• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Approach to Continuous Approximation of Pareto Front Using GeometricSupportVectorRegressionforMulti-objectiveOptimizationof Fermentation Process☆

    2014-07-25 11:29:33JiahuanWuJianlinWangTaoYuLiqiangZhao
    Chinese Journal of Chemical Engineering 2014年10期

    Jiahuan Wu,Jianlin Wang*,Tao Yu,Liqiang Zhao

    Process Systems Engineering and Process Safety

    An Approach to Continuous Approximation of Pareto Front Using GeometricSupportVectorRegressionforMulti-objectiveOptimizationof Fermentation Process☆

    Jiahuan Wu,Jianlin Wang*,Tao Yu,Liqiang Zhao

    College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China

    A R T I C L EI N F O

    Article history:

    Continuous approximation of Pareto front

    Geometric support vector regression

    Interactive decision-making procedure

    Fed-batch fermentation process

    TheapproachestodiscreteapproximationofParetofrontusingmulti-objectiveevolutionaryalgorithmshavethe problems of heavy computation burden,long running time and missing Pareto optimal points.In order to overcome these problems,an approach to continuous approximation of Pareto front using geometric support vector regression is presented.The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front.In the process of geometric support vector regression modeling,considering the distribution characteristic of Pareto optimal points,the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes.Besides,an interactive decision-making(DM) procedure,inwhichthecontinuousapproximationofParetofrontanddecision-makingisperformedinteractively,isdesignedforimprovingtheaccuracyofthepreferredParetooptimalpoint.Thecorrectnessofthecontinuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem.In addition, combined with the interactive decision-making procedure,the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process.The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness.Compared with the multi-objective evolutionary algorithm with large size population,a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computationandshorterrunningtime.Theoperationstrategycorrespondingtothef i nalpreferredParetooptimalpoint generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Fermentation is the basis of bioengineering,modern biotechnology and their industrialization[1].With the rapid development of the fermentation technology and the continuous expansion of production scale of fermentation industry,it is urgent to execute process optimization and control to improve the production quality and economic benefi t of fermentation process[2,3].The early single objective optimization for fermentation process cannot deal with a number of production indexes such as production output,substrate cost,and fermentation time in fermentation process at the same time[4].The Multi-Objective Optimization(MOO)for fermentation process is an effective way to improve the production quality and bene fi ts of fermentation process[5,6]. The existing methods for MOO of fermentation process using linear weighted summation need the artif i cial weights of objectives which may have a negative impact on the results of optimization.Therefore, these methods are only appropriate for the case that the objectives are not competing with each other[7,8].Adopting Multi-Objective Evolutionary Algorithms(MOEAs)[9,10]to generate approximate discrete Pareto front combined with using Decision-Making(DM) algorithms[11,12]to select the preferred Pareto optimal point is a common way to deal with MOO problem[13,14].However,MOEAs require large size population to search Pareto optimal points and need a great number of evolutionary generations,which often lead to substantial evaluations of objective functions.Then,MOEAs often have the problems of heavy computation burden and long running time and cannot deal with the MOO problem involving largescale data in fermentation process.In order to reduce computation burden,some methods seek to limit the search in an interested region instead of the complete search space by introducing the preference information before or during the search of Pareto optimal points[15,16].However,because a complete Pareto front cannot beprovided,some important Pareto optimal points located outside the interested region may be left out.

    In this paper,an approach to continuous approximation of Pareto front using geometric Support Vector Regression(SVR)is presented.The regression model of the small size approximate discrete Pareto front is constructed by geometric SVR modeling and is described as the approximate continuous Pareto front.An interactive DM procedure,in which the continuous approximation of Pareto front and DM is performed interactively,is designed for improving the accuracy of the preferred Pareto optimal point.The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive DM procedure,the continuous approximation of Pareto front is applied in the multiobjective optimization for an industrial fed-batch yeast fermentation process.

    2.An Approach to Continuous Approximation of Pareto Front Using Geometric SVR

    2.1.Principle of continuous approximation of Pareto front

    The principle of the presented approach to continuous approximation of Pareto front can be described as follows.At f i rst,a complete and sparse approximate discrete Pareto front is obtained by the MOEA with small size population.Although the generated discrete Pareto front includes only a few Pareto optimal points and has blind area between the Pareto optimal points,it can provide relatively complete information of the coverage area of the true Pareto front in the search space because of its good distribution.Thus,the problem of missing Pareto optimal points can be avoided effectively.Moreover,the computation burden is reduced because of the reduction of the population size.After that,the regression model of the generated approximate discrete Pareto front is constructed by geometric SVR modeling and is described as the approximate continuous Pareto front.Then,the blind area between the Pareto optimal points can be eliminated as shown in Fig.1.

    2.2.Geometric SVR modeling

    The Geometric SVR modeling is adopted to generate the approximate continuous Pareto front.Due to avoiding the quadratic programming problem,geometric SVR has less computation and higher eff i ciency than standard SVR[17].Vapnik[18]presented using ε-insensitive loss function to construct regression model and an example was in an error if its residual|y?f(x)|was greater than ε(0<ε?1).In the geometric interpretation,ε-insensitive loss function can be described as ε-tube[19].Namely,for planar case,an accurate regression model means that all training sample points should fall in a ε-tube which is formed by shifting the regression function up and down by ε along y axis.According to ε-tube,Bi and Bennett[19]presented that geometric SVR problem can be transformed into the Nearest Point Problem(NPP)by augmenting training sample set.Let T={(χi,yi):χi∈Rm,yi∈R,i=1,2,…,n} be a training sample set,where X=[χ1,χ2,…,χn]is predictor vector and y=[y1,y2,…,yn]is response vector.The augmented training sample sets D+and D?can be constructed by shifting the original training sample points with the response variables increased and decreased by^ε,respectively.That is

    Fig.1.Principle of continuous approximation of Pareto front.

    Two Convex Hulls(CH)Co(D+)and Co(D?)can be constructed based on the convex combinations of the points in D+and D?,respectively.Then,the NPP between the two CHs iswhere α=(α1,α2,…,αn)and β=(β1,β2,…,βn)are the Lagrange multipliers of two augmented training sample sets.According to εtube,the optimal separating hyperplane obtained by solving the NPP between two CHs of D+and D?is described as the regression function of the original training sample points.It can be formulated as

    where,K(?)is a kernel function,and β*=are the optimal solutions of the NPP(2).Fig.2 illustrates the process of geometric SVR modeling.

    Fig.2.Geometric SVR modeling.

    2.3.Continuous approximation of Pareto front using geometric SVR

    The continuous approximation of Pareto front can be achieved by constructing the geometric SVR model of Pareto optimal points. Because there are usually some Pareto optimal points parallel to one or more coordinate axes,it is hard to construct two separable augmented training sample sets by shifting the original training sample points only along one coordinate axis,which may result in the problem that the obtained approximate continuous Pareto front cannot cover all Pareto optimal points as shown in Fig.3.Therefore,considering the distribution characteristic of Pareto optimal points,the augmented training sample sets are constructed by shifting the original trainingsample points along multiple coordinated axes as shown in Fig.4.

    Let the number of objective functions be m; P = [p1, p2, …, pn] (p ∈ Rm) is the set of Pareto optimal points. Two augmented training sample sets P and Pcan be constructed by shifting P along each coordinated axis in the space of objective functions.

    Fig.3.Construction of augmented sample sets by shifting original sample points along single coordinated axis.

    Fig.4.Construction of augmented sample sets by shifting original sample points along multiple coordinated axes.

    2.4.Test case for continuous approximation of Pareto front

    A test case concerning a typical MOO problem is introduced to demonstrate the correctness of the continuous approximation of Pareto front.The objective functions presented by Deb[20]are expressed as

    where 0.1≤x1,x2≤1.SEC-MOPSO algorithm[21]is adopted to search Pareto optimal points.The parameters of SEC-MOPSO with small size population are set as:the size of population m=20,the number of evolutionary generations is 100,inertia weight ω=1,acceleration coeff i cient c1=c2=c3=c4=0.1 and swarming coeff i cient is 0.7. The parameters of geometric SVR are set as:the parameter of Gaussian kernel function σ=0.1 and the parameter of insensitive loss function ε=0.01.Two pairs of augmented training sample sets are constructed by shifting the original training sample points along single coordinated axis(the shift parameter is 0.9 along J2)and multiple coordinated axis (the shift parameters are 0.16 along J1and 1.2 along J2),respectively. Gilbert's algorithm[17]is also adopted to solve the NPP between the two CHs constructed based on the two augmented training sample sets.Besides,a large size approximate discrete Pareto front generated by SEC-MOPSO with large size population(m=200)is also introduced to evaluate the performance of approximate continuous Pareto front. Other parameters of the SEC-MOPSO with large size population are same as the parameters of the SEC-MOPSO with small size population. Figs.5 and 6 show the approximate continuous Pareto front generated by geometric SVR modeling.It can be seen from Fig.5 that because there are some Pareto optimal points parallel to J2,two separable augmented training sample sets cannot be constructed by shifting the original training sample points only along J2and the obtained approximate continuous Pareto front cannot cover all Pareto optimal points. Fig.6 shows that shifting the original training sample points along J1and J2can construct two separable augmented training sample sets. Thus,the generated approximate continuous Pareto front has good accuracy and completeness.

    3.ProcedureofInteractiveDMInvolvingContinuousApproximation of Pareto Front

    Fig.5.Approximate continuous Pareto front generated by shifting original training sample points along J2.?small size discrete Pareto front;?large size discrete Pareto front;× augmented training sample points;+augmented training sample points;—approximate continuous Pareto front.

    3.1.Principle of interactive DM procedure

    Because the approximate continuous Pareto front is generated by geometric SVR modelinginsteadof MOEA,theaccuracy of thepreferred Pareto optimal point selected from the approximate continuous Pareto front cannot be guaranteed.Therefore,an interactive DM procedure involving the continuous approximation of Pareto front is designed for improving the accuracy of the approximate continuous Pareto front and the preferred Pareto optimal point.The principle of the procedure can be described asfollows.A preferred Pareto optimal pointis selected from the generated complete approximate continuous Pareto front by DM algorithm at f i rst.This process can be described as the f i rst DM.AlthoughthepreferredParetooptimalpointobtained bythef i rstDMmay be notaccuratebecauseof theerrors oftheapproximatecontinuousPareto front,its neighborhood can be considered as an interested region where the Pareto optimal points are more suitable tothe specif i ed preference information.In addition,the completeness of the approximate continuous Pareto front can avoid missing Pareto optimal points.In order to improve the accuracy of the approximate continuous Pareto front and the preferred Pareto optimal point,the continuous approximation of Pareto front and DM will be performed again in the small neighborhood of the preferred Pareto optimal point obtained by the f i rst DM.With the contraction of the interested region,the accuracy of the approximate continuous Pareto front and the preferred Pareto optimal point will be improved.The above procedure will be performed interactively until the result of DM can meet the accuracy requirement. The accuracy of the preferred Pareto optimal point can be measured based on the distance between the preferred Pareto optimal pointselected from the approximate continuous Pareto front and its closest Pareto optimal point generated by MOEA.Let the number of objective functions be m and i*is the preferred Pareto optimal point selected from the approximate continuous Pareto front.Then,the distance can be formulated as follows

    Fig.6.Approximate continuous Pareto front generated by shifting original training sample points along J1and J2.?small size discrete Pareto front;?large size discrete Pareto front;× augmented training sample points;+augmented training sample points;—approximate continuous Pareto front.

    where Jk,maxandJk,minare the maximum value and minimum value of the kth objective function of Pareto optimal points obtained by the fi rst DM;Jk,i*is the value of kth objective function of i*and Jk,min_dis the value of kth objective function of the nearest Pareto optimal point obtained by MOEA to i*.

    3.2.Implementation of interactive DM procedure

    Implementation of the interactive DM procedure can be summarized in the following steps.

    Step 1 Initialization:Declare the objective functions and the constraint conditions of the MOO problem.Set the parameters that are involved in the MOEA,the continuous approximation of Pareto front and the DM algorithm.

    Step 2 Discrete approximation of Pareto front:Generate the approximate discrete Pareto front by the MOEA with small size population.

    Step 3 ContinuousapproximationofParetofront:Constructtheregression model of the generated approximate discrete Pareto front by geometric SVR modeling.

    Step 4 The f i rst DM:Select the preferred Pareto optimal point from the approximate continuous Pareto front by the DM algorithm.

    Step 5 Set the interested region:Set the small neighborhood of the current preferred Pareto optimal point as the interested region. The size of the interested region can be adjusted according to the accuracy of the preferred Pareto optimal point.

    Step 6 Discrete approximation of Pareto front in interested region: Generate the approximate discrete Pareto front in interested region by the MOEA with small size population.

    Step 7 Continuous approximation of Pareto front in the interested region:Construct the regression model of the generated approximate discrete Pareto front in the interested region by geometric SVR modeling.

    Step 8 DM in the interested region:Select the preferred Pareto optimal pointfromtheapproximatecontinuousParetofrontintheinterested region by the DM algorithm.

    Step9 Checktheterminationcondition:Endtheloopifthetermination condition is satisf i ed;otherwise,go to Step 5.The termination condition is that the index Eq.(8)meets the specif i ed accuracy requirement.

    4.Moo for Fed-batch Fermentation Process

    4.1.MOO problem in fed-batch fermentation process

    Combined with the interactive DM procedure,the continuous approximation of Pareto front is applied in an industrial fed-batch yeast fermentation process in order to f i nd an optimal substrate feed rate prof i le that maximizes the f i nal biomass and minimizes the total consumption of substrate.The total time of fermentation process can be separated equally into several intervals.Then,the substrate feed rate prof i le consists of thedifferent substrate feed rates in each interval. The MOO problem can be formulated aswhere Cx(kg·L?1)is the concentration of biomass,V(L)is the culture volume,F(L·h?1)is the substrate feed rate,tfis the terminal time,d is the number of intervals and the substrate feed rate prof i le can be described as a vector F=[F1,F2,…,Fd].J1and J2represent the reciprocal of f i nal biomass and total consumption of substrate, respectively.

    4.2.Results and discussion

    The industrial fed-batch yeast fermentation process is simulated based on the kinetic model[22]and the dynamic model[4].The total fermentation time for simulation is 16.5 h,which is equally separated into 10 intervals(d=10).The samples during the total fermentation time are 100 from 0 to 16.5 h.The model parameters are set according to reference[4].According to reference[7],the initial conditions including initial biomass concentration(Cx/kg·L?1), initial substrate concentration(CS/kg·L?1),initial carbon dioxide concentration(CC/kg·L?1),initial dissolved oxygen concentration (CO/kg·L?1),initial ethanol concentration(CE/kg·L?1)and initial culture volume(V/L)are listed in Table 1.The substrate feed rate F is limited within(500-1200)L·h?1.

    Table 1Initial conditions for dynamic simulation

    4.2.1.The f i rst DM

    In the f i rst place,a small size approximate discrete Pareto front is generated by SEC-MOPSO.The parameters of SEC-MOPSO with small size population are set as:the size of population m=50,the number of evolutionary generations is 100,inertia weight ω=1,acceleration coeff i cient c1=c2=c3=c4=0.1 and swarming coeff i cient is 0.7. Secondly,an approximate continuous Pareto front is generated by geometric SVR modeling.The parameters of geometric SVR are set as: the parameter of Gaussian kernel function σ=0.1 and the parameter of insensitive loss function ε=0.01.The values of objective functions are normalized as J1=J1×104and J2=J2×10?4.Then,the shift parameters of augmented training sample sets are 0.1 along J1and 0.05 along J2.A classical Multi-Attribute Decision-making(MADM)algorithm named TOPSIS[13]is introduced to select the preferred Pareto optimal point from the approximate continuous Pareto front.In TOPSIS,the weighted parameters of J1and J2are both set as 0.5 according to the preference information.The upper limit value of accuracy index Eq.(8)is 0.01.A largesize approximate discrete Paretofrontgenerated by SEC-MOPSO with large size population(m=200)is also introduced to evaluate the performance of approximate continuous Pareto front and the results of DM.Other parameters of the SECMOPSO with large size population are the same as the parameters of the SEC-MOPSO with small size population.Fig.7 shows the results of the f i rst DM.

    As shown in Fig.7,the small size approximate discrete Pareto front has good distribution.Therefore,the generated approximate continuous Pareto front can provide relatively complete information of the coverage area of the large size approximate discrete Pareto front.The root-mean-square error(RMSE)of the approximate continuous Pareto front is 0.054.The accuracy index Eq.(8)of the f i rst DM is 0.014 which is above the upper limit value.In order to improve the accuracy of the prefer Pareto optimal point,the above procedure is performed again in the small neighborhood of the preferred Pareto optimal point.The size of the neighborhood is set as[?0.1×104,0.1×104] along J2.Other parameters of the involved algorithms are the same as the parameters in the f i rst DM.Fig.8 shows the results of the DM in the interested region.The RMSE of the approximate continuous Pareto front in the interested region is 0.0035.The accuracy index Eq.(8)is 0.0032 which meets the accuracy requirement.Moreover,it can be seen from Fig.8 that the f i nal preferred Pareto optimal point is closer to the original point than all Pareto optimal points generated by SECMOPSO with large size population,which means the preferred Pareto optimal point has better accuracy in terms of the values of the objective functions.

    Fig.7.Results of the f i rst DM.+small size discrete Pareto front;?large size discrete Pareto front;—approximate continuous Pareto front;?result of DM.

    Fig.8.Results of the DM in interested region.+small size discrete Pareto front;?large size discrete Pareto front;—approximate continuous Pareto front;?result of DM.

    The comparison of computation eff i ciency between the interactive DM procedure and SEC-MOPSO with large size population is listed in Table 2,in which the number of evaluations of the objective functions (Obj)and the running time(time/h)are considered.Table 2 illustrates that the designed interactive DM procedure involving continuous approximation of Pareto front requires less computation and shorter running time.

    Table 2Comparison of computation eff i ciency

    The optimal substrate feed rate pro fi le(F1)corresponding to the fi nal preferred Pareto optimal point is implemented in the simulation of an industrial fed-batch yeast fermentation process and compared with twoothercommonsubstratefeed ratepro fi les(constantlyandexponentially feed rate pro fi le)which are set as F2={F2i:F2i=800}and F3={F3i:F3i=500e0.05t}(i=1,…,d).The three substrate feed rate pro fi les and the pro fi les of key variables in the fermentation process are shown in Fig.9.

    In industrial fed-batch yeast fermentation process,the ethanol concentration should be minimized at the end of the process because the yield and quality of the f i nal product will be deteriorated in the case of the excessive formation of ethanol[22].Fig.9 shows that the three substrate feed rate prof i les can suppress the formation of ethanol effectively.Specif i cally,the optimal substrate feed rate prof i le(F1)correspondingtothef i nalpreferredParetooptimalpointandtheexponentially feed rate prof i le(F3)have better performance in suppressing the formation of ethanol.Two production indexes of fermentation process corresponding to the three substrate feed rate prof i les are listed in Table 3,in which the f i nal biomass(1/J1)and the total consumption of substrate(J2)are considered.As seen in Table 3,the substrate feed rate prof i le corresponding to the f i nal preferred Pareto optimal point can obtain more f i nal biomass with less total consumption of substrate than the two other feed rate prof i les.

    5.Conclusions

    AnapproachtocontinuousapproximationofParetofrontusinggeometric SVR is presented.The regression model of the small size approximate discrete Pareto front is constructed by geometric SVR modeling andisdescribedastheapproximatecontinuousParetofront.Aninteractive DM procedure,in which the continuous approximation of Pareto front and DM is performed interactively,is also designed for improving the accuracy of the preferred Pareto optimal point.The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem.In addition,combined with the interactive DM procedure,the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process.The experimental results showthatshiftingoriginaltrainingsamplepointsalongmultiplecoordinated axes can construct separable augmented training sample sets so that the generated approximate continuous Pareto front has better accuracy and completeness.Furthermore,compared with the MOEA with large size population,a more accurate preferred Pareto optimal point can be obtained by the continuous approximation of Pareto front and the interactive DM procedure with less computation and shorter running time.The operation strategy corresponding to the fi nal preferred Pareto optimal point generated by the interactive DM procedure can obtain more fi nal biomass with less total consumption of substrate which means that the production indexes of the fermentation process are improved effectively.

    Fig.9.Prof i les of key variables in industrial fed-batch yeast fermentation process.

    Fig.9(continued).

    Table 3Comparison of production indexes

    [1]J.L.Wang,T.Yu,C.Y.Jin,On-line estimation of biomass infermentation processusing support vector machine,Chin.J.Chem.Eng.14(3)(2006)383-388.

    [2]X.J.Gao,P.Wang,Y.S.Qi,Y.T.Zhang,H.Q.Zhang,A.J.Yan,Anoptimal control strategy combining SVMwith RGAfor improvingfermentation titer,Chin.J.Chem.Eng.18(1) (2010)95-101.

    [3]J.L.Wang,X.Y.Feng,L.Q.Zhao,T.Yu,Unscented transformation based on robust Kalman f i lter and its applications in fermentation process,Chin.J.Chem.Eng.18 (3)(2010)412-418.

    [4]J.L.Wang,Y.Y.Xue,T.Yu,L.Q.Zhao,Run-to-run optimization for fed-batch fermentation process with swarm energy conservation particle swarm optimization algorithm,Chin.J.Chem.Eng.18(5)(2010)787-794.

    [5]T.B.Andres,S.J.M.Giron,B.P.Fernandez,O.J.A.Lopez,P.E.Besada,Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms,J.Zhejiang Univ.(Sci.)5(4)(2004)378-389.

    [6]S.Sharma,G.P.Rangaiah,Multi-objective optimization of a fermentation process integrated with cell recycling and inter-stage extraction,Comput.Aided Chem.Eng. 31(2012)860-864.

    [7]U.Yuzgec,M.Turker,A.Hocalar,On-line evolutionary optimization of an industrial fed-batch yeast fermentation process,ISA Trans.48(1)(2009)79-92.

    [8]U.Yuzgec,Performance comparison of differential evolution techniques on optimization of feeding prof i le for an industrial scale baker's yeast fermentation process, ISA Trans.49(2010)167-176.

    [9]K.Deb,A.Pratap,S.Agarwal,T.Meyarivan,A fast and elitist multiobjective genetic algorithm:NSGA-II,IEEE Trans.Evol.Comput.6(2)(2002)182-197.

    [10]C.A.C.Coello,G.T.Pulido,M.S.Lechuga,Handling multiple objective with particle swarm optimization,IEEE Trans.Evol.Comput.8(3)(2004)256-279.

    [11]R.O.Parreiras,J.A.Vasconcelos,Decision making in multiobjective optimization aided by the multicriteria tournament decision method,Nonlinear Anal.71(2009) 191-198.

    [12]A.I.Olcer,A.Y.Odabasi,A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem,Eur.J.Oper.Res.116(2005)93-114.

    [13]X.B.Li,Study of multi-objective optimization and multi-attribute decision-making for economic and environmental power dispatch,Electr.Power Syst.Res.79(5) (2009)789-795.

    [14]A.I.Olcer,C.Tuzcu,O.Turan,An integrated multi-objective optimisation and fuzzy multi-attributive group decision-making technique for subdivision arrangement of Ro-Ro vessels,Appl.Soft Comput.6(3)(2006)221-243.

    [15]K.C.Tan,T.H.Lee,D.Khoo,E.F.Khor,A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization,IEEE Trans.Syst.Man Cybern. B Cybern.31(4)(2001)537-556.

    [16]A.M.Brintrup,J.Ramsden,H.Takagi,A.Tiwari,Ergonomic chair design by fusing qualitative and quantitative criteria using interactive genetic algorithms,IEEE Trans.Evol.Comput.12(3)(2008)343-354.

    [17]M.E.Mavroforakis,M.Sdralis,S.Theodoridis,A geometric nearest point algorithm for the eff i cient solution of the SVM classif i cation task,IEEE Trans.Neural Netw.18 (5)(2007)1545-1549.

    [18]V.N.Vapnik,The Nature of Statistical Learning Theory,Springer,New York,1995.

    [19]J.Bi,K.P.Bennett,A geometric approach to support vector regression,Neurocomputing 55(2003)79-108.

    [20]K.Deb,Multi-objective genetic algorithms:problem diff i culties and construction of test problems,Evol.Comput.7(1999)205-230.

    [21]Y.Y.Xue,L.Q.Zhao,J.H.Wu,J.L.Wang,An improved multi-objective PSO algorithm with swarm energy conservation,Int.J.Model.Optim.1(3)(2011)226-230.

    [22]B.Sonnleitnert,O.Kappeli,Growth of Saccharomyces cerevisiae is controlled by its limitedrespiratory capacity:formulation andverif i cation ofa hypothesis,Biotechnol. Bioeng.28(6)(1986)927-937.

    27 March 2013

    ☆Supported by the National Natural Science Foundation of China(20676013, 61240047).

    *Corresponding author.

    E-mail address:wangjl@mail.buct.edu.cn(J.Wang).

    http://dx.doi.org/10.1016/j.cjche.2014.09.003

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 24 May 2013

    Accepted 7 June 2013

    Available online 28 September 2014

    老司机靠b影院| 免费一级毛片在线播放高清视频 | 欧美精品亚洲一区二区| 最新在线观看一区二区三区| 中亚洲国语对白在线视频| 久久人妻福利社区极品人妻图片| 国产免费现黄频在线看| 午夜免费成人在线视频| 久久久久精品国产欧美久久久 | 中文字幕色久视频| 两性夫妻黄色片| 亚洲国产欧美一区二区综合| 欧美日韩亚洲综合一区二区三区_| 日韩视频一区二区在线观看| 狠狠狠狠99中文字幕| 最近最新免费中文字幕在线| 两个人免费观看高清视频| av不卡在线播放| 国产精品一区二区在线不卡| 首页视频小说图片口味搜索| 中国美女看黄片| 久久久久国内视频| 精品熟女少妇八av免费久了| 日韩一卡2卡3卡4卡2021年| 在线av久久热| 国产黄频视频在线观看| 久久女婷五月综合色啪小说| 午夜影院在线不卡| 三上悠亚av全集在线观看| 国产精品1区2区在线观看. | 啦啦啦免费观看视频1| 宅男免费午夜| av有码第一页| 免费女性裸体啪啪无遮挡网站| 欧美精品一区二区大全| 久久人妻福利社区极品人妻图片| av欧美777| 亚洲 国产 在线| 超碰97精品在线观看| 丝袜在线中文字幕| 性高湖久久久久久久久免费观看| 日本撒尿小便嘘嘘汇集6| 91精品伊人久久大香线蕉| 日韩免费高清中文字幕av| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦 在线观看视频| 欧美+亚洲+日韩+国产| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 国产一区二区 视频在线| av又黄又爽大尺度在线免费看| 久久这里只有精品19| 国产熟女午夜一区二区三区| 亚洲精华国产精华精| 欧美成狂野欧美在线观看| 日韩制服骚丝袜av| 久久性视频一级片| 欧美日韩亚洲综合一区二区三区_| 国产精品九九99| 日韩,欧美,国产一区二区三区| 久久精品熟女亚洲av麻豆精品| 成年动漫av网址| 美女高潮喷水抽搐中文字幕| 日本黄色日本黄色录像| 老司机影院毛片| 最新的欧美精品一区二区| 男女之事视频高清在线观看| 成年人免费黄色播放视频| 精品国产一区二区三区四区第35| 亚洲成人免费av在线播放| 欧美黑人精品巨大| 国产精品久久久久久人妻精品电影 | 国产精品久久久久成人av| 久久青草综合色| 一级毛片电影观看| 国产高清videossex| 两个人看的免费小视频| 老司机亚洲免费影院| 女人被躁到高潮嗷嗷叫费观| www.自偷自拍.com| 18禁国产床啪视频网站| 免费观看av网站的网址| 黄片大片在线免费观看| 日韩大码丰满熟妇| 亚洲激情五月婷婷啪啪| 69av精品久久久久久 | 久久国产精品男人的天堂亚洲| h视频一区二区三区| 国产在线免费精品| 国产黄频视频在线观看| 久久久久久亚洲精品国产蜜桃av| 久久这里只有精品19| 波多野结衣一区麻豆| 波多野结衣一区麻豆| 国产成人av教育| 精品欧美一区二区三区在线| 男女高潮啪啪啪动态图| 久久久久久久久免费视频了| 亚洲欧美清纯卡通| 国产精品免费视频内射| 无限看片的www在线观看| 无限看片的www在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品免费视频内射| 欧美+亚洲+日韩+国产| 99精品欧美一区二区三区四区| 亚洲视频免费观看视频| 国产1区2区3区精品| 黄片大片在线免费观看| 制服诱惑二区| 精品一区在线观看国产| 热99国产精品久久久久久7| 女人高潮潮喷娇喘18禁视频| 岛国毛片在线播放| 波多野结衣一区麻豆| 91老司机精品| 欧美亚洲日本最大视频资源| 欧美老熟妇乱子伦牲交| 欧美精品一区二区大全| 亚洲av男天堂| 丝袜美足系列| 亚洲精品中文字幕在线视频| 亚洲成av片中文字幕在线观看| 精品福利永久在线观看| 国产成人一区二区三区免费视频网站| 国产精品一区二区在线不卡| 18在线观看网站| 99热国产这里只有精品6| 亚洲精品国产色婷婷电影| 国产精品免费视频内射| h视频一区二区三区| 大型av网站在线播放| 一级片'在线观看视频| 男男h啪啪无遮挡| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜一区二区| 亚洲人成电影观看| 欧美中文综合在线视频| 国产免费一区二区三区四区乱码| 黄网站色视频无遮挡免费观看| 国产精品久久久久久精品古装| 日本撒尿小便嘘嘘汇集6| 可以免费在线观看a视频的电影网站| 亚洲avbb在线观看| 高潮久久久久久久久久久不卡| 一本久久精品| 性色av一级| 成年动漫av网址| 一个人免费在线观看的高清视频 | 国产福利在线免费观看视频| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 国产精品一二三区在线看| 91成人精品电影| 精品亚洲成国产av| 青春草视频在线免费观看| 国产一区二区激情短视频 | 亚洲精品第二区| 亚洲第一av免费看| 成在线人永久免费视频| 一级,二级,三级黄色视频| tocl精华| 欧美中文综合在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | a 毛片基地| 999久久久国产精品视频| 亚洲国产精品999| 嫁个100分男人电影在线观看| 婷婷丁香在线五月| 精品高清国产在线一区| 99九九在线精品视频| 色老头精品视频在线观看| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 国产深夜福利视频在线观看| 亚洲成人国产一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 曰老女人黄片| 久久久水蜜桃国产精品网| 99久久精品国产亚洲精品| a 毛片基地| 国产欧美日韩精品亚洲av| 亚洲av男天堂| 飞空精品影院首页| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 国产精品香港三级国产av潘金莲| 免费看十八禁软件| 狂野欧美激情性xxxx| 少妇的丰满在线观看| 黑人猛操日本美女一级片| 精品国内亚洲2022精品成人 | 亚洲国产欧美网| 国产无遮挡羞羞视频在线观看| 亚洲男人天堂网一区| 99热网站在线观看| 亚洲国产精品成人久久小说| 久久狼人影院| 日韩视频一区二区在线观看| 精品国产乱码久久久久久男人| 啪啪无遮挡十八禁网站| 日本一区二区免费在线视频| 法律面前人人平等表现在哪些方面 | 大片电影免费在线观看免费| 两个人看的免费小视频| a 毛片基地| 亚洲久久久国产精品| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 久久久精品区二区三区| 欧美+亚洲+日韩+国产| 国产淫语在线视频| 亚洲精品粉嫩美女一区| 美女大奶头黄色视频| 亚洲av国产av综合av卡| 色综合欧美亚洲国产小说| 美国免费a级毛片| h视频一区二区三区| 一级毛片女人18水好多| 在线观看舔阴道视频| 嫩草影视91久久| 日韩电影二区| 在线观看免费视频网站a站| 精品乱码久久久久久99久播| 老司机影院毛片| 久久久久久久久久久久大奶| 高清av免费在线| 久久久久网色| 精品一品国产午夜福利视频| 国产精品av久久久久免费| 最近最新免费中文字幕在线| 精品国产一区二区久久| 男女国产视频网站| 夜夜骑夜夜射夜夜干| 久久精品国产a三级三级三级| 69av精品久久久久久 | 岛国在线观看网站| 午夜福利乱码中文字幕| 国产免费福利视频在线观看| 欧美精品一区二区免费开放| 老司机福利观看| 黄色毛片三级朝国网站| 少妇 在线观看| 一个人免费看片子| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 亚洲五月色婷婷综合| 12—13女人毛片做爰片一| 日韩制服丝袜自拍偷拍| 91精品三级在线观看| a在线观看视频网站| 欧美另类一区| 成人av一区二区三区在线看 | 欧美精品啪啪一区二区三区 | 欧美日本中文国产一区发布| 欧美xxⅹ黑人| 精品熟女少妇八av免费久了| 99久久国产精品久久久| 日韩中文字幕欧美一区二区| 精品人妻1区二区| 久久久欧美国产精品| 男女之事视频高清在线观看| 久久精品久久久久久噜噜老黄| 精品一区二区三区av网在线观看 | 精品久久蜜臀av无| 女性被躁到高潮视频| 啦啦啦免费观看视频1| 十八禁网站网址无遮挡| 日韩视频一区二区在线观看| 久久精品亚洲av国产电影网| 色综合欧美亚洲国产小说| 亚洲精品国产av成人精品| 男人舔女人的私密视频| 国产精品自产拍在线观看55亚洲 | 欧美xxⅹ黑人| 高清av免费在线| 99九九在线精品视频| 精品国产超薄肉色丝袜足j| 美女中出高潮动态图| 香蕉丝袜av| 色婷婷av一区二区三区视频| 国精品久久久久久国模美| 18禁观看日本| a在线观看视频网站| 国产亚洲精品一区二区www | 母亲3免费完整高清在线观看| 国产欧美日韩综合在线一区二区| 91麻豆av在线| av不卡在线播放| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| 日韩中文字幕视频在线看片| 一二三四在线观看免费中文在| 国产亚洲av片在线观看秒播厂| 肉色欧美久久久久久久蜜桃| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 久久国产精品男人的天堂亚洲| 90打野战视频偷拍视频| 午夜精品久久久久久毛片777| 天堂8中文在线网| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 亚洲精品乱久久久久久| 亚洲精品av麻豆狂野| 欧美日韩黄片免| 99精品欧美一区二区三区四区| 成人手机av| 91老司机精品| 黑人巨大精品欧美一区二区蜜桃| 操出白浆在线播放| 久久久久国产精品人妻一区二区| 国产高清videossex| 亚洲中文字幕日韩| 国产在线视频一区二区| 亚洲人成电影观看| 欧美一级毛片孕妇| 精品久久久精品久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美日本中文国产一区发布| 这个男人来自地球电影免费观看| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 国产亚洲一区二区精品| 国产精品一区二区在线观看99| 午夜激情久久久久久久| 我要看黄色一级片免费的| 亚洲专区中文字幕在线| 91精品三级在线观看| av超薄肉色丝袜交足视频| 成人影院久久| 蜜桃国产av成人99| 91成年电影在线观看| 久久午夜综合久久蜜桃| 久久av网站| 久久午夜综合久久蜜桃| 日本91视频免费播放| 欧美亚洲 丝袜 人妻 在线| 丰满人妻熟妇乱又伦精品不卡| 国产在视频线精品| 国产在线一区二区三区精| 欧美日韩中文字幕国产精品一区二区三区 | 国产激情久久老熟女| 性色av一级| 老司机影院毛片| 国产麻豆69| 一级毛片精品| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 夜夜夜夜夜久久久久| 免费在线观看视频国产中文字幕亚洲 | www.av在线官网国产| 国产精品一区二区免费欧美 | 国产国语露脸激情在线看| 99国产精品99久久久久| 亚洲五月色婷婷综合| 国产一卡二卡三卡精品| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区 | 久久精品人人爽人人爽视色| 两人在一起打扑克的视频| a级毛片黄视频| 国产一卡二卡三卡精品| 亚洲天堂av无毛| 在线观看舔阴道视频| 亚洲精品一二三| 婷婷丁香在线五月| 欧美97在线视频| 91麻豆av在线| 国产av一区二区精品久久| 多毛熟女@视频| 考比视频在线观看| 亚洲情色 制服丝袜| 久久中文看片网| 久久久久国产一级毛片高清牌| 欧美日韩黄片免| 91成年电影在线观看| 亚洲伊人久久精品综合| 国产成人a∨麻豆精品| 丁香六月天网| 最近最新中文字幕大全免费视频| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 永久免费av网站大全| 一区二区三区四区激情视频| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 国产av精品麻豆| 丰满少妇做爰视频| 黄片小视频在线播放| tocl精华| 看免费av毛片| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| 性少妇av在线| 欧美日韩精品网址| 久久精品国产亚洲av香蕉五月 | 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 一区二区三区激情视频| 日本黄色日本黄色录像| 国产极品粉嫩免费观看在线| 黄色毛片三级朝国网站| 国产精品影院久久| 永久免费av网站大全| 我的亚洲天堂| 新久久久久国产一级毛片| 亚洲精品日韩在线中文字幕| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 精品久久蜜臀av无| 日韩中文字幕欧美一区二区| 99国产精品免费福利视频| 亚洲人成电影免费在线| 精品国产国语对白av| 久久精品熟女亚洲av麻豆精品| 麻豆国产av国片精品| 久久精品国产综合久久久| 黄片小视频在线播放| 国产亚洲午夜精品一区二区久久| 欧美午夜高清在线| 国产片内射在线| 欧美精品高潮呻吟av久久| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| av在线老鸭窝| 电影成人av| 日本av手机在线免费观看| 十八禁高潮呻吟视频| 人成视频在线观看免费观看| 女人精品久久久久毛片| 老司机午夜十八禁免费视频| 一二三四社区在线视频社区8| 成人国语在线视频| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久人妻精品电影 | 久久99一区二区三区| 搡老乐熟女国产| 91字幕亚洲| 日韩人妻精品一区2区三区| 99久久99久久久精品蜜桃| 蜜桃在线观看..| 亚洲免费av在线视频| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 欧美一级毛片孕妇| 99国产极品粉嫩在线观看| 国产精品成人在线| 老司机深夜福利视频在线观看 | 三级毛片av免费| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 亚洲情色 制服丝袜| 国产在线观看jvid| 国产国语露脸激情在线看| 国产日韩欧美视频二区| 99香蕉大伊视频| videos熟女内射| av网站在线播放免费| 在线观看人妻少妇| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜骑夜夜射夜夜干| kizo精华| 久久香蕉激情| 久久久久网色| 亚洲中文av在线| 欧美日韩亚洲国产一区二区在线观看 | 无限看片的www在线观看| 久久亚洲精品不卡| 99热国产这里只有精品6| 国产精品免费视频内射| 精品久久久久久久毛片微露脸 | 91九色精品人成在线观看| 90打野战视频偷拍视频| 色老头精品视频在线观看| 久久性视频一级片| 国产精品影院久久| 欧美中文综合在线视频| 精品少妇黑人巨大在线播放| 女人爽到高潮嗷嗷叫在线视频| 永久免费av网站大全| 777久久人妻少妇嫩草av网站| 永久免费av网站大全| 亚洲专区字幕在线| www.av在线官网国产| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 一级,二级,三级黄色视频| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| 欧美黄色淫秽网站| 999久久久国产精品视频| 两性夫妻黄色片| 日韩制服丝袜自拍偷拍| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看完整版高清| xxxhd国产人妻xxx| 深夜精品福利| 亚洲av电影在线观看一区二区三区| 日韩视频在线欧美| 午夜精品久久久久久毛片777| 一边摸一边抽搐一进一出视频| 日本黄色日本黄色录像| 午夜激情久久久久久久| av在线app专区| 欧美日韩福利视频一区二区| 九色亚洲精品在线播放| 欧美xxⅹ黑人| a 毛片基地| 精品熟女少妇八av免费久了| 极品少妇高潮喷水抽搐| √禁漫天堂资源中文www| 午夜福利乱码中文字幕| 一级片'在线观看视频| 嫩草影视91久久| 亚洲av国产av综合av卡| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| 日本五十路高清| 人人妻人人澡人人看| 国产成人欧美| 日本撒尿小便嘘嘘汇集6| 精品一区二区三卡| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 热99re8久久精品国产| 日韩中文字幕欧美一区二区| 久久99一区二区三区| 91精品伊人久久大香线蕉| 80岁老熟妇乱子伦牲交| 欧美黄色淫秽网站| 亚洲 国产 在线| 国产极品粉嫩免费观看在线| 99久久人妻综合| 2018国产大陆天天弄谢| 成年人免费黄色播放视频| 亚洲va日本ⅴa欧美va伊人久久 | 一级片'在线观看视频| 国产成人系列免费观看| 国产成人av教育| 黄色 视频免费看| 一级,二级,三级黄色视频| 亚洲专区字幕在线| 在线天堂中文资源库| 国产亚洲欧美精品永久| tube8黄色片| 中文字幕色久视频| videos熟女内射| 欧美国产精品一级二级三级| 日韩熟女老妇一区二区性免费视频| 老司机影院成人| 老鸭窝网址在线观看| 9热在线视频观看99| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 亚洲成国产人片在线观看| 嫩草影视91久久| 菩萨蛮人人尽说江南好唐韦庄| 99国产极品粉嫩在线观看| 中文字幕人妻熟女乱码| 亚洲专区中文字幕在线| 一区二区av电影网| 国产日韩欧美亚洲二区| 国产人伦9x9x在线观看| 中文字幕人妻丝袜制服| 日韩免费高清中文字幕av| 满18在线观看网站| 亚洲一区中文字幕在线| 精品免费久久久久久久清纯 | 日韩欧美一区视频在线观看| 精品久久蜜臀av无| 精品视频人人做人人爽| 中文字幕色久视频| 少妇精品久久久久久久| 777米奇影视久久| 久久狼人影院| av网站在线播放免费| 午夜免费观看性视频| 正在播放国产对白刺激| 免费高清在线观看日韩| 欧美精品啪啪一区二区三区 | 最新在线观看一区二区三区| 国产在线一区二区三区精| 视频区图区小说| 天天躁夜夜躁狠狠躁躁| 久久香蕉激情| 12—13女人毛片做爰片一| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 一区二区三区精品91| 丝袜在线中文字幕| tocl精华| 天天躁夜夜躁狠狠躁躁| 各种免费的搞黄视频| 亚洲精品国产精品久久久不卡| 一边摸一边抽搐一进一出视频| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 少妇人妻久久综合中文| 精品人妻1区二区| 性少妇av在线| videos熟女内射| 久久久久视频综合| 日韩电影二区| 日韩 亚洲 欧美在线| 男人操女人黄网站| 久久久久久人人人人人|