• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lithium Storage Performance of Hollow and Core/Shell TiO2Microspheres Containing Carbon☆

    2014-07-25 11:29:34SonggyunRiHongguiDengLihuiZhouJunHuHonglaiLiuYingHu
    Chinese Journal of Chemical Engineering 2014年10期

    Songgyun Ri,Honggui Deng,Lihui Zhou,Jun Hu*,Honglai Liu,Ying Hu

    Energy,Resources and Environmental Technology

    Lithium Storage Performance of Hollow and Core/Shell TiO2Microspheres Containing Carbon☆

    Songgyun Ri,Honggui Deng,Lihui Zhou,Jun Hu*,Honglai Liu,Ying Hu

    State Key Laboratory of Chemical Engineering,Department of Chemistry,East China University of Science and Technology,Shanghai 200237,China

    A R T I C L EI N F O

    Article history:

    Lithium ion battery

    Titanium dioxide microsphere

    Hollow

    Core/shell

    Electrochemical properties

    TiO2microspherescontainingcarbonhavebeensynthesizedviaaone-pothydrothermalprocessusingCTABasthe mesoporous template and nanoparticle stabilizer and Ti(SO4)2and sucrose as titanium and carbon precursors, respectively.Through well designed calcinations,TiO2microspheres with various amounts of carbon-residue, such as core/shell C@TiO2,hollow neat H-TiO2,and hollow C/TiO2composites,are obtained.When these microspheres are used as anode materials for lithium ion batteries,the lithium storage performance is signif i cantly inf l uenced by the structure and carbon-residue.With a thin shell of TiO2nanoparticles and carbon-residue,the capacity of hollow C/TiO2composites maintains at 143.3 mA·h·g?1at 0.5 C(83.5 mA·g?1)after 100 cycles. Moreover,afterhighratecharge/dischargecyclesfrom0.2Cto20Candbackto0.2Cagain,thereversiblecapacity recovers atas high as 195.1 mA·h·g?1with respect to its initial value of 205.0 mA·h·g?1.The results of cycle voltammograms and electrochemical impedance spectroscopy further reveal that Li+insertion/extraction processes are reversible,and the diffusion coeff i cient of Li+in the hollow C/TiO2composites is much higher than those of others,because the hollow structure can act as the ion-buffering reservoir and facilitate Li+transfer from both sides of the shell,and the carbon-residue in the shell improves the conductivity as well.

    ?2014TheChemicalIndustryandEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    TiO2has been applied as a promising anode material for high rate charge/discharge lithium ion batteries because it avoids the formation of solid electrolyte interphase,which is generally carbon anode materials[1-3].With the development of new nanomaterial technology and the application of novel materials,the performance of lithium ion batteries has been greatly improved.The nanostructures provide a large surface area for active points to contact with electrolyte and a shorter distance for insertion/extraction of eff i cient lithium ions[4-6]. However,aggregation of nanoparticles is inevitable in the lithium ion battery with long time of operation[7].An effective approach to avoid theaggregationisusingsoftorhardtemplatestoseparatenanoparticles into mesoporous networks[8-12].Mesoporous TiO2nanocomposites are synthesized as a high-power anode material by using TiCl4and triblock copolymer Pluronic P123[13].Ordered mesoporous rutile TiO2and anatase TiO2are prepared by using mesoporous silica SBA-15 as the hard template[14].It is proved that TiO2hollow spheres are a highperformancelithiumstoragematerialbecauseoftheirgoodsurface permeability,adjustablediameterandshellthickness[15].Thetemplate method is a facile and reproducible approach to fabricate the hollow structure.WithCu2Opolyhedraasthetemplate,anisotropicTiO2hollow nanostructures with tunable sizes of 100-1000 nm can be obtained through hydrothermal treatment of TiF4aqueous solution[16].More generally,a sacrif i cial spherical template is synthesized and then the metal oxide shell is developed based on the template core;after the removal of the sacrif i cial template by calcination or extraction method, hollow spheres can be obtained[17].Wang et al.[18]and Titirici et al.[19]have synthesized monodispersed carbon microspheres as the sacrif i cial template by hydrothermal treatment of the carbon precursor, andsuccessfullydevelopedhollowmetaloxidemicrospheres.However, the low intrinsic electrical conductivity of pure TiO2particles could cause a sluggish electrode kinetic of lithium ion insertion/extraction especially at high charge/discharge rate.Incorporating conductive materials such as carbon into TiO2is a feasible method[20].Das et al.[21] have synthesized mesoporous microspheres of anatase TiO2/carbon composites via a one-pot optimized solvothermal process.This percolationnetworkofcarbonaroundtheTiO2nanoparticlesshowsarelatively higher storage capacity and better cyclic life.Although the TiO2/C composite is proved as a promising anode material,controllable fabrication of ordered mesostructure or regular morphology is still a great challenge,since titanium precursors,such as titanium chloride(TiCl4) and titanium alkoxide[Ti(OR)4],have a strong hydrolysis reactivity.Moreover,theunderstandingontherelationshipbetweenstructureand lithium storage performance is far from enough.

    In this work,we report a simple one-pot synthesis method to fabricate TiO2microspheres.The as-synthesized composites possess a thin shell of TiO2nanoparticles and a carbon precursor core,which permit us to fabricate various structures of TiO2-carbon composites.Core/ shellC@TiO2,hollowC/TiO2composites,andhollowneatH-TiO2microspheres are prepared,in which the TiO2nanocrystalline shell would facilitate the transfer of Li+,and the remained carbon core or shell would improve the conductivity and inhibit the aggregation of TiO2nanocrystallines during the calcination.The electrochemical properties of TiO2-carbon composites as anodic materials for lithium ion batteries are examined.The relationship between structures and electronic properties is proposed.

    2.Experimental

    2.1.Synthesis of TiO2microspheres

    A simple one-pot hydrothermal synthesis method was adopted by using Ti(SO4)2(9.1 g)as the titanium precursor,CTAB(4.4 g)as the mesoporousstructure-directingagent,andsucrose(7.6g)asthecarbon template precursor.With the molar composition of Ti(SO4)2:CTAB:sucrose:H2O:ethanol=1:0.3:0.5:48:18.6,all the reactants were mixed togetherina150mlbeaker.Afterstirringat45°Cfor2h,aclearsolution was obtained.The solution was transferred into a Te fl on-lined stainless steelautoclaveandagedat150°Cfor24h.Thebrownsolidproductwas fi ltered and washed with deionized water and ethanol separately for several times until the pH of the fi ltrate became neutral.The assynthesized products were calcinated in a tubular furnace under different conditions to obtain three types of TiO2microspheres.In the calcination at 500°C in N2fl ow,the sucrose in the core was carbonized and the obtained core/shell composite was denoted as C@TiO2.When the calcination was carried out at 600°C in air,the sucrose burned off and the obtained hollow microsphere of pure nanocrystalline TiO2was denoted as H-TiO2.While in the calcinations at different temperaturesinair,hollowC/TiO2compositeswithdifferentamountsofcarbonresidue were obtained.They were denoted as C/TiO2-x,in which x represents the calcination temperature.For example,C/TiO2-400 refers to the as-synthesized sample calcinated at 400°C in air for 1 h.The heating rates for all calcinations were 1°C·min?1.

    2.2.Characterization

    X-ray powder diffraction(XRD)patterns were collected on a Rigaku D/max 2550 VB/PC diffractometer with Cu Kα radiation at 40 kV and 50 mA.The micron-morphology was observed by scanning electron microscopy(SEM)on JEOL/JSM-6360.High-resolution transmission electron microscopy(HRTEM)images were obtained on a JEOL JEM-2010 microscope.Samples for HRTEM investigations were prepared by dispersing particles in ethanol under ultrasonication and then dropping on a copper grid doped with a holey carbon fi lm.Energy dispersive X-ray spectroscopy(EDS)measurements were performed using EDAX/Genesis.Nitrogen adsorption-desorption isotherms were determined on an ASAP-2020 analyzer at?196°C. Prior to the measurement,the samples were degassed at 100°C under vacuum foratleast 6 h.The surface areas and sizedistributions were calculated by the Brunauer-Emmett-Teller(BET)method and the Barrett-Joyner-Halenda(BJH)model,respectively.Thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC) were carried out on a NETZSCHSTA 499F3 thermal analyzer with a heating rate of 5°C·min?1.The protection gas was nitrogen or a mixed gas of nitrogen(80%)and oxygen(20%)with a fl ow rate of 100 ml·min?1.

    2.3.Electrochemical characterization

    Theworkingelectrodewaspreparedbyamixtureofsamplepowders, carbonblack conductingagent andpolyvinylidene f l uoridebinder,witha mass ratio of 75:15:10 in n-methyl-2-pyrrolidinone solvents,The slurry was pasted on a copper foil.Electrochemical test cells were assembled in an argon-f i lled glove box,using coin-type half-cells with lithium foil as a counter electrode.The electrolyte was 1.0 mol·L-1LiPF6in a mixture of ethylene carbonate and dimethyl carbonate(volume ratio of 1:1).The cells were galvanostatically charged and discharged in a voltage range from 1.0 to 3.0 V vs.Li/Li+.For the rate performance measurement,the current was varied from 0.2 C(33.4 mA·g?1)to 20 C(3340 mA·g?1). The cycle performance for 100 cycles was recorded at the rate of 0.5 C. Thecapacitywascalculatedbasedon1gofsample.Thecyclicvoltammogram(CV)tests were conducted on an Arbin BT2000 battery test system at scan rates of 0.1,0.2,0.5,and 1 mV·s?1in the voltage range of 1.0-3.0 V.Electrochemical impedance spectroscopy(EIS)analyses were also carried out using a Gamry Instrument.All the electrochemical measurements were carried out at room temperature.

    3.Results and Discussion

    Fig.1.SEM images of mesoporous TiO2microspheres.(a)Synthesized TiO2microspheres. (b)Hollow H-TiO2microspheres by calcination at 600°C in air.

    3.1.Structure and morphology of TiO2microspheres

    Fig.1 shows the SEM images of TiO2microsphere samples.The assynthesizedmicrospherespresentalitchi-likemorphologywithadiameter of 3-5 μm.The rough surface of the microsphere is composed of TiO2granule aggregations with an average size of less than 100 nm.However,some hemispheres with smooth surface,as if extruded from the core of the TiO2microspheres,can be observed.EDS analysis confi rms that they are sucrose spheres.It indicates that TiO2nanoparticles may grow up around the spherical sucrose core through the functional groups of-OH in hydrolyzed Ti(SO4)2and-C=O in sucrose to form the core/shell structure[19].After the calcination at 600°C in air,the sucrosecoreburnsoff.AsshowninFig.1(b),somebrokenmicrospheres reveal the formation of hollow TiO2microspheres,and the product indeed has a core/shell structure.

    Fig.2 shows the DSC curves of the as-synthesized sample in pure N2fl ow and in air,which help us to design an accurate routine to prepare desired structures of TiO2microspheres.In the calcination under N2fl ow,there is a transition plateau at about 270°C in the DSC curve, attributed to the decomposition of CTAB and the partial carbonization of sucrose into carbon.The continual carbonization and crystallization of TiO2make the DSC curve decline.Another broad exothermic peak occurs at about 450°C,suggesting complete carbonization.For the calcination in air,there is a signi fi cant heat release in the range of 200-500°C.Thepeakatabout300°Cisattributedtothedecomposition of CTAB and sucrose,while that at 430°C is mainly attributed to the crystallization of TiO2.

    Fig.3 shows the proposed routines and corresponding formation mechanism.In the hydrothermal process,the Ti(SO4)2precursor is slowly hydrolyzed into titanyl sulfate(TiOSO4),which is relatively stable compared with TiO(OH)2hydrolyzed from TiCl4or Ti(OR)4. And then,TiOSO4produces TiO2nanobuilding blocks slowly to selfassemble into mesoporous nanoparticles induced by CTAB micelles. Because of the high density of-OH and-C=O groups on the surface of polysaccharide microspheres[19],TiO2nanoparticles aggregate easily around the polysaccharide spherical surface to form a shell through hydrogenbondingandelectricinteraction.Basedonthethermalproperties of the as-synthesized composite sample,the following calcinations are carefully controlled to obtain different types of TiO2composites.In pureN2f l owat500°C,thepolysaccharidecoreiscompletelycarbonized, which results in the core/shell composite of C@TiO2.The TEM image in Fig.4(a)shows that TiO2nanoparticles aggregate closely on the surface ofthemicrosphere.ThecenterdarknessoftheC@TiO2sphereisuniform, suggestingitssolidsphericalstructure.Intheairf l ow,thepolysaccharide core burns off partially at 400-500°C and completely at 600°C[22],so that hollow C/TiO2composite microspheres with different amounts of carbon-residue and the hollow microspheresof H-TiO2without carbonresidue can be produced.As shown in Fig.4(b),the black dots of carbon embedded in the packing-pore of TiO2nanoparticles can be clearly observed in C/TiO2-400.With thehindrance of the tightly aggregated TiO2shell,instead of completely burning to CO2,some of the polysaccharide core is carbonized,followed by inside-out Ostwald ripening effect[23], andthecarbonthatremainedinthestacking-poreofTiO2nanoparticles forms the blend hollow structure.As the calcination temperature increases further,as shown in Fig.4(c),the hollow H-TiO2microspheres, withmuchdarkeredges alongthesphericalboundary,canbeobserved.

    Fig.4(d)shows the HRTEM image of TiO2crystals on the surface of hollow H-TiO2spheres.TiO2nanocrystals have irregular shapes with anaveragesizeof about10 nm.Theinset reveals that thelattice spacing of the TiO2crystal is 0.38 nm.Only a few of mesopores can be observed, and most of them will disappear with the growth of TiO2nanocrystals. According to the EDAX analysis(Fig.5),the hollow H-TiO2spheres aremadeofneatTiO2.Onlyatracecarbon(lessthan2.5%)wasdetected, which could be attributed to the sample carrier of carbon f i lm coating on the copper grid.

    Fig.2.DSC curves of as-synthesized composite sample in different gas f l ows.1—80% N2+20%O2;2—100%N2.

    Fig.3.The proposed synthesis process and mechanism for three types of TiO2microspheres.

    The WAXRD patterns of the as-synthesized TiO2composite,C/TiO2-400,C/TiO2-500,C@TiO2,and H-TiO2in Fig.6 show that all samples can be indexed as a typical anatase TiO2(JCPDS:21-1272),without any other polymorph or carbon crystals coexisted.As listed in Table 1, the crystallite size of TiO2in each sample,calculated by Scherrer equation,is in the sequence of H-TiO2(10.1 nm)>C@TiO2(9.1 nm)>assynthesized TiO2composite(8.8 nm),suggesting that the TiO2crystal grows larger at higher calcination temperature.It is worth mentioning that,unlike the report[20],the as-synthesized TiO2composite already possesses distinct characteristic peaks of anatase,which reveals that the crystallization occurs even during the hydrothermal process.

    AsshowninFig.7,TGAcurvesrevealthecompositionofvariousTiO2microspheres through the mass loss in air f l ow.For the as-synthesized composite,there is a signif i cant mass loss of 33.3%in the temperaturerange of 240-470°C,whichis attributedtothe burningof CTAB andsucrose.In the curve of core/shell C@TiO2,since most of CTAB and sucrose are carbonized into carbon,the remained amount of carbon is about 25%.For the hollow C/TiO2-400 composite,with only a part of polymerized sucrose burned off,7.5%carbon remains.After 500°C,the TGA curve of the as-synthesized TiO2composite already approaches a platform,so the difference between the TGA curves of C/TiO2-500 and H-TiO2(calcinated at 500 and 600°C,respectively)is little,where the carbon amount of the former is 2.5%,and almost no carbon is left in the later.

    Fig.4.TEM and HRTEM images.(a)Core/shell C@TiO2.(b)Hollow C/TiO2composite.(c)Hollow neat H-TiO2.(d)TiO2nanoparticles on the surface of H-TiO2spheres.

    Fig.5.EDAX analysis of hollow H-TiO2spheres and its chemical element distribution(including the copper grid with a carbon f i lm).

    As estimated by N2adsorption/desorption isotherms of various TiO2microspheres[Fig.8(a)],the BET surface areas of the as-synthesized product,C@TiO2,C/TiO2-400,C/TiO2-500 and H-TiO2,as listed in Table 1,are 48.67,130.87,99.56,82.68 and 53.02 m2·g?1,respectively. Except for the as-synthesized sample,they are all larger than those of TiO2microspheresreported[21,24].Combiningtheporesizedistributions calculated by the BJH method[Fig.8(b)]and the results listed in Table 1,we can see that larger surface areas are mainly caused by the existence of mesopores in C-TiO2composites and macropores among the packing nanoparticles.With the increase of calcination temperature,the mesopores collapse due to the growth of TiO2crystals and the burning of carbon and,accordingly,the surface area decreases.

    Fig.6.WAXRD patterns of various TiO2samples.

    3.2.Electrochemical properties

    Fig.9 shows the galvanostatic charge/discharge cyclic performance of TiO2microspheres at 0.5 C,used as anodic materials.The hollow C/TiO2-400,C/TiO2-500,C@TiO2and H-TiO2at the 1st,2nd,5th and 100th cycles are presented.All samples show stable charge and dischargepotentialplateausat2.0and1.7V.However,thereisahysteresis effect at 1.4 V for each sample,indicating the irreversible capacity loss. For the f i rst cycle,there is an irreversible capacity loss[25],with the coulombic eff i ciency of 76.5%,66.7%,82.3%and 76.8%for C/TiO2-400, C/TiO2-500,C@TiO2,and H-TiO2microspheres,respectively.After that, the capacities are soon stabilized at 2nd or 3rd cycle,with coulombic eff i ciency of about 100%.

    Fig.7.TGA curves of different TiO2microspheres in air f l ow.1—As synthesized(O2); 2—C@TiO2;3—C/TiO2-400;4—C/TiO2-500;5—H-TiO2.

    The reversible capacities during 100 cycles at 0.5 C for various TiO2microspheres are further revealed in Fig.10.The initial reversible capacitiesofC/TiO2-400,C/TiO2-500,C@TiO2andH-TiO2compositesare188.8, 178.9,115.1 and 126.1 mA·h·g?1,respectively.After 100 cycles,they decrease to 143.3,126.1,108.9 and 75.2 mA·h·g?1,corresponding to the capacity retention of 75.9%,70.5%,94.6%and 59.6%,respectively. For the hollow structure,the capacity is in the sequence of C/TiO2-400>C/TiO2-500>H-TiO2,indicating that the higher the calcination temperature,the fewer the amount of carbon-residue,the lower the surface area,the larger the TiO2crystal and,consequently,the lower the capacity.Core/shell C@TiO2exhibits relatively stable retention of reversible capacity,maintaining as high as 95%of the initial capacity after100 cycles.However,theoverallreversiblecapacityislow.Itisbecauseof the specif i c core/shell C@TiO2structure.During the hydrothermal process,there are many CTAB micelle structures and self-assembled blocks in the core,as shown in Fig.3.When annealing to 500°C,micelle surfactantsareburnedoffinN2gasf l owandleavemesoporouscarbonin thecore,correspondingtorelativelyhighBETsurfaceareafortheC@TiO2sample.Therefore,the25%ofcarbonthatremainedintheC@TiO2sample improvestheconductivityofTiO2,whichnotonlyisref l ectedbyrelatively low fading,but also results in low capacity.

    Fig.9.Galvanostatic charge(Li extraction)/discharge(Li insertion)prof i les duringthe 1st,2nd,5th and100th cyclesat0.5 C.(a)Hollow C/TiO2-400.(b)Hollow C/TiO2-500.(c)Core/shell C@TiO2.(d)Hollow neat TiO2.

    Fig.10.Cycling performance during 100 cycles at 0.5 C.▽hollow C/TiO2-400;□hollow C/TiO2-500;△core/shell C@TiO2;○hollow neat TiO2.

    Fig.11.High rate discharge-charge performance plots at different current densities for various TiO2microspheres.▽hollow C/TiO2-400;□hollow C/TiO2-500;△core/shell C@TiO2;○hollow neat TiO2.

    Fig.11 further displays the high rate discharge/charge performance of various TiO2composite microspheres at different densities in the potentialrangeof1.0-3.0 V.At0.2C,reversiblecharge/dischargecapacities of C/TiO2-400,C/TiO2-500,C@TiO2and H-TiO2are high,about 205.0,183.5,145.8 and 112.5 mA·h·g?1,respectively.Thereafter, their capacities gradually drop as the current density increases.At 20 C,the discharge capacities are79.1,70.4,15.4 and 44.4 mA·h·g?1, respectively.When the current density returns to 0.2 C,all samples almost recover their initial reversible capacities,with the values of 195.1,160.3,129.9 and 105.2 mA·h·g?1for C/TiO2-400,C/TiO2-500, C@TiO2and H-TiO2,respectively,suggesting that all TiO2microspheres are stable after high rate charge/discharge cycles.Among them,thehollow C/TiO2-400 composite microspheres show superior high-rate performance and capacity,and it is also better than the recent reported workofTiO2nanocageswithorwithoutinteriormetalfunctionalization (80-150 mA·h·g?1at 0.5-10 C)[16].

    Fig.12 shows the CV curves of the hollow C/TiO2-400,C/TiO2-500, C@TiO2and H-TiO2microspheres at scan rates of 0.1,0.2,0.5,and 1 mV·s?1in the voltage range of 1.0-3.0 V.Since the area under the CV curvesrepresents thetotalamount of transferred charge,the reversibility is usually estimated by comparing the areas of the anodic to cathodic peaks during the electrochemical redox process.As shown in Fig.12,the area ratios of the anodic to cathodic peaks of all samples almost approach one,and only show a little variation with the increase of scan rate,suggesting the good reversibility of Li+charge/discharge processes in all samples.As shown in Fig.13,plotting the cathodic peak current(ipc)against the square root of scan rate(ν1/2),straight lines can be obtained for various TiO2microspheres.For the reversible process,these linear relationships can be described as

    Fig.12.Cyclevoltammogramsoffreshelectrodesatscanrates of 0.1,0.2,0.5,and 1 mV·s?1(voltage range:1.0-3.0 V).(a)Hollow C/TiO2-400.(b)Hollow C/TiO2-500.(c)Core/shell C@TiO2.(d)The hollow neat TiO2.

    Fig.13.Plots of linear relationship between cathodic current(ipc)and square root of scan rate(ν1/2)for various TiO2microspheres.■hollow C/TiO2-400;●hollow C/TiO2-500;▲core/shell C@TiO2;?the hollow neat TiO2.

    Table 2Electrochemical electrode parameters of hollow and core/shell microspheres from EIS

    where C′is the bulk concentration(10?3mol·cm?3),n is the number oftransferelectrons(1forLi+),andAisthesurfaceareaoftheelectrode material(0.5 cm2).The diffusion coef fi cients,Da,of various TiO2microspheres can be calculated by the slopes of the straight lines.As listed in Table 2,the values of Daare in the range from 2.33×10?7to 1.39×10?6cm2·s?1.Among them,the Daof H-TiO2is more than f i ve times larger than that of C@TiO2due to an easier transfer through both sides of the TiO2shell of the hollow structure.With carbon-residue,the hollow C/TiO2composites still show much larger Dathan C@TiO2.

    EIS was conducted to investigate the electrical kinetic properties of variousmicrospheres.Fig.14showstheNyquist-typeplotsofelectrodes and theimage above thegraph is theequivalentcircuit model,where Rsrepresents the bulk resistance,R1-6represent resistances related to the surface electrolyte interface and various mesoporous structures,Rctis related to the charge transfer resistance at the active material interface, W is the Warburg impedance caused by a semi-inf i nite diffusion of the Li+ionin theelectrode,and Cdlrepresents thedouble-layer capacitance of the electrode-electrolyte interface.Each parameter in the equivalent circuit is f i tted by the Zview2 software and listed in Table 2.The exchange current density can be calculated by

    wheren=1 fortheelectrontransferoftheTi4+/Ti3+redoxcouple.The diffusioncoeff i cientofLi+intheelectrodecanbecalculatedthroughthe Nyquist-type plot in the low-frequency region as follows

    where σWis the Warburg factor,Z′is the real resistance of the complex impedance plane,and ω is the frequency.Different from theDadiscussed above,Dsrepresents the diffusion coeff i cient of the Li+ion in a semi-inf i nite diffusion process at the electrode-electrolyte interface.Plotting Z′against ω?1/2,σWcan be obtained by the slope of the linear relationship described inEq.(4)[26].Substituting σWinto Eq.(3),the diffusion coeff i cient of Li+,Ds,can be obtained.As listed in Table 2,the values of the diffusion coeff i cient of all TiO2microspheres are~10?9cm2·s?1,signif i cantly higher than those for neat TiO2crystal (~10?13cm2·s?1)or anatase f i lms(10?10-10?17cm2·s?1)[27]. Among them,the hollow C/TiO2-400 composite again shows signif icantly better performance than the others.

    Combining the electrochemical properties with their structures,the improvements of the hollow C-TiO2composite are considered to arise from good contact between carbon and TiO2in the shell and short Li+diffusion distance in nanocrystalline TiO2with small size and large surface area.In addition,the hollow structure can act as the ion-buffering reservoir and facilitate Li+transfer from both sides of the shell.As the calcination temperature increases,the combustion of carbon and the increase of crystalline TiO2size lead to poorer conductivity and lower Li+diffusioneff i ciencyand,consequently,toalowerperformanceforhollow neat H-TiO2.For core/shell C@TiO2,the large surface area is mainly caused by the mesoporous carbon core,which shows only little contribution to Li+transfer.Moreover,the distance between the carbon core and TiO2shell is too close to hold enough LiPF6electrolytes,so Li+can only transfer freely from the outside of the shell.Consequently,the high rate performance of the core/shell structure is inferior to that of samples with hollow structure.Overall,the hollow C-TiO2composite microspheres could be a promising anodic material for the lithium ion battery.

    Fig.14.Equivalent circuit diagram and Nyquist-type plots of electrodes for various TiO2microspheres(frequency range:0.01-100 kHz).□hollow C/TiO2-400;○hollow C/TiO2-500;△core/shell C@TiO2;?hollow neat TiO2.

    4.Conclusions

    Core/shell C@TiO2,hollow C/TiO2composites and hollow neat TiO2microspheres have been synthesized via a facile one-pot hydrothermal process followed by different calcinations.From SEM and HRTEM images,it is found that when calcinated in N2f l ow,the core/shell C@TiO2microspheres can be obtained.When calcinated in air at 400°C or 600°C,the hollow microspheres with(C/TiO2-400)or without(H-TiO2)carbon-residue can be produced.All samples show quite good lithium storage performance.Among them,hollow C/TiO2-400 composite microspheres signif i cantly improve the conductivity and the diffusion of Li+.After 100 cycles at 0.5 C,the discharge capacity is as high as 143.3 mA·h·g?1.Moreover,after the processes of high rate charge/discharge cycles with the current density from 0.2 C to 20 C, the capacity(195.1 mA·h·g?1)almost recovers to its initial value (205.0 mA·h·g?1)when the current density changes back to 0.2 C.The CV results show that Li+insertion/extraction processes are reversible, and the diffusion coeff i cient Daof the hollow C/TiO2composite with carbon-residue is much larger than that of C@TiO2.The EIS analysis conf i rms that the hollow C/TiO2-400 composite microspheres have the largest Li+diffusion coeff i cient.Therefore,the hollow C/TiO2-400 composite microspheres provide a potentially promising anodic material for the high-rate lithium ion battery.

    [1]I.Moriguchi,R.Hidaka,H.Yamada,T.Kudo,H.Murakami,N.Nakashima,A mesoporous nanocomposite of TiO2and carbon nanotubes as a high-rate Li-intercalation electrode material,Adv.Mater.18(1)(2006)69-73.

    [2]S.K.Yoon,A.Manthiram,Hollow core-shell mesoporous TiO2spheres for lithium ion storage,J.Phys.Chem.C 115(19)(2011)9410-9416.

    [3]Z.Yang,D.Choi,S.Kerisit,K.M.Rosso,D.Wang,J.Zhang,G.Graff,J.Liu,Nanostructuresand lithiumelectrochemical reactivity of lithiumtitanitesand titanium oxides: a review,J.Power Sources 192(2)(2009)588-598.

    [4]G.Sudant,E.Baudrin,D.Larcher,J.M.Tarascon,Electrochemical lithium reactivity with nanotextured anatase-type TiO2,J.Mater.Chem.15(2005)1263-1269.

    [5]P.Balaya,A.J.Bhattacharyya,J.Jamnik,Y.F.Zhukovskii,E.A.Kotomin,J.Maier,Nanoionics in the context of lithium batteries,J.Power Sources 159(1)(2006)171-178.

    [6]H.Li,L.H.Shi,Q.Wang,L.Q.Chen,X.J.Huang,Nano-alloy anode for lithium ion batteries,Solid State Ionics 148(3-4)(2002)247-258.

    [7]Y.G.Guo,J.S.Hu,L.J.Wan,Nanostructured materials for electrochemical energy conversion and storage devices,Adv.Mater.20(15)(2008)2878-2887.

    [8]J.Tang,Y.Y.Wu,E.W.McFarland,G.D.Stucky,Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2thin f i lms,Chem.Commun. (2004)1670-1671.

    [9]R.L.Liu,Y.J.Ren,Y.F.Shi,F.Zhang,L.J.Zhang,B.Tu,D.Y.Zhao,Controlled synthesis of ordered mesoporous C-TiO2nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly,Chem.Mater.20(3)(2008) 1140-1146.

    [10]J.W.Lee,M.C.Orilall,S.C.Warren,M.Kamperman,F.J.Disalvo,U.Wiesner,Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores,Nat.Mater.7(2008)222-228.

    [11]J.Chen,Z.Hua,Y.Yan,A.A.Zakhidov,R.H.Baughman,L.Xu,Template synthesis of ordered arrays of mesoporous titania spheres,Chem.Commun.46(2010) 1872-1874.

    [12]Y.G.Guo,Y.S.Hu,J.Maier,Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries,Chem.Commun.26(2006)2783-2785.

    [13]J.M.Szeifert,J.M.Feckl,D.F.Rohlf i ng,Y.J.Liu,V.Kalousek,J.Rathousky,T.Bein,Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion,J.Am.Chem.Soc.132(36)(2010)12605-12611.

    [14]W.Yue,C.Randorn,P.S.Attidekou,Z.X.Su,J.T.S.Irvine,W.Z.Zhou,Syntheses,Li insertion,and photoactivity of mesoporous crystalline TiO2,Adv.Funct.Mater.19 (17)(2009)2826-2833.

    [15]Z.Wang,L.Zhou,X.W.Lou(David),Metal oxide hollow nanostructures for lithiumion batteries,Adv.Mater.24(14)(2012)1903-1911.

    [16]Z.Wang,X.W.Lou(David),TiO2nanocages:fast synthesis,interior functionalization and improved lithium storage properties,Adv.Mater.24(30)(2012)4124-4129.

    [17]X.Sun,J.Liu,Y.Li,Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,Chem.Eur.J.12(7)(2006)2039-2047.

    [18]H.Wang,Z.Wu,Y.Liu,A simple two-step template approach for preparing carbondoped mesoporous TiO2hollow microspheres,J.Phys.Chem.C 113(30)(2009) 13317-13324.

    [19]M.M.Titirici,M.Antonietti,A.Thomas,Ageneralizedsynthesisofmetaloxidehollow spheres using a hydrothermal approach,Chem.Mater.18(16)(2006)3808-3812.

    [20]K.Yang,F.Tan,F.Wang,Y.Long,Y.Wen,Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology, Chin.J.Chem.Eng.20(4)(2012)793-802.

    [21]S.K.Das,S.Darmakolla,A.J.Bhattacharyya,High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon, J.Mater.Chem.20(2010)1600-1606.

    [22]S.B.Bothara,S.Singh,Thermal studies on natural polysaccharide,Asian Pac.J.Trop. Biomed.2(2)(2012)S1031-S1035.

    [23]X.W.Lou,Y.Wang,C.Yuan,J.Y.Lee,L.A.Archer,Template-free synthesis of SnO2hollow nanostructures with high lithium storage capacity,Adv.Mater.18(17) (2006)2325-2329.

    [24]T.Ohno,K.Sarukawa,K.Tokieda,M.Matsumura,Morphology of a TiO2photocatalyst(Degussa,P-25)consisting of anatase and rutile crystalline phases,J.Catal.203(1)(2001)82-86.

    [25]G.F.Ortiz,I.Hanzu,T.Djenizian,P.Lavela,J.L.Tirado,P.Knauth,Alternative Li-ion battery electrode based on self-organized titania nanotubes,Chem.Mater.21(1) (2009)63-67.

    [26]G.Q.Liu,L.Wen,G.Y.Liu,Q.Y.Wu,H.Z.Luo,B.Y.Ma,Y.W.Tian,Synthesis and electrochemical properties of Li4Ti5O12,J.Alloys Compd.509(22)(2011) 6427-6432.

    [27]M.Wagemaker,R.van de Krol,A.P.M.Kentgens,A.A.van Well,F.M.Mulder,Two phase morphology limits lithium diffusion in TiO2(anatase):a7Li MAS NMR study,J.Am.Chem.Soc.123(46)(2001)11454-11461.

    15 May 2013

    ☆Supported by the National Natural Science Foundation of China(21176066),the 111 Project of the Ministry of Education of China(B08021)and the Fundamental Research Funds for the Central Universities.

    *Corresponding author.

    E-mail address:junhu@ecust.edu.cn(J.Hu).

    http://dx.doi.org/10.1016/j.cjche.2014.09.005

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 18 June 2013

    Accepted 15 August 2013

    Available online 16 September 2014

    av线在线观看网站| 在线看a的网站| 国产白丝娇喘喷水9色精品| 久久这里有精品视频免费| 亚洲第一av免费看| 国产成人精品一,二区| 男人舔女人的私密视频| 在线免费观看不下载黄p国产| 国精品久久久久久国模美| a级毛片黄视频| 涩涩av久久男人的天堂| 看十八女毛片水多多多| 波多野结衣一区麻豆| 搡老乐熟女国产| 9热在线视频观看99| 午夜影院在线不卡| 伦理电影大哥的女人| 国产精品国产三级专区第一集| 亚洲精品国产一区二区精华液| 一本大道久久a久久精品| 亚洲图色成人| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 成人漫画全彩无遮挡| 亚洲国产色片| 在线观看一区二区三区激情| 亚洲成人av在线免费| 99热国产这里只有精品6| 欧美日韩视频高清一区二区三区二| 一级a爱视频在线免费观看| 亚洲国产看品久久| 亚洲一码二码三码区别大吗| 国产精品亚洲av一区麻豆 | 日日摸夜夜添夜夜爱| 欧美亚洲日本最大视频资源| 日韩在线高清观看一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲综合色网址| 中文字幕精品免费在线观看视频| 十八禁高潮呻吟视频| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| av在线播放精品| 999精品在线视频| 伦精品一区二区三区| 日产精品乱码卡一卡2卡三| 欧美少妇被猛烈插入视频| a级毛片黄视频| 精品国产一区二区三区四区第35| 成年美女黄网站色视频大全免费| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 国产乱人偷精品视频| 久久久久久久久久人人人人人人| 少妇人妻 视频| 一二三四中文在线观看免费高清| 香蕉精品网在线| 老汉色av国产亚洲站长工具| 两性夫妻黄色片| 成人漫画全彩无遮挡| 韩国高清视频一区二区三区| 1024香蕉在线观看| 麻豆av在线久日| 免费av中文字幕在线| 免费黄色在线免费观看| 18+在线观看网站| 视频在线观看一区二区三区| 国产片内射在线| 少妇 在线观看| 久久久欧美国产精品| 亚洲av中文av极速乱| 成人影院久久| 一边摸一边做爽爽视频免费| 久久精品熟女亚洲av麻豆精品| 交换朋友夫妻互换小说| 亚洲精品国产一区二区精华液| 777久久人妻少妇嫩草av网站| 日韩一区二区视频免费看| 欧美精品人与动牲交sv欧美| 欧美少妇被猛烈插入视频| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 最新的欧美精品一区二区| 制服人妻中文乱码| 天堂俺去俺来也www色官网| 尾随美女入室| 日本色播在线视频| 亚洲,一卡二卡三卡| 国产爽快片一区二区三区| 成人免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜福利片| 亚洲少妇的诱惑av| 亚洲熟女精品中文字幕| 啦啦啦中文免费视频观看日本| 黄色 视频免费看| 大香蕉久久网| 一区二区av电影网| 精品国产国语对白av| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久男人| 成年女人毛片免费观看观看9 | 爱豆传媒免费全集在线观看| www日本在线高清视频| 美女中出高潮动态图| 日韩av不卡免费在线播放| 搡老乐熟女国产| 蜜桃国产av成人99| av有码第一页| 久久精品久久久久久噜噜老黄| 午夜日韩欧美国产| 91成人精品电影| 久久99一区二区三区| 熟女少妇亚洲综合色aaa.| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区久久| 啦啦啦视频在线资源免费观看| 久久精品国产a三级三级三级| 精品国产露脸久久av麻豆| 一级毛片 在线播放| www日本在线高清视频| 国产午夜精品一二区理论片| 青草久久国产| av在线播放精品| 97在线人人人人妻| 永久网站在线| 一级毛片电影观看| 婷婷成人精品国产| 久久久久久久久久久免费av| 亚洲一级一片aⅴ在线观看| 丝袜脚勾引网站| 久久久欧美国产精品| 亚洲天堂av无毛| 久久午夜福利片| 国产色婷婷99| 国产黄色免费在线视频| 最近中文字幕高清免费大全6| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 97在线视频观看| 999精品在线视频| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 老司机亚洲免费影院| 精品人妻在线不人妻| 街头女战士在线观看网站| 日日摸夜夜添夜夜爱| tube8黄色片| 久久久亚洲精品成人影院| 国产成人av激情在线播放| 久久人人97超碰香蕉20202| 中文字幕另类日韩欧美亚洲嫩草| 97在线视频观看| 国产精品久久久久久久久免| 美女脱内裤让男人舔精品视频| 免费久久久久久久精品成人欧美视频| 一区二区三区激情视频| 黄色一级大片看看| 成人国产av品久久久| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 免费高清在线观看视频在线观看| 卡戴珊不雅视频在线播放| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 我的亚洲天堂| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| xxxhd国产人妻xxx| 精品亚洲成a人片在线观看| 日韩av不卡免费在线播放| 久久97久久精品| 久久久a久久爽久久v久久| 日韩av在线免费看完整版不卡| xxxhd国产人妻xxx| 欧美精品高潮呻吟av久久| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜爱| 久久国产精品男人的天堂亚洲| 欧美日韩成人在线一区二区| 亚洲婷婷狠狠爱综合网| 久热这里只有精品99| 哪个播放器可以免费观看大片| 性色avwww在线观看| 考比视频在线观看| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 久久av网站| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 中国三级夫妇交换| 国产日韩欧美视频二区| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 女的被弄到高潮叫床怎么办| 日本-黄色视频高清免费观看| 久久午夜综合久久蜜桃| 久久精品国产鲁丝片午夜精品| 91午夜精品亚洲一区二区三区| 久久青草综合色| 久久国产精品男人的天堂亚洲| 欧美日韩视频精品一区| 又黄又粗又硬又大视频| 亚洲国产精品999| 亚洲av男天堂| 性色av一级| 日本免费在线观看一区| 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 国产精品国产av在线观看| 国产一区二区在线观看av| 九色亚洲精品在线播放| 色94色欧美一区二区| 免费av中文字幕在线| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| 色播在线永久视频| 国产又色又爽无遮挡免| 精品一区二区免费观看| 秋霞在线观看毛片| 亚洲中文av在线| 国产亚洲午夜精品一区二区久久| 熟妇人妻不卡中文字幕| 男女啪啪激烈高潮av片| 精品少妇内射三级| 国产午夜精品一二区理论片| 日韩一卡2卡3卡4卡2021年| 三级国产精品片| 你懂的网址亚洲精品在线观看| 两个人看的免费小视频| av在线老鸭窝| 亚洲天堂av无毛| 国产 精品1| 夫妻性生交免费视频一级片| 在线观看国产h片| 欧美精品高潮呻吟av久久| 男人操女人黄网站| av女优亚洲男人天堂| 90打野战视频偷拍视频| 成人影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说| av有码第一页| 国产高清国产精品国产三级| 午夜影院在线不卡| 五月伊人婷婷丁香| 久久精品夜色国产| 如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 国产精品二区激情视频| 色哟哟·www| 精品亚洲乱码少妇综合久久| 国产福利在线免费观看视频| 成人影院久久| 国产精品一二三区在线看| 欧美黄色片欧美黄色片| 七月丁香在线播放| 国产精品久久久久久精品古装| 国产福利在线免费观看视频| 国产免费一区二区三区四区乱码| 久久av网站| 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区蜜桃| 国产精品偷伦视频观看了| 老司机影院成人| 成人亚洲精品一区在线观看| 国产一区二区 视频在线| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 美女国产高潮福利片在线看| 欧美黄色片欧美黄色片| 男人操女人黄网站| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 亚洲美女黄色视频免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲久久久国产精品| 男女边吃奶边做爰视频| 丝袜喷水一区| 国产国语露脸激情在线看| 国产乱来视频区| 人成视频在线观看免费观看| 久久精品国产综合久久久| 久久久久精品人妻al黑| 激情五月婷婷亚洲| 午夜影院在线不卡| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 国产精品国产三级专区第一集| 成年人午夜在线观看视频| 波野结衣二区三区在线| xxxhd国产人妻xxx| 亚洲国产精品999| 夫妻午夜视频| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 婷婷色麻豆天堂久久| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 在线观看免费高清a一片| 深夜精品福利| 国产亚洲最大av| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 亚洲美女搞黄在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡 | 一本—道久久a久久精品蜜桃钙片| 久久久久久人妻| 香蕉国产在线看| 在线免费观看不下载黄p国产| 天天操日日干夜夜撸| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 啦啦啦在线免费观看视频4| 亚洲,欧美精品.| 又粗又硬又长又爽又黄的视频| 精品亚洲成国产av| 精品一区二区免费观看| 九九爱精品视频在线观看| 五月伊人婷婷丁香| 超碰97精品在线观看| 亚洲人成电影观看| 一二三四在线观看免费中文在| 高清黄色对白视频在线免费看| 亚洲综合精品二区| 99国产综合亚洲精品| 卡戴珊不雅视频在线播放| 日本黄色日本黄色录像| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 激情五月婷婷亚洲| 国产av一区二区精品久久| 亚洲内射少妇av| 在线观看一区二区三区激情| 免费不卡的大黄色大毛片视频在线观看| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 天天躁夜夜躁狠狠躁躁| 免费在线观看黄色视频的| 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 建设人人有责人人尽责人人享有的| 亚洲av中文av极速乱| 久久久久国产精品人妻一区二区| 日韩一本色道免费dvd| 97人妻天天添夜夜摸| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| 久久人妻熟女aⅴ| av电影中文网址| 国产熟女欧美一区二区| 日韩免费高清中文字幕av| 熟女电影av网| 亚洲欧美一区二区三区久久| 大陆偷拍与自拍| 大片免费播放器 马上看| 国产免费现黄频在线看| 丝袜美足系列| 90打野战视频偷拍视频| av国产久精品久网站免费入址| 国产成人精品在线电影| 亚洲婷婷狠狠爱综合网| 久久久久久久久久人人人人人人| 咕卡用的链子| av.在线天堂| 午夜福利影视在线免费观看| 免费观看在线日韩| 免费日韩欧美在线观看| 大话2 男鬼变身卡| 亚洲国产精品成人久久小说| 中文天堂在线官网| 久久精品夜色国产| 超色免费av| 日韩中文字幕欧美一区二区 | 日本免费在线观看一区| 久久国内精品自在自线图片| 亚洲国产精品一区二区三区在线| 亚洲一区中文字幕在线| 久久免费观看电影| 一边摸一边做爽爽视频免费| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 人人妻人人澡人人看| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久av美女十八| 又粗又硬又长又爽又黄的视频| 精品一品国产午夜福利视频| 欧美精品av麻豆av| 人妻一区二区av| 校园人妻丝袜中文字幕| 大香蕉久久网| 亚洲国产最新在线播放| 午夜福利在线观看免费完整高清在| 女性被躁到高潮视频| 伊人亚洲综合成人网| 亚洲欧美精品综合一区二区三区 | 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 | 欧美人与性动交α欧美精品济南到 | 老汉色av国产亚洲站长工具| 午夜福利视频精品| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 国产精品女同一区二区软件| 国产在线视频一区二区| 男男h啪啪无遮挡| 叶爱在线成人免费视频播放| 女性被躁到高潮视频| 久久久亚洲精品成人影院| 黄网站色视频无遮挡免费观看| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 日本色播在线视频| 免费黄网站久久成人精品| 一级毛片 在线播放| 国产色婷婷99| 成人影院久久| 成年人免费黄色播放视频| 大片免费播放器 马上看| 欧美日韩一区二区视频在线观看视频在线| av女优亚洲男人天堂| 18在线观看网站| 精品酒店卫生间| 亚洲国产最新在线播放| 男女下面插进去视频免费观看| 狂野欧美激情性bbbbbb| 青草久久国产| 久久精品国产亚洲av天美| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 国产日韩欧美在线精品| 久久久国产一区二区| 国产又色又爽无遮挡免| 日本爱情动作片www.在线观看| 人人妻人人澡人人爽人人夜夜| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 国产亚洲一区二区精品| 国产麻豆69| 国产一区有黄有色的免费视频| 97在线视频观看| 99国产精品免费福利视频| 男男h啪啪无遮挡| 免费观看在线日韩| 少妇熟女欧美另类| 少妇人妻 视频| 日本欧美视频一区| 国产精品女同一区二区软件| 久久国产精品大桥未久av| 在线 av 中文字幕| 91国产中文字幕| 国产精品蜜桃在线观看| 性少妇av在线| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 国产精品一区二区在线观看99| 欧美国产精品va在线观看不卡| 日韩一本色道免费dvd| 国产一级毛片在线| 极品人妻少妇av视频| 国产精品香港三级国产av潘金莲 | 中文字幕色久视频| 免费看不卡的av| 黄片播放在线免费| 色94色欧美一区二区| 久久久久网色| 久久99蜜桃精品久久| 免费黄网站久久成人精品| 成人国语在线视频| 久久久精品免费免费高清| 国产成人av激情在线播放| 免费高清在线观看日韩| 久久久久精品性色| 国产黄频视频在线观看| 极品少妇高潮喷水抽搐| 久久久精品94久久精品| 成人免费观看视频高清| 9热在线视频观看99| 国产 一区精品| 亚洲少妇的诱惑av| 国产亚洲最大av| 岛国毛片在线播放| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产欧美网| 国产成人精品久久二区二区91 | 久久精品国产鲁丝片午夜精品| 国产亚洲欧美精品永久| 99国产精品免费福利视频| 一本久久精品| 国产极品天堂在线| 国产乱人偷精品视频| √禁漫天堂资源中文www| 亚洲国产日韩一区二区| 欧美国产精品va在线观看不卡| 久久精品亚洲av国产电影网| 高清在线视频一区二区三区| √禁漫天堂资源中文www| 成年人免费黄色播放视频| 国产精品久久久久成人av| 丝袜人妻中文字幕| 亚洲av在线观看美女高潮| 夫妻午夜视频| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 午夜av观看不卡| 欧美av亚洲av综合av国产av | 另类精品久久| 一级毛片 在线播放| 18禁国产床啪视频网站| 丝袜美足系列| 日韩一本色道免费dvd| 香蕉精品网在线| 精品久久蜜臀av无| 亚洲第一青青草原| 人妻人人澡人人爽人人| 婷婷色麻豆天堂久久| 国产爽快片一区二区三区| 欧美中文综合在线视频| 91精品三级在线观看| 2021少妇久久久久久久久久久| 亚洲精品自拍成人| 熟妇人妻不卡中文字幕| 免费av中文字幕在线| 成人亚洲精品一区在线观看| 午夜激情av网站| 国产国语露脸激情在线看| 午夜福利乱码中文字幕| 91精品伊人久久大香线蕉| 老鸭窝网址在线观看| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 日本黄色日本黄色录像| 9热在线视频观看99| 精品国产乱码久久久久久小说| 美女午夜性视频免费| 看免费av毛片| 国产成人精品无人区| 如何舔出高潮| 亚洲内射少妇av| 91精品三级在线观看| 老司机影院成人| 午夜av观看不卡| 男人添女人高潮全过程视频| 亚洲精品久久午夜乱码| 大话2 男鬼变身卡| 女人被躁到高潮嗷嗷叫费观| 午夜久久久在线观看| 久久久国产精品麻豆| 国产成人aa在线观看| 日韩一卡2卡3卡4卡2021年| 少妇被粗大的猛进出69影院| 日韩欧美精品免费久久| 视频在线观看一区二区三区| 丁香六月天网| 美女xxoo啪啪120秒动态图| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区国产| 亚洲伊人久久精品综合| 亚洲男人天堂网一区| 一区二区三区乱码不卡18| 如日韩欧美国产精品一区二区三区| 久久久国产欧美日韩av| 看免费av毛片| 午夜福利网站1000一区二区三区| 自线自在国产av| 一级毛片电影观看| 国产av码专区亚洲av| 99热全是精品| 爱豆传媒免费全集在线观看| 亚洲在久久综合| 午夜激情av网站| 少妇人妻 视频| 亚洲,欧美精品.| 中文字幕精品免费在线观看视频| 99香蕉大伊视频| 少妇被粗大的猛进出69影院| 婷婷色综合www| 久久精品亚洲av国产电影网| 精品国产一区二区三区四区第35| 啦啦啦在线免费观看视频4| 亚洲精品自拍成人| 久久久国产欧美日韩av| 国产av国产精品国产| 麻豆av在线久日| 国产精品麻豆人妻色哟哟久久| 亚洲色图综合在线观看| 亚洲精品自拍成人| 免费黄频网站在线观看国产| 一区二区三区四区激情视频| 亚洲激情五月婷婷啪啪| 男女午夜视频在线观看| 色视频在线一区二区三区| 久久久久久久久久久久大奶| 极品少妇高潮喷水抽搐| 亚洲色图综合在线观看| 亚洲av国产av综合av卡| 日本欧美视频一区| 99久久综合免费|