• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics for Preparation of K2Ti2O5Using TiO2Microparticles and Nanoparticles as Precursors☆

    2014-07-25 11:29:34HanbingHeChangLiuXiaohuaLu
    Chinese Journal of Chemical Engineering 2014年10期

    Hanbing He,Chang Liu,Xiaohua Lu,*

    Catalysis,Kinetics and Reaction Engineering

    Kinetics for Preparation of K2Ti2O5Using TiO2Microparticles and Nanoparticles as Precursors☆

    Hanbing He1,2,Chang Liu1,Xiaohua Lu1,*

    1State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing University of Technology,Nanjing 210009,China2Division of Energy Science,Lule? University of Technology,Lule? 971 87,Sweden

    A R T I C L EI N F O

    Article history:

    Solid-state

    Kinetics

    Particle

    Reaction

    Non-linear regression

    The formation mechanism of K2Ti2O5was investigated with TiO2microparticles and nanoparticles as precursors by the thermogravimetric(TG)technique.A method of direct multivariate non-linear regression was applied for simultaneouscalculationofsolid-statereactionkineticparameters fromTGcurves.TGresultsshowmoreregular decrease from initial reaction temperature with TiO2nanoparticles as raw material compared with TiO2microparticles,while mass losses f i nish at similar temperatures under the experimental conditions.From the mechanism and kinetic parameters,the reactions with the two materials are complex consecutive processes,and reaction rate constants increase with temperature and decrease with conversion.The reaction proceedings could be signif i cantly hindered when the diffusion process of reactant species becomes rate-limiting in the later stage of reaction process.The reaction active sites on initial TiO2particles and formation of product layers may be responsible to the changes of reaction rate constant.The calculated results are in good agreement with experimental ones.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Material synthesis by solid-state reactions has a long history.In recent years,many synthesis methods such as chemical vapor deposition (CVD)[1,2],solvothermal[3,4],and template methods[5]for preparation of nanomaterials have been developed.Some advanced materials are obtained by a solid-state reaction because of its advantages,including low cost and easy large-scale preparation[6,7].Smaller particle size of raw materials results in lower starting temperature[8].Many methods,such as milling[9]and ultrasonic methods[10],have been used to obtain small particles,though they increase the energy consumption.

    Accurate description of reaction rates is of value to determine appropriate process conditions[11].Attempts for incorporating particle-size distribution in the kinetic equation have been made,but the kinetic analysis is oversimplif i ed for solid-state reaction process,which is complex and usually involves multi-step reactions.The kinetic analysis on such solid-state reactions is challenging.Each individual process should be determined for a complete kinetic description of the overall reaction[12].

    A large number of analytical methods are available for determining the kinetic parameters of solid-state reactions,including isoconversional or model-free method[13,14],model f i tting procedures[15],master plots[16],nonparametric analysis[17],and combined kinetic analysis [18,19].A method has been proposed by Perejón et al.[12],which involves the deconvolution of individual processes from the overall differential kinetic curves and kinetic analysis for discrete processes using a combined kinetic analysis.In general,for complex reaction processes, nonlinear regression methods are commonly used,in which the overall reaction is the sum of individual reactions with constant activation parameters[20].

    Many kinetic parameters of solid-state reactions have been obtained by non-linear regression.Wang et al.[21]showed that the method is applicable for the calculation of kinetic parameters from overlapping processes for the reaction of carbonaceous materials with NO,O2and NO+O2.Ge?wein and Binder[22]investigated the oxidation kinetics of ball milled ZrAl3powder and determined the kinetic parameters.Budrugeac and Segal[23]determined the mechanism and corresponding kinetic parameters,checked the thermo-oxidative degradation of an epoxy resin,and predicted the thermal lifetime of the material.

    K2Ti2O5attracts attentions because of its high catalytic activity and photoluminescence[24,25].Our previous study has shown that mesoporous f i brous titania with large specif i c surface area[26]and H2Ti8O17nanorods with high photocatalytic activity[27]can be prepared using K2Ti2O5as a precursor.K2Ti2O5is usually formed by a solid-state reaction,with a layered structure.However,the kinetics forthe preparation of K2Ti2O5has not been reported because of the complexity of process,which is required for understanding the solid-state reaction[28].

    Our previous work has exhibited the use of hydrous titanium dioxide(TiO2·nH2O),which transforms to anatase nanoparticles after heatingand decreases theinitialreaction temperaturewith K2CO3compared to the anatase-K2CO3system.Here we take the synthesis of K2Ti2O5as an example to study the kinetic mechanism and equation of solid-state reaction by using TiO2(anatase)nanoparticles and microparticles as starting materials.The non-isothermal kinetics of the solidstate reaction between TiO2and K2CO3is studied by means of thermogravimetric analysis.

    2.Theory

    2.1.Model-free estimation of activation energy

    The kinetic equation for solid-state reaction under non-isothermal conditions is usually expressed as

    where α represents the conversion of solid reactant,Eais the activation energy,t is the time,A is the Arrhenius pre-exponential factor,T is the reactiontemperature,Ris thegas constant,andf(α)is a kinetic function related to the reaction mechanism,which depends on particle shapes and driving forces.The most extensively used ones for solid-state processes are given in Table 1[29].

    Theconversionαcanbecalculatedfromthemassloss(evolvedCO2)

    wherem0isthestartingmass,mtisthemassattimet,andmfisthemass after a complete reaction.

    In experiments,different heating ways can be used,the most common ones being isothermal,linear heating,modulated temperature, and sample-controlled[30].The reaction is usually carried out under control with temperature increasing continuously according to a predetermined program so that more information can be obtained[31]. With the heating rate β=dT/dt,Eq.(1)takes the following form

    The reaction activation energy is a function of temperature and the extent of conversion for a process involving several steps.The modelfree methods allow for evaluating the Arrhenius parameters without choosing the reaction model and are known as the Flynn-Ozawa-Wall (FWO)method and Friedman method.

    The Flynn-Ozawa-Wall equation is[32]

    where g(α)is the integral form of mechanism function. The Friedman equation is[33]

    where dα/dt is the rate of conversion and f(α)is the differential form of mechanism function.

    Thus the activation energy at a constant α value,Ea,can be determined from the slope of curves,the plot of the left-hand side of Eqs.(4)or(5)versus 1/T.

    2.2.Determination of kinetic model by means of multiple non-linear regression

    Themultiplenon-linearregression(NetzschThermokinetics)makes the assumption that the model parameters are priori identical for all measurements and determines the parameters in a simultaneous analysis.The parameters are determined via a hybrid regularized Gauss-Newton method[30].It allows a direct f i tting of the model to experimental data without a transformation,which would distort the error andconsequentlytheresult[23,30].Ifthequalityoff i ttingisinsuff i cient withthegivenmodel,themodelshouldbeimprovedthroughextension to multi-step reaction processes with different combinations.

    3.Experimental

    3.1.Sample preparation

    Titania(TiO2,anatase)microparticles and potassium carbonate (K2CO3)purchased from Shanghai Linfeng Chemical Reagent Co.,Ltd. (China)andtitania(TiO2,anatase)nanoparticlespurchasedfrom Hangzhou Wanjing New Material Co.,Ltd.(China)were used as raw materials,which were in chemical and reagent grade.Stoichiometric quantity of K2CO3and TiO2particles in two sizes was mixed as a paste-like substance using deionized water and dried in an oven at 60°C for 24 h.The properties of TiO2microparticles and nanoparticles are given in Table 2.

    Table 1f(α)functions for common mechanisms in heterogeneous kinetics

    Table 2Properties of raw materials

    3.2.Measurements

    The non-isothermalkineticsofthesolid-statereactionbetweenTiO2and K2CO3was studied by means of thermogravimetric analysis,which iswidelyusedinthef i eldofsolid-statereactionkinetics,withTG/c-DTA (Netzsch,Germany).The mixture of 6-7 mg washeated to 950°Cat 10, 15,20 and 25°C·min-1separately.All TG experiments were performed at a 20 ml/min f l ow rate of N2.

    X-ray diffraction(XRD)patterns were collected on a Bruker D8 Advance powder diffractometer using a Ni-f i ltered Cu Kαradiation source at 40 kV and 20 mA.

    4.Results and Discussion

    4.1.Model-free estimation of activation energy

    Fig.1 shows the TG curves of different samples measured in the N2atmosphere with the heating rates of 10,15,20 and 25°C·min-1.Continuous mass loss is observed for the mixtures of A90and K2CO3, which is considered as coupled dehydration and reaction.It is diff i cult to determine the initial reaction temperature directly.The theoretical mass loss can be calculated combined with experimental measurement to obtain the initial reaction temperature.There are two obvious mass loss stages for the mixtures of A10 and K2CO3.The mass loss in 100-200°C is due to the dehydration and that in 500-850°C is by the reaction of A10and K2CO3.The use of nano-TiO2reduces the initial reaction temperature to form K2Ti2O5.Since mass loss processes f i nish at almost the same temperature for both reactions,the complete conversation could be achieved under similar conditions.

    A series of dynamic scans with differentheatingrates results in a set of data,which present the same degree of conversion(α)at different temperatures.Eqs.(4)and(5)areusedtodeterminethekinetic parameters without assuming a certain model and the results are shown in Fig.2.For nanoparticles A90,the activation energy increases with the conversion at the beginning of the reaction(α<0.2)and then changes about the value of 180 kJ·mol-1until α>0.8.For microparticles A10, the activation energy is almost constant,210 kJ·mol-1,at conversions lessthan0.7andthenincreases.Theloweractivationenergywithnanoparticles suggests that they are easier to form products in the initial reaction.The activation energy has different values and depends on α, which may be due to the mass or heart transfer,or because of parallel and/or successive reactions[34].The weight loss has the same value at different heating rates,so successive reactions occur for both TiO2materials[35].Therefore,the reaction processes are complex.

    Fig.1.TG curves of K2CO3-TiO2mixtures under nitrogen atmosphere with different sizes of TiO2.

    Fig.2.Dependence of activation energy on conversion with different sizes of TiO2.

    4.2.Reaction mechanism and kinetic parameter analysis

    The dependence of activation energy on the conversion shows the complexity of the processes.In this case,the kinetic model and parameters are determined by a method of multivariate non-linear regressions.The conversion of 0.05≤α≤0.95 is considered.Among allkinetic models in Table 1,according to the f i tting quality,the kinetic schemeofthereactionofK2CO3withA90andA10as startingmaterials is

    respectively.The kinetic parameters for the two reactions are listed in Tables 3 and 4.

    The above kinetic scheme shows that,for both reaction processes, reaction Fnis the most probable reaction in the early period,in which experimental conditions,such as temperature and CO2partial pressure at the interface,may have a signif i cant inf l uence on the reaction rate. When the conversion is higher than 0.58,the reaction mechanism of A90and K2CO3is represented by nucleation and growth model [36-41],in which the solid-state reaction proceeds with the formation of new solid phase by nucleation and subsequent nuclei growth, where reaction interfaces increase until growing nuclei overlap extensively and then decrease[42].As the reaction proceeds further,the rate-limiting step is diffusion controlled,indicating that the local product layer may form and chemical reaction with TiO2is on the outer surface of the local product layer by ion diffusion.With TiO2microparticles as starting material,the diffusion is the controlling step when the conversion is between 0.21 and 0.53,with nucleation and growth in the later reaction stage,which implies that the reactants diffuse into reaction sites on the TiO2and reaction interfaces increase.

    Forthetworeactions,thevaluesofnare0.88and1.06fornucleation andgrowthprocesses,closeto1.Thevalueof ndependsontheshapeof nuclei,the number of nuclei present at the beginning of reaction and their distribution in the particles[43].The value of n is also related to the morphology or directionality of crystal growth.Lower values of n ref l ect a lower order,such as linear crystal growth[44].It has been reported that K2Ti2O5f i bers could be prepared by low-temperature calcination using amorphous titania and anatase as raw materials[45].It indicatesthatK2Ti2O5maybeapttogrowinone-dimensionalstructure. 4.3.Factors affecting reaction rate

    4.3.1.Temperature

    The reaction rate constant can be obtained using the Arrhenius equation in the following form

    The reaction rate constant k,which depends on temperature and reactionconversionforreactionsinvolvingseveralsteps,canbecalculated by activation energy Eαand pre-exponential factor determined by multiple non-linear regression analysis.

    Fig.3 shows that the rate constant k increases with temperature,as commonly known that high temperature is benef i cial in most solidstate reactions.With A90as a raw material k is higher when the conversionislessthan0.58,otherwiseitisratherlow.Rapidformationofproduct layer surrounding the unreacted TiO2core could be the reason. However,for the reaction with A10,higher k value appears only at the beginning of the reaction(α<0.21).The rate constants are lower in the two reactions when the conversion is higher than a certain value, 0.59 and 0.53 for A90and A10,respectively.In the later stage,k values are almost the same at lower temperature.With increasing temperature,the k value for A10as a raw material is a little higher and the inf l uence of temperature is more signif i cant.

    Table 3Non-isothermal kinetic parameters with non-linear regression for the reaction of K2CO3with A90

    Table 4Non-isothermal kinetic parameters with non-linear regression for the reaction of K2CO3with A10

    Fig.3.Reaction rate constant at different temperatures for A90(a)and A10(b).

    4.3.2.Size of raw materials

    The specif i c surface area of powders A10and A90is 10 m2·g-1and 90 m2·g-1,respectively corresponding to the equivalent particlediameters of 234 nmand 16 nm,respectively and crystal sizecalculated from the XRD peaks by the Scherrer equation is 44 nm and 18 nm,respectively(Table 2).The equivalent particle diameter is very close to the crystal size of A90.However,the equivalent particle diameter has quite a higher value for A10,compared with its crystal size.The possible reason is that the f i ne crystallites of TiO2powder are pulled together to form large hard particles during the preparation process of A10[46].

    The conversion predicted by the kinetic model is shown in Fig.4,for three temperatures in the range of 600-800°C.For solid-state reaction of K2CO3and A90,the conversion is 0.73 at 600°C and 0.96 at 700°C for 60 min,while it takes only about 20 min to react completely at 800°C. Forsolid-statereactionofK2CO3andA10,theconversionis0.50and0.93 at 600°C and 700°C,respectively.For both reaction processes,the conversions increase dramatically in the initial stage of the reaction and then increases slowly with time.The initial reaction rate with A90is higher because of more reaction active sites on smaller particles and lower reaction activation energy.It is worth noting that for both materials the conversion reaches about 0.90 at 60 min at 700°C and the time for complete reaction is almost the same at 800°C.A recent study on the formation of BaTiO3in a solid-state reaction has shown that BaCO3and TiO2may be completely separated from the reaction product and this is likely to correspond to the slowing down of the solid-state reaction because further growth can only proceed by the slower lattice diffusion[47].It indicates that when the solid-state reactionmechanismisiondiffusioninthef i nalstageofthereactionprocess, the reaction rate is rather low and may be related with the thickness of productlayer.Thus thecomplete conversionwill be sensitivetoparticle size during synthesis.It is presumed that this is one of the reasons that cause wide variations in calcination conditions for K2Ti2O5synthesis [45].

    Fig.4.The predicted conversion vs calcination time for selected temperatures for A90(a)and A10(b).

    Fig.5.X-ray diffraction(XRD)patterns(Cu Kα radiation)of K2CO3-TiO2mixtures for different sizes of TiO2A90(a)and A10(b)calcined at different temperatures for 60 min.?K2CO3;○?TiO2;▽?K2Ti2O5.

    4.4.XRD characterization

    The K2CO3-TiO2mixtures were heated to different temperatures at 30°C/min and then held at 550,600,650,and 700°C for 60 min in TG equipment.For different sizes of TiO2the XRD patterns of products and raw materials are shown in Fig.5.TiO2characteristic peaks weaken or disappear with a risein temperature,with thecontinuous increase in the intensity of K2Ti2O5characteristic peak at 29.16°.Characteristic peaks of K2Ti2O5exist even at 550°C for both materials,and there is no evident TiO2characteristic peak at 25.34°for the reaction of A90 and K2CO3,which indicates that the main composition is K2Ti2O5.ObviouscharacteristicpeaksofTiO2stillexistat650°CforA10asaprecursor, but only peaks belonging to K2Ti2O5can be observed at 700°C.AccordingtoKlug'sequation[48],theweightfractionisrelatedwithintegrated intensities and mass absorption coeff i cients,and higher integrated intensity suggests a higher content.We can see that as temperature increases,the integrated intensities at 29.16°corresponding to K2Ti2O5phase increase and are higher with A90as a raw material in the temperature range,which means that theconversion may be similar under the condition.This is in agreement with our calculation described above.

    5.Conclusions

    The kinetic mechanism and parameters can be determined by nonlinear regression for complex solid-state reactions without previous assumption.Kinetic parameters are different for reactions of K2CO3with different sizes of TiO2.The values of n,nearly 1 for nucleation and growth processes,indicate that K2Ti2O5is apt to grow in onedimension,which is in agreement with reported experimental results. With smaller size TiO2as raw material,the initial reaction temperature is lower and the lower activation energy in the initial reaction suggests thatitiseasiertoformproductsinthisstage.However,thereactionrate could signif i cantly decrease when diffusion process of reactant species becomes rate-limiting in the later stage of the reaction process.

    [1]C.Burda,R.Narayanan,M.A.El-Sayed,Chemistry and properties of nanocrystals of different shapes,Chem.Rev.105(4)(2005)1025-1102.

    [2]D.Y.Guo,A.Ito,T.Goto,R.Tu,C.B.Wang,Q.Shen,L.M.Zhang,Effect of laser power on microstructure and dielectric properties of BaTi5O11f i lms prepared by laser chemical vapor deposition method,J.Mater.Sci.23(11)(2012)1961-1964.

    [3]H.G.Yang,G.Liu,S.Z.Qiao,C.H.Sun,Y.G.Jin,S.C.Smith,J.Zou,H.M.Cheng,G.Q.Lu, Solvothermal synthesis and photoreactivity of anatase TiO2nanosheets with dominant{001}facets,J.Am.Chem.Soc.131(11)(2009)4078-4083.

    [4]N.Kumada,T.Nakatani,Y.Yonesaki,T.Takei,N.Kinomura,Preparation of new zirconium phosphates by solvothermal reaction,J.Mater.Sci.43(7)(2008) 2206-2212.

    [5]Y.Xia,P.Yang,Y.Sun,Y.Wu,B.Mayers,B.Gates,Y.Yin,F.Kim,H.Yan,Onedimensional nanostructures:synthesis,characterization,and applications,Adv. Mater.15(5)(2003)353-389.

    [6]C.L.Hsin,W.F.Lee,C.T.Huang,C.W.Huang,W.W.Wu,L.J.Chen,Growth of CuInSe2and In2Se3/CuInSe2nano-heterostructures through solid state reactions,Nano Lett. 11(10)(2011)4348-4351.

    [7]L.Martín-Arias,A.Castro,M.Algueró,Ferroelectric phases and relaxor states in the novel lead-free(1?x)Bi1/2K1/2TiO3?xBiScO3system(0≤x≤0.3),J.Mater.Sci.47 (8)(2012)3729-3740.

    [8]J.R.González-Velasco,R.Ferret,R.López-Fonseca,M.A.Gutiérrez-Ortiz,Inf l uence of particle size distribution of precursor oxides on the synthesis of cordierite by solidstate reaction,Powder Technol.153(1)(2005)34-42.

    [9]P.R.Santhanam,E.L.Dreizin,Predicting conditions for scaled-up manufacturing of materials prepared by ball milling,Powder Technol.221(2012)403-411.

    [10]Z.Q.Li,L.G.Qiu,T.Xu,Y.Wu,W.Wang,Z.Y.Wu,X.Jiang,Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2at ambient temperature and pressure:an eff i cient and environmentally friendly method,Mater.Lett.63(1) (2009)78-80.

    [11]M.E.Brown,C.A.R.Phillpotts,Non-isothermal kinetics,J.Chem.Educ.55(9)(1978) 556-560.

    [12]A.Perejón,P.E.Sánchez-Jiménez,J.M.Criado,L.A.Pérez-Maqueda,Kinetic analysis of complex solid-state reactions.A new deconvolution procedure,J.Phys.Chem.B 115 (8)(2011)1780-1791.

    [13]S.Maitra,A.Choudhury,H.S.Das,Ms.J.Pramanik,Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition,J. Mater.Sci.40(18)(2005)4749-4751.

    [14]S.Vyazovkin,A unif i ed approach to kinetic processing of nonisothermal data,In.J. Chem.Kinet.28(2)(1996)95-101.

    [15]A.Khawam,D.R.Flanagan,Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics,J.Phys.Chem.B 109(20)(2005) 10073-10080.

    [16]F.J.Gotor,J.M.Criado,J.Malek,N.Koga,Kinetic analysis of solid-state reactions:the universality of master plots for analyzing isothermal and nonisothermal experiments,J.Phys.Chem.A 104(46)(2000)10777-10782.

    [17]J.Sempere,R.Nomen,R.Serra,J.Soravilla,The NPK method:an innovative approach for kinetic analysis of data from thermal analysis and calorimetry,Thermochim.Acta 388(1)(2002)407-414.

    [18]P.E.Sánchez-Jiménez,L.A.Pérez-Maqueda,A.Perejón,J.M.Criado,Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway, Polym.Degrad.Stab.94(11)(2009)2079-2085.

    [19]L.A.Pérez-Maqueda,J.M.Criado,J.Málek,Combined kinetic analysis for crystallization kinetics of non-crystalline solids,J.Non-Cryst.Solids 320(1-3)(2003)84-91.

    [20]J.R.Opfermann,E.Kaisersberger,H.J.Flammersheim,Model-free analysis of thermoanalytical data-advantages and limitations,Thermochim.Acta 391(1-2) (2002)119-127.

    [21]S.B.Wang,V.Slovak,B.S.Haynes,Kinetic studies of graphon and coal-char reaction with NO and O2:direct non-linear regression from TG curves,Fuel Process.Technol. 86(6)(2005)651-660.

    [22]H.Ge?wein,J.R.Binder,Thermokinetic study of the oxidation of ZrAl3powders, Thermochim.Acta 444(1)(2006)6-12.

    [23]P.Budrugeac,E.Segal,Application of isoconversional and multivariate non-linear regression methods for evaluation of the degradation mechanism and kinetic parameters of an epoxy resin,Polym.Degrad.Stab.93(6)(2008)1073-1080.

    [24]K.Akihiko,S.Tadayoshi,Photoluminescence of layered alkali-metal titanates (A2TinO2n+1,A=Na,K)at 300 and 77 K,J.Mater.Chem.3(1993)1081-1082.

    [25]A.Kudo,E.Kaneko,Photochemical host-guest interaction in Tb3+and Eu3+ionexchanged K2?xHxTi2O5layered oxides,Chem.Commun.4(1997)349-350.

    [26]M.He,X.H.Lu,X.Feng,L.Yu,Z.H.Yang,A simple approach to mesoporous f i brous titania from potassium dititanate,Chem.Commun.19(2004)2202-2203.

    [27]N.Z.Bao,X.Feng,Z.H.Yang,L.Shen,X.H.Lu,Highly eff i cient liquid-phase photooxidation of an azo dye methyl orange over novel nanostructured porous titanatebased f i ber of self-supported radially aligned H2Ti8O17·1.5H2O nanorods,Environ. Sci.Technol.38(9)(2004)2729-2736.

    [28]W.E.Garner,Chemistry of the Solid State,Academic Press,New York,1955.

    [29]J.M.Cai,R.H.Liu,Kinetic analysis of solid-state reactions:a general empirical kinetic model,Ind.Eng.Chem.Res.48(6)(2009)3249-3253.

    [30]H.J.Hong,G.H.Guo,K.L.Zhang,Kinetics and mechanism ofnon-isothermaldehydration of nickel acetate tetrahydrate in air,J.Anal.Appl.Pyrol.77(2)(2006)111-115.

    [31]S.B.Vadim Mamleev,M.Le Bras,S.Duquesne,J.?esták,Modelling of nonisothermal kinetics in thermogravimetry,Phys.Chem.Chem.Phys.2(2000)4708-4716.

    [32]Z.J.Li,X.Q.Shen,X.Feng,P.Y.Wang,Z.S.Wu,Non-isothermal kinetics studies on the thermal decomposition of zinc hydroxide carbonate,Thermochim.Acta 438(1-2) (2005)102-106.

    [33]H.L.Friedman,Kinetics of thermal degradation of char-forming plastics from thermogravimetry.Application to a phenolic plastic,J.Polym.Sci.Polym.Symp.6 (1)(1964)183-195.

    [34]P.Budrugeac,E.Segal,Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid-gas reactions,In.J.Chem.Kinet.33(10) (2001)564-573.

    [35]M.F.Zhang,J.H.Hong,L.J.Yuan,Y.X.Zhang,K.L.Zhang,Kinetics of dehydration of FePO4·4H2O in air,Chin.J.Inorg.Chem.25(6)(2009)1022-1025(In Chinese).

    [36]W.A.Johnson,R.F.Mehl,Reaction kinetics in processes of nucleation and growth, Trans.AIME 135(1939)416-442.

    [37]M.Avrami,Kinetics of phase change.I.General theory,J.Chem.Phys.7(1939) 1103-1112.

    [38]M.Avrami,Kinetics of phase change.II.Transformation-time relations for random distribution of nuclei,J.Chem.Phys.8(1940)221-224.

    [39]M.Avrami,Kinetics of phase change.III.Granulation,phase change,and microstructure,J.Chem.Phys.9(1941)177-184.

    [40]E.G.Prout,F.C.Tompkins,The thermal decomposition of potassium permanganate, Trans.Faraday Soc.40(1944)488-498.

    [41]B.V.Erofe'ev,Generalized equation of chemical kinetics and its application in reactions involving solids,C.R.Dokl.Acad.Sci.I'URSS 52(1946)511-514.

    [42]M.Zheng,L.H.Shen,X.Q.Feng,J.Xiao,Kinetic model for parallel reactions of CaSO4with CO in chemical-looping combustion,Ind.Eng.Chem.Res.50(9)(2011) 5414-5427.

    [43]S.Mathew,N.Eisenreich,W.Engel,Thermal analysis using X-ray diffractometry for the investigation of the solid state reaction of ammonium nitrate and copper oxide, Thermochim.Acta 269-270(1995)475-489.

    [44]A.de Lucas,L.Rodriguez,P.Sánchez,J.Lobato,Effect of the particle size of starting materials on the synthesis of crystalline layered sodium silicate for use in detergents,Ind.Eng.Chem.Res.40(12)(2001)2580-2585.

    [45]C.Liu,M.He,X.H.Lu,Q.T.Zhang,Z.Z.Xu,Reaction and crystallization mechanism of potassium dititanate f i bers synthesized by low-temperature calcination,Cryst. Growth Des.5(4)(2005)1399-1404.

    [46]W.H.Rhodes,Agglomerate and particle size effects on sintering yttria-stabilized zirconia,J.Am.Ceram.Soc.64(1)(1981)19-22.

    [47]M.T.Buscaglia,M.Bassoli,V.Buscaglia,R.Vormberg,Solid-state synthesis of nanocrystalline BaTiO3:reaction kinetics and powder properties,J.Am.Ceram.Soc.91 (9)(2008)2862-2869.

    [48]H.Klug,L.Alexander,X-ray Diffraction Procedure for Polycrystallite and Amorphous Materials,2nd ed.John Wiley and Sons,New York,1974.

    21 January 2013

    ☆Supported by the Chinese National Key Technology Research and Development Program(2006AA03Z455),the National Natural Science Foundation of China (20976080,21136004)andtheNationalBasicResearchProgramofChina (2009CB226103).

    *Corresponding author.

    E-mail address:xhlu@njut.edu.cn(X.Lu).

    http://dx.doi.org/10.1016/j.cjche.2013.04.001

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 15 April 2013

    Accepted 22 April 2013

    Available online 23 August 2014

    久久99热这里只频精品6学生| 国产成人精品婷婷| 亚洲欧美精品自产自拍| 亚洲一码二码三码区别大吗| 精品熟女少妇av免费看| 中文字幕人妻丝袜制服| 精品国产露脸久久av麻豆| 人人妻人人澡人人爽人人夜夜| 少妇高潮的动态图| 精品国产露脸久久av麻豆| 午夜福利网站1000一区二区三区| 精品福利永久在线观看| 国产极品天堂在线| 观看av在线不卡| 日韩制服骚丝袜av| 国产精品人妻久久久影院| 国产精品免费大片| 美女内射精品一级片tv| av黄色大香蕉| 免费观看在线日韩| 各种免费的搞黄视频| 久久97久久精品| 99热这里只有是精品在线观看| 男女无遮挡免费网站观看| 肉色欧美久久久久久久蜜桃| 色吧在线观看| 99久国产av精品国产电影| 久久精品国产亚洲av天美| 久久久欧美国产精品| 纵有疾风起免费观看全集完整版| 一本色道久久久久久精品综合| 免费观看无遮挡的男女| videos熟女内射| 成人亚洲精品一区在线观看| av片东京热男人的天堂| 亚洲av免费高清在线观看| av黄色大香蕉| 精品熟女少妇av免费看| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 一区在线观看完整版| 久久午夜综合久久蜜桃| 51国产日韩欧美| 又黄又爽又刺激的免费视频.| 亚洲成人av在线免费| 国产一区二区在线观看日韩| 国产综合精华液| 99热6这里只有精品| 一区二区日韩欧美中文字幕 | 51国产日韩欧美| 久久国产精品男人的天堂亚洲 | 欧美xxxx性猛交bbbb| 美女中出高潮动态图| 日本-黄色视频高清免费观看| 国产成人91sexporn| 99久久综合免费| 蜜桃国产av成人99| 五月开心婷婷网| 欧美bdsm另类| 亚洲色图综合在线观看| 久久精品国产鲁丝片午夜精品| 深夜精品福利| 又大又黄又爽视频免费| 黄色毛片三级朝国网站| 丝袜喷水一区| 国产永久视频网站| 久久人人爽av亚洲精品天堂| 中文字幕亚洲精品专区| 久久国产精品大桥未久av| 菩萨蛮人人尽说江南好唐韦庄| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线| 狠狠婷婷综合久久久久久88av| 99久久中文字幕三级久久日本| 久久青草综合色| 国产精品熟女久久久久浪| 少妇熟女欧美另类| 国产精品一二三区在线看| 国产爽快片一区二区三区| 成人综合一区亚洲| 18禁国产床啪视频网站| 99国产综合亚洲精品| 亚洲一区二区三区欧美精品| 国产国语露脸激情在线看| 日韩av免费高清视频| 色视频在线一区二区三区| 在现免费观看毛片| 亚洲精品456在线播放app| tube8黄色片| 国产精品不卡视频一区二区| 久久久久久久久久人人人人人人| 亚洲精品,欧美精品| 一级毛片 在线播放| 婷婷色综合www| 在线观看一区二区三区激情| 日韩人妻精品一区2区三区| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看| 国产男人的电影天堂91| 国产精品熟女久久久久浪| h视频一区二区三区| 天堂中文最新版在线下载| 少妇的逼好多水| 国产成人aa在线观看| 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 99久久综合免费| 少妇精品久久久久久久| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 国产一级毛片在线| 国产av码专区亚洲av| 国产精品国产三级国产av玫瑰| 热99国产精品久久久久久7| 人妻 亚洲 视频| 成人毛片60女人毛片免费| 国产激情久久老熟女| 亚洲精品第二区| 精品人妻熟女毛片av久久网站| 国产国语露脸激情在线看| 人妻人人澡人人爽人人| 精品一区二区三卡| 亚洲一区二区三区欧美精品| 丝袜美足系列| 久久久久久久亚洲中文字幕| 免费高清在线观看视频在线观看| 嫩草影院入口| 国产又色又爽无遮挡免| 成人国产麻豆网| 亚洲精品国产av成人精品| 夜夜爽夜夜爽视频| 国产黄频视频在线观看| 最后的刺客免费高清国语| 一级爰片在线观看| av播播在线观看一区| 中文字幕av电影在线播放| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 亚洲国产精品专区欧美| 日韩一区二区三区影片| 久久精品人人爽人人爽视色| 男女国产视频网站| 亚洲少妇的诱惑av| 久久久久久久久久久久大奶| 久久热在线av| 午夜影院在线不卡| 五月伊人婷婷丁香| 国产精品99久久99久久久不卡 | 亚洲少妇的诱惑av| 丝袜人妻中文字幕| 热re99久久国产66热| 午夜福利视频在线观看免费| 永久免费av网站大全| 午夜久久久在线观看| 少妇 在线观看| 深夜精品福利| 国产国拍精品亚洲av在线观看| 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 日日撸夜夜添| 999精品在线视频| videosex国产| 国产片内射在线| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久精品古装| 女性生殖器流出的白浆| 一级毛片电影观看| 男女午夜视频在线观看 | 国产69精品久久久久777片| av在线app专区| 欧美精品一区二区大全| 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频| 亚洲第一区二区三区不卡| 多毛熟女@视频| 婷婷色av中文字幕| 欧美日韩综合久久久久久| 日本猛色少妇xxxxx猛交久久| 熟女人妻精品中文字幕| 精品人妻在线不人妻| 制服丝袜香蕉在线| 成人国语在线视频| 在线观看免费高清a一片| 超碰97精品在线观看| 欧美97在线视频| 精品酒店卫生间| 国产欧美日韩综合在线一区二区| 国产视频首页在线观看| 日韩免费高清中文字幕av| 精品亚洲成国产av| 看免费成人av毛片| 亚洲av日韩在线播放| 亚洲伊人久久精品综合| 天堂8中文在线网| 免费日韩欧美在线观看| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 只有这里有精品99| 欧美精品国产亚洲| videossex国产| 欧美成人精品欧美一级黄| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 国语对白做爰xxxⅹ性视频网站| 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 黑丝袜美女国产一区| 国产黄频视频在线观看| 国产精品国产三级国产av玫瑰| 一二三四中文在线观看免费高清| 亚洲综合精品二区| 狂野欧美激情性bbbbbb| 99久久人妻综合| 亚洲精品一二三| 久久99一区二区三区| 亚洲国产精品专区欧美| 天美传媒精品一区二区| 国产精品久久久久久久久免| 尾随美女入室| 伊人亚洲综合成人网| 亚洲av成人精品一二三区| 黑人欧美特级aaaaaa片| 人妻少妇偷人精品九色| av线在线观看网站| 亚洲,欧美精品.| 天天操日日干夜夜撸| 爱豆传媒免费全集在线观看| 久久国产亚洲av麻豆专区| 久久99热6这里只有精品| 国产午夜精品一二区理论片| 男女下面插进去视频免费观看 | 欧美成人午夜精品| 男人添女人高潮全过程视频| 黑丝袜美女国产一区| 亚洲国产精品专区欧美| 一区二区三区四区激情视频| 在线免费观看不下载黄p国产| 日日啪夜夜爽| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 咕卡用的链子| 一级爰片在线观看| 中文天堂在线官网| 一级毛片 在线播放| 亚洲高清免费不卡视频| 如何舔出高潮| 国产免费现黄频在线看| 国产精品秋霞免费鲁丝片| 成人漫画全彩无遮挡| 亚洲国产精品成人久久小说| 欧美成人午夜免费资源| 亚洲成人av在线免费| 国产成人91sexporn| 美女内射精品一级片tv| 性色av一级| 亚洲,欧美精品.| 日韩不卡一区二区三区视频在线| 午夜福利视频精品| 如何舔出高潮| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 午夜91福利影院| 久久狼人影院| 国产有黄有色有爽视频| 久久人人爽人人爽人人片va| 亚洲欧美中文字幕日韩二区| 秋霞伦理黄片| 国产一区二区三区av在线| 青青草视频在线视频观看| 超碰97精品在线观看| 岛国毛片在线播放| 极品人妻少妇av视频| 日韩欧美精品免费久久| 伊人久久国产一区二区| 国产在线免费精品| 国产一区二区在线观看日韩| 久久久久人妻精品一区果冻| 啦啦啦啦在线视频资源| 1024视频免费在线观看| 制服丝袜香蕉在线| 精品国产乱码久久久久久小说| 激情五月婷婷亚洲| 亚洲国产精品成人久久小说| 国产av一区二区精品久久| 18在线观看网站| 美女xxoo啪啪120秒动态图| 国产成人欧美| 久久久久久久久久人人人人人人| 99久久中文字幕三级久久日本| 国内精品宾馆在线| h视频一区二区三区| 在线观看免费日韩欧美大片| 日本午夜av视频| 日日摸夜夜添夜夜爱| 另类精品久久| 大香蕉久久网| 爱豆传媒免费全集在线观看| 九色亚洲精品在线播放| 18禁国产床啪视频网站| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 欧美精品高潮呻吟av久久| 亚洲av国产av综合av卡| av卡一久久| 男人添女人高潮全过程视频| 免费高清在线观看视频在线观看| 综合色丁香网| 老熟女久久久| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 99精国产麻豆久久婷婷| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 99九九在线精品视频| 精品酒店卫生间| xxxhd国产人妻xxx| 国产成人精品福利久久| av国产精品久久久久影院| 亚洲精品一二三| 一级毛片电影观看| 午夜免费观看性视频| 啦啦啦在线观看免费高清www| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 超色免费av| 咕卡用的链子| a级片在线免费高清观看视频| av播播在线观看一区| 热re99久久国产66热| 91成人精品电影| 91午夜精品亚洲一区二区三区| 欧美日韩视频高清一区二区三区二| 成年av动漫网址| 永久免费av网站大全| 日本av手机在线免费观看| 日韩制服丝袜自拍偷拍| 纵有疾风起免费观看全集完整版| 久久影院123| av线在线观看网站| av网站免费在线观看视频| 啦啦啦中文免费视频观看日本| 在线观看一区二区三区激情| 国产精品偷伦视频观看了| 好男人视频免费观看在线| 两个人免费观看高清视频| 69精品国产乱码久久久| www日本在线高清视频| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃| 高清不卡的av网站| 少妇被粗大的猛进出69影院 | 搡老乐熟女国产| 少妇精品久久久久久久| 少妇被粗大猛烈的视频| 国产亚洲一区二区精品| 国产av精品麻豆| 日韩成人av中文字幕在线观看| h视频一区二区三区| 亚洲精品乱久久久久久| 韩国精品一区二区三区 | 国产亚洲一区二区精品| 欧美精品一区二区大全| 美国免费a级毛片| 伦精品一区二区三区| av免费在线看不卡| 成年人午夜在线观看视频| 午夜免费男女啪啪视频观看| 99久久中文字幕三级久久日本| 18禁观看日本| 亚洲精品乱码久久久久久按摩| 亚洲综合精品二区| 看免费成人av毛片| 狂野欧美激情性xxxx在线观看| 久久久a久久爽久久v久久| 日韩不卡一区二区三区视频在线| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 在线观看免费高清a一片| 国产不卡av网站在线观看| 免费久久久久久久精品成人欧美视频 | 侵犯人妻中文字幕一二三四区| 最近中文字幕2019免费版| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 51国产日韩欧美| 美女脱内裤让男人舔精品视频| 国产亚洲最大av| 日韩制服丝袜自拍偷拍| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 久久久久视频综合| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 啦啦啦视频在线资源免费观看| 日韩欧美一区视频在线观看| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 日本-黄色视频高清免费观看| 亚洲,一卡二卡三卡| 18+在线观看网站| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 欧美精品人与动牲交sv欧美| 精品卡一卡二卡四卡免费| 国产精品.久久久| 日韩欧美精品免费久久| 欧美精品一区二区大全| 啦啦啦啦在线视频资源| 国产麻豆69| 国产一区有黄有色的免费视频| 九色成人免费人妻av| 97超碰精品成人国产| 人人澡人人妻人| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| av国产久精品久网站免费入址| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 国产一区二区三区av在线| 人妻人人澡人人爽人人| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 在线观看人妻少妇| 精品久久久久久电影网| 欧美亚洲日本最大视频资源| av在线观看视频网站免费| 欧美xxxx性猛交bbbb| 亚洲av欧美aⅴ国产| 亚洲四区av| 亚洲成人av在线免费| 午夜老司机福利剧场| 国产av码专区亚洲av| 精品少妇内射三级| 91精品三级在线观看| 9色porny在线观看| 成年动漫av网址| 亚洲精品色激情综合| 国产探花极品一区二区| av线在线观看网站| 一区在线观看完整版| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 美女福利国产在线| 国产伦理片在线播放av一区| 夫妻午夜视频| 美女中出高潮动态图| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 成人黄色视频免费在线看| 在线 av 中文字幕| 国产高清不卡午夜福利| 免费观看性生交大片5| 久久鲁丝午夜福利片| 国产高清国产精品国产三级| 久久久精品免费免费高清| 成人国产av品久久久| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 欧美 亚洲 国产 日韩一| 精品人妻熟女毛片av久久网站| 久久ye,这里只有精品| 两个人免费观看高清视频| 一级a做视频免费观看| 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品古装| 男的添女的下面高潮视频| 毛片一级片免费看久久久久| 熟女av电影| 欧美精品国产亚洲| 亚洲图色成人| 亚洲av成人精品一二三区| 在线观看www视频免费| 男的添女的下面高潮视频| 亚洲国产色片| 母亲3免费完整高清在线观看 | 丰满乱子伦码专区| 久久婷婷青草| 欧美精品国产亚洲| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃 | 啦啦啦啦在线视频资源| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 亚洲精品自拍成人| 狂野欧美激情性bbbbbb| a级毛片在线看网站| 水蜜桃什么品种好| 男的添女的下面高潮视频| 丝袜脚勾引网站| 国产免费一级a男人的天堂| 老司机影院成人| 精品国产一区二区三区久久久樱花| 好男人视频免费观看在线| videosex国产| 男男h啪啪无遮挡| 国产免费现黄频在线看| 久久韩国三级中文字幕| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 亚洲在久久综合| 日本av手机在线免费观看| 亚洲精品美女久久久久99蜜臀 | 激情视频va一区二区三区| av网站免费在线观看视频| 亚洲欧美中文字幕日韩二区| 天天操日日干夜夜撸| 97人妻天天添夜夜摸| 男女啪啪激烈高潮av片| 午夜激情av网站| 一级,二级,三级黄色视频| 久久人人爽人人片av| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频| 免费播放大片免费观看视频在线观看| 免费人成在线观看视频色| 黄色怎么调成土黄色| 日本黄大片高清| 晚上一个人看的免费电影| 一边亲一边摸免费视频| 黄色配什么色好看| 亚洲欧美一区二区三区国产| 亚洲伊人久久精品综合| 亚洲国产精品999| 国产精品久久久久成人av| 成人黄色视频免费在线看| 亚洲国产看品久久| 日日爽夜夜爽网站| 边亲边吃奶的免费视频| 国产深夜福利视频在线观看| 男女高潮啪啪啪动态图| 最近中文字幕2019免费版| 韩国高清视频一区二区三区| 五月玫瑰六月丁香| 色5月婷婷丁香| 99久国产av精品国产电影| 婷婷色综合大香蕉| 久久久精品免费免费高清| videossex国产| 18在线观看网站| 一个人免费看片子| 青青草视频在线视频观看| 最近最新中文字幕大全免费视频 | 亚洲内射少妇av| www.av在线官网国产| 亚洲国产精品成人久久小说| 亚洲av成人精品一二三区| 97超碰精品成人国产| 99久久精品国产国产毛片| 美女主播在线视频| 赤兔流量卡办理| 国产在视频线精品| 国产熟女午夜一区二区三区| 日韩一区二区视频免费看| 久久精品国产综合久久久 | 精品亚洲成国产av| 久久99热这里只频精品6学生| 男的添女的下面高潮视频| 亚洲国产精品国产精品| 视频中文字幕在线观看| 久久久久久久久久久久大奶| av在线app专区| 午夜免费鲁丝| 天天躁夜夜躁狠狠久久av| 精品人妻一区二区三区麻豆| 黑人欧美特级aaaaaa片| 纵有疾风起免费观看全集完整版| 老熟女久久久| 观看美女的网站| 22中文网久久字幕| 91成人精品电影| 亚洲,一卡二卡三卡| 婷婷色麻豆天堂久久| 午夜影院在线不卡| 91精品伊人久久大香线蕉| 只有这里有精品99| 国产淫语在线视频| 亚洲国产最新在线播放| av免费观看日本| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 五月伊人婷婷丁香| 国产精品人妻久久久久久| 美国免费a级毛片| 日韩中字成人| a级片在线免费高清观看视频| 国产精品嫩草影院av在线观看| 日本wwww免费看| 国产毛片在线视频| 午夜激情av网站| 爱豆传媒免费全集在线观看| 看十八女毛片水多多多| 另类精品久久|