• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MgO-SBA-15 Supported Pd-Pb Catalysts for Oxidative Esterif i cation of Methacrolein with Methanol to Methyl Methacrylate☆

    2014-07-25 11:29:34LiJiangYanyanDiaoJunxingHanRuiyiYanXiangpingZhangSuojiangZhang
    Chinese Journal of Chemical Engineering 2014年10期

    Li Jiang,Yanyan Diao,Junxing Han,Ruiyi Yan,Xiangping Zhang,*,Suojiang Zhang,*

    Catalysis,Kinetics and Reaction Engineering

    MgO-SBA-15 Supported Pd-Pb Catalysts for Oxidative Esterif i cation of Methacrolein with Methanol to Methyl Methacrylate☆

    Li Jiang1,2,Yanyan Diao1,Junxing Han1,Ruiyi Yan1,Xiangping Zhang1,*,Suojiang Zhang1,*

    1Key Laboratory of Green Process and Engineering,Beijing Key Laboratory of Ionic Liquids Clean Process,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China
    2University of Chinese Academy of Sciences,Beijing 100049,China

    A R T I C L EI N F O

    Article history:

    Methacrolein

    Methyl methacrylate

    Oxidative esterif i cation

    Pd-Pb bimetal

    SBA-15

    Novel MgO-SBA-15 supported catalysts were prepared for oxidative esterif i cation of methacrolein(MAL)with methanol to methyl methacrylate(MMA).The MgO-SBA-15 supports were synthesized with different magnesia loadingsfromdifferentmagnesiumprecursorsandhydrochloricacidmolarconcentrations.TheMgO-SBA-15supports and Pd-Pb/MgO-SBA-15 catalysts were characterized by several analysismethods.The results revealed that the addition of MgO improvedthe ordered structure of SBA-15 supports and providedsurface alkalinity of SBA-15 supports.TheaveragesizeofthePd3Pbparticles on magnesia-modif i edPd-Pb/MgO-SBA-15catalystswassmaller than that on the pure silica-based Pd-Pb/SBA-15 catalysts.The experiments on catalyst performance showed that the magnesia-modif i ed Pd-Pb/MgO-SBA-15 catalysts had higher activity than pure silica-based Pd-Pb/SBA-15 catalysts,showing thestrong dependenceof catalyticactivity on the averagesizeofactiveparticles.The difference ofactivitybetweenPd-Pb/SBA-15catalystsandPd-Pb/MgO-SBA-15catalystswasduetothediscrepantstructural propertiesandsurfacealkalinityprovidedbyMgO,whichledtothedifferentPd3Pbparticlesizesandthenresulted in the different number of active sites.Besides magnesia loadings,other factors,such as hydrochloric acid molar concentration and magnesium precursors,had considerable inf l uences on the catalytic activity.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Methyl methacrylate(MMA)is one of the most important chemicals to produce plexiglass,acrylic coatings,polymeric dispersants for paints and so on.Oxidative esterif i cation of methacrolein(MAL)with methanol toMMAinthepresenceofoxygenhastheadvantagesofshortroutesand highatomeff i ciency.Ingeneral,thecatalystsforoxidativeesterif i cationof aldehydes are mainly supported noble metal catalysts.Among them,palladium catalysts are one of the most active catalysts.In general,the most commonly used support is alumina,but the pore of alumina is irregular and the specif i c surface area is relatively small.Mesoporous silica materials have some advantages over alumina such as reproducible and scalable synthesis,and signif i cantly larger surface areas and more f l exible pore architectures[1-3].The large surface area of mesoporous silica materials helps in attaining higher metal dispersions compared with lower surface area non-ordered supports.Additionally,the regular and tunable pore size offered by ordered mesoporous silica materials can impart this uniformity to the hosted catalytic nanoparticles under controlled synthesisconditions[4-7].Aboveall,theintroductionofmesoporescanstrongly affect mass transport to in-pore active sites and increase palladium dispersion[8-10].Therearesomanyadvantagesofmesoporoussilicamaterials over alumina,and thus,we want to use them in oxidative esterif i cation of MAL with methanol to MMA.

    SBA-15 is one of the most popular mesoporous silica materials due to its highsurfacearea and largetunable pores[11].Its thick pore walls provide enhanced mechanical stability,and can be modif i ed to tailor their properties and achieve specif i c purposes[12-14].However,the inherent lack of adequate acid and basic sites limits their applications in catalysis. Several metals such as Al,Zr,Ti,Cr and B[15-18]have been incorporated into SBA-15 to broaden its applications.SBA-15 based solid bases have been widely studied including amino[19],magnesium[20,21],and calcium[22]modif i edSBA-15.MgOisregardedasatypicalsolidbasematerial duetoitselectrondonationability.ItisfoundthatMgOacceleratesthereaction rate of oxidative esterif i cation of MAL with methanol in the presence of oxygen[23].By adding magnesium salts into the initial mixture of raw materials,basic mesoporous silica materials can be achieved.The addition of magnesium salts will lead toa better order,eitherin structure ormorphology[2].Itisbelievedtoberelatedtothespecialinteractionbetweensurfactantheadgroupsandmagnesium[2].As farasweknow,the investigations on MgO-SBA-15 supported Pd-Pb catalysts for oxidative esterif i cation of MAL with methanol have not been reported so far.

    In this work,a series of MgO-SBA-15 supports was prepared with different magnesia loadings,hydrochloric acid molar concentration and precursors of magnesium salts.MgO-SBA-15 supported Pd-Pbcatalysts,preparedbyco-impregnationmethods,wereappliedtooxidativeesterif i cationofMALwithmethanol(Fig.1).Theeffectsofmagnesia loadings on the structural properties of supports,surface alkalinity of catalystsandtheparticlesizedistributionofactivesiteswereinvestigated.The effects of hydrochloric acid molar concentration on the particle size distribution of active sites and the inf l uences of precursors on the structuralpropertiesofsupportsandcatalystswerealsostudied.Finally, the catalytic activity of catalysts prepared from the above factors was examined.

    Fig.1.Oxidative esterif i cation of MAL with methanol to MMA.

    2.Experimental

    2.1.Preparation of supports and catalysts

    MgO-SBA-15 supports were synthesized according to the literature with some modif i cations[2].Typically,4.0 g of Pluronic P123 (EO20PO70EO20,Aldrich)and a calculated amount of magnesium salts from one of MgCl2,Mg(NO3)2and Mg(CH3COO)2(AR,Sinopharm Chemical Regent Co.,Ltd.)were dissolvedin 150 g hydrochloric acid solution(AR,Beijing Chemical Works).Then,8.5 g of tetraethoxysilane (TEOS,XilongChemicalCo.,Ltd.)was added.Themolarratioof themixture TEOS:P123:Mg2+:HCl:H2O was 1:0.02:X:Y:192,where X was 0, 0.015,0.075,0.150,0.300 and 0.450 for the preparation of samples with the mass ratio of MgO/SBA-15 of 0%,1%,5%,10%,20%,and 30% and Y was 6,3,and 1.5 with the hydrochloric acid molar concentrations of 1.6 mol·L?1,0.8 mol·L?1,and 0.4 mol·L?1.It was denoted as MgOSBA-15(X-Cl)-Y,MgO-SBA-15(X-N)-Y and MgO-SBA-15(X-A)-Y respectively.The resulting mixture was stirred for 24 h at 313 K and then heated at 373 K for another 24 h without stirring.The liquid was evaporated with stirring at 353 K.Finally,the solids were dried at 353 K and calcined at 823 K for 6 h to remove the template.Palladium chloride(Beijing Cuibolin Non-Ferrous Technology Developing Co., Ltd.)and lead nitrate(AR,Xilong Chemical Co.,Ltd.)were impregnated simultaneously.The loading value of Pd and Pb was both 5%(by mass) of MgO-SBA-15 supports.The obtained samples were reduced by hydrazine hydrate.

    2.2.Experiments on catalytic performance

    The reaction was performed at 353 K and 0.3 MPa of oxygen for 2 h over 0.013 g·ml-1of the supported catalysts under stirring.The molar ratio of methanol to MAL was 20.Catalytic results were expressed as conversion(x,%)and selectivity(S,%)determined by gas chromatography(GC)using ethanol as external standard.Parameters were def i ned as

    where CM0AL(mol·L?1)was the molar concentration of MAL at the beginning mixture,CMAL(mol·L?1)the molar concentration of MAL after 2 h and CMMA(mol·L?1)was the molar concentration of MMA after 2 h.

    2.3.Catalyst characterization

    Several analysis methods were applied to characterize the supports and catalysts in this work.The nitrogen adsorption and desorption isotherms were measured using a TriStarII3020 system at 77 K.The samples were degassed at 473 K for 6 h.The Brunauer-Emmett-Teller (BET)specif i c surface area was calculated using adsorption data in the relativepressurerangeof 0.04 to0.20.Thetotalpore volumewasdetermined from the amount adsorbed at a relative pressure of about 0.99. The mean pore diameter was calculated by the Barrett-Joyner-Halenda (BJH)method using the desorption curves.X-ray diffraction patterns (XRD)were recorded in the 2 theta range of 0.5°to 5.0°and 10°to 90°respectively on a X'Pert PRO diffractometer equipped with a copper anode generating Cu Kαradiation(λ=0.15418 nm).Transmission electron microscopy(TEM)measurements were obtained on a JEM2010 electron microscope operated at 120 kV.MgO contents of catalysts were determined by an inductively coupled plasma optical emission spectroscopy(ICP-OES)(IRIS Intrepid II XSP).In CO2-TPD experiments,30 mg samples were heated in a f l ow of helium at a rate of10K·min?1to773Kandkeptfor2h,thencooledto323Ktoadsorb CO2.AfterthephysicallyadsorbedCO2waspurgedbyheliumfor2h,the sample was then heated at the rate of 10 K·min?1up to 773 K and the liberated CO2was detected by a thermal conductivity detector(TCD).

    3.Results and Discussion

    Table 1Textural characteristics of supports

    3.1.Characterization

    3.1.1.Textural characteristics

    The textural characteristics of Pd-Pb/MgO-SBA-15 catalysts and MgO-SBA-15 supports were characterized by the N2adsorption-desorption method.The specif i c surface area(SBET),pore volume(Vtotal) and mean pore diameter(dp)of supports and catalysts are summarized in Tables 1 and 2,respectively.Firstly,the specif i c surface area,porevolume and mean pore diameter of MgO-SBA-15 supports decrease with an increase in the initial added amounts of magnesium acetate [Table 1,Entries b-f].When the content of MgO was 10%[Table 1, Entry d]or less[Table 1,Entries b and c],the specif i c surface area and pore volume of MgO-SBA-15 are higher than those of SBA-15.Meanwhile,the mean pore diameter is the same value of 6.3 nm,which indicates that MgO is highly dispersed on the surface of SBA-15.But the specif i c surface area,pore volume and mean pore diameter of supports MgO-SBA-15(0.300-A)and MgO-SBA-15(0.450-A)[Table 1,Entries e and f]are reduced.It means that the redundant MgO occupies some of the total pore volumes.The above results show that 10%content of MgO loadings is a transition point of the mesostructural change.Secondly,the pore volume and mean pore diameter of MgO-SBA-15 supports decrease with reducing hydrochloric acid molar concentration [Table 1,Entries d,g and h].Finally,the pore volume and mean pore diameter of MgO-SBA-15 supports synthesized by magnesium chloride [Table 1,Entry i]are the smallest and MgO-SBA-15 supports synthesized by magnesium acetate[Table 1,Entry d]are the largest.

    The specif i c surface area of catalysts enhances with the increase in theaddedamountsofmagnesiafrom1%to30%andreachedthehighest of 713.5 m2·g?1[Table 2,Entry f].However,the pore volume decreases from 0.79 ml·g?1[Table 2,Entry b]to 0.49 ml·g?1and the mean pore diameter reduces sharply from 10.2 nm to 3.1 nm.Compared with supports MgO-SBA-15(0.300-A)and MgO-SBA-15(0.450-A)[Table 1,Entries e and f],the pore volume and mean pore diameter of catalysts [Table 2,Entries e and f]decrease sharply due to the active particles thatoccupypartofthechannels.Someoftheactiveparticles arelocated on the external surface of the supports.The specif i c surface area and pore volume also decrease after palladium and lead particles deposit on the supports synthesized by different hydrochloric acid molar concentrations[Table 2,Entries d,g and h].Interestingly,the mean pore diameter increases as palladium and lead particles deposit on MgO-SBA-15 supports.The reason is that the active particles are formed in the channels of MgO-SBA-15 supports and occupied some pore spaces. The specif i c surface area,pore volume and mean pore diameter of catalysts synthesized from magnesium chloride[Table 2,Entry i]are a little lower than those of catalysts synthesized from magnesium acetate and nitrate[Table 2,Entries d and j].

    3.1.2.XRD characterization

    Fig.2 displays the small angle XRD patterns of MgO-SBA-15 supports with varied amounts of magnesia,different magnesium precursors and hydrochloric acid molar concentrations.All supports exhibit one intense peak at 0.86°-0.96°along with two weak peaks at 1.49°-1.55°and 1.73°-1.78°,corresponding to 100,110 and 200 ref l ections of SBA-15,respectively.They were the characterization of the typical two-dimensional hexagonal structure.It indicated that MgO-SBA-15 supports had highly ordered mesoporous structures[10].It could be seen that the intensity of(100)in MgO-SBA-15 supports is obviously stronger than that of the pure SBA-15[Fig.2(a)]with the exception of MgO-SBA-15(0.150-N)[Fig.2(d)].It clearly elucidated that the addition of magnesium salts could improve the ordered structure of SBA-15 due to the salt effect of magnesium precursors[2].The corresponding unit cell parameters(α0)and the wall thickness(τ) are provided in Table 3.The thickest wall of MgO-SBA-15(0.150-A) is 6.1 nm attained at the hydrochloric acid molar concentration of 0.8 mol·L-1[Table 3,Entry b].

    Table 2Textural characteristics of catalysts

    Fig.2.XRD patterns of supports.a—MgO-SBA-15(0-A);b—MgO-SBA-15(0.150-A);c—MgO-SBA-15(0.450-A);d—MgO-SBA-15(0.150-N);e—MgO-SBA-15(0.150-Cl);f—MgOSBA-15(0.150-A)-0.8 mol·L?1;g—MgO-SBA-15(0.150-A)-0.4 mol·L?1.

    Table 3Structure properties of MgO-SBA-15

    Fig.3 shows the XRD patterns of Pd-Pb/MgO-SBA-15(0.150-A)catalysts and MgO-SBA-15(0.150-A)supports.In the XRD pattern of Pd-Pb/MgO-SBA-15(0.150-A)catalysts[Fig.3(a)],the peak at 38.6°could be assigned to Pd3Pb[24].No MgO crystallization is detected in the XRD patterns of MgO-SBA-15(0.150-A)supports[Fig.3(b)],implying the good dispersion of MgO on SBA-15.This further facilitates the formation of long range ordered domains of mesostructure.

    3.1.3.Surface alkalinity measurement

    From the results of the textural properties of the catalysts,it is concluded that the mesoporous Pd-Pb/MgO-SBA-15(X)catalysts have different surface properties.Therefore,CO2-TPD is used to measure their surface basic properties.Fig.4 shows only one asymmetric broad peak on the prof i les of the different added amounts of MgO.When the support is pure SBA-15,the catalysts[Fig.4(a)]almost shows no alkalinity. The maximum temperature of CO2desorption peaks increases from 361.8 K to 379.5 K with an increase in added amount of MgO from 1% [Fig.4(b)]to 30%[Fig.4(f)].Furthermore,the number of surface basic sites on MgO-SBA-15(X-A)supports corresponding to the areas of CO2desorption peaks are different.The dosage of alkaline increases from 145.68 μmol·g?1[Table 4,Entry b]to 573.06 μmol·g?1[Table 4, Entry f]when the added amount of MgO is elevated from 1%to 30%. Both the strength and the dosage of the alkaline enhance with the increase of MgO deposited on SBA-15 supports.3.1.4.TEM observation

    Fig.3.XRD patterns of(a)Pd-Pb/MgO-SBA-15(0.150-A)catalysts and(b)MgO-SBA-15(0.150-A)supports.

    The morphology and particle size distribution of Pd3Pb particles on different MgO-SBA-15 supports are shown in Fig.5.The particle size distribution is manually measured.The average size of Pd3Pb particles varies with the change of supports.The location of Pd3Pb particles is also an important issue in metal/mesoporous silica catalysts.

    The major size distribution of Pd3Pb particles on pure silica-based SBA-15 supports[Fig.5(a)]is between 12-14 nm and few of them are larger than 20 nm.Furthermore,most of the Pd3Pb particles are on the externalsurfaceofsupportsbecauseoftherelativelysmallerporediameter.Pd3Pb particles supported on SBA-15 are larger aggregates than those supported on MgO-SBA-15.For example,Pd3Pb particles on MgO-SBA-15(0.150-A)supports[Fig.5(b)]are around 6 nm,much smaller than those on supports MgO-SBA-15(0-A)[Fig.5(a)].Elevating the added amounts of MgO on SBA-15 supports,Pd3Pb particles [Fig.5(c)]are enlarged,but they are still smaller than the particles on pure SBA-15 supports.It indicates that MgO on the surface of SBA-15 improves the dispersion and decreases the average size of Pd3Pb particles compared with SBA-15 supports.

    Compared with catalysts synthesized from different hydrochloric acid molar concentration,Pd3Pb particles on MgO-SBA-15(0.150-A)-0.8 mol·L?1catalysts[Fig.5(d)]are highly dispersed alloy particles with the particle size of approximately 4.5 nm.It appears that Pd3Pb particles on MgO-SBA-15(0.150-A)-0.8 mol·L?1are primarily located inside the channels,although the possibility of Pd3Pb particles located on the external surface could not be ruled out.Pd3Pb particles on MgO-SBA-15(0.150-A)-1.6 mol·L?1catalysts[Fig.5(b)]are merely a little larger than catalysts synthesized at 0.8 M.But Pd3Pb particles supported on MgO-SBA-15(0.150-A)-0.4 mol·L?1[Fig.5(e)]are about 10 nm,which are the largest and the most uneven dispersion.Slightly lower hydrochloric acid molar concentration than usually preparation concentration[25]could also reduce Pd3Pb particle size.

    3.2.Catalytic performance

    3.2.1.Effects of Mg precursors on catalytic activity

    The conversion of MAL with Pd-Pb/MgO-SBA-15(0.150-A)catalysts[Table 5,Entry a]is 68%which is the same as Pd-Pb/MgOSBA-15(0.150-N)catalysts[Table 5,Entry b].The selectivity of MMA of Pd-Pb/MgO-SBA-15(0.150-N)catalysts is 67%,which is the same as Pd-Pb/MgO-SBA-15(0.150-Cl)catalysts[Table 5,Entry c].Even when there is only a little difference among the catalysts prepared from different Mg precursors,the catalytic activity follows theorderofPd-Pb/MgO/SBA-15(0.150-A)>Pd-Pb/MgO/SBA-15(0.150-Cl)>Pd-Pb/MgO/SBA-15(0.150-N).The catalysts prepared from magnesium chloride have the lowest specif i c surface area,pore volume and mean pore diameter,which drop the diffusion speed of reactants.The ordered mesostructure of catalysts prepared from magnesium nitrate is the weakest.Finally,magnesium acetate is selected as magnesium precursors.

    Table 4Basicity of catalysts of different MgO loadings

    Table 5Effects of Mg precursors on catalytic activity

    Table 6Effects of MgO loadings on catalytic activity

    Fig.5.TEM imagesand particlesize distributionsfor(a)Pd-Pb/MgO-SBA-15(0-A),(b)Pd-Pb/MgO-SBA-15(0.150-A);(c)Pd-Pb/MgO-SBA-15(0.450-A),(d)Pd-Pb/MgO-SBA-15(0.150-A)-0.8 mol·L?1and(e)Pd-Pb/MgO-SBA-15(0.150-A)-0.4 mol·L?1.

    3.2.2.Effects of MgO loadings on catalytic activity

    Table 6 summarizes the effects of the amounts of MgO added on the conversion of MAL and selectivity of MMA.When there is no MgO on SBA-15 supports[Table 6,Entry a],the conversion of MAL and selectivity of MMA are 33.1%and 49.5%,respectively,which are lower than those of Pd-Pb/MgO-SBA-15[Table 6,Entries b-f].Compared with the catalysts supported on MgO-SBA-15,the specif i c surface area of catalysts supported on pure silica-based SBA-15 is much smaller and there is barelysurfacealkalinity.Butaboveall,Pd3Pb particlesonSBA-15 supportsaretoolarge.Therefore,thenumberofPd3Pb particlesisrelatively low when the loading amounts of palladium and lead are about the same.When the supports changed to MgO-SBA-15(0.150-A)[Table 6, Entry d],the conversion of MAL increases to 67.9%and the selectivity of MMA reaches a maximum of 71.7%.Compared with Pd-Pb/SBA-15 catalysts,thespecif i c surfacearea andporevolume ofcatalystssupported on MgO-SBA-15(0.150-A)are higher and the surface alkalinity increases.Most of all,the Pd3Pb particles supported on MgO-SBA-15(0.150-A)are at least 6 nm smaller than those supported on SBA-15,leading to more active sites and higher activity.The conversion of MAL increases to 82.7%with an increase in the added amounts of MgO to 30%[Table 6,Entry f],while the selectivity of MMA decreases to52.5%,which resulted from relatively large Pd3Pb particle size.The pore volume and mean pore diameter of catalysts supported on MgO-SBA-15(0.450-A)decrease signif i cantly,which might result from the blocking pore entrances.Pd3Pb particles supported on MgO-SBA-15(0.450-A)are enlarged,but they are still smaller than the Pd3Pb particles supported on SBA-15.The surface alkalinity continues to increase but the catalytic activitydecreases.Therefore,thecatalysts for this reaction need appropriate alkalinity.

    It was known that the activity of catalysts was mainly attributed to Pd3Pb particles even when the catalytic reaction mechanism was not yet very clear[26].Therefore,the small Pd3Pb particles presented homogeneously on the surface of the supports should exhibit the high activity for oxidative esterif i cation of MAL with methanol.The dispersion and particle size distribution of Pd3Pb particles were inf l uenced by the amountsofMgOdopedonSBA-15supports.Itisnoticedthatanoptimal added amount of MgO is 10%[Table 6,Entry d].

    3.2.3.Effects of hydrochloric acid molar concentration on catalytic activity

    Table 7 summarizes the results of oxidative esterif i cation of MAL with Pd-Pb/MgO-SBA-15 catalysts synthesized with different hydrochloric acid molar concentrations.There is no signif i cant difference of selectivity of MMA for the catalysts prepared at hydrochloric acid molar concentration of 1.6 mol·L?1[Table 7,Entry a]and 0.8 mol·L?1[Table 7,Entry b].But the conversion of MAL obviously increases 10% when the hydrochloric acid molar concentration reduces from 1.6 mol·L?1to 0.8 mol·L?1.In addition,the conversion of MAL is 77% for the catalysts prepared at hydrochloric acid molar concentration of 0.4 mol·L?1[Table 7,Entry c]which is the same as the catalysts of 0.8 mol·L?1.Buttheselectivitysharplydecreasesto58.1%athydrochloric acidmolar concentrationof 0.4 mol·L?1.As we could seefrom Fig.2, the ordered texture is weak and the wall of the supports is the thinnest whenthehydrochloricacidmolarconcentrationis0.4 mol·L?1.Inaddition,the specif i c surface area,pore volume and mean pore diameter of the catalysts synthesized at hydrochloric acid molar concentration of 0.4 mol·L?1are smaller than those of another two catalysts.Furthermore,TEM images show that the average particle size of Pd3Pb particles follows the order of 0.8 mol·L?1<1.6 mol·L?1<0.4 mol·L?1,which is the same order as the catalytic activity.Low hydrochloric acid molar concentration leads to non-uniform dispersion and large particle size of Pd3Pb.In summary,the catalysts prepared at hydrochloric acid molar concentration of 0.8 mol·L?1present the best conversion of MAL and the best selectivity of MMA,which are 78.5%and 72.5%, respectively.

    Fig.5(continued).

    Table 7Effects of hydrochloric acid molar concentration on catalytic activity

    4.Conclusions

    In conclusion,a series of Pd-Pb/MgO-SBA-15 catalysts was prepared.It was found that the addition of MgO enhanced the ordered structure and increased the surface alkalinity of SBA-15 supports, which facilitated the dispersion of Pd3Pb particles.The average size of the Pd3Pb particles on Pd-Pb/MgO-SBA-15 catalysts was smaller than that on Pd-Pb/SBA-15 catalysts.Therefore,Pd-Pb/MgO-SBA-15 catalysts showed higher activity than Pd-Pb/SBA-15 catalysts,indicating strongdependenceof catalytic activity ontheaveragesizeof active particles.Evenwhentheexcessamounts of addedMgOincreased theaverage size ofPd3Pb particles,they were still smaller than particles on SBA-15 supports.Besides magnesia loadings,hydrochloric acid molarconcentration and magnesium precursors affected the catalytic activity as well.Low hydrochloric acid molar concentration led to non-uniform dispersion and large particle size of Pd3Pb.Through tailoring the mass ratio of MgO/SBA-15 and hydrochloric acid molar concentration, catalysts with uniform dispersion and small size Pd3Pb particles could be successfully synthesized.The optimal preparation conditions of MgO-SBA-15 supports were as follows:magnesium acetate precursors, 10%MgOloadings,and0.8 mol·L-1hydrochloricacidmolar concentration.

    [1]F.Kleitz,S.H.Choi,R.Ryoo,Cubic Ia3d large mesoporous silica:Synthesis and replication to platinum nanowires,carbon nanorods and carbon nanotubes,Chem. Commun.(2003)2136-2137.

    [2]Y.L.Wei,Y.M.Wang,J.H.Zhu,Z.Y.Wu,In-situ coating of SBA-15 with MgO:Direct synthesis of mesoporous solid bases from strong acidic systems,Adv.Mater.15 (22)(2003)1943-1945.

    [3]Z.X.Lu,S.F.Ji,H.Liu,C.Y.Li,Preparation and characterization of Pt-Sn/SBA-15 catalysts and their catalyticperformancesforlongchain alkane dehydrogenation,Chin.J. Chem.Eng.16(5)(2008)740-745.

    [4]A.Y.Khodakov,A.Griboval-Constant,R.Bechara,F.Villain,Pore-size control of cobalt dispersion and reducibility in mesoporous silicas,J.Phys.Chem.B 105(40)(2001) 9805-9811.

    [5]H.F.Xiong,Y.H.Zhang,K.Liew,J.L.Li,Fischer-Tropsch synthesis:The role of pore size for Co/SBA-15 catalysts,J.Mol.Catal.A Chem.295(1-2)(2008)68-76.

    [6]J.Panpranot,J.G.Goodwin Jr.,A.Sayari,CO hydrogenation on Ru-promoted Co/ MCM-41 catalysts,J.Catal.211(2)(2002)530-539.

    [7]M.T.Bore,H.N.Pham,E.E.Switzer,T.L.Ward,A.Fukuoka,A.K.Datye,The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica,J.Phys.Chem.B 109(7)(2005)2873-2880.

    [8]J.P.Dacquin,H.E.Cross,D.R.Brown,T.Duren,J.J.Williams,A.F.Lee,K.Wilson,Interdependent lateral interactions,hydrophobicity and acid strength andtheir inf l uence on the catalytic activity of nanoporous sulfonic acid silicas,Green Chem.12(8) (2010)1383-1391.

    [9]J.F.Dhainaut,J.P.Dacquin,A.F.Lee,K.Wilson,Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis,Green Chem.12(2) (2010)296-303.

    [10]M.A.P.Christopher,W.B.Duncan,S.H.Nicole,F.L.Adam,W.Karen,Supportenhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas,ACS Catal.1(6)(2011)636-640.

    [11]D.Y.Zhao,J.L.Feng,Q.S.Quo,N.Melosh,G.H.Fredrickson,B.F.Chmelka,G.D.Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 ? pores, Science 279(5350)(1998)548-552.

    [12]L.H.Zhou,J.Hu,S.H.Xie,H.L.Liu,Dispersion of active Au nanoparticles on mesoporous SBA-15 materials,Chin.J.Chem.Eng.15(4)(2007)507-511.

    [13]R.C.Schroden,M.Al-Daous,S.Sokolov,B.J.Melde,J.C.Lytle,A.Stein,M.C.Carbajo,J.T. Fernandez,E.E.Rodriguez,Hybrid macroporous materials for heavy metal ion adsorption,J.Mater.Chem.12(11)(2002)3261-3267.

    [14]A.Vinu,K.Z.Hossain,K.Ariga,Recent advances in functionalization of mesoporous silica,J.Nanosci.Nanotechnol.5(3)(2005)347-371.

    [15]W.M.Song,X.Liu,T.Jing,Q.G.Deng,Characterization and catalytic properties of Al-MCM-41,mesoporous materials grafted with tributyltin chloride,Chin.J.Chem.Eng. 20(5)(2012)900-905.

    [16]B.L.Newalkar,J.Olanrewaju,S.Komarneni,Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica,J.Phys.Chem.B 105(35)(2001)8356-8360.

    [17]B.L.Newalkar,J.Olanrewaju,S.Komarneni,Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave-hydrothermal conditions, Chem.Mater.13(2)(2001)552-557.

    [18]R.V.Grieken,J.M.Escola,J.Moreno,R.Rodriguez,Direct synthesis of mesoporous MSBA-15(M=Al,Fe,B,Cr)andapplication to 1-hexene oligomerization,Chem.Eng.J. 155(1-2)(2009)442-450.

    [19]M.B.Yue,L.B.Sun,Y.Cao,Z.J.Wang,Y.Wang,Q.Yu,J.H.Zhu,Promoting the CO2adsorption in the amine-containing SBA-15 by hydroxyl group,Microporous Mesoporous Mater.114(1-3)(2008)74-81.

    [20]Y.Wei,Y.Cao,J.H.Zhu,Attempts on preparing mesoporous basic material MgO/ SBA-15,Stud.Surf.Sci.Catal.154(Part A)(2004)878-885.

    [21]Z.Y.Wu,Q.Jiang,Y.M.Wang,H.J.Wang,L.B.Sun,L.Y.Shi,J.H.Xu,Y.Wang,Y.Chun,J.H. Zhu,Generating superbasic sites on mesoporous silica SBA-15,Chem.Mater.18(19) (2006)4600-4608.

    [22]L.B.Sun,J.H.Kou,Y.Chun,J.Yang,F.N.Gu,Y.Wang,J.H.Zhu,Z.G.Zou,New attempt at directly generating superbasicity on mesoporous silica SBA-15,Inorg.Chem.47 (10)(2008)4199-4208.

    [23]Y.Y.Diao,R.Y.Yan,S.J.Zhang,P.Yang,Z.X.Li,L.Wang,H.F.Dong,Effects of Pb and Mg doping in Al2O3-supported Pd catalyst on direct oxidative esterif i cation of aldehydes with alcohols to esters,J.Mol.Catal.A Chem.303(1-2)(2009)35-42.

    [24]T.Miyake,T.Asakawa,Recently developed catalytic processes with bimetallic catalysts,Appl.Catal.A Gen.280(1)(2005)47-53.

    [25]D.Y.Zhao,Q.S.Huo,J.L.Feng,F.C.Bradley,D.S.Galen,Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable,mesoporous silica structures,J.Am.Chem.Soc.120(24)(1998) 6024-6036.

    [26]Y.Setsuo,Y.Tatsuo,Y.Koshiro,N.Osamu,C.Masazumi,A.Atsushi,Development of catalyst technology for producing methyl methacrylate(MMA)by direct methyl esterif i cation,Catal.Surv.Asia 14(8)(2010)124-131.

    26 February 2013

    http://dx.doi.org/10.1016/j.cjche.2014.08.002

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 15 April 2013

    Accepted 7 May 2013

    Available online 20 August 2014

    桃花免费在线播放| 侵犯人妻中文字幕一二三四区| 丰满迷人的少妇在线观看| 男女国产视频网站| 欧美另类一区| 国产一区亚洲一区在线观看| 国产欧美日韩综合在线一区二区| 亚洲精品久久久久久婷婷小说| 青草久久国产| 日韩一卡2卡3卡4卡2021年| e午夜精品久久久久久久| 亚洲美女视频黄频| 91aial.com中文字幕在线观看| 精品久久久久久电影网| 亚洲免费av在线视频| 男女下面插进去视频免费观看| 国产成人精品福利久久| 亚洲精品一二三| 国产在线视频一区二区| 成人亚洲精品一区在线观看| 国产有黄有色有爽视频| av.在线天堂| 老鸭窝网址在线观看| 又大又爽又粗| 亚洲熟女精品中文字幕| 日本一区二区免费在线视频| 最近2019中文字幕mv第一页| 99热全是精品| 亚洲国产日韩一区二区| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 亚洲熟女毛片儿| av视频免费观看在线观看| 欧美在线一区亚洲| 大片电影免费在线观看免费| 久热爱精品视频在线9| 亚洲国产看品久久| 国产黄色免费在线视频| 国产成人av激情在线播放| 一边摸一边做爽爽视频免费| 亚洲男人天堂网一区| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 在线观看www视频免费| 蜜桃在线观看..| 又大又爽又粗| 最近中文字幕高清免费大全6| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 免费观看a级毛片全部| 久久99热这里只频精品6学生| 精品国产超薄肉色丝袜足j| 免费在线观看完整版高清| 欧美日韩成人在线一区二区| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 大香蕉久久网| 中文字幕人妻熟女乱码| 国产男女内射视频| 久久精品国产综合久久久| 精品国产超薄肉色丝袜足j| 午夜福利视频在线观看免费| 黄片小视频在线播放| 国产精品久久久久久人妻精品电影 | 亚洲 欧美一区二区三区| 亚洲综合精品二区| 黄网站色视频无遮挡免费观看| 亚洲图色成人| 国产一卡二卡三卡精品 | 亚洲精品aⅴ在线观看| 男女下面插进去视频免费观看| 午夜av观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美在线一区| 菩萨蛮人人尽说江南好唐韦庄| 一边亲一边摸免费视频| 中国国产av一级| 日本av手机在线免费观看| 在现免费观看毛片| 久久国产精品男人的天堂亚洲| 制服丝袜香蕉在线| 在线观看国产h片| 另类精品久久| 欧美日韩综合久久久久久| 十分钟在线观看高清视频www| 国产精品久久久久成人av| 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 国产亚洲午夜精品一区二区久久| 亚洲精品国产区一区二| 久久鲁丝午夜福利片| 最黄视频免费看| 午夜福利视频精品| 欧美在线黄色| 亚洲激情五月婷婷啪啪| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 看十八女毛片水多多多| 亚洲综合色网址| 久久久久精品性色| 99re6热这里在线精品视频| 美女主播在线视频| 免费在线观看视频国产中文字幕亚洲 | 精品少妇内射三级| 欧美在线黄色| 男人操女人黄网站| 亚洲综合精品二区| 国产一卡二卡三卡精品 | 久热爱精品视频在线9| 亚洲欧美成人精品一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 9191精品国产免费久久| 欧美在线黄色| 成人黄色视频免费在线看| 啦啦啦视频在线资源免费观看| 国产深夜福利视频在线观看| 美女大奶头黄色视频| 久久影院123| 蜜桃国产av成人99| 肉色欧美久久久久久久蜜桃| 搡老乐熟女国产| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 久久ye,这里只有精品| 亚洲精品在线美女| 国产av码专区亚洲av| 中文精品一卡2卡3卡4更新| 午夜激情av网站| 亚洲欧美成人精品一区二区| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 日韩电影二区| 精品国产乱码久久久久久小说| 99九九在线精品视频| 欧美在线黄色| 国产欧美日韩综合在线一区二区| 久久人人爽av亚洲精品天堂| 丰满饥渴人妻一区二区三| 欧美老熟妇乱子伦牲交| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 亚洲情色 制服丝袜| 99热全是精品| 赤兔流量卡办理| 亚洲七黄色美女视频| 日韩一卡2卡3卡4卡2021年| 久久热在线av| 王馨瑶露胸无遮挡在线观看| 午夜福利影视在线免费观看| 国产精品久久久久久精品古装| 在线观看免费视频网站a站| 国产男女超爽视频在线观看| 免费人妻精品一区二区三区视频| 中文精品一卡2卡3卡4更新| 99九九在线精品视频| 晚上一个人看的免费电影| 欧美激情 高清一区二区三区| 最近中文字幕2019免费版| 别揉我奶头~嗯~啊~动态视频 | 你懂的网址亚洲精品在线观看| 国产精品秋霞免费鲁丝片| 免费在线观看视频国产中文字幕亚洲 | 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 国产人伦9x9x在线观看| 日本91视频免费播放| 黄频高清免费视频| 一本色道久久久久久精品综合| 久久久久人妻精品一区果冻| 99九九在线精品视频| 在线 av 中文字幕| 如何舔出高潮| 赤兔流量卡办理| 国产av码专区亚洲av| 国产成人91sexporn| 国精品久久久久久国模美| 免费日韩欧美在线观看| 久久人人爽人人片av| 久久久久精品久久久久真实原创| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产一区二区精华液| 在线观看国产h片| 少妇 在线观看| 亚洲成人一二三区av| 国产精品麻豆人妻色哟哟久久| 一本一本久久a久久精品综合妖精| 国产成人精品久久二区二区91 | 人人澡人人妻人| av女优亚洲男人天堂| 久久人人97超碰香蕉20202| 亚洲成人国产一区在线观看 | 超色免费av| 国产亚洲最大av| av不卡在线播放| 男女午夜视频在线观看| 亚洲,欧美精品.| 1024视频免费在线观看| 成人漫画全彩无遮挡| 美女福利国产在线| 18禁观看日本| 男人添女人高潮全过程视频| 亚洲精品美女久久久久99蜜臀 | 看非洲黑人一级黄片| 啦啦啦在线免费观看视频4| 免费黄色在线免费观看| 国产亚洲av高清不卡| 97在线人人人人妻| 中文字幕人妻丝袜制服| 亚洲美女视频黄频| 午夜免费鲁丝| xxxhd国产人妻xxx| 国产老妇伦熟女老妇高清| 天天躁狠狠躁夜夜躁狠狠躁| 一本一本久久a久久精品综合妖精| 久久精品亚洲av国产电影网| 久久热在线av| 下体分泌物呈黄色| 免费少妇av软件| 亚洲成人国产一区在线观看 | 亚洲国产av影院在线观看| 国产亚洲欧美精品永久| 午夜日韩欧美国产| 熟妇人妻不卡中文字幕| 亚洲精华国产精华液的使用体验| 一级片免费观看大全| 中文字幕人妻熟女乱码| 国产视频首页在线观看| 精品国产超薄肉色丝袜足j| 岛国毛片在线播放| 日韩制服骚丝袜av| 国产日韩一区二区三区精品不卡| 老司机在亚洲福利影院| 另类亚洲欧美激情| 欧美激情极品国产一区二区三区| 国产一区二区三区av在线| 操出白浆在线播放| 亚洲精品国产色婷婷电影| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 国产探花极品一区二区| av网站免费在线观看视频| 桃花免费在线播放| 精品国产国语对白av| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 国产亚洲最大av| 一本久久精品| 欧美亚洲日本最大视频资源| 赤兔流量卡办理| 免费观看人在逋| 日日撸夜夜添| 欧美日韩国产mv在线观看视频| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| 亚洲一级一片aⅴ在线观看| 美女福利国产在线| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 丰满乱子伦码专区| 性色av一级| 18禁国产床啪视频网站| 亚洲精品久久久久久婷婷小说| 中国国产av一级| 日韩中文字幕欧美一区二区 | 欧美日韩综合久久久久久| 亚洲天堂av无毛| 成人影院久久| 亚洲欧美精品综合一区二区三区| 国产又色又爽无遮挡免| 制服丝袜香蕉在线| 欧美久久黑人一区二区| 国产日韩欧美视频二区| 老汉色av国产亚洲站长工具| av片东京热男人的天堂| 老司机在亚洲福利影院| 宅男免费午夜| 免费高清在线观看视频在线观看| 亚洲情色 制服丝袜| 性色av一级| av有码第一页| 日韩制服骚丝袜av| av不卡在线播放| 国产成人系列免费观看| 国产精品一区二区在线观看99| 性少妇av在线| 久久精品久久精品一区二区三区| 啦啦啦啦在线视频资源| 如何舔出高潮| 丝瓜视频免费看黄片| av视频免费观看在线观看| 亚洲七黄色美女视频| av在线播放精品| 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 久久久精品国产亚洲av高清涩受| 精品第一国产精品| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 日本色播在线视频| 王馨瑶露胸无遮挡在线观看| 一个人免费看片子| 老鸭窝网址在线观看| 91老司机精品| 亚洲av成人不卡在线观看播放网 | 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 美女扒开内裤让男人捅视频| 韩国av在线不卡| 伦理电影大哥的女人| 亚洲av福利一区| 亚洲熟女毛片儿| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱久久久久久| 精品少妇一区二区三区视频日本电影 | 99精品久久久久人妻精品| 麻豆精品久久久久久蜜桃| 国产精品久久久久久人妻精品电影 | 久久鲁丝午夜福利片| 黑人欧美特级aaaaaa片| 亚洲,欧美,日韩| 欧美精品av麻豆av| 精品人妻一区二区三区麻豆| 高清在线视频一区二区三区| 精品一区二区免费观看| 乱人伦中国视频| 午夜av观看不卡| 麻豆精品久久久久久蜜桃| 国产精品久久久久久人妻精品电影 | 国产免费视频播放在线视频| 日韩视频在线欧美| 久久久国产一区二区| 天天躁夜夜躁狠狠躁躁| 美女大奶头黄色视频| 好男人视频免费观看在线| 大香蕉久久网| 热re99久久国产66热| 大香蕉久久网| 丝袜美足系列| 国产男女超爽视频在线观看| 一区二区三区乱码不卡18| 亚洲成色77777| 亚洲精品av麻豆狂野| 久久精品国产亚洲av涩爱| 久久人人爽av亚洲精品天堂| 亚洲在久久综合| 青青草视频在线视频观看| 熟女av电影| 制服人妻中文乱码| 免费在线观看完整版高清| 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 久久影院123| 亚洲视频免费观看视频| av天堂久久9| 另类亚洲欧美激情| 两个人看的免费小视频| 1024香蕉在线观看| 欧美日韩视频高清一区二区三区二| 尾随美女入室| 久久99热这里只频精品6学生| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 日韩,欧美,国产一区二区三区| 久久久久久久精品精品| 大香蕉久久网| 高清不卡的av网站| 国产精品一区二区在线观看99| 丝袜美足系列| 欧美日韩亚洲综合一区二区三区_| 日韩欧美精品免费久久| 免费观看av网站的网址| 国产片特级美女逼逼视频| 久久精品国产亚洲av高清一级| 老司机亚洲免费影院| 最近最新中文字幕大全免费视频 | 国产精品香港三级国产av潘金莲 | 亚洲欧美精品综合一区二区三区| 亚洲人成电影观看| 婷婷成人精品国产| 又大又黄又爽视频免费| 高清在线视频一区二区三区| 国产精品人妻久久久影院| 午夜影院在线不卡| 国产精品 欧美亚洲| 亚洲人成网站在线观看播放| 国产精品欧美亚洲77777| 亚洲人成网站在线观看播放| 久久人人爽av亚洲精品天堂| 国产在线免费精品| 99久久99久久久精品蜜桃| 99国产综合亚洲精品| 无限看片的www在线观看| 狠狠婷婷综合久久久久久88av| 免费在线观看视频国产中文字幕亚洲 | 在线观看人妻少妇| 欧美日韩亚洲国产一区二区在线观看 | 成年av动漫网址| 一区二区av电影网| 亚洲伊人色综图| 性少妇av在线| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久 | 十八禁人妻一区二区| 建设人人有责人人尽责人人享有的| 十八禁人妻一区二区| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线| 丝袜喷水一区| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 色视频在线一区二区三区| www.av在线官网国产| 久久97久久精品| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 欧美在线一区亚洲| 韩国高清视频一区二区三区| 国产极品粉嫩免费观看在线| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 免费在线观看完整版高清| 久久精品久久精品一区二区三区| 国产高清不卡午夜福利| 老司机亚洲免费影院| 色精品久久人妻99蜜桃| 在线观看www视频免费| 最黄视频免费看| 十八禁高潮呻吟视频| 狂野欧美激情性xxxx| 日韩精品免费视频一区二区三区| 国产一区二区 视频在线| 日韩,欧美,国产一区二区三区| 亚洲成人手机| 欧美xxⅹ黑人| 国产日韩欧美视频二区| 久久精品久久久久久噜噜老黄| 97在线人人人人妻| 国产男女内射视频| 一本一本久久a久久精品综合妖精| 亚洲精品av麻豆狂野| 国产av精品麻豆| 国产精品嫩草影院av在线观看| 色精品久久人妻99蜜桃| 国产精品蜜桃在线观看| 亚洲成国产人片在线观看| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| 亚洲伊人色综图| 色综合欧美亚洲国产小说| 国产成人午夜福利电影在线观看| av在线播放精品| 欧美最新免费一区二区三区| 曰老女人黄片| 日本av免费视频播放| 丝瓜视频免费看黄片| xxx大片免费视频| 亚洲人成网站在线观看播放| 亚洲精品av麻豆狂野| 国产一区二区激情短视频 | 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| 十分钟在线观看高清视频www| 精品一品国产午夜福利视频| 观看美女的网站| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 1024视频免费在线观看| 男人舔女人的私密视频| 欧美日韩亚洲国产一区二区在线观看 | 国产xxxxx性猛交| 亚洲欧洲精品一区二区精品久久久 | 哪个播放器可以免费观看大片| 丝瓜视频免费看黄片| 啦啦啦在线观看免费高清www| 国产精品国产av在线观看| 国精品久久久久久国模美| 狠狠婷婷综合久久久久久88av| 侵犯人妻中文字幕一二三四区| 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| 亚洲国产精品一区三区| 午夜福利在线免费观看网站| 午夜激情av网站| 一区在线观看完整版| 高清在线视频一区二区三区| 男女高潮啪啪啪动态图| 美女高潮到喷水免费观看| 国产精品熟女久久久久浪| 免费高清在线观看视频在线观看| av线在线观看网站| 国产精品欧美亚洲77777| 国产探花极品一区二区| 高清欧美精品videossex| 麻豆av在线久日| 狠狠精品人妻久久久久久综合| 成年女人毛片免费观看观看9 | 亚洲成人av在线免费| 黄色视频在线播放观看不卡| 99香蕉大伊视频| 天天影视国产精品| 人人妻人人添人人爽欧美一区卜| 欧美激情高清一区二区三区 | 国产麻豆69| 秋霞伦理黄片| 久久韩国三级中文字幕| 亚洲精品aⅴ在线观看| 老汉色∧v一级毛片| 亚洲免费av在线视频| 免费看不卡的av| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 婷婷成人精品国产| 在线观看三级黄色| 不卡视频在线观看欧美| 五月天丁香电影| 国产精品一国产av| 免费少妇av软件| 观看美女的网站| 亚洲第一区二区三区不卡| 热re99久久精品国产66热6| 七月丁香在线播放| 尾随美女入室| 中文字幕精品免费在线观看视频| 欧美亚洲 丝袜 人妻 在线| 极品少妇高潮喷水抽搐| 国产精品一区二区在线不卡| 美女脱内裤让男人舔精品视频| 一边摸一边做爽爽视频免费| 女人精品久久久久毛片| 久久av网站| 欧美人与性动交α欧美软件| 青草久久国产| 午夜影院在线不卡| 久久青草综合色| 男女免费视频国产| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 国产一区二区激情短视频 | 我要看黄色一级片免费的| 成人手机av| 一级爰片在线观看| av国产精品久久久久影院| 国产成人精品久久二区二区91 | 超色免费av| 精品亚洲成国产av| 综合色丁香网| 永久免费av网站大全| 欧美 日韩 精品 国产| 亚洲精品国产一区二区精华液| 精品酒店卫生间| 国产精品一区二区精品视频观看| 久久这里只有精品19| 80岁老熟妇乱子伦牲交| 精品国产国语对白av| 久久99精品国语久久久| 波多野结衣av一区二区av| 色视频在线一区二区三区| 最近最新中文字幕大全免费视频 | 久久女婷五月综合色啪小说| 国产亚洲av高清不卡| 成人国产av品久久久| 激情五月婷婷亚洲| 黑丝袜美女国产一区| 天堂俺去俺来也www色官网| 亚洲免费av在线视频| 男女床上黄色一级片免费看| 成年人午夜在线观看视频| 又大又黄又爽视频免费| kizo精华| 不卡av一区二区三区| 美女主播在线视频| 国产精品久久久人人做人人爽| 欧美乱码精品一区二区三区| 欧美日韩视频精品一区| 久久狼人影院| 嫩草影院入口| 在线观看免费日韩欧美大片| 天天影视国产精品| 91精品国产国语对白视频| 日韩av不卡免费在线播放| 国产日韩欧美亚洲二区| 日本爱情动作片www.在线观看| 国产女主播在线喷水免费视频网站| 熟妇人妻不卡中文字幕| 在线观看国产h片| 国产免费福利视频在线观看| 午夜精品国产一区二区电影| 欧美少妇被猛烈插入视频| 精品国产乱码久久久久久男人| 国产成人欧美| 男女高潮啪啪啪动态图| av.在线天堂| 国产欧美日韩一区二区三区在线| 久久久久精品国产欧美久久久 | 久久精品熟女亚洲av麻豆精品| 嫩草影院入口| 香蕉国产在线看| 秋霞伦理黄片| 亚洲精品国产av成人精品| 老鸭窝网址在线观看| 婷婷色av中文字幕| 免费不卡黄色视频| 午夜免费观看性视频| 欧美日韩视频高清一区二区三区二| 午夜福利在线免费观看网站| 下体分泌物呈黄色| 哪个播放器可以免费观看大片| 91成人精品电影| 亚洲精品国产色婷婷电影| 国产一区二区三区综合在线观看| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 青春草国产在线视频|