• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spray Characteristics Study of Combined Trapezoid Spray Tray

    2014-07-25 10:01:04HeLiangLiChunliLiuJidongXieZhenshan
    中國煉油與石油化工 2014年3期

    He Liang; Li Chunli; Liu Jidong; Xie Zhenshan

    (School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130)

    Spray Characteristics Study of Combined Trapezoid Spray Tray

    He Liang; Li Chunli; Liu Jidong; Xie Zhenshan

    (School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130)

    The spray behaviors of the combined trapezoid spray tray (CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the Rosin-Rammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.

    CTST; spray angle; gas velocity; distribution density; average flow velocity of liquid sheet; droplet size

    1 Introduction

    The combined trapezoid spray tray (CTST) is a sort of spray tray[1], the characteristics of which should be uplifting the liquid on tray, transferring the liquid to spray flow and breaking the spray flow into scattered droplets to obtain greater gas-liquid interface. For CTST, the masstransfer of droplets generated from breaking spray flow outside the cap accounts for 20%—35%[2]of the overall mass-transfer quantity. Therefore, the study on the spray process and characteristics of CTST is signi ficant in optimizing the cap structure, improving the mass-transfer ef ficiency and reducing the entrainment.

    Numerous researchers[3-6]apply the theory of spray flow breaking, which has frequently been used to analyze the spray characteristics of equipment by several groups. They have found out that spray flow breaking is resulted from unstable wave generated on the surface of spray flow. The unstable wave includes two modes, viz. the sinusoidal and varicose waves. Through analysis on unstable wave, the dispersion equations in different modes can be obtained to describe the development and amplification of unstable wave[8-10]. Some researches[11-12]have worked out the average drop size by analyzing the length of unstable wave when the spray flow is breaking down.

    2 Experimental

    The diameter of experimental column is 570 mm, and the system is composed of an air-water system with the experimental facilities shown in Reference [2]. The cap of single spray-holes/side was used to eliminate the mutual effect between spray-holes in exterior spray function, the model of which measures 30 mm×80 mm×170 mm (width×length×height) in three dimensions. A round spray–hole, 10 nm in diameter, was employed. The thickness of spray tray is 2 mm, the dip angle of which is 8° against the vertical direction. The operation of the experimental equipment is shown in Figure 1. The real-time location of liquid sheet and droplets is obtained by means of a PowerView HS-650 high-speed camera.

    The kinetic energy factor range of gas passing through the breadboard hole is 10~17 m/s (kg/m3)0.5and the average gas velocityugafter conversion is 5~10 m/s, which is theoptimal value of industrial design data. Liquid flow refers to the liquid quantity lifted by gas within the cap, which has an influence on both of the thickness and the average flow velocity of liquid sheet. This value can be obtained based on the lifted liquid quantity[13].

    Figure 1 Scheme of operation of experimental equipment

    3 Results and Discussion

    After entering the cap, a liquid sheet is formed[14]and is clinging to spray tray wall under the effect of uplifting gas. The surface of liquid sheet waves can lose stability under the effect of gas shear force, separating some liquid from liquid sheet and forming small droplets. When the two-phase gas-liquid flow consisting of liquid sheet, droplets and uplifting gas reaches the spray-hole, a part of the gas is scattered outside the cap through spray-hole, enabling the uplifting liquid sheet clinging to spray tray to change movement direction and spray outside along with gas under the effect of aerodynamic force. The other part of spray forms scattered droplets within the cap, which can also be sprayed outside along with the gas. After leaving the spray-hole, the liquid sheet moves above the diagonal. Under the effect of unstable wave on surface, the liquid sheet in the middle and at the bottom end of spray-hole can be broken first to form scattered droplets. Under the effect of velocity vector in vertical direction, the unbroken liquid sheet gathers at the top end of sprayhole, which can be broken into droplets under the effect of aerodynamic force finally.

    3.1 Influence of gas velocity passing through the spray-hole and liquid flow on the spray angle

    In order to eliminate the influence of droplet falling back track, it is recognized that at a certain angle all droplets sprayed out from the spray-hole would not fall down. This angle is called the spray angle (α), horizontal direction of which is the zero base line for spray angle, as shown in Figure 2.

    Figure 2 Scheme of the spray angleα

    Figure 3 demonstrates the influence of gas velocity for spray-holeugand liquid flowQon spray angleα. The spray angle increases greatly with an increasing gas velocity. When the gas velocity reaches 7.5 m/s, the spray angle will gradually become stable. The kinetic energy obtained by droplet will be more and the uplifting distance of droplet will be greater along with the increase in gas velocity. The uplifting distance will not increase unlimitedly with the increase in gas velocity because of the limitation of sprayhole structure. When the liquid quantity increases, the spray angle will tend to amplify. Compared with the gas velocity, the influence of liquid flow on spray angle will be much less. It demonstrates that the aerodynamic force is the main factor for determining the range of droplets distribution.

    Figure 3 Dependence of α on ugand Q

    3.2 Influence of gas velocity passing through the spray-hole and liquid flow on the average flow velocity of the liquid sheet

    Figures 4 and 5 show the relationship between the aver-age flow velocity of the liquid sheet (uL), gas velocity for spray-holeugand liquid flowQ, respectively. It can be seen from the figures that, the acceleration effect of gas on liquid sheet enhances and the average flow velocity of the liquid sheet tends to increase with the increase in gas velocity. And the average flow velocity of the liquid sheet becomes larger when it is closer to the top of the sprayhole, whereas the influence of the gas velocity on the liquid sheet velocity becomes smaller.

    Figure 4 Dependence of uLon ug(Q=15 L/h)

    In general, the influence of liquid flow on the average flow velocity of the liquid sheet is unobvious. When the liquid flow increases, the average flow velocity of the liquid sheet at the bottom of spray-hole decreases slightly; whereas no obvious changes can be observed in the middle and at the top end. The aerodynamic force in the lower-middle-part of liquid sheet is relatively small, and the energy consumed by liquid sheet during acceleration therefore accounts for a majority of the gross energy of aerodynamic force. The energy needed by liquid sheet for acceleration increases with the increase in liquid flow, and the consumption of aerodynamic force is thus much more obvious. While in the middle and at the top part of sprayhole, the gas velocity is relatively large and the aerodynamic force is much larger than the liquid mass force, therefore, the changes in liquid flow have little influence on the average flow velocity of the liquid sheet.

    Figure 5 Dependence of ulon Q (ug=5.8 m/s)

    3.3 Influence of gas velocity passing through the spray-hole and liquid flow on droplets distribution density

    The percentage of droplets number accounting for the total number within a certain interval [(j-5)°,j°] of spray angle is the distribution density, which is represented byP. Figure 6 and Figure 7 demonstrate the influence of gas velocity and liquid flow on the distribution density of droplets, respectively. The density of droplets distribution can roughly be expressed by the Rosin-Rammler function[15]and the liquid droplets are concentrated in the areaof spray angles ranging between 20? and 40?.

    Figure 6 Dependence of P on ug(Q=15 L/h)

    Figure 7 Dependence of P on Q (ug=5.8 m/s)

    Figure 8 describes the distribution of the gas velocity in the spray hole. The results shown in Figure 8 were obtained by simulation with the RNGk-εturbulent model being adopted. The results were obtained using the SIMPLEC algorithm and non-static method. Parameters such as pressure, momentum,k,ε, etc. were obtained by using the second-order upwind algorithm. The boundary conditions are:

    (1) Wall boundary condition: no slip took place near the wall and the Nallasamy logarithm wall function was adopted.

    (2) Inlet condition: The cross section of the tower at 30 mm below the tray was chosen as the inlet where the gas velocity was constant and perpendicular to the cross section. It can be calculated based on:

    whereVrepresents the gas volume,Drepresents the diameter of tower andugis the gas velocity.

    Hencekandεcan be obtained according to

    (3) The outlet condition was the pressure boundary condition and the pressure at outlet was the same as the atmospheric pressure.

    The maximum gas velocity can be observed within the above mentioned spray angle, which results in a stronger shearing force to increase the fluctuation of liquid surface and promote the breaking and distribution of the liquid.

    Besides, the increase in both of gas velocity and liquid flow can make the distribution density of droplets within the spray angle become more uniform. The increase in gas velocity magnifies the aerodynamic force of the whole spray-hole. The liquid sheet in a rising state at the bottom end of spray-hole can be broken promptly along with the increase in gas velocity. The formation of droplets from the liquid gathering at the top of spray-hole becomes much easier in virtue of the remarkably increased aerodynamic force, enabling the droplet distribution density in the whole area to tend to be uniform. While the increase in the liquid flow amplifies the uplifting resistance, a part of liquid sheet is therefore blown outside the cap and then broken down during the uplifting process. Consequently the liquid quantity has a more significant effect on the droplets distribution density within the range of 5°— 20°.

    Figure 8 Gas velocity distribution in jet hole

    4 Mathematical Description of Spray Process

    4.1 Mathematical analysis of spray process

    According to the Senecal linear stability analysis[16], when the Weber value is less than 27/16, the unstable wave caused the breaking of liquid sheet will be developed in the form of long wave, the dispersion relation of which is:

    in whichωri,ki,hiandLirefer to the increase rate of unstable wave, wave number and half of liquid sheet thickness, respectively;vandρrefer to the kinematic viscosity and density, respectively; the subscript g denotes the gas and L denotes the liquid; andσrefers to the coef ficient of surface tension.Uiis the gas-liquid relative velocity corresponding toLi.

    The experimental gas velocity and the average flow velocity of the liquid sheet are fitted inLi, so the gas velocity is:

    Since it is hard to form a continuous liquid sheet whereLi<1 mm, with the influence of liquid flow on the average flow velocity of the liquid sheet being ignored, the average flow velocity of the liquid sheet atLi=1~9 mm can be expressed as:

    The average relative error of formulas (2) and (3) is 1.3% and 3.7%, respectively. The velocity difference between gas and liquid is:

    If the relationship between the angle coordinate parameterjand location parameter on spray-holecan be written as:

    wheredis the diameter of spray-hole. Therefore, the average flow velocity of the liquid sheet within the range of between (j-5)°-j° can be obtained through transformation of coordinates, and at this time, the gas-liquid relative velocity is:

    Substitution of formulas (2) – (5) for formulas (6) and (7) results in:

    When the liquid sheet is broken into the form of long wave, the viscosity can be ignored. Judging from formulas (1) and (5), the wave length of the corresponding most unstable wave can be obtained at the moment when the liquid sheet breaks down into droplets as shown below:

    According to the idealized model of Dombrowski[11], the breaking of liquid sheet can produce a cylindrical liquid silk first, the diameter of which is:

    It is supposed that the liquid sheet is distributed with a uniform thickness on the spray-hole, namely,Whenthe liquid sheet thicknesshis obtained by liquid flow and the average flow velocity of the liquid sheet is:

    By combining formulas (3), (15) and (16) one can obtain:

    After the liquid sheet is broken down into liquid silk, under the effect of unstable wave the liquid silk will be broken down to droplets when the wave amplitude is equal to the radius of liquid silk. The diameter is:

    Formula (18) is the average droplet diameter within the angle ofj. The overall average diameter of drop generated from spray-hole is:

    4.2 Model test

    By substituting the operating conditions into formulas (2) to (19), the average size of CTST drop can be worked out. Figure 9 demonstrates the comparison of the theoretical and experimental results, where the average relative error is 8.7% and the maximum relative error is not greater than 15%. The results showed that the average droplet size decreases obviously with an increasing gas velocity; and the average size of droplet increases slightly with increase in liquid flow. Under experimental circumstances, the average drop size is around 1.0 mm to 2.5 mm. However, as shown in Figure 9, the theoretical trend is different from the experimental trend; especially when the range ofugis between 6 m/s and 7 m/s, which is formed due to the change of the liquid flow volume passing through the spray hole caused by the change of gas velocity.

    Figure 9 Comparison of d30between the theoretical and experimental results

    5 Conclusions

    (1) Gas velocity passing through the hole is a key factor affecting the spray angle and increases gradually with increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases with an increasing gas velocity, and decreases slightly with the increase in the liquid flow rate; moreover, it increases from the bottom of spray-hole to the top. The density of drops distribution at the spray area can be described by the Rosin-Rammler function with the liquid drops concentrated in the area of the spray angle between 20° to 40°, and it gradually becomes uniform with an increase in the gas velocity and flow rate of the liquid.

    (2) A theoretical model of the average droplet size was established according to the unstable wave theory. The experimental and theoretical results demonstrate that the average drop size deceases with an increasing gas velocity, and increases slightly with the increase in the liquid flow rate. In the normal working range, the average drop size is about 1.0 mm to 2.5 mm.

    Acknowledgement:This work was supported by the Science and Technology Research and Development Plan of Hebei Province, China (12276710D).

    Symbol Description

    d—Diameter of spray-hole, m

    h—Liquid sheet thickness, m

    j—Interval parameter of angle, (°)

    k—Number of unstable wave when liquid sheet breaks, m-1

    Oh—Ohnesorge value

    P—Distribution density, %

    Q—Liquid flowrate, m3/s

    U—Gas-liquid relative velocity, m/s

    x—Central angle, (°)

    α—Spray angle, (°)

    v—Kinematic viscosity, m2/s

    ρ—Density, kg/m

    σ—Coef ficient of surface tension, N·m

    Subscript

    g—Gas

    L—Liquid

    i—Corresponding to location parameterLi

    j—Corresponding to angle parameterj

    [1] Liu J D, Lu J H, Zhang J P, et al. Combined trapezoid spray tray and its hydromechanics [J]. Journal of Chemical Industry and Engineering, 2005, 56(6): 1144-1149

    [2] Wang Z Y, Liu Q D, Liu J D, et al. Spatial concentration distribution of combined trapezoid spray tray [J]. Journal of Tianjin University, 2010, 43(3): 277-282 (in Chinese)

    [3] Nonnenmacher S, Piesche M. Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids [J]. Chemical Engineering Science, 2000, 55(19): 4339-4348

    [4] Negeed R, E-S, Hidaka S, Takata Y. Experimental and analytical investigation of liquid sheet breakup characteristics [J]. International Journal of Heat and Fluid Flow, 2011, 32 (1): 95-106

    [5] Zhang M C, Lu Y, Wang J Y, et al. Mathematical modeling on the gas-liquid two phase flow in the Y-jet nozzle and its atomization process [J]. Combustion Science and Technology, 2003, 9(2): 153-156

    [6] Zhou Y G, Zhang M C, Yu J, et al. Experimental investigation and model improvement on the atomization performance of single-hole Y-jet nozzle with high liquid flow rate [J]. Power Technology, 2010, 199(3): 249-255

    [7] Crapper G D, Dombroswki N, Pyott G A D. Kelvin-Helmholtz wave growth on cylindrical sheets [J]. Journal of Fluid Mechanics, 1975, 68(3): 497-502

    [8] Yang L J, Xu B R, Fu Q F. Linear instability analysis of planar non-Newtonian liquid sheets in two gas streams of unequal velocities [J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167(1): 50-58

    [9] Liu K, Sun D J, Yin X Y. Instability of gas/liquid coaxial jet [J]. Journal of Hydrodynamics, 2007, 19(5): 542-550

    [10] Meyer J, Weihs D. Capillary instability of an annular liquid jet [J]. Journal of Fluid Mechanics, 1987, 179(6): 531-545

    [11] Dombrowski N, Johns W R. The aerodynamic instability and disintegration of viscous liquid sheets [J]. Chemical Engineering Science, 1963, 18(7): 203-214

    [12] Senecal P K, Schmidt D P, Nouar I, et al. Modeling highspeed viscous liquid sheet atomization [J]. International Journal of Multiphase Flow, 1999, 25(6/7): 1073-1097

    [13] Liu J D, Li C L, Wang Z Y, et al. Mathematical model of liquid quantity elevated on combined trapezoid spray tray [J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(1):163-167 (in Chinese)

    [14] Liu J D. Study on gas-liquid two phase flow and mass transfer in the cap of combined trapezoid spray tray [D]. Tianjin: Tianjin University, 2008 (in Chinese)

    [15] Mugele R A, Evans H D. Droplet size distribution in sprays[J]. Industrial & Engineering Chemistry, 1951, 43(6):1317-1324

    [16] Senecal P K, Schmidt D P, Nouar I, et al. Modeling highspeed viscous liquid sheet atomization [J]. International Journal of Multiphase Flow, 1999, 25: 1073-1097

    Received date: 2014-01-24; Accepted date: 2014-05-18.

    Prof. Li Chunli, Telephone: +86-22-60202246; E-mail: ctstlc@hebut. edu. cn.

    国产日本99.免费观看| 女人被狂操c到高潮| 久久久久久久精品吃奶| 亚洲成国产人片在线观看| 欧美成狂野欧美在线观看| 极品教师在线免费播放| 久久精品夜夜夜夜夜久久蜜豆 | 99国产综合亚洲精品| 亚洲av成人av| 中文资源天堂在线| www.精华液| 狠狠狠狠99中文字幕| 国内揄拍国产精品人妻在线 | 欧美黄色片欧美黄色片| 在线免费观看的www视频| 男人舔女人下体高潮全视频| 丰满的人妻完整版| 精品久久久久久,| 久久久国产欧美日韩av| ponron亚洲| 日韩欧美 国产精品| 亚洲中文日韩欧美视频| 黄色丝袜av网址大全| 久久热在线av| 国产片内射在线| 亚洲天堂国产精品一区在线| 午夜成年电影在线免费观看| 一区二区三区精品91| 男人的好看免费观看在线视频 | 亚洲国产欧美一区二区综合| 欧美日韩乱码在线| 欧美在线一区亚洲| 人成视频在线观看免费观看| 亚洲五月天丁香| 91麻豆精品激情在线观看国产| 国产又色又爽无遮挡免费看| 99re在线观看精品视频| 999精品在线视频| 婷婷精品国产亚洲av| 搞女人的毛片| 岛国在线观看网站| 久久国产精品影院| 黄色成人免费大全| 在线观看免费视频日本深夜| 国产亚洲av高清不卡| 国产爱豆传媒在线观看 | 国产精品免费视频内射| 国产一级毛片七仙女欲春2 | 中亚洲国语对白在线视频| 51午夜福利影视在线观看| 一边摸一边抽搐一进一小说| 亚洲国产欧美一区二区综合| 免费看十八禁软件| 最近最新免费中文字幕在线| 又大又爽又粗| 禁无遮挡网站| 男人的好看免费观看在线视频 | 久久久久久国产a免费观看| 男女床上黄色一级片免费看| 天堂动漫精品| 长腿黑丝高跟| 淫秽高清视频在线观看| 久久久国产精品麻豆| 90打野战视频偷拍视频| 欧美日韩乱码在线| av超薄肉色丝袜交足视频| 国产精华一区二区三区| 好男人在线观看高清免费视频 | 亚洲人成网站在线播放欧美日韩| 欧美日本视频| 国产亚洲精品一区二区www| 久久久久国产精品人妻aⅴ院| 精品不卡国产一区二区三区| 亚洲精品在线美女| 午夜免费成人在线视频| 国产精品香港三级国产av潘金莲| 香蕉av资源在线| 国产黄a三级三级三级人| 两个人视频免费观看高清| 老鸭窝网址在线观看| 欧美zozozo另类| 中亚洲国语对白在线视频| 老鸭窝网址在线观看| 日本一区二区免费在线视频| 亚洲成人久久爱视频| 首页视频小说图片口味搜索| 色尼玛亚洲综合影院| 国产又黄又爽又无遮挡在线| 男女那种视频在线观看| 国产精品电影一区二区三区| 欧美日本视频| 国语自产精品视频在线第100页| 欧美亚洲日本最大视频资源| 久久婷婷成人综合色麻豆| 久久久久久国产a免费观看| 黄色视频,在线免费观看| 最近最新中文字幕大全免费视频| 免费女性裸体啪啪无遮挡网站| 免费人成视频x8x8入口观看| 99久久无色码亚洲精品果冻| 午夜免费激情av| bbb黄色大片| 亚洲成国产人片在线观看| 九色国产91popny在线| 免费观看精品视频网站| 精品国产乱子伦一区二区三区| 久久久久久久久中文| 真人做人爱边吃奶动态| 国产精品国产高清国产av| 欧美日韩黄片免| 日韩成人在线观看一区二区三区| 日本 av在线| 女性生殖器流出的白浆| 满18在线观看网站| 国产成人影院久久av| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 免费搜索国产男女视频| 少妇熟女aⅴ在线视频| 男女之事视频高清在线观看| av免费在线观看网站| 国内精品久久久久久久电影| 后天国语完整版免费观看| 国产成人av教育| 国产97色在线日韩免费| 中文字幕最新亚洲高清| 亚洲中文日韩欧美视频| 国产亚洲精品久久久久久毛片| 久久精品人妻少妇| 国内揄拍国产精品人妻在线 | 一个人观看的视频www高清免费观看 | 精品国产亚洲在线| 精品久久久久久,| 国产成年人精品一区二区| 国产三级黄色录像| 夜夜爽天天搞| 大香蕉久久成人网| 国产成人欧美在线观看| 怎么达到女性高潮| 91九色精品人成在线观看| 国产黄片美女视频| 国产精品影院久久| 亚洲男人天堂网一区| 亚洲av电影在线进入| 亚洲国产欧美一区二区综合| 欧美人与性动交α欧美精品济南到| 精品午夜福利视频在线观看一区| 脱女人内裤的视频| 日韩精品中文字幕看吧| 亚洲精品中文字幕在线视频| 午夜福利欧美成人| 成人免费观看视频高清| 亚洲av熟女| 国产av又大| 高清在线国产一区| 色播在线永久视频| 一级黄色大片毛片| 亚洲专区中文字幕在线| 久久天堂一区二区三区四区| 亚洲人成77777在线视频| a在线观看视频网站| 97超级碰碰碰精品色视频在线观看| 亚洲男人的天堂狠狠| 精品久久久久久久人妻蜜臀av| 侵犯人妻中文字幕一二三四区| 久久久久久人人人人人| 一a级毛片在线观看| АⅤ资源中文在线天堂| 免费人成视频x8x8入口观看| 国产成人一区二区三区免费视频网站| 在线播放国产精品三级| 欧美 亚洲 国产 日韩一| 18禁观看日本| 精品国产美女av久久久久小说| 国产精品自产拍在线观看55亚洲| 18禁裸乳无遮挡免费网站照片 | 成人一区二区视频在线观看| 一级a爱视频在线免费观看| 午夜影院日韩av| 亚洲熟妇熟女久久| 中国美女看黄片| 久久草成人影院| 一级毛片高清免费大全| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 午夜亚洲福利在线播放| 免费在线观看黄色视频的| 午夜成年电影在线免费观看| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| 一a级毛片在线观看| 国产一区二区三区在线臀色熟女| 久久午夜亚洲精品久久| 黄色丝袜av网址大全| 看黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看 | 黄色a级毛片大全视频| 黄色成人免费大全| 成人三级黄色视频| 十八禁网站免费在线| 中文字幕人妻丝袜一区二区| 免费搜索国产男女视频| 国产极品粉嫩免费观看在线| 我的亚洲天堂| 欧美绝顶高潮抽搐喷水| 男女午夜视频在线观看| 变态另类丝袜制服| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美精品济南到| 级片在线观看| 色婷婷久久久亚洲欧美| 午夜免费成人在线视频| 亚洲av电影在线进入| 操出白浆在线播放| 亚洲在线自拍视频| 麻豆成人av在线观看| 久久99热这里只有精品18| 久久亚洲真实| 91麻豆av在线| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区三区四区第35| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 久久久久久久久中文| 老熟妇仑乱视频hdxx| 美女高潮喷水抽搐中文字幕| 欧美zozozo另类| 两人在一起打扑克的视频| 欧美乱码精品一区二区三区| 亚洲av成人不卡在线观看播放网| 天堂动漫精品| 一本一本综合久久| 亚洲avbb在线观看| 美女国产高潮福利片在线看| 美女大奶头视频| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 香蕉久久夜色| 色在线成人网| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 国产精品永久免费网站| 亚洲专区国产一区二区| 日本 av在线| 久久精品91无色码中文字幕| 高清在线国产一区| 亚洲人成网站高清观看| 国产精品一区二区精品视频观看| 男人舔奶头视频| 国产欧美日韩一区二区三| 一边摸一边抽搐一进一小说| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 两个人免费观看高清视频| 夜夜爽天天搞| 中文字幕最新亚洲高清| 国产视频一区二区在线看| 深夜精品福利| 制服诱惑二区| 我的亚洲天堂| 久久久久久人人人人人| 国产精品九九99| 国产极品粉嫩免费观看在线| 欧美日本视频| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 日本在线视频免费播放| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情 高清一区二区三区| 午夜福利在线观看吧| 国产人伦9x9x在线观看| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 麻豆成人午夜福利视频| 日日夜夜操网爽| www.自偷自拍.com| 亚洲性夜色夜夜综合| 国产区一区二久久| 中文字幕精品免费在线观看视频| 色在线成人网| 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 欧美精品亚洲一区二区| 欧美黄色片欧美黄色片| 国产真实乱freesex| 国产激情欧美一区二区| 天天躁夜夜躁狠狠躁躁| 俄罗斯特黄特色一大片| 国产视频内射| 日本熟妇午夜| 丰满的人妻完整版| 久久性视频一级片| 欧美久久黑人一区二区| 亚洲人成网站在线播放欧美日韩| 黄色视频不卡| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看 | 国产野战对白在线观看| 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 91成人精品电影| 两个人视频免费观看高清| 成人18禁在线播放| 亚洲欧美精品综合一区二区三区| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 国产成人一区二区三区免费视频网站| 亚洲自偷自拍图片 自拍| 美女午夜性视频免费| 狠狠狠狠99中文字幕| 亚洲天堂国产精品一区在线| 国产黄片美女视频| 黄色女人牲交| 后天国语完整版免费观看| 成人精品一区二区免费| 男人舔奶头视频| 91av网站免费观看| 亚洲一区高清亚洲精品| 变态另类成人亚洲欧美熟女| 一进一出好大好爽视频| 午夜免费激情av| 精品久久久久久久久久免费视频| 久久婷婷成人综合色麻豆| 又黄又爽又免费观看的视频| 亚洲成人精品中文字幕电影| 满18在线观看网站| 国产成人av激情在线播放| 欧美+亚洲+日韩+国产| 性色av乱码一区二区三区2| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 神马国产精品三级电影在线观看 | АⅤ资源中文在线天堂| 制服诱惑二区| 亚洲国产日韩欧美精品在线观看 | 99国产极品粉嫩在线观看| 免费观看人在逋| 国产片内射在线| 久久婷婷成人综合色麻豆| 久久久久久大精品| 亚洲成国产人片在线观看| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 国产真实乱freesex| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| 99国产精品一区二区蜜桃av| 国产精品永久免费网站| 久久久久久人人人人人| 免费观看人在逋| 国产高清videossex| 老熟妇仑乱视频hdxx| 狠狠狠狠99中文字幕| 午夜免费鲁丝| 午夜福利在线在线| 国产黄色小视频在线观看| 亚洲天堂国产精品一区在线| 免费在线观看影片大全网站| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 亚洲熟女毛片儿| 国产精品日韩av在线免费观看| 成年女人毛片免费观看观看9| 亚洲成人免费电影在线观看| 欧美性猛交╳xxx乱大交人| 在线av久久热| 亚洲人成网站在线播放欧美日韩| 波多野结衣高清作品| 夜夜夜夜夜久久久久| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 久久久久国产一级毛片高清牌| 亚洲中文字幕一区二区三区有码在线看 | 高清毛片免费观看视频网站| 国产精品电影一区二区三区| www日本黄色视频网| 香蕉国产在线看| 国产免费男女视频| 在线免费观看的www视频| 在线观看日韩欧美| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 亚洲一区中文字幕在线| 天堂动漫精品| 国产97色在线日韩免费| 少妇 在线观看| 露出奶头的视频| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 国产在线观看jvid| 51午夜福利影视在线观看| 制服人妻中文乱码| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 中文字幕久久专区| 欧美在线黄色| 久久久国产成人免费| 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 亚洲色图av天堂| 99在线人妻在线中文字幕| 亚洲一区高清亚洲精品| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| 国产片内射在线| 日韩欧美国产一区二区入口| cao死你这个sao货| 国产精品野战在线观看| 国内揄拍国产精品人妻在线 | 国产精品野战在线观看| 男女下面进入的视频免费午夜 | 午夜久久久久精精品| 精品人妻1区二区| 一级作爱视频免费观看| 婷婷精品国产亚洲av| 黑丝袜美女国产一区| 国产久久久一区二区三区| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 欧美一级a爱片免费观看看 | 国产精品久久久av美女十八| tocl精华| 欧美激情久久久久久爽电影| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 国产亚洲精品第一综合不卡| 国产色视频综合| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成+人综合+亚洲专区| 免费av毛片视频| 国产精品美女特级片免费视频播放器 | 午夜福利欧美成人| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲| www.999成人在线观看| 熟女少妇亚洲综合色aaa.| 欧美+亚洲+日韩+国产| 又大又爽又粗| 少妇熟女aⅴ在线视频| 一个人免费在线观看的高清视频| 观看免费一级毛片| 亚洲精品久久成人aⅴ小说| 国产日本99.免费观看| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 中文字幕高清在线视频| 欧美午夜高清在线| av片东京热男人的天堂| 老司机靠b影院| 老鸭窝网址在线观看| 国产伦在线观看视频一区| 亚洲成av片中文字幕在线观看| videosex国产| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 国产精品自产拍在线观看55亚洲| 国产成人av激情在线播放| 黄色女人牲交| 亚洲第一欧美日韩一区二区三区| 成人永久免费在线观看视频| 久久久水蜜桃国产精品网| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜 | 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 欧美丝袜亚洲另类 | 国产男靠女视频免费网站| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 精品久久久久久久久久免费视频| 国产主播在线观看一区二区| 成人国语在线视频| av天堂在线播放| 国产日本99.免费观看| 亚洲全国av大片| 欧美人与性动交α欧美精品济南到| 欧美激情久久久久久爽电影| 日韩欧美免费精品| 波多野结衣巨乳人妻| 亚洲精品美女久久av网站| 精品一区二区三区av网在线观看| 久久99热这里只有精品18| av片东京热男人的天堂| 自线自在国产av| 制服诱惑二区| 黑人巨大精品欧美一区二区mp4| 国产成人精品久久二区二区91| 精品久久久久久久人妻蜜臀av| 日韩欧美三级三区| 国产av一区在线观看免费| 国产精品香港三级国产av潘金莲| 国产精品亚洲av一区麻豆| 此物有八面人人有两片| 亚洲色图 男人天堂 中文字幕| 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 亚洲av片天天在线观看| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 深夜精品福利| 亚洲在线自拍视频| 岛国视频午夜一区免费看| 亚洲天堂国产精品一区在线| 草草在线视频免费看| 首页视频小说图片口味搜索| 日本五十路高清| 免费在线观看成人毛片| 18禁观看日本| 国产欧美日韩一区二区精品| 亚洲电影在线观看av| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 亚洲无线在线观看| 国产亚洲精品一区二区www| 琪琪午夜伦伦电影理论片6080| 99精品在免费线老司机午夜| 国产精品二区激情视频| 黄片播放在线免费| 18禁国产床啪视频网站| 高清在线国产一区| 免费av毛片视频| 国产高清videossex| 免费av毛片视频| 法律面前人人平等表现在哪些方面| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 免费看a级黄色片| av片东京热男人的天堂| 无遮挡黄片免费观看| 桃色一区二区三区在线观看| 给我免费播放毛片高清在线观看| 超碰成人久久| 国产亚洲精品久久久久5区| 国产精品亚洲美女久久久| 中文字幕另类日韩欧美亚洲嫩草| 好看av亚洲va欧美ⅴa在| 叶爱在线成人免费视频播放| 国产伦在线观看视频一区| 88av欧美| 黄片播放在线免费| 一区二区日韩欧美中文字幕| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 老司机午夜福利在线观看视频| 国产精品香港三级国产av潘金莲| 精品日产1卡2卡| 中文字幕人成人乱码亚洲影| 成人亚洲精品av一区二区| avwww免费| 久久伊人香网站| 国产精品久久久人人做人人爽| 中文字幕最新亚洲高清| 天堂动漫精品| 精品高清国产在线一区| 极品教师在线免费播放| 久久精品国产综合久久久| 露出奶头的视频| 亚洲va日本ⅴa欧美va伊人久久| 国产高清有码在线观看视频 | 午夜精品在线福利| 午夜视频精品福利| 很黄的视频免费| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 久久精品夜夜夜夜夜久久蜜豆 | 日韩高清综合在线| 欧美亚洲日本最大视频资源| 欧美日韩福利视频一区二区| 亚洲全国av大片| 久久久久久亚洲精品国产蜜桃av| 午夜影院日韩av| 精品久久久久久成人av| 免费av毛片视频| 国产成人av激情在线播放| av有码第一页| 国产成人精品久久二区二区免费| 亚洲九九香蕉| 免费无遮挡裸体视频| 91国产中文字幕| 12—13女人毛片做爰片一| 精品一区二区三区四区五区乱码| 久久人人精品亚洲av| 国产成人啪精品午夜网站| 18禁国产床啪视频网站| 日本一本二区三区精品| 久久香蕉国产精品| 欧美乱码精品一区二区三区| 亚洲av第一区精品v没综合| 色婷婷久久久亚洲欧美| 欧美zozozo另类| 在线观看www视频免费| 一进一出抽搐动态| 97人妻精品一区二区三区麻豆 | 亚洲av五月六月丁香网| 夜夜爽天天搞| 不卡一级毛片| 三级毛片av免费| 精品久久久久久,| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 精品国内亚洲2022精品成人| 亚洲av电影在线进入| 色婷婷久久久亚洲欧美| 十八禁人妻一区二区| 18禁观看日本| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 一级毛片高清免费大全|