• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxidative Carbonylation of Methanol to Dimethyl Carbonate Over Cu(II)-1,10-Phenanthroline Bromide Complexes☆

    2014-07-25 11:29:34ZhipingDuLihuaXiongZhikunLinXuliLiYigangDingYuanxinWu
    Chinese Journal of Chemical Engineering 2014年10期

    Zhiping Du*,Lihua Xiong,Zhikun Lin,Xuli Li,Yigang Ding,Yuanxin Wu

    Catalysis,Kinetics and Reaction Engineering

    Oxidative Carbonylation of Methanol to Dimethyl Carbonate Over Cu(II)-1,10-Phenanthroline Bromide Complexes☆

    Zhiping Du*,Lihua Xiong,Zhikun Lin,Xuli Li,Yigang Ding,Yuanxin Wu

    Key Laboratory for Green Chemical Process of Ministry of Education,Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology,Wuhan Institute of Technology,Wuhan 430073,China

    A R T I C L EI N F O

    Article history:

    Dimethyl carbonate

    Cu(phen)Br2

    Methanol

    Oxidative carbonylation

    In order to develop the catalysts with low corrosiveness for the oxidative carbonylation of methanol to dimethyl carbonate(DMC),CuBr2was selected as the metal source to prepare Cu coordination compounds,Cu(phen)Br2, [Cu(phen)2Br]Br and[Cu(phen)3]Br2(phen=1,10-phenanthroline).These complexes were characterized by thermogravimetric analysis and temperature-programmed reduction.Their catalytic performances were investigated.It was found that the metal coordination environments and thermal stability of the complexes playedanimportant role intheircatalytic activities.Cu(phen)Br2exhibitedthehighest activity due tothelowest sterichindrance,themostpositionsoccupiedbythebromideionsandthehighestthermalstability.Theturnover numberwasupto47.6DMC mol·(Cumol)?1withselectivityof92.8%underconditionsof120°C,ratioofpartial pressure of CO to O2of 19:1(below the explosion limit of CO)and catalyst concentration of 0.011 mol·L?1. Furthermore,a plausible reaction mechanism was suggested on the basis of the experimental data.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    As an environmentally benign chemical,dimethyl carbonate(DMC) canbeusedasthecarbonylationreagentandthemethylationreagentto replace highly toxic phosgene or dimethyl sulfate[1-4].DMC has been drawingattentionasa safesolvent andanadditive in lithium-ion batteries.DMCcanalsobeusedpotentiallyasafueladditivetoreplacemethyltert-butylether(MTBE)duetoitshighoxygencontent,goodblending octane,rapid biodegradability and low toxicity[5,6].

    Amongseveralphosgene-freemethodsforthesynthesisofDMC,the oxidative carbonylation of methanol is the most perspective route,in which CuCl is used as a catalyst[7-9].However,this catalytic system suffers from some disadvantages,such as the losing activity due to the decomposition of CuCl,the corrosiveness caused by the chlorine ions and the redox reaction of copper.

    In order to overcome these drawbacks,the inf l uence of N-ligand on CuCl was studied[10-14].It was found that 1,10-phenanthroline (Phen)wasthemosteffectivepromoterintermsofthecatalyticactivity and the corrosion inhibition.Xiong and co-workers reported that Phen and N-methylimidazole(NMI)exhibited a synergic effect on the catalyticactivityofCuCl[15].WhenN-butylpyridiniumtetraf l uoroborate ([BPy]BF4)wasusedasreactionmedia,thesolubilityofCuClinmethanol increasedfromabout0.0044g·g?1to0.022g·g?1,andtheconversionof methanolandtheselectivityofDMCwereenhancedfrom9.0%and97.3% to 17.8%and 97.8%,respectively[16].Considering the low solubility of CuCl in methanol,CuCl2is selected to catalyze the oxidative carbonylation of methanol as well.Raab and co-workers found that the addition of NMI could enhance the catalytic activity of CuCl2dramatically and inhibit the corrosion to stainless steel autoclaves[17].

    The inf l uence of the above ligands on the catalytic performance of CuClx(x=1or2)isnotinvestigatedbytheCucoordinationcompounds as the catalyst,but by the direct mixture of the ligand and CuClxas the catalyst.It is very diff i cult to determine the amount and structure of the Cu coordination compound,which is formed in the oxidative carbonylation of methanol.As a result,it is diff i cult to understand the essence of the reaction.

    Recently it is found that Cu(phen)Cl2exhibited the higher activity than the equimolar mixture of CuCl2and Phen in the oxidative carbonylation of methanol[18].Considering that the corrosiveness of Cl?to metallic vessels is very high,it is replaced with Br?[19,20].In this paper,the copper coordinations with different structures,Cu(phen) Br2,[Cu(phen)2Br]Br and[Cu(phen)3]Br2,were prepared through the reactionof1,10-phenanthrolinewithcupric bromide inthemixed solution of methanol and ethanol,and their catalytic performances were evaluated.Furthermore,a plausible reaction mechanism was proposed.

    2.Experimental

    2.1.Materials

    AllreagentswithA.R.puritywerepurchasedfromlocal manufactures and used without further purif i cation.Cu(phen)Br2,[Cu(phen)2Br]Br and[Cu(phen)3]Br2were synthesized accordingtothe procedures described by Antunes[21],and were characterized by Fourier-transform infrared spectra.

    4 mmol of 1,10-phenanthroline(Phen)in 15.0 ml of ethanol was added dropwise to a solution containing 4 mmol of CuBr2and 15.0 mL of methanol.Then the mixture was stirred for 30 min at 25°C. Cu(phen)Br2was isolated by f i ltration,washed with methanol(3× 20 ml)and dried at 45°C for 24 h in vacuum.The same procedure was conducted for the synthesis of[Cu(phen)2Br]Br and Cu(phen)3Br2using 2 and 3 equivalents of Phen with CuBr2,respectively.[Cu(phen)3]Br2was obtained with the evaporation of the solvent at room temperature.

    Cu[(phen)3]Br2:Grass green solid,yield 75.2%.IR(KBr,cm?1): 3054.0,1622.4,1581.4,1513.9,1422.7,1340.1,1142.4,1098.9,851.7, 773.5,721.4,426.4.[Cu(phen)2Br]Br:Dark green solid,yield 82.4%.IR (KBr,cm?1):3082.4,1623.4,1603.8,1583.5,1513.2,1493.1,1422.7, 1223.1,1142.4,1102.1,854.8,781.4,721.4,429.5.Cu(phen)Br2:Brickred solid,yield 85.2%.IR(KBr,cm?1):3052.0,1623.4,1606.9,1583.1, 1513.8,1422.8,1346.2,1145.5,1105.1,851.7,775.2,718.3,430.2.

    2.2.Catalyst characterization

    Thermogravimetric analysis(TGA)was carried out on a TGA Q50 analyzer under nitrogen at a heating rate of 10°C·min?1from room temperature to 900°C.

    2.3.Measurement of catalytic activity and selectivity

    TheoxidativecarbonylationofmethanolwithCOandO2wascarried out in a 250 ml stainless steel autoclave equipped with an adjustable speed stirrer.50 ml of methanol and 0.011 mol·L?1of the catalyst were loaded into the autoclave.The autoclave was purged three times with O2,and then pressurized to 4.0 MPa with CO and O2(PCO/PO2= 19:1)at room temperature.The system was heated to 120°C and kept for4h.Afterthereaction,thereactorwascooleddowntoroomtemperature.The reaction mixture was analyzed by a Shimadzu GC-2014 equipped with a Rtx-50 capillary column(30 m×0.32 mm×0.25 μm) and f l ame ionization detector.

    3.Results and Discussion

    3.1.Catalytic performances

    The activities of Cu complexes were evaluated in the oxidative carbonylation of methanol.As a comparison,the activities of CuBr and CuBr2and the equimolar mixture of Phen and CuCl2were also tested. The results are listed in Table 1.When CuBr is used as the catalyst,the turnovernumber(TON)is4.4DMCmol(Cumol)?1with95.2%selectivity of DMC.The result might be ascribed to the low solubility of CuBr in methanol,resultingin thedecrease of the active centers.CuBr2could be solvedinmethanol,butTONisonly5.9DMC mol·(Cumol)?1becauseof its low activity,and dimethoxymethane(DMM)as a by-product is detected with 27.4%selectivity.With the addition of the equimolar amount of Phen,TON and the selectivity of DMC are enhanced to 12.3 DMC mol·(Cu mol)?1and 92.7%,respectively.The result might arise from the formation of the σ-π coordination bond between Phen and Cu(II),which can improve the catalytic activity of CuBr2.However, when the mixture catalyst is replaced with Cu(phen)Br2,TON is increased to 39.9 DMC mol·(Cu mol)?1with 92.5%selectivity of DMC. The results show that:(1)Cu(phen)Br2is an active species,(2)it is essential for the synthesis of Cu(phen)Br2from Phen and CuBr2to maintain enough time,and(3)it is disadvantageous for the in-situ formation of Cu(phen)Br2at the reaction temperature of 120°C.

    The literatures have reported that the number of ligand affects the activities of the Cu complexes in the oxidation of cyclohexane and toluene[21,22].The inf l uence of the structures of Cu complexes on the activities was also investigated.As shown in Table 1,TON is only 1.8 DMC mol·(Cu mol)?1over[Cu(phen)3]Br2,in which copper is hexacoordinated with six Cu-N bonds[23].The low activity might be ascribed to the following factors:(1)the steric hindrance from three ligands blocks the coordination of Cu(II)with methanol or CO;(2)the saturation of the f i rst coordination sphere inhibits the access of the reacting molecules to the metal center.With the decrease of the ligand number,[Cu(phen)2Br]Br,where copper is pentacoordinated,has the lowly steric hindrance and labile positions occupied by Br?,so TON is enhanced to 4.3 DMC mol·(Cu mol)?1.The mono-Phen complex might be formulated as Cu(phen)Br2in solution,where copper is tetracoordinated[23].TON is up to 39.9 DMC mol·(Cu mol)?1due to the lowest steric hindrance and the most labile positions occupied by Br?.However,its DMC selectivity is lower than that of[Cu(phen)2Br]Br and[Cu(phen)3]Br2.

    Compared with Cu(phen)Cl2[18],the activity of Cu(phen)Br2is slightly high.The literatures have reported that the insertion of CO in monocarbonyl species(Cu(CO)Cl)into the Cu-O bond in the cupric methoxychlide is a key step in the catalytic cycle[24,25],and thus the stability of Cu(CO)Cl is very important.It is well known that CO is an excellent π acceptor,and the Cu-(CO)bond is stabilized by π backbonding interaction between Cu and CO.Because the electronegativity of Cl(3.0)is higher than that of Br(2.8),the Cu-(CO)bond in Cu(CO) Br is more stable than that in Cu(CO)Cl.Thus,the insertion is easier, resulting in the higher activity for Cu(phen)Br2.

    It could be seen from Table 1 that Cu(phen)Br2exhibits the far higher activity than(C3H7)4NBr/CuBr2,and the reaction conditions are more moderate(the partial pressure of oxygen is below the explosive limit)[20].

    Table 1 Effect of different catalysts on oxidative carbonylation of methanol(reaction conditions: VMeOH=50 ml,CCu=0.011 mol·L?1,T=120°C,p=4 MPa,pCO:pO2=19:1,5 h.)

    3.2.Effect of the thermal stability of the complex on the catalytic activity

    The temperature in the oxidative carbonylation of methanol was usually controlled at 110-160°C,thus the thermal stability of Cu(II) complexes was characterized.As shown in Fig.1(a),the mass loss of Cu(phen)Br2is started at 300°C.This shows that Cu(phen)Br2is stable in the oxidative carbonylation of methanol.The mass loss is 42.5%from 300 to 470°C.It is probably caused by the decomposition of Phen because the mass loss is close to 44.7%of Phen in Cu(phen)Br2.The mass loss above 470°C is attributed to the decomposition of CuBr2.

    As listed in Fig.1(b),the 3.5%mass loss at about 130°C is due to the removalofcrystalwaterin[Cu(phen)2Br]Br.Themasslossabove270°C is caused by the decomposition of[Cu(phen)2Br]Br.It is shown that [Cu(phen)2Br]Br is also stable in the reaction.The mass loss at 100°C, as shown in Fig.1(c),arose from the elimination of crystal waters in [Cu(phen)3]Br2.Its thermal degradation appears above 160°C.At the same time,it is found that the stability of these catalysts in methanol is similar to that in the nitrogen atmosphere.

    Fig.1.TG/DTG patterns of Cu(phen)Br2(a),[Cu(phen)2Br]Br(b)and[Cu(phen)3]Br2(c).

    The initial decomposing temperature and the TON value of the complexes are listed in Table 2.When the oxidative carbonylation of methanol is catalyzed by the Cu complex,its activity is relevant to the σ-πcoordinationbondbetweenPhenandCu(II).Assoonasthedecomposition of the catalyst takes place,the σ-π coordination bond is destroyed,thus the catalytic activity decreases.Among the complexes, thethermalstabilityofCu(phen)Br2isthehighest.Theeffectofthetemperature on the σ-π coordination bond in Cu(phen)Br2is the least,and thus it exhibits the highest activity.As for[Cu(phen)2Br]Br,its thermal stability is lower than that of Cu(phen)Br2,implying that the inf l uence of thetemperature on the σ-π coordination bondis enhanced,and consequently,itsactivityisreduced.Thethermalstabilityof[Cu(phen)3]Br2is the least,and thus its activity is also the lowest.

    Table 2Initial decomposing temperature and TON of the complexes

    Fig.3.Effect of temperature on the carbonylation(VMeOH=50 ml,CCu=0.011 mol·L?1, T=4 h,p=4 MPa,pCO:pO2=19:1).

    Fig.2.The chemical equation of methanol,O2and CO.

    3.3.Effect of temperature on the reaction

    DMC and H2O can be synthesized by the oxidative carbonylation of methanol,meanwhile DMC can be hydrolyzed.This process is a consecutive reaction.Methanol can be oxidized to DMM as well.In a few words,the reaction includes a consecutive reaction and a parallel reaction as shown in Fig.2.In the reaction,the selectivity of DMM and the hydrolysis of DMC can be controlled through the selection of the catalyst.On the other hand,the yield of DMC can be improved by the study on the reaction kinetics.The effect of temperature was tested over Cu(phen)Br2.The results are exhibited in Fig.3.

    The generation rate of DMC is faster than that of DMM and the hydrolysis rate of DMC between 100 and 120°C,and thus TON isgradually enhanced.Especially,TON is rapidly increased from 5.5 to 39.9 DMC mol·(Cu mol)?1with a rise of the temperature from 110°C to 120°C.Above 120°C,the synthesis of DMC is inhibited because the carbonylation is exothermic.On the contrary,the generation rate of DMM and the hydrolysis rate of DMC are accelerated.Thereby,TON andthe DMCselectivityare graduallyreduced.Insummary,theoptimal temperature is 120°C.

    3.4.Effect of time on the reaction

    The inf l uence of time on the carbonylation was tested.As shown in Fig.4,TON is only 7.8 DMC mol·(Cu mol)?1within 3 h.The result implies that there is an induction period in the early stage.Along with the extension of the time,the induction period is broken,and TON is rapidly enhanced and reached to 47.6 DMC mol·(Cu mol)?1at 5 h. Above 5 h,both TON value and DMC selectivity are decreased because the generation rate of DMM and the hydrolysis rate of DMC are improved.

    Fig.4.Effect of time on the carbonylation(VMeOH=50 ml,CCu=0.011 mol·L?1, T=120°C,p=4 MPa,pCO:pO2=19:1).

    Fig.5.Proposed catalytic reaction cycle for the oxidative carbonylation.

    3.5.Reaction mechanism

    In the oxidative carbonylation of methanol,the key intermediate, the Cu(II)methoxycarbonyl species,is usually formed from a Cu(I,II)-ligand-bridged cluster[24,25],which stems from a cupric methoxy derivative and a cuprous carboxyl species.Therefore,it is necessary for the coexistence of Cu(II)and Cu(I).By detection,not any peak is found on the H2-TPR curve of Cu(phen)Br2.It is demonstrated that the reduction of Cu(phen)Br2cannot take place under the reaction conditions.The Cu(II)methoxycarbonyl might stem from the direct inset of CO in the Cu(II)-OCH3bond and the rate is very slow.Along with the formation of the Cu(II)methoxycarbonyl,Cu(I)can be generated by the reductive elimination of the Cu(II)methoxycarbonyl and the cupric methoxy.Hereafter,the formation of the Cu(II)methoxycarbonyl is easier due to the coexistence of Cu(II)and Cu(I).Thus,the catalytic cycle is accelerated,resulting in the rise of TON.As a result,there is the induction period in the early stage.

    Based on the previous mechanism and our own experimental data, the proposed mechanism is shown in Fig.5.DMC and Cu(phen)Br are generated through the reductive elimination of Cu(phen)Br(OCH3) and Cu(phen)Br(COOCH3).Because Cu(phen)Br(COOCH3)is hard to form via the inset of CO in the Cu(II)-OCH3bond in the early reaction (route A is shown in Fig.5),there exists the induction period.After the formation of Cu(phen)Br,the induction period is broken and route B is the main catalytic cycle.Parts of Cu(phen)Br are oxidized to Cu(phen)Br2,further forming the Cu(phen)Br(OCH3)species.The other parts of Cu(phen)Br are reacted with CO to form Cu(phen) Br(CO)species because of Phen rendering Cu(I)more rich electron.Then,Cu(phen)Br(OCH3)and Cu(phen)Br(CO)can form Cu(phen) Br(COOCH3)through the Cu(I,II)-ligand-bridged cluster.Finally,DMC is synthesized through the reductive elimination of Cu(phen) Br(COOCH3)and Cu(phen)Br(OCH3).At the same time,Cu(phen)Br is produced.

    4.Conclusions

    (1)TheCucoordinationcompound,Cu(phen)Br2,showedthehigher activity than the equimolar mixture of CuBr2and Phen in the oxidative carbonylation of methanol to DMC.

    (2)In comparison with[Cu(phen)2Br]Br and[Cu(phen)3]Br2, Cu(phen)Br2exhibited the highest activity due to the lowest sterichindrance,thegreatestcoordinationchanceandthehighest thermostability.TON arrived to 47.6 DMC mol·(Cu mol)?1with 92.8%selectivity under the standard batch reaction conditions ([Cu(II)]=0.011 mol·L?1,0.2 MPa O2,3.8 MPa CO,120°C and 5 h).

    (3)Theinductionperiodintheearlystagemightstemfromthedirect

    inset of CO in the Cu(II)-OCH3bond.

    [1]P.B.Zhang,S.Y.Huang,S.P.Wang,X.B.Ma,Effect of extra-framework silicon on the catalytic activity of Cuβ zeolite catalyst for synthesis of diethyl carbonate by oxidative carbonylation of ethanol,Chem.Eng.J.172(1)(2011)526-530.

    [2]H.L.Chen,S.J.Wang,M.Xiao,D.M.Han,Y.X.Lu,Y.Z.Meng,Direct synthesis of dimethyl carbonate from CO2and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst,Chin.J.Chem.Eng.20(5)(2012)906-913.

    [3]Z.Li,Y.Y.Liu,H.Y.Zeng,H.B.Huang,L.H.Yin,Characterization and catalytic performance of Cu(I)/solid acids catalysts in oxidative carbonylation of methanol,J. Chem.Ind.Eng.(china)61(6)(2010)1443-1449(in Chinese).

    [4]S.Y.Huang,Y.Wang,Z.Z.Wang,B.Yan,S.P.Wang,J.L.Gong,X.B.Ma,Cu-doped zeolites for catalytic oxidative carbonylation:The role of Br?nsted acids,Appl. Catal.A Gen.417-418(2012)236-242.

    [5]X.B.Zheng,A.T.Bell,A theoretical investigation of dimethyl carbonate synthesis on Cu-Y zeolite,J.Phys.Chem.C 112(2008)5043-5047.

    [6]M.A.Pacheco,C.L.Marshall,Review of dimethyl carbonate(DMC)manufacture and its characteristics as a fuel additive,Energy Fuel 11(1997)2-29.

    [7]J.Engeldinger,C.Domke,M.Richter,U.Bentrup,Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY:An in situ spectroscopic and catalytic study,Appl.Catal.A Gen.382(2010)303-311.

    [8]Y.H.Zhang,A.T.Bell,The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y,J.Catal.255(2008)153-161.

    [9]U.Romano,R.Tesel,M.M.Maurl,Synthesis of dimethyl carbonate from methanol, carbon monoxide,and oxygen catalyzed by copper compounds,Ind.Eng.Chem. Prod.Res.Dev.19(1980)396-403.

    [10]Y.Sato,M.Kagotani,Y.Souma,Anewtypeofsupport‘bipyridinecontainingaromatic polyamide’to CuCl2for synthesis of dimethyl carbonate(DMC)by oxidative carbonylation of methanol,J.Mol.Catal.A Chem.151(2000)79-85.

    [11]G.Y.Wang,T.Huang,M.G.Liu,Oxidative carbonylation of methanol to dimethylcarbonate over copper complex catalysts,J.Nat.Gas Chem.9(2000)8-17.

    [12]Y.Sato,T.Yamamoto,Y.Souma,Poly(pyridine-2,5-diyl)-CuCl2catalyst for synthesis of dimethyl carbonate by oxidativecarbonylation of methanol:Catalytic activity and corrosion inf l uence,Catal.Lett.65(2000)123-126.

    [13]W.L.Mo,H.Xiong,G.X.Li,The catalytic performance and corrosion inhibition of CuCl/Schiff base system in homogeneous oxidative carbonylation of methanol, J.Mol.Catal.A Chem.247(2006)227-232.

    [14]W.L.Mo,H.Xiong,J.l Hu,Y.M.Ni,G.X.Li,The inf l uence of halogen anions and N-ligands in CuXn/N-ligands on the catalytic performance in oxidative carbonylation o f methanol,Appl.Organomet.Chem.24(2010)576-580.

    [15]H.Xiong,W.L.Mo,J.l Hu,R.X.Bai,G.X.Li,CuCl/phen/NMI in homogeneous carbonylationforsynthesisofdiethylcarbonate:Highlyactivecatalystandcorrosion inhibitor,Ind.Eng.Chem.Res.48(2009)10845-10849.

    [16]W.S.Dong,X.S.Zhou,C.S.Xin,C.L.Liu,Z.T.Liu,Ionic liquid as an eff i cient promoting mediumforsynthesisofdimethylcarbonatebyoxidativecarbonylationofmethanol, Appl.Catal.A Gen.334(2008)100-105.

    [17]V.Raab,M.Merz,J.Sundermeyer,Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate(DMC),J.Mol.Catal.A Chem.175(2001)51-63.

    [18]Z.P.Du,B.Zhou,L.M.Huang,C.Huang,Y.X.Wu,C.W.Wang,W.Sun,Synthesis of dimethyl carbonate from oxidative carbonylation of methanol catalyzed by Cu(phen)Cl2,Chin.J.Catal.33(4)(2012)736-742(in Chinese).

    [19]D.H.Liu,Z.Y.Jiang,X.Q.Liu,Q.Zhong,Preparation of bromine-containing copperorganiccoordination compound andits catalyticperformanceinoxidative carbonylation of methanol,J.Chem.Ind.Eng.(china)60(7)(2009)1714-1718(in Chinese).

    [20]D.H.Liu,J.He,L.B.Sun,X.Q.Liu,Q.Zhong,Cupric bromide-derived complex:An effective homogeneous catalyst for oxidative carbonylation of methanol to dimethyl carbonate,J.Taiwan Inst.Chem.Eng.42(4)(2011)616-621.

    [21]C.Detoni,N.M.F.Carvalho,D.A.G.Aranda,B.Louis,O.A.C.Antunes,Cyclohexane and toluene oxidation catalyzed by 1,10-phenanthroline Cu(II)complexes,Appl.Catal.A Gen.365(2009)281-286.

    [22]B.Louis,C.Detoni,N.M.F.Carvalho,C.D.Duarte,O.A.C.Antunes,Cu(II)bipyridine and phenantroline complexes:Tailor-made catalysts for the selective oxidation of tetralin,Appl.Catal.A Gen.360(2009)218-225.

    [23]G.H.Faye,The correlation of absorption spectra and structure of pseudo-octahedral and trigonal bipyramidal copper(II)-1,10-phenanthroline complexes in acetone solutions,Can.J.Chem.44(1966)2165-2171.

    [24]T.Saegusa,T.Tsuda,K.Isayama,K.Nishijima,Carbonate formation by the reaction of cupric methoxide and carbon monoxide,Tetrahedron Lett.9(1968)831-833.

    [25]T.Saegusa,T.Tsuda,K.Isayama,Reaction of cupric alkoxide and carbon monoxide,J. Org.Chem.35(1970)2976-2978.

    29 May 2013

    ☆Supported by the National Natural Science Foundation of China(20936003, 21276201).

    *Corresponding author.

    E-mail address:dzpxyhry@163.com(Z.Du).

    http://dx.doi.org/10.1016/j.cjche.2014.08.005

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 13 September 2013

    Accepted 8 October 2013

    Available online 19 August 2014

    夜夜爽夜夜爽视频| 久久综合国产亚洲精品| 亚洲av二区三区四区| 97超碰精品成人国产| 亚洲国产精品合色在线| 秋霞伦理黄片| 一级毛片aaaaaa免费看小| 高清在线视频一区二区三区 | 老司机影院毛片| 97超碰精品成人国产| 在线播放国产精品三级| 狂野欧美白嫩少妇大欣赏| 18禁在线无遮挡免费观看视频| 日本爱情动作片www.在线观看| 国产精品日韩av在线免费观看| 国产视频首页在线观看| 男女边吃奶边做爰视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲丝袜综合中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲国产精品国产精品| 久久99热6这里只有精品| 99热这里只有是精品在线观看| 婷婷色av中文字幕| 高清在线视频一区二区三区 | 国产精品一区二区在线观看99 | 日韩一本色道免费dvd| 精品酒店卫生间| 美女被艹到高潮喷水动态| 中文字幕久久专区| 老师上课跳d突然被开到最大视频| 亚洲图色成人| videos熟女内射| 又爽又黄a免费视频| 国产精品久久电影中文字幕| 高清在线视频一区二区三区 | 国产熟女欧美一区二区| 午夜福利高清视频| 国产精品无大码| 亚洲伊人久久精品综合 | 久久久国产成人精品二区| 国产成人精品一,二区| 亚洲无线观看免费| 你懂的网址亚洲精品在线观看 | 三级国产精品片| 亚洲精品一区蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 麻豆av噜噜一区二区三区| 欧美成人精品欧美一级黄| 国产色婷婷99| h日本视频在线播放| 国产熟女欧美一区二区| 天天躁夜夜躁狠狠久久av| 亚洲电影在线观看av| 国产精品综合久久久久久久免费| www.av在线官网国产| 老司机影院毛片| 国产av码专区亚洲av| 欧美日韩综合久久久久久| 白带黄色成豆腐渣| 白带黄色成豆腐渣| 在线a可以看的网站| 小说图片视频综合网站| 国产精品一区二区三区四区免费观看| 午夜激情欧美在线| 亚州av有码| 嫩草影院精品99| 最近视频中文字幕2019在线8| 国产精品女同一区二区软件| 1000部很黄的大片| 亚洲中文字幕日韩| 精品熟女少妇av免费看| 日本黄色视频三级网站网址| 久久精品91蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 伦理电影大哥的女人| 日本黄色视频三级网站网址| 国产女主播在线喷水免费视频网站 | 最近最新中文字幕免费大全7| 天堂√8在线中文| 青青草视频在线视频观看| 国模一区二区三区四区视频| 成人性生交大片免费视频hd| 亚洲国产精品久久男人天堂| 日日摸夜夜添夜夜添av毛片| 特级一级黄色大片| 一个人看视频在线观看www免费| 高清在线视频一区二区三区 | 美女被艹到高潮喷水动态| 中文资源天堂在线| 日韩av在线大香蕉| 亚洲婷婷狠狠爱综合网| 少妇熟女欧美另类| 天堂网av新在线| 亚洲成av人片在线播放无| 搞女人的毛片| 亚洲欧美精品自产自拍| 国产免费男女视频| 精品久久久久久成人av| 国产精品蜜桃在线观看| 亚洲精品国产av成人精品| 丝袜美腿在线中文| 亚洲国产欧美在线一区| a级毛片免费高清观看在线播放| 亚洲av电影在线观看一区二区三区 | 国产老妇女一区| 欧美日韩国产亚洲二区| 国产成人午夜福利电影在线观看| 国产欧美日韩精品一区二区| h日本视频在线播放| 日本黄大片高清| 欧美又色又爽又黄视频| 免费av毛片视频| 91在线精品国自产拍蜜月| 日本免费一区二区三区高清不卡| 国产一级毛片七仙女欲春2| 1000部很黄的大片| 2022亚洲国产成人精品| 日产精品乱码卡一卡2卡三| 国产欧美另类精品又又久久亚洲欧美| 成人av在线播放网站| 国产成人午夜福利电影在线观看| 久久这里只有精品中国| 男人的好看免费观看在线视频| 国产日韩欧美在线精品| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| 国产精品精品国产色婷婷| 在现免费观看毛片| 一级爰片在线观看| 1000部很黄的大片| 亚洲欧洲日产国产| 禁无遮挡网站| 国产一区有黄有色的免费视频 | 婷婷色av中文字幕| 色5月婷婷丁香| 国产精品福利在线免费观看| 搡老妇女老女人老熟妇| 狂野欧美白嫩少妇大欣赏| 国产 一区 欧美 日韩| 国产精品不卡视频一区二区| 神马国产精品三级电影在线观看| 亚洲国产欧洲综合997久久,| 亚洲国产色片| 亚洲图色成人| 亚洲无线观看免费| 男的添女的下面高潮视频| 最近最新中文字幕免费大全7| 国产精品久久久久久精品电影小说 | 色噜噜av男人的天堂激情| 亚洲精品国产av成人精品| 国产精品野战在线观看| 国产一区二区三区av在线| 六月丁香七月| 可以在线观看毛片的网站| av播播在线观看一区| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 全区人妻精品视频| 又粗又爽又猛毛片免费看| 亚洲av不卡在线观看| 欧美高清性xxxxhd video| 亚洲人成网站在线观看播放| 伦理电影大哥的女人| 国产一区二区三区av在线| 国产视频首页在线观看| 午夜久久久久精精品| 久久久久久九九精品二区国产| 偷拍熟女少妇极品色| 国产精品久久电影中文字幕| 日日啪夜夜撸| 99久久无色码亚洲精品果冻| 波多野结衣巨乳人妻| 国产不卡一卡二| 久久久色成人| 日本熟妇午夜| 一级毛片电影观看 | 免费看光身美女| 免费电影在线观看免费观看| 最近的中文字幕免费完整| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看 | 麻豆乱淫一区二区| 国产午夜福利久久久久久| 99九九线精品视频在线观看视频| 国产免费又黄又爽又色| 国产亚洲5aaaaa淫片| 男女视频在线观看网站免费| 青春草视频在线免费观看| 国产一区二区三区av在线| 亚洲va在线va天堂va国产| 久久久欧美国产精品| 成人国产麻豆网| 能在线免费观看的黄片| 小说图片视频综合网站| 国产黄片视频在线免费观看| 国产精品野战在线观看| 日韩大片免费观看网站 | 变态另类丝袜制服| 又爽又黄a免费视频| 亚洲精品乱码久久久久久按摩| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满| 国产高清不卡午夜福利| 精品人妻视频免费看| 乱人视频在线观看| 免费黄色在线免费观看| 高清午夜精品一区二区三区| 国产私拍福利视频在线观看| 毛片女人毛片| 欧美成人午夜免费资源| 日韩成人伦理影院| 久久久久久九九精品二区国产| 噜噜噜噜噜久久久久久91| 麻豆精品久久久久久蜜桃| 久久亚洲国产成人精品v| 久久热精品热| 久久久久久伊人网av| 一本久久精品| 精品人妻一区二区三区麻豆| 你懂的网址亚洲精品在线观看 | 精品久久久久久久久久久久久| 亚洲av二区三区四区| 国产成人福利小说| 久久人妻av系列| 亚洲乱码一区二区免费版| 久久久久九九精品影院| 伦理电影大哥的女人| 色综合站精品国产| 夜夜爽夜夜爽视频| 色吧在线观看| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 欧美成人一区二区免费高清观看| www.av在线官网国产| 97在线视频观看| 亚洲人成网站在线播| 22中文网久久字幕| 好男人在线观看高清免费视频| 国产精品国产高清国产av| 亚洲av福利一区| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 免费在线观看成人毛片| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 不卡视频在线观看欧美| 美女xxoo啪啪120秒动态图| 午夜久久久久精精品| 国产 一区精品| 水蜜桃什么品种好| 国产一级毛片七仙女欲春2| 欧美zozozo另类| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 亚洲欧美精品综合久久99| 久久久亚洲精品成人影院| 能在线免费看毛片的网站| 搞女人的毛片| 偷拍熟女少妇极品色| 亚洲三级黄色毛片| www.色视频.com| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区| 99久久精品国产国产毛片| 成人欧美大片| 2021天堂中文幕一二区在线观| 一夜夜www| 亚洲美女搞黄在线观看| 特级一级黄色大片| 搡女人真爽免费视频火全软件| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| 日本免费在线观看一区| 最新中文字幕久久久久| 亚洲最大成人手机在线| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 春色校园在线视频观看| 欧美日韩综合久久久久久| 免费观看性生交大片5| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 我要搜黄色片| 成人二区视频| 国产精品不卡视频一区二区| 国产一区二区在线观看日韩| 男人和女人高潮做爰伦理| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 午夜精品一区二区三区免费看| 久久精品久久久久久噜噜老黄 | 两个人的视频大全免费| 2021少妇久久久久久久久久久| 不卡视频在线观看欧美| 99九九线精品视频在线观看视频| 国产又色又爽无遮挡免| 久久久精品94久久精品| 美女被艹到高潮喷水动态| 国产精品一及| 九九爱精品视频在线观看| 日产精品乱码卡一卡2卡三| 麻豆成人午夜福利视频| 精品一区二区三区人妻视频| 国产综合懂色| 男女下面进入的视频免费午夜| 桃色一区二区三区在线观看| 久久久午夜欧美精品| 国产淫片久久久久久久久| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 国产精品.久久久| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 久久久久久大精品| 国产精品人妻久久久久久| 国产不卡一卡二| 免费大片18禁| 久久精品国产鲁丝片午夜精品| 国产探花极品一区二区| 久久热精品热| 免费大片18禁| 欧美高清性xxxxhd video| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 特大巨黑吊av在线直播| 精品酒店卫生间| 国产伦精品一区二区三区视频9| 亚洲va在线va天堂va国产| 久久精品熟女亚洲av麻豆精品 | 亚洲,欧美,日韩| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 成人午夜精彩视频在线观看| 2021天堂中文幕一二区在线观| 免费搜索国产男女视频| 久久精品熟女亚洲av麻豆精品 | 国产毛片a区久久久久| 美女国产视频在线观看| 日韩亚洲欧美综合| 国产免费福利视频在线观看| 亚洲欧美日韩高清专用| 午夜福利网站1000一区二区三区| 人妻少妇偷人精品九色| ponron亚洲| 在线免费十八禁| 我的老师免费观看完整版| 插阴视频在线观看视频| 久久久久免费精品人妻一区二区| 国产成人91sexporn| 免费黄色在线免费观看| 三级经典国产精品| 长腿黑丝高跟| 国产单亲对白刺激| 亚洲经典国产精华液单| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线播| 亚洲精品乱码久久久久久按摩| 乱系列少妇在线播放| 欧美一区二区精品小视频在线| 亚洲国产精品成人久久小说| 国产三级中文精品| 成年免费大片在线观看| 国产一区二区三区av在线| 超碰97精品在线观看| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 日本wwww免费看| 色尼玛亚洲综合影院| 热99在线观看视频| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 精品99又大又爽又粗少妇毛片| 国产不卡一卡二| 午夜精品国产一区二区电影 | 少妇高潮的动态图| 一边摸一边抽搐一进一小说| 国产极品精品免费视频能看的| 免费观看的影片在线观看| 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 老司机影院成人| 三级国产精品欧美在线观看| 成人av在线播放网站| 在线观看av片永久免费下载| 韩国高清视频一区二区三区| 国产真实伦视频高清在线观看| 免费看日本二区| 色噜噜av男人的天堂激情| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 久久综合国产亚洲精品| 国产大屁股一区二区在线视频| 亚洲av日韩在线播放| 99国产精品一区二区蜜桃av| 日本一本二区三区精品| 亚洲乱码一区二区免费版| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 国产精品国产三级国产av玫瑰| 韩国高清视频一区二区三区| 日本黄色视频三级网站网址| 久久综合国产亚洲精品| 免费观看精品视频网站| 日韩精品有码人妻一区| 久久人人爽人人片av| 亚洲av日韩在线播放| videossex国产| 精品少妇黑人巨大在线播放 | 97超碰精品成人国产| 免费观看人在逋| 九草在线视频观看| 国产在视频线精品| 纵有疾风起免费观看全集完整版 | 99热这里只有精品一区| 亚洲av.av天堂| 国产高清三级在线| 男女国产视频网站| 日韩,欧美,国产一区二区三区 | 欧美一区二区精品小视频在线| 中文字幕精品亚洲无线码一区| 男人舔奶头视频| 成人鲁丝片一二三区免费| 欧美bdsm另类| 国产精品麻豆人妻色哟哟久久 | 国产中年淑女户外野战色| 久久99蜜桃精品久久| 国产视频内射| 国产乱人视频| 午夜福利视频1000在线观看| 久久鲁丝午夜福利片| 久久久久九九精品影院| 在线播放无遮挡| 久久精品久久精品一区二区三区| 夫妻性生交免费视频一级片| 亚洲国产色片| 亚洲成人精品中文字幕电影| 九九爱精品视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人观看的视频www高清免费观看| 精品国产露脸久久av麻豆 | 蜜桃亚洲精品一区二区三区| 99热网站在线观看| 成人一区二区视频在线观看| 亚洲av一区综合| 国产白丝娇喘喷水9色精品| 插阴视频在线观看视频| 91午夜精品亚洲一区二区三区| 国产乱来视频区| 国产一区二区在线观看日韩| 在线播放国产精品三级| 床上黄色一级片| 91狼人影院| 卡戴珊不雅视频在线播放| 亚洲国产高清在线一区二区三| 久99久视频精品免费| 国产精品福利在线免费观看| av线在线观看网站| 高清av免费在线| 国产伦在线观看视频一区| 国产免费视频播放在线视频 | 亚洲国产欧洲综合997久久,| 国产精品不卡视频一区二区| 亚洲五月天丁香| 1000部很黄的大片| 久久精品国产99精品国产亚洲性色| 久久亚洲精品不卡| 国产精品电影一区二区三区| 视频中文字幕在线观看| 在线观看66精品国产| 中文乱码字字幕精品一区二区三区 | av在线观看视频网站免费| 精品99又大又爽又粗少妇毛片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲无线观看免费| 久久午夜福利片| ponron亚洲| 久久草成人影院| 色吧在线观看| 91精品一卡2卡3卡4卡| 免费搜索国产男女视频| 国产女主播在线喷水免费视频网站 | 久久久久久久国产电影| 国产亚洲91精品色在线| 久久精品国产亚洲av涩爱| 好男人视频免费观看在线| 欧美精品一区二区大全| 国产单亲对白刺激| 黑人高潮一二区| 日日摸夜夜添夜夜添av毛片| 国产精品久久视频播放| 在线观看av片永久免费下载| 99热6这里只有精品| 久久精品久久久久久噜噜老黄 | 少妇裸体淫交视频免费看高清| 亚洲色图av天堂| 亚洲国产精品成人久久小说| 欧美日韩精品成人综合77777| 国产精品麻豆人妻色哟哟久久 | 亚洲一区高清亚洲精品| 99久久中文字幕三级久久日本| 中文字幕av在线有码专区| 69人妻影院| 身体一侧抽搐| 极品教师在线视频| 亚洲国产欧洲综合997久久,| 两性午夜刺激爽爽歪歪视频在线观看| 99久久精品国产国产毛片| 只有这里有精品99| 国产又黄又爽又无遮挡在线| 乱人视频在线观看| 精品国产露脸久久av麻豆 | 蜜桃久久精品国产亚洲av| 亚州av有码| 麻豆成人av视频| 最近手机中文字幕大全| 人人妻人人澡欧美一区二区| 国产在视频线在精品| 久久精品综合一区二区三区| 成年版毛片免费区| 国产美女午夜福利| 成人国产麻豆网| 99久久精品一区二区三区| 91久久精品国产一区二区成人| 国产免费福利视频在线观看| 91精品国产九色| 亚洲18禁久久av| 久久精品国产亚洲av涩爱| 毛片女人毛片| 亚洲成人中文字幕在线播放| 国产探花在线观看一区二区| 日日摸夜夜添夜夜爱| 边亲边吃奶的免费视频| 欧美极品一区二区三区四区| 在线免费观看的www视频| 亚洲无线观看免费| 大香蕉97超碰在线| 免费观看a级毛片全部| 国产av一区在线观看免费| 嫩草影院精品99| 熟女电影av网| 久久久国产成人精品二区| 五月玫瑰六月丁香| 国产成人freesex在线| 久久久国产成人免费| 美女大奶头视频| 日韩视频在线欧美| 91久久精品国产一区二区成人| 在线观看av片永久免费下载| 在线播放国产精品三级| 一级二级三级毛片免费看| 久久久久久久久久久免费av| 一本一本综合久久| 永久网站在线| 午夜激情福利司机影院| 天堂网av新在线| 国产一区有黄有色的免费视频 | 黄片wwwwww| 色尼玛亚洲综合影院| 亚洲18禁久久av| 亚洲人成网站在线观看播放| 国产视频首页在线观看| 亚洲,欧美,日韩| 日本av手机在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 六月丁香七月| 中文天堂在线官网| 亚洲欧美精品综合久久99| 亚州av有码| 国产午夜精品论理片| 最后的刺客免费高清国语| 日韩精品青青久久久久久| 亚洲久久久久久中文字幕| 欧美精品国产亚洲| 精品少妇黑人巨大在线播放 | 纵有疾风起免费观看全集完整版 | 国产精品伦人一区二区| 国产精品一及| 日韩成人伦理影院| 美女内射精品一级片tv| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久久久按摩| 国产v大片淫在线免费观看| 久久久久久伊人网av| 99久久精品一区二区三区| 国产视频首页在线观看| 亚洲欧美日韩东京热| 午夜福利在线观看吧| 国产爱豆传媒在线观看| 国产精品伦人一区二区| 中文欧美无线码| 18禁在线播放成人免费| 成人一区二区视频在线观看| 欧美性感艳星| 一个人看的www免费观看视频| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 国产精品国产三级国产专区5o | videossex国产| 国产精品一区二区性色av| 免费观看性生交大片5| 青春草国产在线视频| 深夜a级毛片| 亚洲国产精品国产精品| 亚洲18禁久久av| 国产精品人妻久久久久久| 亚洲av熟女|