• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vapor Pressure,Vaporization Enthalpy,Standard Enthalpy of Formation and Standard Entropy of n-Butyl Carbamate

    2014-07-25 11:29:34ZuoxiangZengZhihongYangWeilanXueXiaonanLi
    Chinese Journal of Chemical Engineering 2014年10期

    Zuoxiang Zeng*,Zhihong Yang,Weilan Xue*,Xiaonan Li

    Chemical Engineering Thermodynamics

    Vapor Pressure,Vaporization Enthalpy,Standard Enthalpy of Formation and Standard Entropy of n-Butyl Carbamate

    Zuoxiang Zeng*,Zhihong Yang,Weilan Xue*,Xiaonan Li

    Institute of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China

    A R T I C L EI N F O

    Article history:

    n-Butyl carbamate

    Vapor pressure

    Standard enthalpy of formation

    Standard entropy

    The vapor pressures of n-butyl carbamate were measured in the temperature range from 372.37 K to 479.27 K and f i tted with Antoine equation.The compressibility factor of the vapor was calculated with the Virial equation and the second virial coeff i cient was determined by the Vetere model.Then the standard enthalpy of vaporization for n-butyl carbamate was estimated.The heat capacity was measured for the solid state (299.39-324.2 K)and liquid state(336.65-453.21 K)by means of adiabatic calorimeter.The standard enthalpy of formation ΔfH?[crystal(cr),298.15 K]and standard entropy S?(crystal,298.15 K)of the substance were calculated on the basis of the gas-phase standard enthalpy of formation ΔfH?(g,298.15 K) and gas-phase standard entropy S?(g,298.15 K),which were estimated by the Benson method.The results are acceptable,validated by a thermochemical cycle.

    ?2014TheChemicalIndustryandEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    n-Butyl carbamate(BC,CASRN 592-35-8)is a white prismatic or schistic crystal and is also called butyl ester.It can be used as a curing agent for cement[1]and the intermediate for producing 1,6-hexamethylenediurethane[2],whichcancrackletoobtainisocyanate [3].

    Vapor pressure data are critical for process design for evaporation, distillation and two-phase reactions.The vaporization enthalpy of a pure substance ΔvapH0(T),which can be obtained from the vapor pressure data,is also an important thermodynamic parameter.Especially, the standard enthalpy of vaporization ΔvapH?(crystal,298.15 K)is used for conversion of the enthalpy of formation between liquid state and ideal gas state[4].The heat capacity and the enthalpy of formation of BC,ΔfH0(T),are important quantities for the design of technological process with BC as a reactant or a product.

    However,scarce experimental information on the thermodynamic propertiesofBCsuchasvaporpressureandstandardenthalpyofformationhasbeenreported.Inordertoprovidebetterdesignforchemicalreactors and separation equipment,the thermodynamic properties such as heat capacity,vapor pressure,and ΔvapH?(crystal,298.15 K)of BC are reported in this article.

    Many techniques for determining vapor pressure are available[5,6]. In this study,a modif i ed Othmer still[7]is applied to measure the vapor pressure of BC.The vapor pressure and temperature are correlated by the Antoine equation.ΔvapH?(crystal,298.15 K)of BC is estimated based on the Othmer method.The values of standard enthalpy of formation ΔfH?(crystal,298.15 K)and standard entropy S?(crystal,298.15 K)of BC are calculated according to ΔfH?(g,298.15 K) and S?(g,298.15 K)obtained by the Benson method.A thermodynamic cycle is designed to validate the reliability of the values of ΔfH?(crystal,298.15 K)and S?(crystal,298.15 K).

    2.Experimental

    2.1.Materials

    BC prepared in the laboratory[8]was recrystallized prior to use and its mass fraction purity determined by GC was higher than 99.0%.n-Butanol and urea purchased from Shanghai Chemistry Reagent Co. (China)are of analytical reagent grade.

    2.2.Apparatus and procedures

    2.2.1.Vapor pressure

    The vapor pressure of BC was measured by a modif i ed Othmer still. The apparatus and procedures are similar to those in literature[9,10]. Brief l y,the apparatus included a vacuum pump,a temperature measurement system,and a pressure control and measurement system.Nitrogen was introduced into the system at the beginning to remove the air.The temperature was measured using thermocouples with an uncertaintyof±0.05 K,andthestillpressurewascontrolled at thedesired value and measured by a U-tube mercury manometer with an uncertainty of±0.03 kPa.The U-tube mercury manometer and thermometers were calibrated before experiments.All the measurements were conducted in a sequence of increasing pressure and the pressure wascontrolled at the desired value[11].The sample(about 100 ml)was heated with an electric heater and stirred well with a magnetic stirrer to provide isothermal condition and to prevent superheating.When the readings on the U-tube mercury manometer maintained constant for 10 min,the system reached thermal equilibrium,and the temperature and pressure were recorded.The experiment was repeated 3 to 4 times at each pressure and the average value was taken.

    A vapor pressure measurementof water wasmade from 299.27 K to 374.43 K to check the accuracy of the apparatus.The results show that the apparatus is reliable.

    2.2.2.Heat capacity

    Aprecisionautomaticadiabaticcalorimeterwasusedtomeasurethe heat capacity of BC.The principles of operation and structure of the instrument were detailed in literature[12].Brief l y,the adiabatic system consists of a sample cell,inner and outer adiabatic shields,a high vacuum can,a high precision temperature controller,and two sets of sixjunctionchromel-copelthermocouple piles.Theheatcapacityof α-aluminumoxidewasmeasuredtovalidatethereliabilityofthesystem.The deviation between the experimental data and those of NIST[13]was within±0.4%over the temperature range from 298 K to 440 K.

    The experiment was carried out by heating the sample and measuring the temperature alternately.The temperature increments were 1-5 K.Considering the effect of impurities in the substances,the estimated uncertainty of the Cpmeasurement was less than±0.8%.

    2.2.3.Equilibrium constant measurement for BC synthesis

    The reaction equation for BC synthesis is

    Table 1Experimental vapor pressure data of n-butyl carbamate and calculated deviations

    The apparatus and procedures are similar to that described in literature[14].Urea and n-butanol were charged into an autoclave reactor (300 cm3).The mixture was heated to the desired temperature after the system was evacuated.During the process,the sample was constantly stirred at the temperature for enough time for the reaction to reachequilibrium.Athermocouplewasappliedtomeasurethetemperature with uncertainty of±0.05 K.The system was airtight and generated ammonia was in the reactor.The pressure of the system was measuredusingapressuretransducer(PM10)connectedtoa1/2digital multimeter(YXS-4),with±0.002 kPa.When the temperature and pressure of the system remained unchanged for 20 min,the system achieved equilibrium,and samples were withdrawn from the liquid and vapor phases.The liquid phase was analyzed by HPLC(Waters 1515,USA)and GC(2000II,Shanghai,China).The vapor phase was analyzed using an online GC equipped with a thermal conductivity detector and an AT.AMINE capillary column.

    3.Results and Discussion

    3.1.Vapor pressure of BC

    The experimental vapor pressure data for BC from 372.37 K to 479.2 K are listed in Table 1.

    The experimental data are f i tted by the Antoine equation

    where p isthesaturated vaporpressure attemperature T,and A,B and C are adjustable parameters.The parameters obtained by f i tting the experimental vapor pressures are presented in Table 2.

    Fig.1 illustrates the deviation distribution of the correlations,where the deviation is def i ned as

    where pexpis the experimental value and pcalis the calculated value from Eq.(1).

    3.2.The enthalpy of vaporization at boiling point ΔvapH0(Tb)

    The Clausius-Clapeyron equation is a general equation relating vaporpressureandenthalpyofvaporizationofapuresubstanceinequilibrium with the gas phase.It can be deduced as[15]

    where ΔvapH0(T)is theenthalpy of vaporization at temperature T,ΔZ= ZG?ZLis the difference between the compressibility factors of vapor and liquid,and R is the gas constant.

    Table 2The Antoine constants of n-butyl carbamate and ethyl butyrate

    Fig.1.Deviation distribution of calculated values of the Antoine equation from the experimental vapor pressure for BC.

    Table 3The thermodynamic properties of n-butyl carbamate and ethyl butyrate

    Combining Eqs.(6)and(7),we obtain

    The valueof ZLis sosmall compared with ZGthat itcan beneglected. By substituting Eq.(1)into Eq.(3),we obtain

    where B1is the second virial coeff i cient,determined by the Vetere model[16].

    Tcand Pcare needed to estimate the value of Z.In this article,the critical properties of BC are estimated by the Lydersen method[17]. Based on the data,Tcand Pcare estimated to be 681.4 K and 3.56MPa. As a result,ZGof BC at the normal boiling point is calculated to be 0.931.

    According to Eq.(4)and the values of Antoine constants in Table 2, theenthalpyofvaporizationattheboilingpointΔvapH0(Tb)forBCiscalculated to be 54.98 kJ·mol?1,where Tbis 477.15 K[18].

    3.3.Standard enthalpy of vaporization ΔvapH?(298.15 K)

    As the Antoine constants are obtained by regressing the experimental data in the temperature range from 372.37 K to 479.27 K,Eq.(4) cannot be used to calculate the standard enthalpy of vaporization of BC.Here,the Othmer method[19]is applied to estimate the value of ΔvapH?(298.15 K).

    Eq.(3)can be rewritten as

    Eq.(6)refers to any substance with the assumption that the molar volume of liquid(or,in general,the volume of condensed phase)can be ignored compared to the molar volume of vapor.The same equation can be written for any other substance(the second substance)at the same temperature

    where p′and ΔvapH0′(T)representthevapor pressure and thevaporization enthalpy of the second substance at temperature T,respectively, and ZG′is the gas compressibility factor of the second substance.

    The second substance is usually referred to a standard substance.Its basic thermodynamic properties and the Antoine constants are available and it should be as similar to the substance under investigation as possible.In this paper,ethyl butyrate is chosen as the standard material and its Antoine constants[20]are also listed in Table 2 and other relevant parameters from NIST[21,22]are listed in Table 3.

    Similarly,ZG′of ethyl butyrate at different temperatures(including 298.15 K)can be calculated and the results are listed in Table 3.The valuesofZG′decreaseastemperatureincreases.BCisasimilarsubstance, soitsZGshouldbe1at298.15K.Theresultsshowthatthecompressibility factor(ZG′,ZG)varies slightly in the temperature range,and can be consider'ed as a constant equal to the mean value of com'pressibility factor(ZG,ZG),which are listed in Table 3.Substituting ZGandZGinto Eq.(8),we obtain

    Fig.2shows the plot of lgp of BC against lgp′of ethyl butyrate.The linear relationship between lgp and lgp′is obtained by the leastsquare regression method(R2=0.9985).In the temperature range from 372.37 K to 394 K,

    Fig.2.Theplotoflgpofn-butylcarbamateagainstlgp′ofethylbutyrateinthetemperature range of 372.37 K to 394 K.

    Table 4Experimental heat capacities of n-butyl carbamate at temperatures from 299.39 K to 453.21 K

    Fig.3.The DSC curve of n-butyl carbamate.

    Taking derivative on both sides of Eq.(10),we obtain

    3.6.Verif i cation of ΔvapH?(298.15 K)

    The sublimation enthalpy of BC at 298.15 K ΔsubH?(298.15K)can be expressed as

    Comparing Eqs.(9)and(11),we f i nd that ΔvapH0(T)/ΔvapH0′(T) is independent of temperature even though ΔvapH0(T)and ΔvapH0′(T) are functions of temperature,so the value of ΔvapH?(298.15 K)/ΔvapH?′(298.15K)is1.768.AccordingtothevalueofΔvapH?′(298.15 K)inTable3, ΔvapH?(298.15K)ofBCiscalculatedas76.61 kJ·mol?1.

    3.4.Heat capacity of BC

    Table 4 presents measured heat capacities for BC.The temperature dependence of the heat capacity in solid(299.39-324.2 K)and liquid phase(336.65-453.21 K)is well described by following polynomial equations

    3.5.Enthalpy of fusion for BC

    From the adiabatic calorimeter measurement,we also obtain the value of enthalpy of fusion ΔfusH0(Tfus)for BC.Tfuswas measured to be 326.2±0.1 K by differential scanning calorimeter(DSC)[14].On the basis of Eq.(14),the value of ΔfusH0(Tfus)is determined to be 17.45 kJ·mol?1.

    whereTiisatemperatureslightlylowerthantheinitialmeltingtemperature and Tfis a temperature slightly higher than the f i nal melting temperature,Q is the total energy added into the sample cell from Tito Tf, Cp(0)is the heat capacity of the sample cell from Tito Tf,Cp(cr)and Cp(l)are the heat capacities of the sample in the solid phase from Tito Tfusand in the liquid phase from Tfusto Tf,m is the mass of the sample, and n is the molar quantity of the sample.

    TheDSCexperiments were performed on a DSC 200F3 from Netzsch InstrumentInc.tomeasureΔfusH0(Tfus)ofBC.Fig.3showstheDSCcurve andthevalues of ΔfusH0(Tfus)and Tfusarelisted inTable 5.Thedeviation of ΔfusH0(Tfus)measured by the two methods is 1.41%.

    AccordingtoWatson'srelation[23],thevalueofΔvapH0(Tfus)ofBC is calculated to be 74.23 kJ·mol?1.

    Theheat capacity of ideal gas Cp(g)is estimated by theJoback method[24]and Cp(g)of BC can be expressed as

    The heat capacity difference[Cp(g)?Cp(cr)]can be obtained according to Eqs.(12)and(16).The value of integral term in Eq.(15)is calculated to be?0.98 kJ·mol?1.

    The value of ΔsubH?(298.15 K)is calculated to be 92.91 kJ·mol?1, close to the literature value 94 kJ·mol?1[25].The deviation is?1.16%.

    3.7.Estimation of ΔfH?(cr,298.15 K)and S?(cr,298.15 K)

    At the standard state(298.15 K,0.1 MPa),BC is crystalline and the standard enthalpy of formation ΔfH?(cr,298.15 K)and standard entropy S?(cr,298.15 K)can be expressed as

    Table 5The experimental values of ΔfusH(Tfus)and Tbfor n-butyl carbamate

    where ΔfH?(g,298.15 K)is the gas-phase standard enthalpy of formation,S?(g,298.15 K)is the gas-phase standard entropy,and ΔsubH?(298.15 K)is the enthalpy of sublimation.

    In this paper,the Benson method is applied to estimate ΔfH?(g,298.15 K)and S?(g,298.15 K)of BC.

    Fig.4.The thermochemical cycle designed for verif i cation of ΔfH?(cr,298.15 K)and S?(cr,298.15 K)for BC.

    where ΔfHj?(g,298.15 K)and Sj?(g,298.15 K)are the group contribution values,njis the number of contributions,σ is the symmetry number,and η is the number of possible optical isomers.Here,the symmetry number is 3 and there is no optical isomer.

    According to the Benson method,the values of ΔfH?(g,298.15 K) and S?(g,298.15 K)are?515.08 kJ·mol?1and 444.36 J·mol?1·K?1, respectively.From Eqs.(17)and(18),ΔfHj?(cr,298.15 K) and Hj?(cr,298.15 K)of BC are estimated to be?607.99 kJ·mol?1and 132.74 J·mol?1·K?1.

    3.8.Verif i cation of ΔfH?(cr,298.15 K)and Hj?(cr,298.15 K)

    ThesynthesisreactionofBCfromn-butanolandureaisreversible.As the reaction occurs in the liquid phase,the experimental equilibrium constant(of the reaction can be related to activities

    where aiis the activity of species in the solution at equilibrium state.

    As n-butanol is present in high concentration and its molar fraction approaches 1,aC4H9OHcan be expressed as

    where xC4H9OHis the molar fraction of n-butanol in the equilibrium system.

    The standard state concentration of c0=1 mol·dm?3is introduced here as the concentrationsof BC and urea(cNH2CONH2)in themixture are 0.6 to 1.3 mol·dm?3.aBCand aNH2CONH2can be expressed as

    where γBCandγNH2CONH2are theactivity coeff i cients of BCand urea,and they are approximately unity.

    The vapor phase can be considered as a binary mixture(NH3+ C4H9OH)in which the partial pressures of BC and urea at the temperature are suff i ciently low and can be neglected.For ammonia,the standard state pressure p0=0.1 MPa,then aNH3can be determined by

    where P is the pressure of the system,pNH3is the partial pressure of ammonia in the vapor phase,andyNH3is the molar fraction of ammonia in the vapor phase.

    The equilibrium constant is

    The equation ΔrG0=ΔrH0?TΔrS0permits us to evaluate the Gibbs energy change ΔrG0cal( T)of the reaction at temperature T according to thevaluesofΔfH?(cr,298.15 K)andS?(cr,298.15 K)ofBC.Wecandetermine the equilibriumconstant of thereaction ata given temperature based on experiments.Then the Gibbs energy change ΔrG0exp(T)of the reaction is obtained.Comparing ΔrG0exp(T)with ΔrG0cal(T),the availability of ΔfH?(cr,298.15 K)and S?(cr,298.15 K)can be validated.A thermochemical cycle including this reaction is shown in Fig.4.

    Thermodynamic data of n-butanol,urea,and ammonia are given in Table 6.

    Table 6Thermodynamic data of n-butanol,urea,and ammonia

    Table 7Compositions in the equilibrium mixture and K0expof the reaction

    where ΔrH20(T)and ΔrS20(T)are the standard enthalpy and entropy change at temperature T,expressed as

    where ΔHiand ΔSi(i=1 to 4)are the enthalpy and entropy changes of the processes shown in Fig.4.The items on the right hand side of Eqs.(28)-(29)are calculated by Eqs.(A1)-(A10)in Appendix A.

    Finally,we obtain

    The equilibrium constants were measured in the temperature range from 413.15 K to 453.15 K,three times for each temperature.The compositions in the equilibrium mixture are presented in Table 7, with K0expand K0calcalculated by Eqs.(26)and(31).The average deviation(AAD)is 0.96%,which is de fi ned as

    The result shows that the calculated values of ΔfH?(cr,298.15 K) and S?(cr,298.15 K)of BC are reliable.

    4.Conclusions

    With the vapor pressure of BC measured in the temperature range from 372.37 K to 479.27 K,and the compressibility factor of vapor calculatedby the Virial equation and the second virial coeff i cient determined by the Vetere model,the standard enthalpy of vaporization ΔvapH?(298.15 K)for n-butyl carbamate is estimated to be 76.61 kJ·mol?1.With the heat capacity of BC measured by adiabatic calorimeter,ΔfH?(cr,298.15 K)and S?(cr,298.15 K)are calculated to be?607.99 kJ·mol?1and 132.74 J·mol?1·K?1,respectively, based on ΔfH?(g,298.15 K)and S?(g,298.15 K)estimated by the Benson method.The results are acceptable,validated by a thermochemical cycle and the measurement of equilibrium constant.

    Appendix A

    [1]B.E.I.Abdelrazing,E.M.Gartnre,D.F.Myers,Low shrinkage cement composition,US Pat.,5326397(1994).

    [2]X.G.Guo,J.P.Shang,X.Y.Ma,J.Li,Synthesis of dialkyl hexamethylene-16diacarbamate from 1,6-hexamethylenediamine and alkyl carbamate over FeCl3as catalyst, Catal.Commun.10(8)(2009)1248-1251.

    [3]M.L.Fan,J.R.Deng,L.Chen,M.K.Zhang,Clean synthesis of 1,6-hexamethylene diisocyanate,Shiyou Huagong 35(10)(2006)972-975(in Chinese).

    [4]Z.Kolská,V.Ruzicka,R.Gani,Estimation of the enthalpy of vaporization and the entropy of vaporization for pure organic compounds at 298.15 K and at normal boiling temperature by a group contribution method,Ind.Eng.Chem.Res.44(22)(2005) 8436-8454.

    [5]M.A.Abdi,A.Meisen,Vapor pressure measurements of bis(hydroxyethyl) piperazine and tris(hydroxyethyl)ethylenediamine,J.Chem.Eng.43(2)(1998) 133-137.

    [6]E.W.Lemmon,A.R.H.Goodwin,Critical properties and vapor pressure equation for alkanes CnH2n+2:Normal alkanes with n<=36 and isomers for n=4 through n=9,J.Phys.Chem.Ref.29(1)(2000)1-39.

    [7]J.F.Huang,Y.F.Lee,L.S.Lee,Vapor-liquid equilibrium measurements for tetraethyl orthosilicate+ethanol at 24.00 kPa and 53.32 kPa,J.Chem.Eng.49(5)(2004) 1175-1179.

    [8]W.Oswald,K.Eberhard,N.Klaus,K.Ernst,Process for the production of diurethanes and their use for the production of diisocyanates,US Pat.,5744633(1998).

    [9]X.J.Yuan,W.L.Xue,Z.X.Zeng,T.Pu,Vapor pressure and enthalpy of vaporization of 2-amino-3-methylpyridine,J.Chem.Eng.52(6)(2007)2431-2435.

    [10]W.L.Huo,Z.X.Zeng,W.L.Xue,Vapor pressure measurements for 2-chlor omethyl-benzoxaz-ole and vapor-liquid equilibrium measurements for the chlorobenzene+2-Chl-oromethylbenzox-azole system,J.Chem.Eng.51(6) (2006)2110-2113.

    [11]H.Dong,C.Wu,X.F.Yang,G.Q.Lai,Measurement and correlation of the vapor pressure of methylethoxydichlorosilane,J.Chem.Eng.55(2)(2010)889-890.

    [12]X.G.Xu,Z.X.Zeng,W.L.Xue,H.Y.Zhang,Heat capacity and enthalpy of formation of trimethyl phosphite,2-chloromethylbenzonitrile,and 2-dimethyl phosphonomethyl-benzonitril-e,J.Chem.Eng.52(4)(2007)1189-1194.

    [13]D.G.Archer,Thermodynamic properties of synthetic sapphire(α-Al2O3),standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties,J.Phys.Chem.Ref.22(6)(1993)1441.

    [14]Z.X.Zeng,X.N.Li,W.L.Xue,C.S.Zhang,S.C.Bian,Heat capacity,enthalpy of formation,and entropy of methyl carbamate,Ind.Eng.Chem.Res.49(12)(2010) 5543-5548.

    [15]P.Trens,N.Tanchoux,A.Galarneau,F.Fajula,New evidence of conf i nement effects in mesoporous materials and the def i nition of conf i ned Pitzer acentric factors,J. Phys.Chem.B 109(34)(2005)16415-16420.

    [16]A.Vetere,A simple modi fi cation of the Pitzer method to predict second virial coeffi cients,Can.J.Chem.Eng.85(1)(2007)118-121.

    [17]A.L.Lydersen,Estimation of Critical Properties of Organic Compounds,Univ.Wisconsin Coll.Eng.,Eng.Exp.Stn.Rep.3,Madison,Wis.,1955.

    [18]R.C.Weast,J.G.Grasselli,Handbook of Data on Organic Compounds,2nd ed.vol.Ш CRC Press,Inc,Boca Raton,Florida,1989.

    [19]D.F.Othmer,G.G.Brown,Correlating vapor pressure and latent heat data,Ind.Eng. Chem.32(6)(1940)841-856.

    [20]D.R.Stull,Vapor pressure of pure substances organic compounds,Ind.Eng.Chem.39 (4)(1947)517-540.

    [21]A.Nadezhdin,Rep.Phys.23(1887)708.

    [22]S.O.Nilssin,I.Wadso,Thermodynamic properties of some mono-,di-,and tri esters.Enthalpies of solution in water at 288.15 K to 318.15 K and enthalpies of vaporization and heat capacities at 298.15 K,J.Chem.Thermodyn.18(7) (1986)673-681.

    [23]K.M.Watson,Thermodynamics of the liquid state,Ind.Eng.Chem.35(4)(1943) 398-406.

    [24]R.C.Reid,J.M.Prausnitz,B.E.Poling,The Properties of Gases and Liquids,4th ed. McGraw-Hill,New York,1987.

    [25]M.Davies,A.H.Jones,Lattice energies of some N-methyl amides and of some carbamates,Trans.Faraday Soc.55(1959)1329-1332.

    [26]H.A.Skinner,A.Snelson,The heats of combustion of the four isomeric butylalcohols, Trans.Faraday Soc.56(1960)1776-1783.

    [27]G.S.Parks,K.K.Kelley,H.M.Huffman,Thermal data on organic compounds.V.A revision of the entropies and free energies of nineteen organic compounds,J.Am. Chem.Soc.51(7)(1929)1969-1973.

    [28]I.Contineanu,L.Wagner,L.Stanescu,D.I.Marchidan,Combustion and formation enthalpies of o-phenylenediamine,urea and 2-benzimidazolone,Rev.Roum.Chim.27 (2)(1982)205-209.

    [29]G.S.Parks,H.M.Huffman,M.Barmore,Thermal data on organic compounds.XI.The heat capacities,entropies and free energies of ten compounds containing oxygen or nitrogen,J.Am.Chem.Soc.55(7)(1933)2733-2740.

    [30]M.W.Chase Jr.,NIST-JANAF thermochemical tables,fourth edition,J.Phys.Chem.Ref. Data Monograph 9(1998)1-1951.

    25 March 2013

    *Corresponding authors.

    E-mail addresses:zengzx@ecust.edu.cn(Z.Zeng),wlxue@ecust.edu.cn(W.Xue).

    http://dx.doi.org/10.1016/j.cjche.2014.08.003

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 25 May 2013

    Accepted 8 July 2013

    Available online 20 August 2014

    中文字幕久久专区| 亚洲精品,欧美精品| 亚洲成人中文字幕在线播放| 国产成人精品婷婷| 亚洲色图综合在线观看| 人妻系列 视频| 亚洲国产毛片av蜜桃av| 国产av码专区亚洲av| 国产一区二区在线观看日韩| 欧美日韩视频高清一区二区三区二| 在线免费十八禁| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 婷婷色麻豆天堂久久| 久久av网站| 肉色欧美久久久久久久蜜桃| 国产精品秋霞免费鲁丝片| 自拍欧美九色日韩亚洲蝌蚪91 | kizo精华| 一级爰片在线观看| 涩涩av久久男人的天堂| 老女人水多毛片| 久久婷婷青草| 亚洲精华国产精华液的使用体验| 欧美激情国产日韩精品一区| 国产成人精品福利久久| 欧美区成人在线视频| 天堂中文最新版在线下载| 成人毛片60女人毛片免费| 午夜日本视频在线| 亚洲精品日韩av片在线观看| 亚洲av.av天堂| 嫩草影院新地址| 热99国产精品久久久久久7| 在线免费十八禁| 男人爽女人下面视频在线观看| 精品久久久久久久末码| 能在线免费看毛片的网站| 欧美日韩国产mv在线观看视频 | 熟女av电影| 精品酒店卫生间| 欧美高清成人免费视频www| 国产精品国产av在线观看| 精品视频人人做人人爽| 91精品一卡2卡3卡4卡| 岛国毛片在线播放| 欧美三级亚洲精品| 老司机影院毛片| 人体艺术视频欧美日本| 国产在线免费精品| 99精国产麻豆久久婷婷| 国产精品一区二区性色av| 一区二区三区精品91| 国产精品秋霞免费鲁丝片| 日韩av免费高清视频| 日本爱情动作片www.在线观看| 成人无遮挡网站| 水蜜桃什么品种好| 久久久久久久大尺度免费视频| 国产大屁股一区二区在线视频| 精品一品国产午夜福利视频| 国产成人freesex在线| 欧美xxⅹ黑人| 亚洲精品国产成人久久av| 亚洲欧美一区二区三区国产| 高清视频免费观看一区二区| 久久99蜜桃精品久久| 亚洲国产精品一区三区| 国产爽快片一区二区三区| 少妇高潮的动态图| 日本vs欧美在线观看视频 | 美女视频免费永久观看网站| 美女中出高潮动态图| 久久这里有精品视频免费| 尾随美女入室| 午夜免费男女啪啪视频观看| 精品酒店卫生间| 欧美精品一区二区大全| 国产精品成人在线| 日本vs欧美在线观看视频 | 少妇裸体淫交视频免费看高清| 亚洲国产最新在线播放| 最近2019中文字幕mv第一页| 美女视频免费永久观看网站| 成人综合一区亚洲| 日韩av不卡免费在线播放| 激情五月婷婷亚洲| a级毛色黄片| 欧美人与善性xxx| av免费观看日本| 91在线精品国自产拍蜜月| 亚洲国产成人一精品久久久| 亚洲中文av在线| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 精品久久久噜噜| 纵有疾风起免费观看全集完整版| 欧美国产精品一级二级三级 | 欧美高清成人免费视频www| 亚洲真实伦在线观看| 天堂8中文在线网| 91精品国产九色| 伦理电影大哥的女人| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产最新在线播放| 在线观看免费视频网站a站| 91午夜精品亚洲一区二区三区| 在线观看国产h片| 天堂俺去俺来也www色官网| 99国产精品免费福利视频| 看非洲黑人一级黄片| 亚洲精品国产色婷婷电影| 搡老乐熟女国产| 18禁裸乳无遮挡免费网站照片| 亚洲精品中文字幕在线视频 | 婷婷色综合www| 在线亚洲精品国产二区图片欧美 | 免费观看a级毛片全部| 99九九线精品视频在线观看视频| 成年av动漫网址| 国产av码专区亚洲av| 亚洲国产欧美在线一区| 国产精品不卡视频一区二区| 欧美精品一区二区大全| av国产精品久久久久影院| 亚洲精品国产av蜜桃| 黄色日韩在线| 男女边吃奶边做爰视频| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| 日本免费在线观看一区| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 五月开心婷婷网| 我的女老师完整版在线观看| 99热6这里只有精品| 中文资源天堂在线| 亚洲av.av天堂| 丝袜脚勾引网站| 亚洲无线观看免费| 免费不卡的大黄色大毛片视频在线观看| 国产 精品1| 人人妻人人爽人人添夜夜欢视频 | 爱豆传媒免费全集在线观看| 国产无遮挡羞羞视频在线观看| 看十八女毛片水多多多| 男女国产视频网站| 国产一级毛片在线| 欧美人与善性xxx| 寂寞人妻少妇视频99o| 亚洲精品日韩av片在线观看| 十分钟在线观看高清视频www | 亚洲欧美成人综合另类久久久| 在线观看国产h片| 国产老妇伦熟女老妇高清| 亚洲av在线观看美女高潮| 高清视频免费观看一区二区| 日韩一本色道免费dvd| 国产精品一及| 日本爱情动作片www.在线观看| 少妇 在线观看| av视频免费观看在线观看| 少妇人妻一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 在线观看免费视频网站a站| 日本av免费视频播放| 亚洲高清免费不卡视频| 国产成人a区在线观看| 精品国产露脸久久av麻豆| 中文欧美无线码| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| 1000部很黄的大片| 日本爱情动作片www.在线观看| 久久久a久久爽久久v久久| 国产爱豆传媒在线观看| 午夜免费鲁丝| a级一级毛片免费在线观看| 国产 一区精品| 一区二区三区乱码不卡18| 18+在线观看网站| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 国产av码专区亚洲av| 久久ye,这里只有精品| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 99久久综合免费| 国产欧美日韩精品一区二区| 最新中文字幕久久久久| 少妇熟女欧美另类| 三级国产精品欧美在线观看| 久久精品久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 国产精品欧美亚洲77777| 久久久久久久国产电影| 午夜福利高清视频| xxx大片免费视频| 下体分泌物呈黄色| 一个人看视频在线观看www免费| 国产永久视频网站| 久久午夜福利片| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 久久久久性生活片| 日本黄大片高清| 免费大片18禁| 国产成人a区在线观看| 深夜a级毛片| 国产精品熟女久久久久浪| 伦精品一区二区三区| 十分钟在线观看高清视频www | 国产深夜福利视频在线观看| 国产午夜精品久久久久久一区二区三区| 国模一区二区三区四区视频| 日本黄色日本黄色录像| 国产欧美另类精品又又久久亚洲欧美| 妹子高潮喷水视频| 亚洲精品亚洲一区二区| 日本欧美国产在线视频| 国产黄片美女视频| 国产黄片视频在线免费观看| 国产精品国产av在线观看| 亚洲国产精品专区欧美| 久久人人爽人人片av| .国产精品久久| 狂野欧美激情性xxxx在线观看| 亚洲精品一区蜜桃| 精华霜和精华液先用哪个| 热99国产精品久久久久久7| 精品少妇黑人巨大在线播放| 久久久久视频综合| av线在线观看网站| 免费观看a级毛片全部| 麻豆成人午夜福利视频| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 久久久久久久亚洲中文字幕| 搡女人真爽免费视频火全软件| 最近的中文字幕免费完整| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产成人久久av| 老师上课跳d突然被开到最大视频| 两个人的视频大全免费| 男女国产视频网站| 国产精品99久久99久久久不卡 | 最近中文字幕2019免费版| 99热网站在线观看| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 成人亚洲精品一区在线观看 | 丰满少妇做爰视频| 又爽又黄a免费视频| av.在线天堂| 日韩大片免费观看网站| 热99国产精品久久久久久7| 亚洲最大成人中文| 久久久久人妻精品一区果冻| h视频一区二区三区| 亚洲天堂av无毛| 国产精品久久久久成人av| 亚洲在久久综合| 男女边吃奶边做爰视频| 久久国产精品男人的天堂亚洲 | 国产一区有黄有色的免费视频| 国产 一区精品| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站| 午夜福利视频精品| 久久久久国产网址| 青春草亚洲视频在线观看| 久久国产精品男人的天堂亚洲 | 久久婷婷青草| 欧美精品国产亚洲| 国产日韩欧美在线精品| 亚洲一级一片aⅴ在线观看| 欧美成人精品欧美一级黄| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 亚洲av二区三区四区| 欧美一区二区亚洲| 在线播放无遮挡| 国产亚洲91精品色在线| 人妻系列 视频| 高清午夜精品一区二区三区| 伦理电影免费视频| 日韩欧美精品免费久久| 精品久久久久久久久av| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| av黄色大香蕉| 91久久精品电影网| 亚洲精品久久午夜乱码| 一个人免费看片子| 久久久午夜欧美精品| 成人无遮挡网站| 中国美白少妇内射xxxbb| www.色视频.com| 国内精品宾馆在线| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 亚洲欧美日韩另类电影网站 | 嘟嘟电影网在线观看| 日韩成人伦理影院| 亚洲欧美精品专区久久| 交换朋友夫妻互换小说| 欧美激情极品国产一区二区三区 | 国产精品爽爽va在线观看网站| 中文字幕免费在线视频6| 亚洲国产日韩一区二区| 九九久久精品国产亚洲av麻豆| 成人18禁高潮啪啪吃奶动态图 | 蜜桃在线观看..| 久久久久精品久久久久真实原创| 我要看黄色一级片免费的| 色5月婷婷丁香| 国产亚洲91精品色在线| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看 | 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 国产欧美亚洲国产| 日本vs欧美在线观看视频 | 亚洲精品中文字幕在线视频 | 99热这里只有是精品50| 亚洲av中文av极速乱| 日日摸夜夜添夜夜爱| 老女人水多毛片| 久久久午夜欧美精品| 一区二区三区四区激情视频| 免费黄频网站在线观看国产| 22中文网久久字幕| 亚洲aⅴ乱码一区二区在线播放| 成人综合一区亚洲| 一边亲一边摸免费视频| 久久久精品免费免费高清| 亚洲国产欧美在线一区| 精品一品国产午夜福利视频| 一级毛片电影观看| 人人妻人人看人人澡| 国产男女内射视频| 久久这里有精品视频免费| 少妇的逼好多水| 免费人成在线观看视频色| 丰满人妻一区二区三区视频av| 精品人妻一区二区三区麻豆| 中国三级夫妇交换| 亚洲第一av免费看| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验| 超碰av人人做人人爽久久| 少妇的逼水好多| 中文精品一卡2卡3卡4更新| 少妇精品久久久久久久| 久久久国产一区二区| 男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91 | 中文天堂在线官网| 亚洲欧美日韩另类电影网站 | 男人爽女人下面视频在线观看| 人妻夜夜爽99麻豆av| 日韩亚洲欧美综合| 久久久亚洲精品成人影院| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 18禁在线播放成人免费| 国产亚洲欧美精品永久| 欧美一区二区亚洲| 新久久久久国产一级毛片| 91午夜精品亚洲一区二区三区| av在线播放精品| 国产高清三级在线| 久久国产乱子免费精品| 男人爽女人下面视频在线观看| 少妇高潮的动态图| 国产视频首页在线观看| av在线app专区| 在线看a的网站| 毛片一级片免费看久久久久| 日韩欧美一区视频在线观看 | 日本av免费视频播放| 中文字幕精品免费在线观看视频 | 国产一区二区在线观看日韩| 老熟女久久久| 97超视频在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 中国美白少妇内射xxxbb| 视频中文字幕在线观看| 国产黄片美女视频| 毛片女人毛片| 久久久亚洲精品成人影院| 国产中年淑女户外野战色| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 夫妻性生交免费视频一级片| 国产视频首页在线观看| 国产日韩欧美在线精品| 国产精品av视频在线免费观看| 一级黄片播放器| 亚洲av日韩在线播放| 一二三四中文在线观看免费高清| h视频一区二区三区| 国产精品av视频在线免费观看| 超碰97精品在线观看| 久久久久久九九精品二区国产| 一本久久精品| 五月开心婷婷网| 丰满迷人的少妇在线观看| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 性色av一级| 亚洲欧美精品自产自拍| 啦啦啦视频在线资源免费观看| 国产色爽女视频免费观看| 最近最新中文字幕免费大全7| 尤物成人国产欧美一区二区三区| 国内揄拍国产精品人妻在线| 如何舔出高潮| 日本色播在线视频| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 久久久色成人| 亚洲av日韩在线播放| 99久国产av精品国产电影| .国产精品久久| 成人漫画全彩无遮挡| 赤兔流量卡办理| 国产男人的电影天堂91| 免费黄频网站在线观看国产| 日本wwww免费看| 香蕉精品网在线| 少妇人妻一区二区三区视频| 免费看av在线观看网站| 日本av免费视频播放| 成人二区视频| 亚洲精品日韩av片在线观看| 美女高潮的动态| 亚洲av国产av综合av卡| 我要看黄色一级片免费的| 国产男女内射视频| 亚洲熟女精品中文字幕| 亚洲国产精品成人久久小说| 一级毛片黄色毛片免费观看视频| 国产成人免费无遮挡视频| 中国美白少妇内射xxxbb| 色哟哟·www| 久久久久久久亚洲中文字幕| 国产男人的电影天堂91| 国产毛片在线视频| 国模一区二区三区四区视频| av网站免费在线观看视频| 啦啦啦啦在线视频资源| 亚洲国产精品专区欧美| 久久久精品免费免费高清| 日本av手机在线免费观看| 老司机影院毛片| 久久久久精品性色| 日本午夜av视频| 国产大屁股一区二区在线视频| 国产亚洲午夜精品一区二区久久| 亚洲国产日韩一区二区| 国产精品久久久久成人av| 亚洲av国产av综合av卡| 亚洲不卡免费看| 精品午夜福利在线看| 欧美日本视频| 亚洲婷婷狠狠爱综合网| 日韩一本色道免费dvd| 香蕉精品网在线| 亚洲一级一片aⅴ在线观看| 久久毛片免费看一区二区三区| 国精品久久久久久国模美| 欧美三级亚洲精品| 色视频www国产| 国产精品秋霞免费鲁丝片| 久久精品熟女亚洲av麻豆精品| 视频中文字幕在线观看| 夜夜看夜夜爽夜夜摸| 少妇熟女欧美另类| 亚洲国产av新网站| 日韩一区二区视频免费看| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区黑人 | 日日啪夜夜爽| 男女国产视频网站| 亚洲成色77777| 国产 精品1| 日韩中字成人| 成人综合一区亚洲| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 久久精品久久久久久久性| 99热网站在线观看| 亚洲欧美成人精品一区二区| 好男人视频免费观看在线| 中文字幕av成人在线电影| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 亚洲性久久影院| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 尤物成人国产欧美一区二区三区| 久久ye,这里只有精品| 免费av不卡在线播放| 欧美精品亚洲一区二区| 欧美日韩精品成人综合77777| videos熟女内射| 伦理电影免费视频| 黑丝袜美女国产一区| 国产中年淑女户外野战色| 九九久久精品国产亚洲av麻豆| 国产在线男女| 嫩草影院入口| 男人舔奶头视频| 国产在线一区二区三区精| av一本久久久久| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 一级毛片 在线播放| 中国美白少妇内射xxxbb| 18禁裸乳无遮挡免费网站照片| 免费高清在线观看视频在线观看| 涩涩av久久男人的天堂| 18禁在线播放成人免费| 午夜福利在线观看免费完整高清在| 欧美丝袜亚洲另类| 久久久成人免费电影| 免费看不卡的av| videossex国产| 免费高清在线观看视频在线观看| 老女人水多毛片| 欧美日韩视频高清一区二区三区二| 欧美三级亚洲精品| 香蕉精品网在线| 免费久久久久久久精品成人欧美视频 | 亚洲成色77777| 51国产日韩欧美| 亚洲国产精品专区欧美| 亚洲无线观看免费| 亚洲av免费高清在线观看| 久久国产乱子免费精品| 久久精品熟女亚洲av麻豆精品| 卡戴珊不雅视频在线播放| 日韩av在线免费看完整版不卡| 欧美成人午夜免费资源| 国产高清国产精品国产三级 | 日韩一区二区三区影片| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久久久久久久| 国产老妇伦熟女老妇高清| 日韩中字成人| 国产在线男女| 一级毛片我不卡| 亚洲欧美日韩无卡精品| 日韩视频在线欧美| 男男h啪啪无遮挡| 亚洲精品自拍成人| 老女人水多毛片| 国产黄片视频在线免费观看| 久久久久久九九精品二区国产| av线在线观看网站| 免费大片18禁| 午夜福利网站1000一区二区三区| 九九爱精品视频在线观看| 搡老乐熟女国产| 精品熟女少妇av免费看| 国产欧美日韩一区二区三区在线 | 中文精品一卡2卡3卡4更新| 欧美激情极品国产一区二区三区 | 亚洲伊人久久精品综合| 人人妻人人爽人人添夜夜欢视频 | 香蕉精品网在线| 国国产精品蜜臀av免费| 国产av码专区亚洲av| 香蕉精品网在线| 欧美国产精品一级二级三级 | 国产男人的电影天堂91| 久久久久久久久久久免费av| 国产视频内射| 高清av免费在线| 欧美最新免费一区二区三区| 性色av一级| 有码 亚洲区| 欧美最新免费一区二区三区| 干丝袜人妻中文字幕| 日本猛色少妇xxxxx猛交久久| av福利片在线观看| 亚洲精品中文字幕在线视频 | 卡戴珊不雅视频在线播放| 欧美亚洲 丝袜 人妻 在线| 不卡视频在线观看欧美| 国产成人免费无遮挡视频| 午夜福利在线观看免费完整高清在| 久久人人爽人人片av| 国产精品av视频在线免费观看| 成年女人在线观看亚洲视频| 国产黄片视频在线免费观看| 久久国产精品大桥未久av | 色视频www国产| 久久99热这里只有精品18| av专区在线播放| 一区二区三区四区激情视频| 免费观看在线日韩| 下体分泌物呈黄色| 婷婷色综合大香蕉|