• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of pH-dependent Structure and Mass Transfer Characteristics of Polydopamine Membranes by Molecular Dynamics Simulation☆

    2014-07-25 11:29:34FushengPanRuisiXingZhongyiJiang
    Chinese Journal of Chemical Engineering 2014年10期

    Fusheng Pan,Ruisi Xing,Zhongyi Jiang,*

    Separation Science and Engineering

    Analysis of pH-dependent Structure and Mass Transfer Characteristics of Polydopamine Membranes by Molecular Dynamics Simulation☆

    Fusheng Pan1,2,Ruisi Xing1,2,Zhongyi Jiang1,2,*

    1Key Laboratory for Green Chemical Technology of Ministry of Education,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
    2Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China

    A R T I C L EI N F O

    Article history:

    Membranes

    Polydopamine

    Molecular dynamics simulation

    Free volume

    Diffusion

    Detailedatomistic structuresare constructed for polydopaminemembranescontainingdifferent amountsofcatechol and quinone groups to investigate the effect ofpH value inthe membrane casting solution on sorption and diffusion of small gas molecules(water and propylene)in the membranes.Interactions between dopamine oligomers are calculated,and it is found that the interactions decrease from?2356.52 kJ·mol?1in DOP-1 to?1586.69 kJ·mol?1in DOP-3 when all of the catechol groups are converted to quinone groups.The mobility of polymer segments and free volume properties of polydopamine membranes are analyzed.The sorption quantities of water and propylene in the membrane are calculated using Grand Canonical Monte Carlo method.The sorption results show that water adsorbed in DOP-1,DOP-2 and DOP-3 are 17.3,18.6 and 20.0 mg water per gram polymer,respectively,and no propylene molecule can be adsorbed.The diffusion behavior of water molecules in the membrane is investigated by molecular dynamics simulation.The diffusion coeff i cients of water molecules in DOP-1,DOP-2 and DOP-3 membranes are(1.80±0.52)×10?11,(3.40±0.64)×10?11and(4.50±0.92)×10?11m2·s?1,respectively.The predicted sorption quantities and diffusion coeff i cients of water and propylene in the membrane present the same trends as those from experimental results.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Inspired by the strong adhesion ability of mussel onto various surfaces,dopamine,a commercially available chemical containingcatechol and amine groups(origins of the extraordinarily strong adhesion[1,2]), hasbeenwidelyusedassurfacecoatingagentandimmobilizedinitiator to graft functionalgroupsforsurface modif i cation[3-6].Since it can adhere f i rmly onto the substrate and self-polymerize rapidly to form a dense,ultrathin f i lm,dopamine presents intrinsic advantage to be utilized as the dense active layer in composite membranes for separation. Composite membranes with polydopamine active layer(about 14 nm) on porous polysulfone(PS)hollow f i ber were fabricated and exhibited superior separation performance in the dehumidif i cation of propylene gas[7].Composite membranes with a thin polydopamine layer (<100 nm)on the porous PS substrate were utilized for pervaporative desulfurization and exhibited satisfactory separation performance[8]. Apolydopamine layerabout50nmwascoatedontoNaf i onmembranes as the methanol barrier in direct methanol fuel cell[9].The methanol crossover of the modif i ed membranes was dramatically suppressed by 79%from 3.14×10?6to about 0.65×10?6cm2·s?1,while the proton conductivity was decreased slightly.As a dense membrane,the separation performance relies heavily on the inter-chain interaction and the microstructure.

    Catechol groups play an important role in the redox reactions in the self-polymerization of dopamine[1,3,10].They are easily oxidized to quinone and can react with each other in an oxidative process under basic conditions.And quinone groups exhibit lower adhesion interaction than parent catechols[11].In the polymerization of dopamine,pH regulation is usually employed to manipulate its structure and performance of polydopamine[12],since pH of the dopamine solution can alter the equilibrium between catechol and quinone groups.At higher pH,more catechol groups of dopamine are deprotonated and oxidized to quinone groups[1].The intermolecular interaction,microstructure and separation performance of polydopamine are subsequently changed.However,inf l uences of pH on the structure and performance of polydopamine are poorly understood.

    It is ratherdiff i cult tocharacterizethestructuraland transport propertiesofpolydopaminemembranesbyexperimentalmethodbecauseof its ultra-thin thickness.Generally accepted alternative methods to characterize the homogenous membranes do not work either since polydopamine cannot form a free-standing f i lm.Molecular simulationhas been proved as a useful tool for addressing membrane material and transport phenomena in separation processes at molecular level [13-17].Herein,molecular simulation is used to describe how pH inf l uences the structure and performance of polydopamine.The models for polydopamine containing different amounts of catechol and quinone groups are constructed to simulate the membranes fabricated at different pH values.The interaction between dopamine oligomers within the polydopamine and its inf l uences on the segment mobility and free volume properties are examined.The sorption positions and amount of water/propylene are calculated by Grand Canonical Monte Carlo (GCMC)method.The diffusion of water molecules in the membranes is investigated by molecular dynamics(MD)simulation.The simulation results are compared with experimental results to check the validity of the simulation approach.

    2.Details of the Simulation

    Fig.1.Atomisticmodelsofpolydopaminewithdifferentratiosofcatecholandquinoneforms(a)oligomerofDOP-1,withfunctionalgroupsofcatecholgroups;(b)oligomerofDOP-2,with functional groupsof 50%catechol groupsand 50%quinonegroups;(c)oligomerof DOP-3,with functional groups of quinone groups;(d)DOP-1,amorphouscells of(a);(e)DOP-2,amorphous cells of(b);(f)DOP-3,amorphous cells of(c).

    2.1.Model construction

    Duetothecomplexityofthepolymerizationprocess,thestructureof polydopamineissubjecttodebateatpresent.However,itiswellaccepted that 5,6-dihydroxylindole is one of the main intermediate component in dopamine polymerization[10,18-20].In this study,based on Stark et al.'s study[21],dopamine oligomer is simplif i ed as a homopolymer comprised of 5,6-dihydroxyindole and its oxidation form 5,6-indole quinone in the redox polymerization.The oligomer,as the basic structural units,consists of 5 dopamine molecules and exhibits a platelet with lateral extents of 1.5-2.0 nm.

    Three models of dopamine oligomer with different amounts of catechol groups and quinone groups are developed as shown in Fig.1(a,b,c).Oxygen-containing functional groups on DOP-1 and DOP-3 are catechol groups and quinone groups,respectively,while those on DOP-2 are composed of 50%catechol groups and 50%quinone groups.It should be pointed out that the models only ref l ect the inf l uence tendency of pH on the structure of polydopamine,since the content of catechol and quinone groups at different pH values is unclear.

    A packing model,with an initial density of 1.68 g·cm?3[22]and containing 20 oligomers,is constructed by amorphous cell module using the combination of an algorithm developed by Theodorou and Suter[23]and thescanningmethod of Meirovitch[24].Periodic boundary conditions are applied to the cubic simulation box.

    2.2.Structure optimization and MD simulation procedure

    MD simulations are carried out using the Discover and Amorphous Cell module of Materials Studio,developed by Accelrys Software Inc. The COMPASS(condensed-phase optimization molecular potentials for atomistic simulation studies)force f i eld is used in this study.Nonbond cutoff distance of 0.950 nm(with a spline width of 0.100 nm and a buffer width of 0.050 nm)is employed to evaluate the nonbond interaction.Long-tail corrections to the energy due to the nonbond cutoff are employed in the dynamics simulation.The temperature and pressure are both controlled by the Berendsen method[25]with decay constant of 0.1 ps.The equations of motion are integrated with a time step of 1 fs for all dynamic runs.

    An optimization procedure is applied to the initially constructed atomistic structure as our previous work[26,27].A 2000-step energy minimization is performed f i rst to eliminate the undesirable contact (overlappingorclosecontact).Theannealingmethodisappliedtoovercome local energy minima and yield equilibrated conf i gurations with a globalenergyminimum.Inthismethod,themodels areheatedupstepwisefrom300Kto600Katintervalsof50K,andthencooledto300Kat intervals of 20 K.At each step a 250-ps NPT dynamics is applied to the cell.Afterwards,a 200 ps NPT(T=300 K,P=1.01×105Pa)dynamics is performed to obtain the equilibrium density.An additional 500 ps NVT(T=300 K)dynamics is performed on the endpoint of the NPTdynamics to obtain equilibrium molecular structures,and the atomic trajectory is recorded every picosecond for the subsequent analysis.

    Fig.2.Mean square displacement of polymer segments in polydopamine membranes.

    3.Results and Discussion

    3.1.Morphology of the optimized polydopamine models

    The morphologies of polydopamine after optimization are shown in Fig.1(d,e,f).The basic structural unit of polydopamine is a fragment of dopamine oligomers(like a fragment of a graphite sheet),or several fragments stacked together with~0.34 nm spacing.These basic structural units range between several nanometers and exhibit a multilayer structure.Polydopamine is based on a random packing of these multilayer structures.The optimized structure of polydopamine is consistent with experimental results[28].

    3.2.Interaction between dopamine oligomers

    The interaction energy(ΔE)between dopamine oligomers is calculated by the degree of overall oxidation that affords an optimal mixture of catechol and quinone groups.

    where Ebulkis the potential energy of polydopamine bulk system,n is thenumberof dopamine oligomers,and Eoligomeris thepotentialenergy of single oligomer.

    ΔEvaluesbetweendopamineoligomersinDOP-1,DOP-2andDOP-3 are?2356.52,?2301.76,and?1586.69 kJ·mol?1,respectively.High amount of polar groups(catechol groups,quinone groups,amine groups)on dopamine oligomers could form hydrogen bonds and polar group interaction with other oligomers,while π-electron conjugated structure in the dopamine oligomer will form strong π-π interaction among oligomers.Such strong π-π interactions drive oligomers to stack together and exhibit a multilayer structure as graphite.

    The interaction energies in polydopamine follow the order of DOP-1>DOP-2>DOP-3.The decrease of interaction energy is resulted from the increase content of quinone groups.The simulated results show that quinone-quinone interaction(?57.74 kJ·mol?1)is weaker than catechol-quinone interaction(?76.36 kJ·mol?1)and catecholcatechol interaction(?99.23 kJ·mol?1).The result is consistent with the single-molecule measurements by atomic force microscopy[11].

    Oxidation degree of catechol residues to corresponding quinones determines the bulk cohesiveness and the relative amount of catechol and quinone groups.At higher pH value,more quinone groups by oxidized catechols endow polydopamine with higher cohesiveness.Meanwhile,the weaker interaction energy of quinones than parent catechols lowers the interfacial adhesion ability[29].A balance between interfacial adhesion and bulk cohesiveness should be maintained by f i nding

    3.3.Segment mobility of polydopamine

    Segment mobility of the polymer controls the dynamic properties (generation and disappearance)of free volume voids within the membranes,and constitutes a key issue for transport properties[30,31].Segment mobility is investigated by examining the mean-square displacement(MSD)of polymer segment as a function of time.

    where ri(t)and ri(0)are the position of atom i at time t and 0,respectively,andthebracket denotestheensembleaverage,whichis obtained from averaging all atoms and all time origins t=0.

    Fig.2 shows the MSDs of polydopamine in the membranes.Larger slope of MSD curve ref l ects higher segmentmobility.In thestudied system,the change of segment mobility depends on the interaction between dopamine oligomers.In DOP-1,the high interaction among catecholgroupsreducesthesegmentmobilityofsurroundingpolymers. With the increasing content of quinone groups,the segment mobility is enhanced since theweakerattractive interactiondecreases theconf i nement effects among these oligomers.

    Fig.3.Fractional free volume(a)and cavity size distribution(b)of the polydopamine membranes.

    3.4.Free volume properties of the polydopamine membranes

    Free volume plays a crucial role in diffusion behavior of penetrant molecules in membranes.Positron annihilation spectroscopy(PAS)is commonlyemployed as a directapproach to probe free volume properties.In the experimental study,PAS analysis only indicates that thepolydopamine membranes possess a looser structure when fabricated athigherpHvalues.ToinvestigatehowpHvalue affects themicrostructure,the fractional free volume(FFV),size distribution of free volume voids and free volume morphology are analyzed.Free volume properties of polydopamine are analyzed by the Connolly surface method [26,27].Fig.3(a)showstheFFVofpolydopaminemembranesusingmolecular probes,with diameter ranging from 0.02 to 0.8 nm.The FFV probed by water and propylene,modeled by spheres with diameter 0.26 and 0.47 nm,respectively,are shown in Table 1.The FFV of the membranes follows the order of DOP-3>DOP-2>DOP-1,which indicates that higher pH induces a looser structure.The simulated results present the same tendency as the experimental PAS results[7].

    The FFV analysis indicates the overall free space in the membranes, but it cannot ref l ect the actual free volume voids through which the penetrant molecules pass.To solve such problem,size distribution of free volume voids is calculated.The volume(FV)of free volume voids between r?Δr and r+Δr is obtained by

    Table 1The FFV of polydopamine membranes obtained from geometrical analysis by water and propylene

    where FV(d?Δd)and FV(d+Δd)are the free volumes that are accessible for probes with diameter d?Δd and d+Δd,respectively.The interval of probe diameter,Δd,is set to 0.005 nm in this study.

    The size distribution of free volume voids in polydopamine membranes is shown in Fig.3(b).The diameter of free volume voids mostly is around 0.13 nm.The size distributions of Dop-2 and Dop-3 shift toward the right-handside in comparison tothat of Dop-1.Withtheincrease of pH in the fabrication process,smaller void region reduces and larger void region increases.The variation indicates that the polydopamine changes from tight to loose,which is more benef i cial for transport of penetrant molecules.From Fig.3(b),it can be observed that the intensity of void size larger than 0.45 nm approaches zero in DOP-1,while DOP-2 and DOP-3 provide a moderate intensity.

    Fig.4 shows the morphology maps of free volume voids accessible to water and propylene.Free volume voids are mainly created by ineff i cient packing or transient gaps among dopamine oligomers. The increase of FFV with pH is ascribed to the increasing amount and larger size of free volume voids by the weaker interactions among dopamine oligomers.The dispersion of water-accessible free volume voids in polydopamine is heterogeneous.The voids are much denser in the gaps among the multilayer structures than those in the multilayer structures.In the dense dispersion area,the free volume voids interconnect with neighboring ones and form water channels,especially in DOP-2 and DOP-3.Such water channels would provide a convenient pathway for diffusion of water molecules.On the contrary,much less propylene-accessible free volume voids are present in the polydopamine,always with longer distance.

    Fig.4.Morphology of free volume voids(bright region)accessible to water(a)and propylene(b)in polydopamine membranes.

    3.5.Sorption behavior of water/propylene in the membranes

    Sorption of water and propylene in polydopamine membranes is investigated by the GCMC method implemented in the Sorption module.The method of Metropolis et al.[32]is employed for accepting or rejecting conf i gurational moves(rotation and translation of sorbate molecules)as well as for sorbate insertion and deletion,in which the trial conf i gurations are generated without bias and the adsorbate structure is treated as rigid.A total of 10000000 steps are used.

    The GCMC simulation is conducted at a f i xed pressure of 350 kPa.The partial pressure of water and propylene is set as the experimental value (water mass content 0.5%).In the f i xed pressure simulation,the conf i gurations are sampled from a grand canonical ensemble,in which thefugacitiesofallcomponents,aswellasthetemperature,are fi xedasifthe framework is in open contact with an in fi nite sorbate reservoir with a fi xed temperature.The GCMC calculations are therefore carried out over the equilibrated con fi gurational snapshot of the membrane.

    The amountofwateradsorbedinDOP-1,DOP-2 and DOP-3 are17.3, 18.6 and 20.0 mg water per gram polymer,respectively.According to the simulation results,with the increase content of quinone groups in the membrane,the water uptake increases slightly.The sorption of water in the polymeric membranes is mainly governed by the polymer-penetrant interaction and adsorbed positions within the membranes.With the increasing content of quinone groups,the polydopamine-water interaction is lower,since quinone-water interaction(?58.16 kJ·mol?1)is lower than catechol-water interaction (?76.93 kJ·mol?1).Meanwhile,the larger FFV originated from the increasing content of quinone groups induces more adsorbed positions (as shown in Fig.5).Such two factors with opposite effects change the water sorption slightly.The calculated sorption amount of propylene in polydopamine is zero for all models of polydopamine membranes. Low polydopamine-propylene interaction and big size of propylene make it dif fi cult to be adsorbed.The calculated results prove the ultra high sorption selectivity of polydopamine membranes towards water vapor over propylene as in the experiment[7].

    3.6.Diffusion behavior of water/propylene in the membranes

    The diffusion coef fi cient D of water in equilibrated models of membranes is calculated from the slope of the MSD for long time by Einstein relation:

    Fig.5.Adsorbed position of water molecules in polydopamine membranes(atoms of polydopamine not shown).

    In the simulation,a certain amount penetrant molecules(according to the GCMC simulation)are inserted into the membrane models. The models are equilibrated using the same procedure as mentioned in Section 2.2.The diffusion runs are performed under the NVE conditions for 5 ns.The diffusion coeff i cient is an averaged value from all penetrant molecules.Due to the limitation of short calculation time, it is rather diff i cult to obtain exact value of diffusion coeff i cient. Therefore,this study simply offers the changing trends of diffusivity in different polydopamine membranes.

    The simulated diffusion coeff i cients of water molecules in DOP-1,DOP-2 and DOP-3 polydopamine membranes are(1.80±0.52)× 10?11,(3.40±0.64)×10?11,and(4.50±0.92)×10?11m2·s-1, respectively.The diffusion coeff i cient of water increases with the pH value in the fabrication process.The main factors determining the diffusion of water in the membranes are free volume properties,polymer segment mobility and polymer-water interaction. With the increase of pH,free volume voids are enlarged,the polymer segment mobility increases,and the polymer-water interaction decreases.All these factors enhance the diffusion of water.

    The spatial distribution of water in polydopamine membranes (shown in Fig.6)indicates that water molecules are not uniformly distributed within the membranes.Most water molecules are gathered in waterchannels(gapsamongmultilayerstructures)andquitelesslocate between dopamine oligomers in the multilayer structure.Diffusion coeff i cients of these two kinds of water molecules in the last 100 ps of thediffusion runare calculated.The results display that diffusion coeff icient of water molecules in the water channel(5.60×10?11m2·s-1)is muchlarger than that between oligomers(1.67×10?12m2·s-1).Plenty of water channels with high water permeability endow polydopamine membranes with high water vapor permeance.

    Fig.6.Snapshots of the spatial distribution of water in polydopamine membranes(atoms of polydopamine not shown).

    Although the size distribution of free volume in the membranes indicates that some free volume voids in DOP-2 and DOP-3 are larger than that of propylene,the diffusion behavior of propylene molecules cannot be achieved until a new free volume void generated near the free volume voids is occupied by propylene molecules,since the propylene-accessible free volume voids are always with large distance.Thegenerationofthefreevolumevoidsaccessibletopropyleneisrather diff i cult because of the low segment mobility of polydopamine.Hence, these polydopamine membranes fabricated at different pH values possess high diffusion selectivity.Thehigh diffusion selectivity and adsorption selectivity endow polydopamine membranes with high separation factors for water vapor over propylene.

    4.Conclusions

    A combination of GCMC and MD simulation methods is employed to investigate the structure properties and sorption-diffusion behavior of water/propylene in polydopamine membranes fabricated at different pH values in membrane casting solution.Higher content of quinone groups athigherpHvalue induces weakerinteraction amongdopamine oligomers,subsequently leading to higher polymer segment mobility and larger FFV.The morphology and distribution of free volume voids accessible to water and propylene are shown explicitly.Water channels are formed by interconnected free volume voids,especially in the gaps among the multilayer structures stacked by the dopamine oligomers. Such channels endow thepolydopaminewith high water vapor permeability.Moreover,appropriatesizedistributionoffreevolumevoidsand low polymersegmentmobility inhibit thepenetrationofpropyleneand ensurehighseparationfactors.Thecalculatedsorptionanddiffusioncoeff i cients of water molecules in the polydopamine membranes exhibit thesametrendsasthosefromtheexperimentalinvestigations.Itproves thatmolecularsimulationisausefultooltoprobethestructureatatomistic level and dynamic properties and transportation behavior in picosecond level.The visible structure of membranes and transportation process of penetrant molecules in the simulation are helpful to understand the transportation behavior of penetrant molecules in the membranes.

    Acknowledgments

    Gratitude is also expressed to R&D Center for Petrochemical Technology,and Advanced Instrumental Detecting&Analytical Center, School of Chemical Engineering and Technology,Tianjin University,for providing access to the Material Studio molecular modeling software.

    [1]H.Lee,S.M.Dellatore,W.M.Miller,P.B.Messersmith,Mussel-inspired surface chemistry for multifunctional coatings,Science 318(5849)(2007)426-430.

    [2]H.Lee,B.P.Lee,P.B.Messersmith,A reversible wet/dry adhesive inspired by mussels and geckos,Nature 448(7151)(2007)338-342.

    [3]J.Sedó,J.Saiz-Poseu,F.Busqué,D.Ruiz-Molina,Catechol-based biomimetic functional materials,Adv.Mater.25(5)(2013)653-701.

    [4]L.Q.Xu,W.J.Yang,K.G.Neoh,E.T.Kang,G.D.Fu,Dopamine-induced reduction and functionalization of graphene oxide nanosheets,Macromolecules 43(20)(2010) 8336-8339.

    [5]S.H.Yang,S.M.Kang,K.B.Lee,T.D.Chung,H.Lee,I.S.Choi,Mussel-inspired encapsulation and functionalization of individual yeast cells,J.Am.Chem.Soc.133(9)(2011) 2795-2797.

    [6]C.Y.Li,W.C.Wang,F.J.Xu,L.Q.Zhang,W.T.Yang,Preparation of pH-sensitive membranes via dopamine-initiated atom transfer radical polymerization,J.Membr.Sci. 367(1-2)(2011)7-13.

    [7]F.S.Pan,H.P.Jia,S.Z.Qiao,Z.Y.Jiang,J.T.Wang,B.Y.Wang,Y.R.Zhong,Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer,J.Membr.Sci.341(1-2)(2009)279-285.

    [8]B.Li,W.P.Liu,Z.Y.Jiang,X.Dong,B.Y.Wang,Y.R.Zhong,Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine),Langmuir 25(13) (2009)7368-7374.

    [9]J.T.Wang,L.L.Xiao,Y.N.Zhao,H.Wu,Z.Y.Jiang,W.Q.Hou,A facile surface modif i cation of Naf i on membrane by the formation of self-polymerized dopamine nanolayer to enhance the methanol barrier property,J.Power Sources 192(2)(2009) 336-342.

    [10]D.R.Dreyer,D.J.Miller,B.D.Freeman,D.R.Paul,C.W.Bielawski,Elucidating the structure of poly(dopamine),Langmuir 28(15)(2012)6428-6435.

    [11]H.Lee,N.F.Scherer,P.B.Messersmith,Single-molecule mechanics of mussel adhesion,Proc.Natl.Acad.Sci.103(35)(2006)12999-13003.

    [12]D.G.Barrett,D.E.Fullenkamp,L.H.He,N.Holten-Andersen,K.Y.C.Lee,P.B. Messersmith,pH-based regulation of hydrogel mechanical properties through mussel-inspired chemistry and processing,Adv.Funct.Mater.23(9)(2013) 1111-1119.

    [13]J.Zhao,J.Ma,J.Chen,F.S.Pan,Z.Y.Jiang,Experimental and molecular simulation investigations on interfacial characteristics of gelatin/polyacrylonitrile composite pervaporation membrane,Chem.Eng.J.178(2011)1-7.

    [14]Y.Jing,L.Wei,Y.D.Wang,Y.X.Yua,Molecular simulation of MCM-41:structural properties and adsorption of CO2,N2and f l ue gas,Chem.Eng.J.220(2013)264-275. [15]D.Hofmann,M.Heuchel,Y.Yampolskii,V.Khotimskii,V.Shantarovich,Free volume distributions in ultrahigh and lower free volume polymers:comparison between molecular modeling and positron lifetime studies,Macromolecules 35(6)(2002) 2129-2140.

    [16]D.L.Sun,J.Zhou,Molecular simulation of oxygen sorption and diffusion in the poly (lactic acid),Chin.J.Chem.Eng.21(3)(2013)301-309.

    [17]Q.Y.Yang,Q.Xu,B.Liu,C.L.Zhong,B.Smit,Molecular simulation of CO2/H2mixture separation inmetal-organic frameworks:effectof catenation and electrostatic interactions,Chin.J.Chem.Eng.17(5)(2009)781-790.

    [18]K.L.Double,L.Zecca,P.Costi,M.Mauer,C.Griesinger,S.Ito,D.Ben-Shachar,G. Bringmann,R.G.Fariello,P.Riederer,M.Gerlach,Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins,J. Neurochem.75(6)(2000)2583-2589.

    [19]A.Pezzella,L.Panzella,A.Natangelo,M.Arzillo,A.Napolitano,M.d'Ischia,5,6-Dihydroxyindole tetramers with“Anomalous”interunit bonding patterns by oxidative coupling of 5,5,6,6-tetrahydroxy-2,7-biindolyl:emerging complexities on the way toward an improved model of eumelanin buildup,J.Org.Chem.72(24) (2007)9225-9230.

    [20]J.H.Waite,Mussel power,Nat.Mater.7(1)(2008)8-9.

    [21]K.B.Stark,J.M.Gallas,G.W.Zajac,J.T.Golab,S.Gidanian,T.P.McIntire,J.Farmer, Effect of stacking and redox state on optical absorption spectra of melaninscomparison of theoretical and experimental results,J.Phys.Chem.B 109(5) (2005)1970-1977.

    [22]R.L.Davidson,Handbook of Water-soluble Gums and Resins,Mac.Graw-Hill,New York,1980.

    [23]T.D.N.Heodorou,U.W.Suter,Detailed molecular structure of a vinyl polymer, Macromolecules 18(1985)1467-1478.

    [24]H.Meirovitch,Computer simulation of self-avoiding walks:testing the scanning,J. Chem.Phys.79(1)(1983)502-508.

    [25]H.J.C.Berendsen,J.P.M.Postma,W.F.Funsteren,Molecular dynamics with coupling to an external bath,J.Chem.Phys.81(8)(1984)3684-3690.

    [26]F.S.Pan,F.B.Peng,Z.Y.Jiang,Diffusion behavior of benzene/cyclohexane molecules in poly(vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation,Chem.Eng.Sci.62(3)(2007)703-710.

    [27]F.S.Pan,J.Ma,L.Cui,Z.Y.Jiang,M.H.Zhang,Water vapor/propylene sorption and diffusion behavior in PVA-P(AA-AMPS)blend membranes by GCMC and MD simulation,Chem.Eng.Sci.64(24)(2009)5192-5197.

    [28]J.M.Gallas,K.C.Littrell,S.Seifert,G.W.Zajac,P.Thiyagarajan,Solution structure of copper ion-induced molecular aggregates of tyrosine melanin,Biophys.J.77(2) (1999)1135-1142.

    [29]M.Yu,T.J.Deming,Synthetic polypeptide mimics of marine adhesives,Macromolecules 31(15)(1998)4739-4745.

    [30]N.C.Karayiannis,V.G.Mavrantzas,D.N.Theodorou,Molecular simulation of permeation of small penetrants through membranes.1.Diffusion coeff i cients,Macromolecules 27(16)(1994)4498-4508.

    [31]C.Nagel,E.Schmidtke,K.Gunther-Schade,D.Hofmann,D.Fritsch,T.Strunskus,Free volume distributions in glassy polymer membranes:comparison between molecular modeling and experiments,Macromolecules 33(6)(2000)2242-2248.

    [32]N.Metropolis,A.W.Rosenbluth,M.N.Rosenbluth,A.H.Teller,Equation of state calculations by fast computing machines,J.Chem.Phys.21(1953)1087-1092.

    14 December 2013

    ☆Supported by the National Science Fund for Distinguished Young Scholars (21125627),the National Natural Science Foundation of China(21306131),Specialized Research Fund for the Doctoral Program of Higher Education(20120032120009),Seed Foundation of Tianjin University,and the Programme of Introducing Talents of Discipline to Universities(B06006).

    *Corresponding author.

    E-mail address:zhyjiang@tju.edu.cn(Z.Jiang).

    http://dx.doi.org/10.1016/j.cjche.2014.09.014

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 2 April 2014

    Accepted 9 April 2014

    Available online 16 September 2014

    国产精品成人在线| 久久久久久久久中文| 男女高潮啪啪啪动态图| 国产精品一区二区免费欧美| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av高清不卡| 无遮挡黄片免费观看| 88av欧美| 国产一区二区激情短视频| 欧美在线一区亚洲| 国产欧美日韩综合在线一区二区| 黑人猛操日本美女一级片| 日日夜夜操网爽| 黄色成人免费大全| 伊人久久大香线蕉亚洲五| 精品久久久久久,| 久久天堂一区二区三区四区| 日本精品一区二区三区蜜桃| 18禁美女被吸乳视频| 亚洲五月天丁香| 真人一进一出gif抽搐免费| 成人三级做爰电影| 亚洲精品久久午夜乱码| 97人妻天天添夜夜摸| 大型黄色视频在线免费观看| 婷婷六月久久综合丁香| 天堂动漫精品| 黄色视频不卡| 极品教师在线免费播放| 99国产精品一区二区蜜桃av| 国产av又大| 色综合欧美亚洲国产小说| 黄色怎么调成土黄色| 老熟妇乱子伦视频在线观看| ponron亚洲| 男女做爰动态图高潮gif福利片 | 成人亚洲精品av一区二区 | 欧美日本中文国产一区发布| 天堂中文最新版在线下载| 这个男人来自地球电影免费观看| 女警被强在线播放| 亚洲欧洲精品一区二区精品久久久| 黄色毛片三级朝国网站| 国产亚洲精品久久久久久毛片| 91成人精品电影| 长腿黑丝高跟| 18美女黄网站色大片免费观看| 久久久精品国产亚洲av高清涩受| 国产精品久久电影中文字幕| 免费一级毛片在线播放高清视频 | 动漫黄色视频在线观看| 国产亚洲精品第一综合不卡| 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 欧美精品一区二区免费开放| 法律面前人人平等表现在哪些方面| 50天的宝宝边吃奶边哭怎么回事| 国产成+人综合+亚洲专区| 黄色 视频免费看| 久热这里只有精品99| 精品久久久久久久毛片微露脸| 久久亚洲真实| 最新在线观看一区二区三区| 国产av一区在线观看免费| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久久成人av| 999久久久精品免费观看国产| 午夜免费成人在线视频| 亚洲成av片中文字幕在线观看| 久久精品影院6| 国产一区二区在线av高清观看| 欧美激情高清一区二区三区| cao死你这个sao货| 日韩大码丰满熟妇| e午夜精品久久久久久久| 久久伊人香网站| 精品卡一卡二卡四卡免费| 国产精品国产高清国产av| 国产又爽黄色视频| 99riav亚洲国产免费| 欧美大码av| 日韩中文字幕欧美一区二区| 啦啦啦 在线观看视频| 两性夫妻黄色片| 午夜免费鲁丝| 自线自在国产av| 国产成人精品在线电影| 亚洲欧美精品综合久久99| 岛国在线观看网站| 国产精品久久久人人做人人爽| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 天天躁夜夜躁狠狠躁躁| 久久人妻熟女aⅴ| 精品日产1卡2卡| 午夜激情av网站| 他把我摸到了高潮在线观看| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 久久久久久人人人人人| 国内毛片毛片毛片毛片毛片| 精品久久久久久成人av| 热re99久久精品国产66热6| 亚洲精品美女久久av网站| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 亚洲国产精品sss在线观看 | 美女福利国产在线| 天天影视国产精品| 18美女黄网站色大片免费观看| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 在线天堂中文资源库| 18禁裸乳无遮挡免费网站照片 | 免费久久久久久久精品成人欧美视频| 色综合欧美亚洲国产小说| 黄色a级毛片大全视频| 午夜日韩欧美国产| 9热在线视频观看99| 日韩精品青青久久久久久| 国产高清激情床上av| a级毛片在线看网站| 欧美大码av| 女人被躁到高潮嗷嗷叫费观| 亚洲片人在线观看| 欧美日韩亚洲国产一区二区在线观看| 操出白浆在线播放| 真人一进一出gif抽搐免费| 亚洲男人的天堂狠狠| 国产成人精品久久二区二区免费| 国产亚洲av高清不卡| 国产成人系列免费观看| 桃红色精品国产亚洲av| 男男h啪啪无遮挡| 色在线成人网| 午夜免费激情av| 亚洲 欧美一区二区三区| 神马国产精品三级电影在线观看 | 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片 | 精品一区二区三区四区五区乱码| 9热在线视频观看99| 国产高清激情床上av| 精品国产美女av久久久久小说| 亚洲色图综合在线观看| 亚洲欧美精品综合久久99| 日韩一卡2卡3卡4卡2021年| 欧美另类亚洲清纯唯美| 国产亚洲精品一区二区www| 九色亚洲精品在线播放| 国产深夜福利视频在线观看| www.999成人在线观看| 91国产中文字幕| 国产aⅴ精品一区二区三区波| 一边摸一边抽搐一进一出视频| 午夜精品国产一区二区电影| 亚洲激情在线av| 嫩草影院精品99| 丝袜美腿诱惑在线| 这个男人来自地球电影免费观看| 91麻豆av在线| 免费av中文字幕在线| 欧美中文日本在线观看视频| 青草久久国产| 欧美乱妇无乱码| 欧美成人免费av一区二区三区| 精品久久久久久久久久免费视频 | 首页视频小说图片口味搜索| 伦理电影免费视频| 九色亚洲精品在线播放| 国产欧美日韩一区二区三| 香蕉丝袜av| 桃红色精品国产亚洲av| 中文字幕色久视频| 久久人妻av系列| 一边摸一边抽搐一进一出视频| 99久久人妻综合| 日本黄色日本黄色录像| 高清av免费在线| 亚洲精品在线美女| 欧美成人性av电影在线观看| 欧美久久黑人一区二区| 欧美在线黄色| 欧美精品一区二区免费开放| 色老头精品视频在线观看| 亚洲第一青青草原| 精品久久久久久电影网| 国产精品99久久99久久久不卡| 亚洲熟妇中文字幕五十中出 | 久久婷婷成人综合色麻豆| 欧美一区二区精品小视频在线| 色综合婷婷激情| 高清欧美精品videossex| 亚洲欧美激情在线| avwww免费| 欧美激情 高清一区二区三区| 搡老岳熟女国产| 免费女性裸体啪啪无遮挡网站| 久99久视频精品免费| 脱女人内裤的视频| 国产精品亚洲一级av第二区| 国产又色又爽无遮挡免费看| 免费人成视频x8x8入口观看| 国产成人精品久久二区二区免费| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 男女下面插进去视频免费观看| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 一区二区三区精品91| netflix在线观看网站| 久久精品国产亚洲av香蕉五月| 操出白浆在线播放| 精品国产亚洲在线| 亚洲av熟女| 亚洲情色 制服丝袜| 无遮挡黄片免费观看| 午夜精品在线福利| 日韩国内少妇激情av| 99国产精品免费福利视频| 大码成人一级视频| 日韩欧美国产一区二区入口| 后天国语完整版免费观看| 欧美性长视频在线观看| 久久久国产精品麻豆| 国产av一区在线观看免费| 99国产极品粉嫩在线观看| 99riav亚洲国产免费| 午夜福利影视在线免费观看| 18禁国产床啪视频网站| 校园春色视频在线观看| 91成人精品电影| 天天躁狠狠躁夜夜躁狠狠躁| 热re99久久国产66热| 国产精品乱码一区二三区的特点 | 老司机深夜福利视频在线观看| 乱人伦中国视频| 国产精品爽爽va在线观看网站 | 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 日韩精品青青久久久久久| 亚洲一区二区三区欧美精品| 香蕉久久夜色| 国产欧美日韩精品亚洲av| 成年女人毛片免费观看观看9| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 窝窝影院91人妻| 在线观看免费视频网站a站| 国产麻豆69| 动漫黄色视频在线观看| 中国美女看黄片| 咕卡用的链子| 亚洲久久久国产精品| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| av免费在线观看网站| 嫩草影院精品99| 高潮久久久久久久久久久不卡| 精品国产一区二区三区四区第35| 99精品久久久久人妻精品| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| xxx96com| 国产高清激情床上av| e午夜精品久久久久久久| 丝袜在线中文字幕| 成年人黄色毛片网站| 国产乱人伦免费视频| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 日本免费一区二区三区高清不卡 | 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲| 欧美中文日本在线观看视频| 伊人久久大香线蕉亚洲五| 成人手机av| 欧美日韩精品网址| 51午夜福利影视在线观看| 精品高清国产在线一区| 国产成年人精品一区二区 | 天堂√8在线中文| √禁漫天堂资源中文www| 免费看a级黄色片| 波多野结衣一区麻豆| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 亚洲av片天天在线观看| 国产精品九九99| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 大码成人一级视频| 日韩成人在线观看一区二区三区| 精品一区二区三区四区五区乱码| 黑人巨大精品欧美一区二区蜜桃| 精品熟女少妇八av免费久了| 欧美精品亚洲一区二区| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| av视频免费观看在线观看| www国产在线视频色| 成人国产一区最新在线观看| 久久九九热精品免费| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 成在线人永久免费视频| 欧美日韩国产mv在线观看视频| 欧美日本中文国产一区发布| av国产精品久久久久影院| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 国产91精品成人一区二区三区| 午夜成年电影在线免费观看| 男女做爰动态图高潮gif福利片 | 精品高清国产在线一区| 淫秽高清视频在线观看| 一级毛片高清免费大全| 久久久水蜜桃国产精品网| 亚洲在线自拍视频| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 18禁国产床啪视频网站| 9色porny在线观看| 99国产精品免费福利视频| 久久久国产一区二区| 成人三级黄色视频| av网站在线播放免费| 亚洲国产毛片av蜜桃av| 婷婷丁香在线五月| 午夜a级毛片| 国产亚洲欧美精品永久| 久热这里只有精品99| 亚洲avbb在线观看| 国产一区在线观看成人免费| 国产精品久久电影中文字幕| 丰满的人妻完整版| xxx96com| 国产一区二区三区综合在线观看| 免费一级毛片在线播放高清视频 | 一进一出抽搐动态| 神马国产精品三级电影在线观看 | 黄色女人牲交| 久久午夜综合久久蜜桃| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 国产一区二区三区综合在线观看| 黄色毛片三级朝国网站| 嫩草影院精品99| 国产亚洲精品综合一区在线观看 | 午夜激情av网站| 免费搜索国产男女视频| 精品少妇一区二区三区视频日本电影| 久久精品91无色码中文字幕| 成年版毛片免费区| 麻豆av在线久日| 亚洲精品一卡2卡三卡4卡5卡| 最近最新免费中文字幕在线| 黑人巨大精品欧美一区二区mp4| 亚洲五月天丁香| 国产精品免费视频内射| 99riav亚洲国产免费| 亚洲成人免费电影在线观看| 国产欧美日韩一区二区精品| 国产欧美日韩一区二区三区在线| aaaaa片日本免费| 新久久久久国产一级毛片| 免费在线观看亚洲国产| 丁香欧美五月| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 午夜a级毛片| 夫妻午夜视频| 免费在线观看完整版高清| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一二三| 亚洲情色 制服丝袜| 十八禁网站免费在线| 可以在线观看毛片的网站| 在线天堂中文资源库| 在线观看免费高清a一片| 免费高清在线观看日韩| 高清欧美精品videossex| а√天堂www在线а√下载| 欧美性长视频在线观看| 久久精品91无色码中文字幕| 不卡一级毛片| 久久这里只有精品19| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 1024香蕉在线观看| 亚洲精品久久午夜乱码| 淫秽高清视频在线观看| 国产精品乱码一区二三区的特点 | 国产精华一区二区三区| 国产精品亚洲一级av第二区| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 午夜影院日韩av| 人成视频在线观看免费观看| 久久午夜综合久久蜜桃| 麻豆久久精品国产亚洲av | avwww免费| 老鸭窝网址在线观看| 人人妻人人添人人爽欧美一区卜| 搡老岳熟女国产| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 天堂动漫精品| 夫妻午夜视频| 午夜免费成人在线视频| av福利片在线| 99久久久亚洲精品蜜臀av| 一区在线观看完整版| 老熟妇仑乱视频hdxx| 久久香蕉激情| 久久久国产欧美日韩av| 免费av中文字幕在线| 宅男免费午夜| 在线观看免费高清a一片| 欧美日韩亚洲综合一区二区三区_| 老司机深夜福利视频在线观看| 欧美在线一区亚洲| 黄网站色视频无遮挡免费观看| 欧美乱妇无乱码| 国产精品综合久久久久久久免费 | 中文字幕色久视频| 男女做爰动态图高潮gif福利片 | 欧美 亚洲 国产 日韩一| 88av欧美| 91精品国产国语对白视频| 丝袜美腿诱惑在线| 欧美日韩瑟瑟在线播放| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 久久午夜亚洲精品久久| 99久久人妻综合| 女人被狂操c到高潮| 免费少妇av软件| 正在播放国产对白刺激| 人人妻人人爽人人添夜夜欢视频| 中文字幕av电影在线播放| 一个人免费在线观看的高清视频| 国产亚洲精品一区二区www| 久久精品国产亚洲av高清一级| 777久久人妻少妇嫩草av网站| 18禁裸乳无遮挡免费网站照片 | 99国产精品99久久久久| 免费高清在线观看日韩| 亚洲色图av天堂| 1024视频免费在线观看| 国产高清视频在线播放一区| 色婷婷av一区二区三区视频| 精品国产一区二区三区四区第35| 久久国产精品人妻蜜桃| 国产亚洲欧美在线一区二区| 一本大道久久a久久精品| 一夜夜www| 国产视频一区二区在线看| 久久香蕉激情| 亚洲国产精品999在线| 日本三级黄在线观看| 亚洲男人天堂网一区| 啦啦啦在线免费观看视频4| 国产av精品麻豆| 亚洲午夜精品一区,二区,三区| 99riav亚洲国产免费| 午夜视频精品福利| 中文字幕色久视频| 免费在线观看完整版高清| xxx96com| a级片在线免费高清观看视频| 成人亚洲精品av一区二区 | 亚洲国产精品sss在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产又爽黄色视频| 国产成人av教育| 日本黄色视频三级网站网址| 美女高潮到喷水免费观看| 99精品欧美一区二区三区四区| 国产黄色免费在线视频| 美女国产高潮福利片在线看| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 深夜精品福利| 亚洲精品国产色婷婷电影| av欧美777| 婷婷丁香在线五月| avwww免费| www.熟女人妻精品国产| 午夜免费观看网址| 久久国产精品人妻蜜桃| 久久精品影院6| xxxhd国产人妻xxx| 亚洲久久久国产精品| 脱女人内裤的视频| 日韩欧美三级三区| 久久久精品国产亚洲av高清涩受| 神马国产精品三级电影在线观看 | 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 别揉我奶头~嗯~啊~动态视频| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 亚洲精品中文字幕在线视频| 国产精品偷伦视频观看了| 国产亚洲精品久久久久久毛片| 欧美成狂野欧美在线观看| 不卡av一区二区三区| 国产一区二区三区综合在线观看| xxx96com| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色 | 精品日产1卡2卡| avwww免费| 最新美女视频免费是黄的| 18禁国产床啪视频网站| 怎么达到女性高潮| 亚洲熟妇熟女久久| 久久久久久久久中文| 国产免费现黄频在线看| 欧美乱码精品一区二区三区| 国产精品自产拍在线观看55亚洲| 精品卡一卡二卡四卡免费| 极品教师在线免费播放| 又黄又粗又硬又大视频| 亚洲av熟女| 少妇 在线观看| 麻豆国产av国片精品| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 日韩精品青青久久久久久| 国产成人av教育| 午夜影院日韩av| 日本三级黄在线观看| 国产成年人精品一区二区 | 美女高潮喷水抽搐中文字幕| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 午夜亚洲福利在线播放| 欧美激情久久久久久爽电影 | 国产成人精品久久二区二区91| 精品福利观看| 超色免费av| 国产99白浆流出| 日本一区二区免费在线视频| 亚洲伊人色综图| 又紧又爽又黄一区二区| 亚洲激情在线av| 黑人欧美特级aaaaaa片| av有码第一页| 搡老熟女国产l中国老女人| 欧美激情高清一区二区三区| 日韩免费高清中文字幕av| 国产精品爽爽va在线观看网站 | 国产高清videossex| 在线观看一区二区三区激情| 大码成人一级视频| 男人舔女人下体高潮全视频| 午夜成年电影在线免费观看| 国产精品香港三级国产av潘金莲| 精品久久久久久成人av| 久热这里只有精品99| 欧美大码av| 啦啦啦 在线观看视频| 国产成人精品久久二区二区免费| 天天添夜夜摸| 国产精品久久久久成人av| 亚洲精华国产精华精| 久久精品91蜜桃| 久久这里只有精品19| 久久国产乱子伦精品免费另类| 免费久久久久久久精品成人欧美视频| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 国产亚洲欧美在线一区二区| 一本综合久久免费| 一个人观看的视频www高清免费观看 | 亚洲第一青青草原| 看片在线看免费视频| 久久人妻熟女aⅴ| 亚洲人成网站在线播放欧美日韩| 成年人黄色毛片网站| 男人舔女人下体高潮全视频| 精品国产国语对白av| 久久精品亚洲av国产电影网| 男人舔女人下体高潮全视频| 欧美日韩国产mv在线观看视频| 看黄色毛片网站| 麻豆成人av在线观看| 女人精品久久久久毛片| 久久久水蜜桃国产精品网| 欧美精品亚洲一区二区| 十分钟在线观看高清视频www| 欧美日本中文国产一区发布| 777久久人妻少妇嫩草av网站| 99精品久久久久人妻精品| 精品人妻在线不人妻| 亚洲专区字幕在线| 午夜精品在线福利| 黄色女人牲交| 欧美性长视频在线观看|