• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chronic Response of Waste Activated Sludge Fermentation to Titanium Dioxide Nanoparticles☆

    2014-07-25 11:29:33YinguangChenHuiMuXiongZheng
    Chinese Journal of Chemical Engineering 2014年10期

    Yinguang Chen,Hui Mu,Xiong Zheng*

    Energy,Resources and Environmental Technology

    Chronic Response of Waste Activated Sludge Fermentation to Titanium Dioxide Nanoparticles☆

    Yinguang Chen,Hui Mu,Xiong Zheng*

    State Key Laboratory of Pollution Control and Resource Reuse,School of Environmental Science and Engineering,Tongji University,Shanghai 200092,China

    A R T I C L EI N F O

    Article history:

    Titanium dioxide nanoparticles

    Waste activated sludge

    Fermentation

    Long-term effect

    Mechanism

    Due to the large-scale production and wide applications,many nanoparticles(NPs)enter wastewater treatment plantsandaccumulate inactivated sludge.It isreportedthattitaniumdioxide(TiO2)NPs showseveredamageto many model microbes.However,it is still unknown whether the long-term(e.g.,100 d)presence of TiO2NPs would affect the performance of sludge fermentation.In this study,long-term exposure experiments(105 d) were conducted to investigate the potential risk of TiO2NPs to sludge fermentation system.It is found that the presence of environmentally relevant[6 mg·(g TSS)?1]and higher[150 mg·(g TSS)?1]concentrations of TiO2NPs does not affectmethane production from sludgefermentation.The analysisoff l uorescence insituhybridization indicates that these concentrations of TiO2NPs present marginal inf l uences on abundances of bacteria and methanogenic archaea in sludge fermentation system.The viability of sludge microorganisms and activities of key enzymes related to methane production such as protease,acetate kinase,and coenzyme F420are unchanged by the long-term presence of 6 and 150 mg·(g TSS)?1of TiO2NPs.Further investigations reveal that the insolubility of NPs and the protection role of sludge extracellular polymeric substances are the main reasons for the marginal inf l uence of TiO2NPs on sludge fermentation.

    ?2014TheChemicalIndustry andEngineeringSocietyofChina,andChemicalIndustryPress.Allrightsreserved.

    1.Introduction

    Nanotechnology has been considered as one of the fastest growing sections of the‘high-tech economy’.Over the past decade,due to the unique physicochemical properties,large numbers of nanoparticles (NPs)have been manufactured and applied in our daily life,such as antibactericide coatings,biomedicine,skin creams,and toothpastes [1,2].However,some researchers have reported that the wide use of these NP-containing products inevitably releases NPs into the environment,which might pose potential risks to human health and ecosystems[3,4].

    Nanoparticulate titanium dioxide(TiO2)is one of the most widely applied nanomaterials in the world and can be used in various f i elds, such as catalysts,sunscreens,cosmetics,and wastewater treatment[4]. With its increasing production and application,some studies have been conducted to examine their potential inf l uences on model organisms.For example,it is observed that TiO2NP exhibits antibacterial properties towards Bacillus subtilis and Escherichia coli[5].Compared with bulk particles,TiO2NPs may induce more damage to algae[6]. The study on the potential toxicity of NPs to human keratinocytes in vitro indicates that the long term exposure has more adverse effects thantheshorttermone[7].However,insomecases,TiO2NPisnontoxic to some aquatic microorganisms even at 20000 mg·L?1[8,9].These resultsindicatethatdifferentcelllines mightshowdissimilarresponses to TiO2NPs.

    Many commercial NPs used in our daily life have been found in various environments such as wastewater[10,11].It is reported that some raw sewage contains 0.1 to nearly 3 mg Ti·L?1and these NPs f i nally enter wastewater treatment plants(WWTPs)[4].Usually,more than 95%of NPs in treatment facilities could be accumulated in activated sludge[12,13]and the titanium content in waste activated sludge (WAS)of WWTPs is in the range of 0.018-7.02 mg Ti·(g TSS)?1[10,11,13].Anaerobic fermentationisa sustainable technique for sludge and wastewater treatment,and the potential effects of NPs should be evaluated.Although a slight increase of biogas production is detected in the thermophilic anaerobic batch test during exposure to TiO2NPs [14],little work has been carried out on the effect of TiO2NPs on different microbial populations in a sludge treatment system.Since sludge fermentation is always operated continuously,it is necessary to investigate the long-term inf l uenceof TiO2NPs on sludge fermentation,which has not been documented in literature.

    In this study,long-term exposure experiments are conducted to investigatethepotentialriskof TiO2NPs tosludgefermentation.Methane production is used as an indicator to assess the long-term effect of TiO2NPs to anaerobic sludge fermentation systems.After 105 d of exposure,fl uorescence in situ hybridization(FISH)is adopted to measure the abundance of bacteria and methanogenic archaea in sludge fermentation reactors.The relative viability of sludge microorganisms and activities of key enzymes related to methane production such as protease,acetate kinase(AK),and coenzyme F420are determined to analyze the chronic inf l uence of TiO2NPs.Finally,the surface integrity of sludge microorganisms and characteristics of TiO2NPs are investigated to address the potential impact of TiO2NPs on sludge fermentation.

    2.Materials and Methods

    2.1.Waste activated sludge

    The WAS was obtained from the secondary sedimentation tank of a municipal WWTP in Shanghai,China.The sludge was concentrated by settling at 4°C for 24 h,with its main characteristics(average data and standard deviations of triplicate measurements)as follows: pH 6.7±0.2,total suspended solids(TSS)(10070±780)mg·L?1, volatile suspended solids(VSS)(7690±452)mg·L?1,total chemical oxygen demand(10710±220)mg·L?1,soluble chemical oxygen demand(90±14)mg·L?1,total protein(5685±149)mg COD·L?1, and total carbohydrate(899±530)mg COD·L?1.

    2.2.Characterization of TiO2NPs

    TiO2NPs(anatase)used in this study were purchased from Sigma Aldrich(USA).The stock suspension of NPs was prepared by adding 2000 mg of NPs to 1.0 L of deionized water(pH 7.0)followed by 1 h of ultrasonication(25°C,250 W,40 kHz)according to the literature [15],and transmission electron microscopy(TEM)was used to image the morphology of TiO2NPs.Due to the aggregation characteristics of NPs,sodium dodecylbenzene sulfonate(SDBS),an anionic surfactant, waschosentoimprovethedispersionofTiO2NPsinthesuspension.DynamiclightscatteringanalysisindicatedthatthesuspensionofTiO2NPs had a size distribution of 80-290 nm with an average particle size of approximately 185 nm.

    2.3.Long-term exposure to TiO2NPs

    In this study,the environmentally relevant concentration of TiO2NPs was chosen to be 6 mg·(g TSS)?1according to the literature[10, 16].With increasing production and wide application,more NPs will be released to the environment[17],which suggests that much higher concentration of TiO2NPs should be examined to assess the potential risks of TiO2NPs.Therefore,in this study,long-term exposure experiments were conducted to determine the potential long-term effects of 6 and 150 mg·(g TSS)?1of TiO2NPs on sludge fermentation.

    Allexperimentswereconductedinfermentationreactors,eachwitha working volume of 300 ml.After the addition of WAS and TiO2NPs[0,6, and 150 mg·(g TSS)?1],all reactors were f l ushed with nitrogen gas for 10 min to remove oxygen,capped with rubber stoppers,and placed in an air-bath shaker(150 r·min?1)at(35±1)°C.Every day,20 ml of fermentationmixture was manually wasted from the reactors and the same amounts of raw sludge were supplemented,with the sludge retention time of 15 d.As sludge wasting would decrease the concentrations of TiO2NPs,inductivelycoupledplasmamassspectrometry(ICP-MS,Agilent Technologies,USA)was used to measure the content of TiO2NPs left in sludge fermentation systems before some amounts of NP suspension were added to maintain their constant concentrations.During the entire fermentation process,methane production was measured frequently.It was observed that the methane production did not change signif i cantly after 60 d of exposure.At the end of the experiment(day 105),the abundance of bacteria and methanogenic archaea,sludge viability,and activities of key enzymes related to methane production were analyzed.

    2.4.Analytical methods

    The methane production was measured using a gas chromatograph (Agilent Technologies,USA)equipped with a thermal conductivity detector using nitrogen as the carrier gas[18].The determinations of TSS and VSS were described in our previous publication[19].The viability of sludge microorganisms was measured using the cell counting kit-8 (CCK-8)(Dojindo)in accordance with manufacturer's instructions. The measurement of intracellular reactive oxygen species(ROS) production was according to our previous publications[20,21].The activities of protease,acetate kinase,and coenzyme F420were assayed according to the references[22,23].The lactate dehydrogenase release (LDH)was determined by using a cytotoxicity detection kit(Roche Applied Science)according to manufacturer's instructions.At the end of the exposure experiments,the mixture was centrifuged at 12,000 g for 5 min.Then,the supernatant was seeded on a 96-well plate,followed by the addition of 50 μl of substrate mix(Roche Applied Science). After 30 min of incubation at room temperature in dark,50 μl of stop solution(RocheAppliedScience)wasaddedtoeachwellandtheabsorbance was recorded at 490 nm using a microplate reader(BioTek).

    After long-termexposure to TiO2NPs,f l uorescence insitu hybridization technique with 16S rRNA-targeted oligonucleotide probes was adopted tomonitortheabundanceof bacteria andarchaea inthesludge fermentation reactors.The probes of Cy-3-labeled EUB338(5′-GCTGCC TCCCGTAGGAGT-3′)and f l ourescein iso-thiocyanate(FITC)labeled ARC915(5′-GTGCTCCCCCGCCAATTCCT-3′)were used for bacteria and methanogenic archaea,respectively[24,25].The detailed procedure of FISH analysis was documented in the previous literature[21].Finally, the sections hybridized with the probes were observed with a confocal laser scanning microscope(CLSM,Leica TCS,SP2 AOBS),and the random fi elds were analyzed to determine the average abundances of sludge microorganisms.

    2.5.Statistical analysis

    All assays were conducted in triplicate and the results were expressed as mean±standard deviation.An analysis of variance was used to test the signif i cance of results,and p<0.05 was considered to be statistically signif i cant.

    3.Results and Discussion

    3.1.Effect of TiO2NPs on methane production from sludge fermentation

    Suff i cient dispersion of NPs in stock suspension plays an important roleinassessingthepotentialeffectsofNPs,becauseaggregationisacharacteristicofNPs[Fig.1(a)].WithSDBSasadispersant,Fig.1(b,c,d)shows the TiO2NPs suspensions in the absence and presence of SDBS.The presence of 4 mg·(g TSS)?1of SDBS signif i cantly improves the dispersion of TiO2NPs instock suspensionand does not affectthesludgefermentation, which is consistent with the observation of Garcia et al.[26].Thus,in this study,4 mg·(g TSS)?1of SDBS was added to all experimental systems.

    The toxicity of environmental pollutants to sludge fermentation can be investigated by using the f i nal product of sludge fermentation (i.e.,methane)as a useful indicator[27].In this study,the methane productioninlong-termexposureexperimentsismeasuredtoassessthepotential effect of TiO2NPs on sludge fermentation.Fig.2 shows the variations of methane production in the absence and presence of 6 and 150 mg·(g·TSS)?1of TiO2NPs during the entire fermentation process.The methane production in all reactors increased with the fermentation time and reached stable concentrations after 60 d of fermentation.However,no signif i cant differences appeared in methane production among these reactors,indicating that longterm presence of TiO2NPs does not affect sludge fermentation.We have reported that short-term presence of TiO2NPs causes marginal effect on methane production from sludge fermentation[20].Therefore,it can be concluded that both acute exposure and chronic exposure to 6 and 150 mg·(g TSS)?1of TiO2NPs present marginal inf l uence on methane production from sludge fermentation.

    Fig.1.TEM image(a)and dispersion of TiO2NP stock suspension in the absence and presence of SDBS[4 mg·(g TSS)?1]after 0.5 h(b),6 h(c),and 20 h(d)of settlement.

    3.2.Effects of TiO2NPsonthe abundance,viability,and enzyme activities of sludge microorganisms

    The above results indicate that the long-term presence of TiO2NPs does not have a negative effect on methane production from sludge fermentation.However,to date,the reasons for the marginal inf l uence of TiO2NPs on sludge fermentation are still unclear.It is reported that the presence of low concentration of TiO2NPs[2 mg·(g soil)?1]reduces the microbial diversity and alters the composition of soil bacterial community after 60 d of exposure[28].It is well-known that the microbial communityplaysanimportantroleinsludgefermentation,andtheabundance of bacteria and methanogenic archaea is related to the methane production from sludge fermentation.Thus,in this study,FISH analysis is conducted to investigate the potential effect of TiO2NPs on sludge microorganisms after long-term exposure,and the results are shown in Fig.3.Itwasfoundthattheabundancesofbacteria andmethanogenicarchaeainthecontrolwere51.3%and39.5%,respectively,whereasthosein the presence of 6 and 150 mg·(g TSS)?1of TiO2NPs were 50.7%versus 39.0%and 52.6%versus 38.6%,respectively.Obviously,there were no signif i cant differences in the abundances of bacteria and archaea in these sludge fermentation reactors,indicating that TiO2NPs did not affect the key sludge microorganisms'abundances.

    The viability of sludge microorganisms is important for sludge fermentation.Cell viability assay is a useful tool to demonstrate the inf l uence of toxic substances on model organisms[29].Thus,after long-term exposure,the inf l uence of TiO2NPs on the viability of sludge microorganisms is determined.Although in some cases TiO2NPs could reduce the activities of biomass microorganisms[5,28,30],in this study,the relative viability of sludge does not have signif i cant differences between the absence and presence of 6 and 150 mg·(g TSS)?1of TiO2NPs.Some researchers observed that TiO2NPs did not induce signif i cant impacts on Daphnia magna and Thamnocephalus platyurus even at the concentration of 20000 mg·L?1[8].

    The methane production from sludge fermentation undergoes solubilization of sludge particulate organic substances,hydrolysis,acidif i cation,and methanation.In these fermentation processes,the protease, acetate kinase,and coenzyme F420are important enzymes responsible for sludge hydrolysis,acidif i cation,and methanation,respectively [Fig.4(a)].We have reported that the methane production is inhibited by ZnO NPs,by inhibiting the activity of coenzyme F420[20,21]. Although the results have shown that methane production is not affected by TiO2NPs,it is still unknown whether the activities of these enzymes are affected by long-term exposure to TiO2NPs.Thus the chronic inf l uence of TiO2NPs on sludge fermentation is further investigated from the aspect of enzyme activity,and the results are shown in Fig.4(b).It can be seen that 6 and 150 mg·(g TSS)?1of TiO2NPs do not inf l uence the activities of protease,AK,and coenzyme F420,which is consistent with the observation that TiO2NPs do not affect the methane production from sludge fermentation.

    Fig.2.Methane production from sludge fermentation in the absence and presence of 6 and 150 mg·(g TSS)?1of TiO2NPs during 105 d of fermentation.(Error bar:standard deviation of triplicate measurements).

    3.3.Effects of TiO2NPs on the surface integrity of sludge microorganisms

    It is reported that toxic metal ions released from the dissolution of NPs are mainlyresponsible for their acute toxicitytosome livingorganisms[21,31].For instance,comparedwithaluminum oxide(Al2O3NPs), silicon dioxide(SiO2NPs),and magnetite(Fe3O4NPs),ZnO NPs are most toxic to the growth of Arabidopsis thaliana,since only ZnO NPs releasetoxic metalions[32].Ourprevious studyalsosupportstheeffect of ZnO NP dissolution on sludge fermentation systems[20].However, no metal ions have been detected in TiO2NP suspension in this study, which may be the reason for its nontoxic effect on sludge fermentation.

    It is reported thatsomeNPsare abletocauseoxidativestress and induce adverse effects on model organisms[33].High ROS production may damage the cell membrane or cytoplasmic proteins in human cells[34]and E.coli[35].Thus the ROS production caused by TiO2NPs during sludge fermentation is measured and the result is shown in Fig.5(a).No signif i cant differences in ROS production are observed between the absence and presence of 6 mg·(g TSS)?1of TiO2NPs.At the TiO2NP concentration of 150 mg·(g TSS)?1,the ROS production is increased to 126%of the control.LDH release assay further indicates that no measurable cell leakage is induced by TiO2NPs at theconcentrations of 6 and 150 mg·(g TSS)?1[Fig.5(b)].These results indicatethat thelong-term presence ofTiO2NPs hasnosignif i cant impact on the integrity of sludge microorganisms.

    Fig.3.FISH images of sludge bacteria and methanogenic archaea in the absence(a1-a3)and presence of 6(b1-b3)and 150 mg·(g TSS)?1(c1-c3)of TiO2NPs.[with simultaneous hybridization with Cy-3-labeled bacteria-domain probe(EUB338)(a1,b1 and c1)and FITC-labeled archaea-domain probe(ARC915)(a2,b2 and c2),randomly viewed by CLSM and photographed at higher(×62)magnif i cation].

    Fig.4.Proposed metabolic pathway(a)and activities(b)of the key enzymes related to methane production from sludge fermentation.

    Extracellular polymeric substances(EPS)in sludge f l ocs are usually consideredtoprotecttheinnermicroorganismsagainsttheharshexternal environmental conditions,because EPS could establish interactionswith the polymer matrix by impeding access of these pollutants to bacterial cells[36].As seen from Fig.6,EPS fi rst risk something unpleasant with TiO2NPs in the sludge fermentation system,and the ROS production and released ions are the two key factors of NP toxicity to sludge fl ocs.It is not needed to consider the EPS complexation of toxic ions in this study,because no ions are released in this system.Fig.5(a)shows thattheROSproductionincreasesto126%ofthecontrolinthepresence of150 mg·(gTSS)?1ofTiO2NPs,whichmightdamagetheEPS.However, the EPS of activated sludge could protect the microorganisms from the toxicityof carbonnanotubes[37],and Fig.5(b)shows that such ROS production is not enough to damage the EPS,not even the protein and DNA in the cells.Therefore,the EPS protection might be the reason for the nontoxicity of TiO2NPs to microorganism in sludge.

    Fig.5.Relative ROS production(a)and LDH release(cell membrane damage marker)(b)in the absence and presence of 6 and 150 mg·(g TSS)?1of TiO2NPs.(Error bar:standard deviations of triplicate measurements).

    4.Conclusions

    In this study,the potential effect of TiO2NPs on sludge fermentation wasinvestigated attheenvironmentallyrelevant[6 mg·(g TSS)?1]and higher[150 mg·(g TSS)?1]concentrations with long-term exposure.It is found that TiO2NPs do not affect the methane production during 105 d of sludge fermentation.Further experiments indicate that 6 and 150 mg·(g TSS)?1of TiO2NPs do not change theabundance of bacteria andmethanogenic archaeainsludgefermentationsystems.Meanwhile, the relative viability of sludge microorganisms and activities of key enzymes related to methane production such as protease,acetate kinase,and coenzyme F420are not affected by the presence 6 and 150 mg·(g TSS)?1of TiO2NPs,which is consistent with no signif i cant inf l uence on methane production.The insoluble characteristics of TiO2NPs and sludge EPS protection are the main reasons for the marginal inf l uence of TiO2NPs on sludge fermentation.

    Fig.6.Diagram of possible mechanisms for the cytotoxicity of nanoparticles to sludge microorganisms.

    [1]Y.Wang,X.Xue,H.Yang,Synthesis and antimicrobial activity of boron-doped titania nano-materials,Chin.J.Chem.Eng.22(4)(2014)474-479.

    [2]Q.Yang,Y.Liao,L.Mao,Kinetics of photocatalytic degradation of gaseous organic compounds on modif i ed TiO2/AC composite photocatalyst,Chin.J.Chem.Eng.20 (3)(2012)572-576.

    [3]A.Nel,T.Xia,L.Madler,N.Li,Toxic potential of materials at the nanolevel,Science 311(5761)(2006)622-627.

    [4]X.Zheng,Y.Chen,R.Wu,Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge,Environ.Sci.Technol.45(17)(2011)7284-7290.

    [5]L.K.Adams,D.Y.Lyon,P.J.J.Alvarez,Comparative eco-toxicity of nanoscaleTiO2,SiO2, and ZnO water suspensions,Water Res.40(19)(2006)3527-3532.

    [6]V.Aruoja,H.C.Dubourguier,K.Kasemets,A.Kahru,Toxicity of nanoparticles of CuO, ZnO and TiO2to microalgae Pseudokirchneriella subcapitata,Sci.Total Environ.407 (4)(2009)1461-1468.

    [7]P.Kocbek,K.Teskac,M.E.Kreft,J.Kristl,Toxicological aspects oflong-term treatment of Keratinocytes with ZnO and TiO2nanoparticles,Small 6(17)(2010)1908-1917.

    [8]M.Heinlaan,A.Ivask,I.Blinova,H.C.Dubourguier,A.Kahru,Toxicity of nanosized and bulk ZnO,CuO and TiO2to bacteria Vibrio f i scheri and crustaceans Daphnia magna and Thamnocephalus platyurus,Chemosphere 71(7)(2008)1308-1316.

    [9]K.Kasemets,A.Ivask,H.C.Dubourguier,A.Kahru,Toxicity of nanoparticles of ZnO, CuO and TiO2to yeast Saccharomyces cerevisiae,Toxicol.in Vitro 23(6)(2009) 1116-1122.

    [10]M.A.Kiser,P.Westerhoff,T.Benn,Y.Wang,J.Perez-Rivera,K.Hristovski,Titanium nanomaterial removal and release from wastewater treatment plants,Environ.Sci. Technol.43(17)(2009)6757-6763.

    [11]S.K.Brar,M.Verma,R.D.Tyagi,R.Y.Surampalli,Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts,Waste Manag.30(3)(2010) 504-520.

    [12]Y.Chen,Y.Su,X.Zheng,H.Chen,H.Yang,Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure,Water Res.46(14)(2012)4379-4386.

    [13]M.A.Kiser,H.Ryu,H.Y.Jang,K.Hristovski,P.Westerhoff,Biosorptionofnanoparticles to heterotrophic wastewater biomass,Water Res.44(14)(2010)4105-4114.

    [14]A.Garcia,L.Delgado,J.A.Tora,E.Casals,E.Gonzalez,V.Puntes,X.Font,J.Carrera,A. Sanchez,Effectof ceriumdioxide,titaniumdioxide,silver,and gold nanoparticles on the activity of microbial communities intended in wastewater treatment,J.Hazard. Mater.199(2012)64-72.

    [15]A.A.Keller,H.Wang,D.Zhou,H.S.Lenihan,G.Cherr,B.J.Cardinale,R.Miller,Z.Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ.Sci.Technol.44(6)(2010)1962-1967.

    [16]USEPA Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report;U.S.Environmental Protection Agency:Washington,DC;http://www.epa. gov/waterscience/biosolids/tnsss-tech.pdf.

    [17]L.Nyberg,R.F.Turco,L.Nies,Assessing the impact of nanomaterials on anaerobic microbial communities,Environ.Sci.Technol.42(6)(2008)1938-1943.

    [18]Y.Zhao,Y.Chen,D.Zhang,X.Zhu,Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition:the role of fermentation pH,Environ.Sci.Technol.44(9)(2010) 3317-3323.

    [19]H.Yuan,Y.Chen,H.Zhang,S.Jiang,Q.Zhou,G.Gu,Improved bioproduction of shortchain fatty acids(SCFAs)from excess sludge under alkaline conditions,Environ.Sci. Technol.40(6)(2006)2025-2029.

    [20]H.Mu,Y.Chen,Effects of metal oxide nanoparticles(TiO2,Al2O3,SiO2and ZnO)on waste activated sludge anaerobic digestion,Bioresour.Technol.102(22)(2011) 10305-10311.

    [21]H.Mu,Y.Chen,Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion,Water Res.45(17)(2011)5612-5620.

    [22]M.Ledoux,F.Lamy,Determination of proteins and sulfobetaine with the folinphenol reagent,Anal.Biochem.157(1)(1986)28-31.

    [23]M.J.Delafontaine,H.P.Naveau,E.J.Nyns,Fluorimetric monitoringof methanogenesis in anaerobic digesters,Biotechnol.Lett.1(1979)71-73.

    [24]R.I.Amann,W.M.W.Gish,E.W.Myers,D.J.Lipman,Combination of 16S rRNA-targeted oligonucleotide probes with f l owcytometry for analyzing mixed microbial populations,Appl.Environ.Microbiol.56(1990)1919-1925.

    [25]D.A.Stahl,B.Flesher,H.R.Mansf i eld,L.Montgomery,Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology,Appl.Environ. Microbiol.54(1988)1079-1084.

    [26]M.T.Garcia,E.Campos,J.Sanchez-Leal,I.Ribosa,Effect of linear alkylbenzene sulphonates(LAS)on the anaerobic digestion of sewage sludge,Water Res.40 (15)(2006)2958-2964.

    [27]D.C.Stuckey,W.F.Owen,P.L.McCarty,G.F.Parkin,Anaerobic toxicity evaluation by batch and semi-continuous assays,Water Pollut.Control Fed.52(4)(1980)720-729.

    [28]Y.Ge,J.P.Schimel,P.A.Holden,Evidence for negative effects of TiO2and ZnO nanoparticles on soil bacterial communities,Environ.Sci.Technol.45(4)(2011)1659-1664.

    [29]J.M.Worle-Knirsch,K.Pulskamp,H.F.Krug,Oops they did it again!Carbon nanotubes hoax scientists in viability assays,Nano Lett.6(6)(2006)1261-1268.

    [30]L.K.Braydich-Stolle,N.M.Schaeublin,R.C.Murdock,J.Jiang,P.Biswas,J.J.Schlager,S.M. Hussain,CrystalstructuremediatesmodeofcelldeathinTiO2nanotoxicity,J.Nanopart. Res.11(6)(2009)1361-1374.

    [31]N.M.Franklin,N.J.Rogers,S.C.Apte,G.E.Batley,G.E.Gadd,P.S.Casey,Comparative toxicity of nanoparticulate ZnO,bulk ZnO,and ZnCl2to a freshwater microalga (Pseudokirchneriella subcapitata):the importance of particle solubility,Environ.Sci. Technol.41(24)(2007)8484-8490.

    [32]C.W.Lee,S.Mahendra,K.Zodrow,D.Li,Y.C.Tsai,J.Braam,P.J.J.Alvarez,Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana,Environ. Toxicol.Chem.29(3)(2010)669-675.

    [33]T.Xia,M.Kovochich,M.Liong,L.Madler,B.Gilbert,H.Shi,J.Yeh,J.I.Zink,A.E.Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties,ACS Nano 2(10) (2008)2121-2134.

    [34]S.George,S.Pokhrel,T.Xia,B.Gilbert,Z.X.Ji,M.Schowalter,A.Rosenauer,R. Damoiseaux,K.A.Bradley,L.Madler,A.E.Nel,Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping,ACS Nano 4(1)(2010)15-29.

    [35]R.Brayner,R.Ferrari-Iliou,N.Brivois,S.Djediat,M.F.Benedetti,F.Fievet,Toxicological impact studies based on Escherichia coli bacteria in ultraf i ne ZnO nanoparticles colloidal medium,Nano Lett.6(4)(2006)866-870.

    [36]I.D.S.Henriques,N.G.Love,The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins,Water Res.41 (18)(2007)4177-4185.

    [37]L.A.Luongo,X.Q.Zhang,Toxicity of carbon nanotubes to the activated sludge process,J.Hazard.Mater.178(1-3)(2010)356-362.

    8 May 2013

    ☆SupportedbytheNationalHi-TechResearchandDevelopmentProgramofChina(863 Program)(2011AA060903),theNational NaturalScience FoundationofChina(41301558 and 51278354),and Shanghai Tongji Gao Tingyao Environmental Science&Technology Development Foundation(STGEF).

    *Corresponding author.

    E-mail address:xiongzheng@#edu.cn(X.Zheng).

    http://dx.doi.org/10.1016/j.cjche.2014.09.007

    1004-9541/?2014 The Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    Received in revised form 28 June 2013

    Accepted 29 July 2013

    Available online 16 September 2014

    国产视频首页在线观看| 成人国语在线视频| 欧美人与善性xxx| 免费黄网站久久成人精品| av在线播放精品| 一区二区av电影网| 一本一本久久a久久精品综合妖精| 王馨瑶露胸无遮挡在线观看| 成年女人毛片免费观看观看9 | 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 不卡av一区二区三区| 午夜久久久在线观看| 超色免费av| 在线天堂中文资源库| 亚洲av综合色区一区| 观看美女的网站| 美女主播在线视频| 亚洲欧美一区二区三区黑人| 91成人精品电影| 亚洲国产最新在线播放| 桃花免费在线播放| 69精品国产乱码久久久| 最近手机中文字幕大全| 国产成人免费观看mmmm| 99精国产麻豆久久婷婷| 国产淫语在线视频| 777久久人妻少妇嫩草av网站| 各种免费的搞黄视频| 免费高清在线观看日韩| 精品人妻一区二区三区麻豆| 91国产中文字幕| 老司机深夜福利视频在线观看 | 老鸭窝网址在线观看| 日本猛色少妇xxxxx猛交久久| 大香蕉久久成人网| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 男女国产视频网站| 亚洲熟女精品中文字幕| 熟女av电影| 久久精品久久精品一区二区三区| 9色porny在线观看| 制服人妻中文乱码| www.熟女人妻精品国产| 男女国产视频网站| www.熟女人妻精品国产| 伦理电影免费视频| 啦啦啦在线观看免费高清www| 中文字幕av电影在线播放| 国产日韩欧美视频二区| 女人被躁到高潮嗷嗷叫费观| 婷婷色综合www| 久久热在线av| 亚洲国产中文字幕在线视频| 亚洲一区二区三区欧美精品| 欧美黑人欧美精品刺激| 国产伦理片在线播放av一区| 18禁国产床啪视频网站| av视频免费观看在线观看| 考比视频在线观看| 热99久久久久精品小说推荐| 成人黄色视频免费在线看| 婷婷色麻豆天堂久久| 只有这里有精品99| 99精品久久久久人妻精品| 国产国语露脸激情在线看| 日本爱情动作片www.在线观看| 久久久久久免费高清国产稀缺| 国产又色又爽无遮挡免| 一级片免费观看大全| 成人国产av品久久久| 久久国产精品男人的天堂亚洲| 叶爱在线成人免费视频播放| 各种免费的搞黄视频| 亚洲欧美一区二区三区久久| av在线老鸭窝| 亚洲欧美一区二区三区黑人| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 交换朋友夫妻互换小说| 免费av中文字幕在线| 又黄又粗又硬又大视频| 国产成人系列免费观看| 成人毛片60女人毛片免费| 中文字幕色久视频| 亚洲一区中文字幕在线| 一区二区日韩欧美中文字幕| 亚洲精品自拍成人| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 国产99久久九九免费精品| 亚洲成人一二三区av| 亚洲国产精品999| 国产精品国产三级专区第一集| 久久久久精品国产欧美久久久 | 美女扒开内裤让男人捅视频| 国产精品一区二区精品视频观看| 97在线人人人人妻| 色播在线永久视频| 久久亚洲国产成人精品v| 欧美精品高潮呻吟av久久| 亚洲婷婷狠狠爱综合网| 久久性视频一级片| 国产精品麻豆人妻色哟哟久久| 男女国产视频网站| 亚洲国产av影院在线观看| 男女下面插进去视频免费观看| 国产一区二区激情短视频 | 日韩不卡一区二区三区视频在线| 国产精品偷伦视频观看了| 免费观看人在逋| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 亚洲精品在线美女| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 在现免费观看毛片| 国产成人午夜福利电影在线观看| 别揉我奶头~嗯~啊~动态视频 | 精品一区在线观看国产| 999精品在线视频| 亚洲国产日韩一区二区| 一本色道久久久久久精品综合| 国产精品熟女久久久久浪| 日韩 欧美 亚洲 中文字幕| 久久99一区二区三区| 亚洲综合色网址| 老司机亚洲免费影院| 午夜福利视频在线观看免费| 久久免费观看电影| 啦啦啦中文免费视频观看日本| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 欧美变态另类bdsm刘玥| 男人操女人黄网站| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| 亚洲av欧美aⅴ国产| 免费av中文字幕在线| 日韩一区二区三区影片| 性高湖久久久久久久久免费观看| 可以免费在线观看a视频的电影网站 | 晚上一个人看的免费电影| 黄色视频不卡| 亚洲国产欧美在线一区| 在线观看www视频免费| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 国产精品熟女久久久久浪| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到| 国产99久久九九免费精品| 亚洲美女搞黄在线观看| 亚洲七黄色美女视频| 国产精品欧美亚洲77777| 青春草国产在线视频| 99国产精品免费福利视频| 69精品国产乱码久久久| 欧美国产精品va在线观看不卡| 日韩精品免费视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产在视频线精品| 欧美人与善性xxx| 在线观看免费午夜福利视频| 99久国产av精品国产电影| 久久精品熟女亚洲av麻豆精品| 亚洲av中文av极速乱| 日本av手机在线免费观看| www.自偷自拍.com| 久久久久久久久久久久大奶| 亚洲精品久久午夜乱码| 国产日韩欧美在线精品| 久久性视频一级片| 亚洲欧美清纯卡通| 人妻一区二区av| 一级,二级,三级黄色视频| 亚洲精华国产精华液的使用体验| 久久久久精品国产欧美久久久 | 最近最新中文字幕大全免费视频 | 婷婷色麻豆天堂久久| 成人毛片60女人毛片免费| 人妻一区二区av| 青春草国产在线视频| 高清不卡的av网站| 精品第一国产精品| 久久人人爽av亚洲精品天堂| 免费久久久久久久精品成人欧美视频| 熟女少妇亚洲综合色aaa.| 各种免费的搞黄视频| 亚洲成国产人片在线观看| 精品久久蜜臀av无| 又粗又硬又长又爽又黄的视频| 日韩精品有码人妻一区| 男人爽女人下面视频在线观看| 热99久久久久精品小说推荐| 久久久久国产一级毛片高清牌| 亚洲av综合色区一区| 黄频高清免费视频| 91老司机精品| 国产成人系列免费观看| bbb黄色大片| 国产黄色视频一区二区在线观看| 国产成人精品福利久久| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 国产 一区精品| 一本大道久久a久久精品| 亚洲男人天堂网一区| 亚洲免费av在线视频| 亚洲熟女毛片儿| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久 | 欧美人与善性xxx| 亚洲国产av新网站| 飞空精品影院首页| 汤姆久久久久久久影院中文字幕| 免费日韩欧美在线观看| 看免费成人av毛片| 日本wwww免费看| 免费人妻精品一区二区三区视频| 亚洲七黄色美女视频| 日本wwww免费看| 校园人妻丝袜中文字幕| 狂野欧美激情性bbbbbb| 久久久久久人人人人人| 国产一区有黄有色的免费视频| 午夜福利在线免费观看网站| 中文字幕人妻熟女乱码| 久久99热这里只频精品6学生| 欧美亚洲日本最大视频资源| 五月开心婷婷网| 观看av在线不卡| 中文字幕av电影在线播放| 亚洲图色成人| 国产熟女欧美一区二区| 亚洲一级一片aⅴ在线观看| 国产精品久久久久成人av| 国产极品天堂在线| 人人澡人人妻人| 国产日韩欧美在线精品| 性少妇av在线| 久久久久久人妻| 国产黄色免费在线视频| 成年人午夜在线观看视频| 久久久国产精品麻豆| 久久影院123| 午夜福利视频在线观看免费| 国产麻豆69| 一边摸一边做爽爽视频免费| 老司机影院毛片| 91老司机精品| 久久婷婷青草| 中文精品一卡2卡3卡4更新| 久久人人97超碰香蕉20202| 1024视频免费在线观看| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 久久97久久精品| 少妇被粗大的猛进出69影院| 国产一区亚洲一区在线观看| 丁香六月天网| 日本vs欧美在线观看视频| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 午夜日韩欧美国产| 亚洲av日韩精品久久久久久密 | 国产亚洲欧美精品永久| 啦啦啦啦在线视频资源| videosex国产| 国产精品偷伦视频观看了| 国产亚洲最大av| 性色av一级| 99精国产麻豆久久婷婷| 9色porny在线观看| 久久精品亚洲熟妇少妇任你| 少妇被粗大的猛进出69影院| 成人手机av| 热re99久久国产66热| 精品国产一区二区三区四区第35| 一级,二级,三级黄色视频| 亚洲 欧美一区二区三区| 啦啦啦啦在线视频资源| 秋霞伦理黄片| 久久天躁狠狠躁夜夜2o2o | 99九九在线精品视频| 极品少妇高潮喷水抽搐| 最近最新中文字幕大全免费视频 | 中文字幕精品免费在线观看视频| 天天影视国产精品| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 一级毛片 在线播放| 大片免费播放器 马上看| avwww免费| 亚洲人成电影观看| 久久久久久久久免费视频了| 一边摸一边做爽爽视频免费| 精品少妇黑人巨大在线播放| 哪个播放器可以免费观看大片| 99九九在线精品视频| 精品一品国产午夜福利视频| 汤姆久久久久久久影院中文字幕| 免费av中文字幕在线| 久久久久久人妻| 亚洲av中文av极速乱| 久久久久久久精品精品| 超碰97精品在线观看| 成人免费观看视频高清| 亚洲成国产人片在线观看| 国产成人欧美| 免费在线观看完整版高清| av片东京热男人的天堂| 色婷婷久久久亚洲欧美| 亚洲第一av免费看| 中文天堂在线官网| 亚洲,一卡二卡三卡| 亚洲精品国产av蜜桃| av.在线天堂| 一级毛片电影观看| 久久久久久久国产电影| av.在线天堂| 久久午夜综合久久蜜桃| www.自偷自拍.com| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 国产黄色免费在线视频| 丝袜美足系列| 久久久精品94久久精品| 久久人人爽人人片av| 免费观看av网站的网址| 观看美女的网站| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产精品无大码| 伦理电影大哥的女人| 女人精品久久久久毛片| 久久久久精品性色| www.av在线官网国产| 少妇人妻 视频| 亚洲成人一二三区av| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 精品一品国产午夜福利视频| 天天躁夜夜躁狠狠久久av| 色播在线永久视频| 国产不卡av网站在线观看| 精品久久久久久电影网| 午夜日韩欧美国产| 精品国产一区二区三区四区第35| 超色免费av| 毛片一级片免费看久久久久| 97在线人人人人妻| 又大又爽又粗| 欧美久久黑人一区二区| 午夜精品国产一区二区电影| 天堂中文最新版在线下载| 国产人伦9x9x在线观看| 97精品久久久久久久久久精品| 国产一区二区激情短视频 | 国产爽快片一区二区三区| 亚洲欧美一区二区三区黑人| 欧美日韩视频高清一区二区三区二| 国产日韩欧美在线精品| 波多野结衣一区麻豆| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 国产精品久久久人人做人人爽| 亚洲人成电影观看| 国产成人a∨麻豆精品| 亚洲人成网站在线观看播放| 成人三级做爰电影| av在线老鸭窝| 精品一区二区免费观看| av国产久精品久网站免费入址| 99香蕉大伊视频| 一本久久精品| 青春草视频在线免费观看| 日韩一本色道免费dvd| 国产高清国产精品国产三级| 亚洲精品第二区| 性高湖久久久久久久久免费观看| 99热网站在线观看| 在现免费观看毛片| 考比视频在线观看| 国产成人91sexporn| 国产免费视频播放在线视频| 一级爰片在线观看| 国产极品天堂在线| 精品一区二区三区av网在线观看 | 国产免费又黄又爽又色| 在线看a的网站| 国产精品欧美亚洲77777| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 色吧在线观看| 不卡av一区二区三区| 国产欧美亚洲国产| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 亚洲成色77777| 久久久久视频综合| 狂野欧美激情性bbbbbb| 久久国产精品大桥未久av| 精品一区二区三区四区五区乱码 | 亚洲色图综合在线观看| 亚洲国产欧美日韩在线播放| 一本一本久久a久久精品综合妖精| 最新的欧美精品一区二区| 免费在线观看视频国产中文字幕亚洲 | 天堂中文最新版在线下载| 午夜免费鲁丝| 久热这里只有精品99| 一区二区av电影网| 青春草国产在线视频| 天天操日日干夜夜撸| 午夜福利视频精品| 亚洲久久久国产精品| 欧美另类一区| 亚洲国产看品久久| 各种免费的搞黄视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品无大码| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 熟女av电影| 欧美少妇被猛烈插入视频| 午夜福利视频在线观看免费| 久久久精品国产亚洲av高清涩受| 国产亚洲av高清不卡| 天天操日日干夜夜撸| 超碰成人久久| 免费观看人在逋| 老司机在亚洲福利影院| 1024视频免费在线观看| 中文字幕制服av| 免费不卡黄色视频| 秋霞伦理黄片| 久久精品久久精品一区二区三区| 精品国产乱码久久久久久男人| 欧美日韩av久久| 久久性视频一级片| 高清在线视频一区二区三区| 啦啦啦视频在线资源免费观看| av一本久久久久| 亚洲精品中文字幕在线视频| 交换朋友夫妻互换小说| 中文字幕精品免费在线观看视频| 91成人精品电影| 天天躁狠狠躁夜夜躁狠狠躁| 免费观看a级毛片全部| 免费黄色在线免费观看| 男女下面插进去视频免费观看| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 国产亚洲最大av| 亚洲精品久久成人aⅴ小说| 亚洲av福利一区| 国产日韩欧美亚洲二区| 久久久精品国产亚洲av高清涩受| 女的被弄到高潮叫床怎么办| 日韩大码丰满熟妇| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品精品| 国产毛片在线视频| 9色porny在线观看| 国产探花极品一区二区| 一本大道久久a久久精品| 老鸭窝网址在线观看| 久久久久久免费高清国产稀缺| 精品久久久久久电影网| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 亚洲第一av免费看| 国产av精品麻豆| 91aial.com中文字幕在线观看| a级毛片黄视频| 国产精品av久久久久免费| 亚洲精品国产av成人精品| 精品免费久久久久久久清纯 | 日本av免费视频播放| 精品国产超薄肉色丝袜足j| 91国产中文字幕| 下体分泌物呈黄色| 一级片免费观看大全| 久久精品亚洲熟妇少妇任你| 欧美日韩亚洲综合一区二区三区_| 国产1区2区3区精品| 午夜福利乱码中文字幕| 国产激情久久老熟女| 欧美97在线视频| 一级片'在线观看视频| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆 | 少妇人妻久久综合中文| av线在线观看网站| 性少妇av在线| 日本91视频免费播放| 亚洲伊人久久精品综合| 国产乱人偷精品视频| 最新在线观看一区二区三区 | 啦啦啦啦在线视频资源| 街头女战士在线观看网站| 国产精品国产三级国产专区5o| 国产黄色免费在线视频| 亚洲精品中文字幕在线视频| 中文字幕色久视频| 国产毛片在线视频| 一区二区三区乱码不卡18| 汤姆久久久久久久影院中文字幕| 极品少妇高潮喷水抽搐| 在线观看国产h片| 99国产综合亚洲精品| 久热爱精品视频在线9| 看非洲黑人一级黄片| 精品视频人人做人人爽| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠久久av| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 不卡视频在线观看欧美| 亚洲国产精品成人久久小说| 日韩伦理黄色片| 久久精品aⅴ一区二区三区四区| 久久 成人 亚洲| 一级片免费观看大全| 韩国精品一区二区三区| 国产片内射在线| 午夜福利在线免费观看网站| 麻豆乱淫一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲男人天堂网一区| 国产精品久久久久成人av| 亚洲熟女精品中文字幕| 男女无遮挡免费网站观看| 啦啦啦视频在线资源免费观看| 美女大奶头黄色视频| 老司机靠b影院| 2018国产大陆天天弄谢| 国产免费现黄频在线看| 欧美成人午夜精品| 18禁裸乳无遮挡动漫免费视频| 亚洲成av片中文字幕在线观看| 国产精品熟女久久久久浪| 欧美人与性动交α欧美精品济南到| 精品国产一区二区三区四区第35| 一二三四中文在线观看免费高清| 男女边摸边吃奶| 老熟女久久久| 中国国产av一级| 欧美日韩亚洲综合一区二区三区_| 妹子高潮喷水视频| 久久久国产一区二区| 日韩熟女老妇一区二区性免费视频| 久热爱精品视频在线9| 国产成人免费观看mmmm| 免费在线观看完整版高清| 99久国产av精品国产电影| 欧美日韩福利视频一区二区| 亚洲人成网站在线观看播放| 国产免费一区二区三区四区乱码| 婷婷色麻豆天堂久久| 久久久国产欧美日韩av| 久久综合国产亚洲精品| 国产成人精品无人区| 丝瓜视频免费看黄片| 久久午夜综合久久蜜桃| 国产成人精品久久久久久| 女人被躁到高潮嗷嗷叫费观| 一级毛片电影观看| 你懂的网址亚洲精品在线观看| 飞空精品影院首页| www.熟女人妻精品国产| 你懂的网址亚洲精品在线观看| 亚洲国产欧美日韩在线播放| 免费av中文字幕在线| 香蕉丝袜av| 999精品在线视频| √禁漫天堂资源中文www| 美女脱内裤让男人舔精品视频| 国产一级毛片在线| 国产精品欧美亚洲77777| 国产熟女欧美一区二区| 蜜桃国产av成人99| 男女边吃奶边做爰视频| 最近中文字幕2019免费版| 亚洲精品在线美女| 又粗又硬又长又爽又黄的视频| 午夜福利免费观看在线| 建设人人有责人人尽责人人享有的| 色吧在线观看| 在线精品无人区一区二区三| 女性被躁到高潮视频| 极品人妻少妇av视频| 人妻一区二区av| 777久久人妻少妇嫩草av网站| 国产欧美日韩综合在线一区二区| 另类亚洲欧美激情| 我要看黄色一级片免费的| 男人操女人黄网站|