimizu,K.Minekawa,Y.Kawase,Mixing characteristics in slurry stirred tank reactors with multiple impellers,Chem.Eng.Commun. 171(1)(1999)211-229.

    [27]Y.Kato,Y.Tada,Y.Takeda,Y.Hirai,Y.Nagatsu,Correlation of power consumption for propeller and pfaudler type impellers,J.Chem.Eng.Jpn 42(1)(2009)6-9.

    [28]N.Dohi,T.Takahashi,K.Minekawa,Y.Kawase,Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors,Chem.Eng.Sci.97(2-3)(2004)103-114.

    18 January 2013

    ☆Supported by the National Basic Research Program of China(2010CB630904), the National Natural Science Foundation of China(21276004,20990224),the National Natural Science Fund for Distinguished Young Scholars(21025627)and the National High Technology Research and Development Program of China (2012AA061503).

    *Corresponding authors.

    E-mail addresses:xyli@home.ipe.ac.cn(X.Li),chaoyang@home.ipe.ac.cn(C.Yang).

    http://dx.doi.org/10.1016/j.cjche.2014.09.001

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 20 June 2013

    Accepted 5 July 2013

    Available online 6 September 2014

    非洲黑人性xxxx精品又粗又长| 一卡2卡三卡四卡精品乱码亚洲| а√天堂www在线а√下载| 国产91精品成人一区二区三区| 国产精品久久久久久精品电影 | 国产亚洲欧美精品永久| 成人一区二区视频在线观看| 欧美日韩黄片免| 午夜福利欧美成人| av视频在线观看入口| 国产真实乱freesex| 一本精品99久久精品77| 欧美不卡视频在线免费观看 | 久久中文字幕一级| 很黄的视频免费| 脱女人内裤的视频| 此物有八面人人有两片| 俄罗斯特黄特色一大片| 女人被狂操c到高潮| 亚洲av成人一区二区三| 好男人电影高清在线观看| 亚洲av成人av| 久99久视频精品免费| 淫妇啪啪啪对白视频| 精品福利观看| 久久天堂一区二区三区四区| 一边摸一边抽搐一进一小说| 黄色丝袜av网址大全| 精品福利观看| 免费在线观看完整版高清| 又大又爽又粗| 国产成人av激情在线播放| 国产视频一区二区在线看| 一区福利在线观看| 久久久久国内视频| 午夜免费鲁丝| 国产精品综合久久久久久久免费| 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| www.熟女人妻精品国产| 国产99白浆流出| 99热只有精品国产| 久99久视频精品免费| 国产激情欧美一区二区| 久久欧美精品欧美久久欧美| 黄频高清免费视频| 亚洲国产精品久久男人天堂| 亚洲专区国产一区二区| 中文字幕人妻丝袜一区二区| 最近在线观看免费完整版| 91老司机精品| 在线观看www视频免费| 18禁国产床啪视频网站| 成年人黄色毛片网站| 亚洲欧洲精品一区二区精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 美国免费a级毛片| ponron亚洲| 国产午夜精品久久久久久| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 国产亚洲精品综合一区在线观看 | 午夜日韩欧美国产| 香蕉久久夜色| 亚洲国产日韩欧美精品在线观看 | 免费看a级黄色片| 日韩成人在线观看一区二区三区| 日本 av在线| 亚洲成av片中文字幕在线观看| 老汉色av国产亚洲站长工具| 99精品欧美一区二区三区四区| 亚洲av电影在线进入| 免费女性裸体啪啪无遮挡网站| 久久精品成人免费网站| 亚洲人成电影免费在线| 久久久久九九精品影院| 久9热在线精品视频| 国产精品亚洲av一区麻豆| 国产又黄又爽又无遮挡在线| 熟妇人妻久久中文字幕3abv| 国产亚洲精品av在线| 国产精品免费视频内射| 久久久久久九九精品二区国产 | 久久亚洲精品不卡| 国产私拍福利视频在线观看| 视频区欧美日本亚洲| 麻豆国产av国片精品| 精品日产1卡2卡| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品999在线| 久久香蕉国产精品| 欧美色欧美亚洲另类二区| 色播在线永久视频| av欧美777| 极品教师在线免费播放| 亚洲色图 男人天堂 中文字幕| 十分钟在线观看高清视频www| 亚洲欧美激情综合另类| 很黄的视频免费| 国产精品永久免费网站| 丁香六月欧美| 国产亚洲精品综合一区在线观看 | 婷婷亚洲欧美| 999久久久精品免费观看国产| www.自偷自拍.com| 国产又色又爽无遮挡免费看| 色综合亚洲欧美另类图片| 深夜精品福利| 亚洲欧美一区二区三区黑人| 久99久视频精品免费| 一区二区三区国产精品乱码| 色在线成人网| 亚洲国产欧美一区二区综合| 日本在线视频免费播放| 一本大道久久a久久精品| 女同久久另类99精品国产91| 女性被躁到高潮视频| 亚洲中文字幕一区二区三区有码在线看 | 一级片免费观看大全| 午夜亚洲福利在线播放| 成人手机av| x7x7x7水蜜桃| 国产片内射在线| 可以在线观看毛片的网站| 欧美精品啪啪一区二区三区| 欧美三级亚洲精品| 丁香欧美五月| 丰满的人妻完整版| 90打野战视频偷拍视频| 最近最新中文字幕大全免费视频| 制服诱惑二区| 国内久久婷婷六月综合欲色啪| 在线十欧美十亚洲十日本专区| 韩国精品一区二区三区| 精品乱码久久久久久99久播| 制服丝袜大香蕉在线| 黄色视频,在线免费观看| 久久精品国产亚洲av高清一级| 久久亚洲真实| 高清毛片免费观看视频网站| 满18在线观看网站| 禁无遮挡网站| 国产精品美女特级片免费视频播放器 | 国产精品免费视频内射| 久久久久久九九精品二区国产 | 97碰自拍视频| 亚洲片人在线观看| 男女床上黄色一级片免费看| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看吧| 18美女黄网站色大片免费观看| 俄罗斯特黄特色一大片| 亚洲一码二码三码区别大吗| 99riav亚洲国产免费| tocl精华| 老司机福利观看| 中文在线观看免费www的网站 | 国产熟女xx| 不卡av一区二区三区| 女同久久另类99精品国产91| 91字幕亚洲| 亚洲精品久久成人aⅴ小说| 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| xxx96com| 亚洲美女黄片视频| 18美女黄网站色大片免费观看| 久久国产精品人妻蜜桃| 人人妻,人人澡人人爽秒播| 亚洲一码二码三码区别大吗| 最近在线观看免费完整版| 国产成人一区二区三区免费视频网站| 欧美成人免费av一区二区三区| 日韩欧美在线二视频| 最新美女视频免费是黄的| netflix在线观看网站| 国产精品国产高清国产av| 亚洲成人免费电影在线观看| 嫩草影视91久久| 精华霜和精华液先用哪个| 长腿黑丝高跟| 中亚洲国语对白在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲男人的天堂狠狠| 精品不卡国产一区二区三区| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 99久久99久久久精品蜜桃| 身体一侧抽搐| 搡老熟女国产l中国老女人| 亚洲九九香蕉| 少妇裸体淫交视频免费看高清 | 在线观看免费视频日本深夜| 91在线观看av| 久久人妻av系列| 欧美激情久久久久久爽电影| 日韩免费av在线播放| 久久精品国产清高在天天线| 亚洲九九香蕉| 后天国语完整版免费观看| svipshipincom国产片| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕在线视频| av在线播放免费不卡| 国产精品九九99| 国产成人影院久久av| xxx96com| 欧美日本亚洲视频在线播放| 国产色视频综合| 成人一区二区视频在线观看| 久久亚洲精品不卡| 国产色视频综合| 9191精品国产免费久久| 他把我摸到了高潮在线观看| 在线观看免费午夜福利视频| 国产精品亚洲一级av第二区| 欧美黑人精品巨大| 满18在线观看网站| 精品久久久久久成人av| 久久精品国产综合久久久| 99国产极品粉嫩在线观看| 国产亚洲精品第一综合不卡| 亚洲美女黄片视频| 久久婷婷人人爽人人干人人爱| 国产精品久久久人人做人人爽| 国产成年人精品一区二区| 亚洲中文av在线| 亚洲av第一区精品v没综合| 国产黄色小视频在线观看| 母亲3免费完整高清在线观看| www.www免费av| 欧美一区二区精品小视频在线| 久久精品成人免费网站| 观看免费一级毛片| 色精品久久人妻99蜜桃| 日本精品一区二区三区蜜桃| 免费看十八禁软件| 亚洲熟妇中文字幕五十中出| 久久久久亚洲av毛片大全| 午夜久久久久精精品| 成人亚洲精品一区在线观看| 一区福利在线观看| 成人免费观看视频高清| 亚洲精华国产精华精| 国产色视频综合| 国产精品野战在线观看| 中文字幕高清在线视频| 免费在线观看日本一区| 不卡av一区二区三区| 欧美三级亚洲精品| 国产真人三级小视频在线观看| 亚洲成av片中文字幕在线观看| 亚洲性夜色夜夜综合| 亚洲av第一区精品v没综合| 国产成人影院久久av| 中文字幕精品亚洲无线码一区 | 曰老女人黄片| 黑人操中国人逼视频| 中文在线观看免费www的网站 | 久久精品国产99精品国产亚洲性色| 又紧又爽又黄一区二区| 国产精品久久久久久精品电影 | 亚洲精品国产区一区二| 午夜亚洲福利在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 亚洲精品中文字幕在线视频| 99久久无色码亚洲精品果冻| 波多野结衣巨乳人妻| 黄色女人牲交| 禁无遮挡网站| 久久九九热精品免费| 亚洲熟妇熟女久久| 午夜免费成人在线视频| 无限看片的www在线观看| 99re在线观看精品视频| 又紧又爽又黄一区二区| 又黄又粗又硬又大视频| 国产激情偷乱视频一区二区| 亚洲欧美日韩无卡精品| 在线观看66精品国产| 国产成年人精品一区二区| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 99久久无色码亚洲精品果冻| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 日韩一卡2卡3卡4卡2021年| 久久国产精品影院| 亚洲性夜色夜夜综合| 性欧美人与动物交配| 欧美中文日本在线观看视频| 久久香蕉激情| 亚洲成a人片在线一区二区| 丝袜人妻中文字幕| 国产国语露脸激情在线看| 国语自产精品视频在线第100页| 国产一区二区激情短视频| 亚洲第一电影网av| 国产亚洲精品第一综合不卡| 99热6这里只有精品| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 中文字幕最新亚洲高清| 亚洲自拍偷在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 欧美一级毛片孕妇| 69av精品久久久久久| 美女扒开内裤让男人捅视频| 日韩成人在线观看一区二区三区| 无人区码免费观看不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久久5区| 看免费av毛片| 在线免费观看的www视频| 国产亚洲欧美精品永久| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 亚洲国产精品999在线| 国产91精品成人一区二区三区| 黄片小视频在线播放| 欧美成人一区二区免费高清观看 | 国产亚洲欧美98| 50天的宝宝边吃奶边哭怎么回事| 美国免费a级毛片| 无限看片的www在线观看| 亚洲国产欧美日韩在线播放| 免费在线观看成人毛片| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 一级毛片高清免费大全| 男女床上黄色一级片免费看| 一本精品99久久精品77| 国产真人三级小视频在线观看| 国内精品久久久久久久电影| 久久精品人妻少妇| 久久性视频一级片| 免费无遮挡裸体视频| 天堂√8在线中文| 国产麻豆成人av免费视频| 久热爱精品视频在线9| 在线免费观看的www视频| 久久香蕉激情| av免费在线观看网站| 99久久久亚洲精品蜜臀av| 久久久国产欧美日韩av| 欧美又色又爽又黄视频| 日本免费a在线| 久久伊人香网站| 久久精品人妻少妇| 亚洲成av人片免费观看| 成人国产综合亚洲| 国产黄色小视频在线观看| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 久久人妻av系列| 草草在线视频免费看| 色综合欧美亚洲国产小说| 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 亚洲三区欧美一区| 亚洲五月天丁香| 又黄又粗又硬又大视频| 天天添夜夜摸| 久久久久免费精品人妻一区二区 | 国产精品永久免费网站| 国产又色又爽无遮挡免费看| 中出人妻视频一区二区| 搡老岳熟女国产| 亚洲一区高清亚洲精品| 18禁观看日本| 日本 欧美在线| 亚洲av成人一区二区三| 日本 av在线| 欧美日韩福利视频一区二区| 777久久人妻少妇嫩草av网站| 亚洲国产精品成人综合色| 美女国产高潮福利片在线看| 国产精品 国内视频| 国产精品免费视频内射| 日本 欧美在线| 国产黄片美女视频| 母亲3免费完整高清在线观看| 婷婷亚洲欧美| 亚洲五月天丁香| 一级黄色大片毛片| 国产成人影院久久av| 亚洲电影在线观看av| 成年人黄色毛片网站| 亚洲中文字幕日韩| 男人的好看免费观看在线视频 | 美女高潮喷水抽搐中文字幕| 免费在线观看日本一区| 国产精品九九99| 可以在线观看毛片的网站| 哪里可以看免费的av片| 啦啦啦观看免费观看视频高清| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品一区二区www| 亚洲性夜色夜夜综合| 黑人操中国人逼视频| 嫩草影院精品99| 中文字幕高清在线视频| 露出奶头的视频| 欧美最黄视频在线播放免费| 久久精品aⅴ一区二区三区四区| 在线观看免费午夜福利视频| 国产黄片美女视频| 欧美日韩中文字幕国产精品一区二区三区| 熟女少妇亚洲综合色aaa.| 精品国产亚洲在线| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 国产成人影院久久av| 亚洲 欧美 日韩 在线 免费| 麻豆成人午夜福利视频| 国产高清视频在线播放一区| x7x7x7水蜜桃| 亚洲真实伦在线观看| 在线av久久热| 午夜福利欧美成人| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 亚洲久久久国产精品| 日日爽夜夜爽网站| 一个人免费在线观看的高清视频| 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 在线观看免费视频日本深夜| 成人手机av| 亚洲精品中文字幕在线视频| 人人妻人人澡人人看| 波多野结衣高清无吗| 成年免费大片在线观看| 97人妻精品一区二区三区麻豆 | a级毛片在线看网站| 无限看片的www在线观看| 51午夜福利影视在线观看| 美女国产高潮福利片在线看| 黄片大片在线免费观看| 国产爱豆传媒在线观看 | 在线观看舔阴道视频| 丝袜美腿诱惑在线| 亚洲午夜精品一区,二区,三区| 亚洲五月天丁香| 亚洲熟女毛片儿| 久9热在线精品视频| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 亚洲国产精品999在线| 欧美日韩亚洲国产一区二区在线观看| 一区二区日韩欧美中文字幕| 一本精品99久久精品77| 变态另类丝袜制服| 亚洲国产欧美网| 日本免费a在线| 老熟妇乱子伦视频在线观看| 色播亚洲综合网| 亚洲精品一卡2卡三卡4卡5卡| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 非洲黑人性xxxx精品又粗又长| av天堂在线播放| 成年免费大片在线观看| av欧美777| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩无卡精品| 在线观看免费午夜福利视频| 久久婷婷成人综合色麻豆| 欧美在线一区亚洲| 黑人操中国人逼视频| 国产三级黄色录像| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 国产又色又爽无遮挡免费看| 久久久国产成人精品二区| 丝袜在线中文字幕| 欧美av亚洲av综合av国产av| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 一边摸一边做爽爽视频免费| 国产av不卡久久| 一级毛片精品| 色综合亚洲欧美另类图片| 成年免费大片在线观看| 久久精品人妻少妇| 久久香蕉激情| 久久婷婷成人综合色麻豆| 黄片大片在线免费观看| 国产精品免费视频内射| 国产精品 国内视频| 成年版毛片免费区| 日韩视频一区二区在线观看| 在线国产一区二区在线| 精品免费久久久久久久清纯| 他把我摸到了高潮在线观看| svipshipincom国产片| 搡老岳熟女国产| 99热6这里只有精品| 丝袜在线中文字幕| 亚洲五月天丁香| 亚洲一区中文字幕在线| 国产亚洲精品久久久久5区| 久久精品国产综合久久久| 露出奶头的视频| 日日摸夜夜添夜夜添小说| 国产成年人精品一区二区| 日本三级黄在线观看| 神马国产精品三级电影在线观看 | 观看免费一级毛片| 国产精品爽爽va在线观看网站 | 国产精品日韩av在线免费观看| 一本大道久久a久久精品| 中国美女看黄片| 韩国精品一区二区三区| 色尼玛亚洲综合影院| 女性生殖器流出的白浆| 757午夜福利合集在线观看| a级毛片在线看网站| 一级a爱视频在线免费观看| 日本 欧美在线| 淫妇啪啪啪对白视频| 无限看片的www在线观看| 国产一区二区激情短视频| 看片在线看免费视频| 国产午夜精品久久久久久| 高潮久久久久久久久久久不卡| 日本精品一区二区三区蜜桃| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 久久久久久久久免费视频了| 深夜精品福利| 国产99久久九九免费精品| av有码第一页| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 黑人操中国人逼视频| 91av网站免费观看| 精品福利观看| 99久久国产精品久久久| 草草在线视频免费看| 色综合婷婷激情| 视频在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产高清videossex| 久久久久久国产a免费观看| 欧美日韩精品网址| 99精品久久久久人妻精品| 日本 av在线| 精品高清国产在线一区| 母亲3免费完整高清在线观看| 久久精品人妻少妇| 国产片内射在线| 久久久久久大精品| 亚洲精品一卡2卡三卡4卡5卡| 美女 人体艺术 gogo| 精品国产美女av久久久久小说| 精品高清国产在线一区| cao死你这个sao货| 日韩欧美 国产精品| 中出人妻视频一区二区| 亚洲男人天堂网一区| 亚洲av成人一区二区三| 欧美成人一区二区免费高清观看 | 国产成人一区二区三区免费视频网站| 丁香欧美五月| 国产成人av激情在线播放| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 久久99热这里只有精品18| 成人精品一区二区免费| 亚洲精品中文字幕一二三四区| 亚洲精品中文字幕在线视频| www.精华液| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 国产熟女午夜一区二区三区| 精品国产一区二区三区四区第35| 麻豆一二三区av精品| 人成视频在线观看免费观看| 99国产极品粉嫩在线观看| 欧美大码av| 两个人视频免费观看高清| 亚洲成人久久性| 国产片内射在线| 18禁美女被吸乳视频| 亚洲专区中文字幕在线| 日韩欧美国产在线观看| 久久精品国产亚洲av高清一级| 嫩草影视91久久| 亚洲人成网站高清观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美性猛交黑人性爽| 久久香蕉精品热| 成熟少妇高潮喷水视频| 久久久久久久午夜电影| 亚洲国产高清在线一区二区三 | 亚洲真实伦在线观看| 人妻丰满熟妇av一区二区三区| 老鸭窝网址在线观看| 人人妻人人澡欧美一区二区| 日韩大尺度精品在线看网址| 最近最新免费中文字幕在线|