• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Tribological Properties of CVT Fluid Containing Inert and Active Functional Elements

    2014-07-25 10:01:13LiMaoshengDuQungui
    中國煉油與石油化工 2014年3期
    關鍵詞:易地動員內涵

    Li Maosheng; Du Qungui

    (1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640;2. Guangzhou Mechanical Engineering Research Institute, Guangzhou 510700)

    Study on Tribological Properties of CVT Fluid Containing Inert and Active Functional Elements

    Li Maosheng1,2; Du Qungui1

    (1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640;2. Guangzhou Mechanical Engineering Research Institute, Guangzhou 510700)

    The lubricating characteristics of CVTF (continuously variable transmission fluid) mixed with a multi-functional complex additive were studied. The said complex additive contained an organic borate ester and a new type of friction improver comprising phosphorus element and poly-methylmethacrylate (PMMA), and a viscosity index improver. The viscosity-pressure characteristics were evaluated by a high-pressure quartz viscometer, and the anti-wear property was investigated by a four-ball friction tester. The mechanism of lubrication by the CVTF was studied using X-ray photoelectron spectroscopy (XPS). The results showed that CVTF T10, which contained a multi-functional complex additive, exhibited excellent properties, featuring greater solidification pressure and pressure-viscosity coefficient, improved oil film strength, and low wear value. These attributes meet the special CVTF requirements for “high friction and low wear” that make it possible to provide both traction and lubrication. The lubricating mechanism was varied using different functional elements, such as inert and active elements. Sulfur and phosphorus are active extreme pressure elements that can react on the metal friction surface and produce an extreme pressure lubrication film. Boron is an inert functional element and does not react upon the metal surface; boron is only adsorbed onto the metal surface to act as a lubricant for adsorption film and fillers.

    CVT fluid; pressure viscosity characteristics; high friction; low wear; lubrication

    1 Introduction

    Belt-drive continuously variable transmission (CVT) technology has developed rapidly in recent years thanks to its low fuel consumption, reasonable cost, simple mechanical structure and driving comfortableness[1-3]. It is extremely important to use a special functional fluid (continuously variable transmission fluid, CVTF) to provide lubrication and friction transmission during CVT operation. The commercial application of CVT technology was delayed for decades due to the lack of an adequate CVTF. The first-generation CVT used automatic transmission (AT) fluid instead of CVT fluid. However, the friction pair material and torque transmission of AT and CVT fluids are significantly different, and therefore, many problems occurred when AT fluid was used, such as an insufficient friction transmission efficiency, poor anti-jitter performance, and prevalent slipping. Since the late 1990s, the number of studies on the application and mechanism of CVTFs has been gradually increasing[4-7]. K. Narita (Idemitsu Kosan Co., Ltd.) and M. Priest (University of Leeds) studied the transmission efficiency and metal friction properties of CVTs[8]. In 2012, K. Narita studied the friction property of CVT lubricants and noted that additives with good performance could significantly improve the transmission efficiency and maximum torque and provide good boundary film and anti-shudder performance[9]. Song[10-11], Zhang[12]and Zhou[13-14]studied the transmission characteristics and technology of control over a metal V-belt-type CVT system, and Qin[15]introduced the parameters required by CVTF for use in a CVT system. Research on the elasto-hydrodynamic lubrication characteristics and application of a lubricating additive, such as ZDDP, has been ongoing for more than 30 years both in China and in other countries, although studies have only concentrated on the use of internal combustion engine oil[16-18]. There have only been a few studies on the viscosity-temperature pressure characteristics and tribo-logical characteristics of CVTFs.

    It should be noted that the CVTF is a key factor in the transmission efficiency of a CVT, though there are other influential factors, such as the structure of mechanical system and control system. The CVTF performance significantly influences the transmission efficiency of a CVT. In addition to normal oil properties, such as viscosity, viscosity index, low-temperature performance, and shear resistance, there are several other properties that have significant effects, such as the drag force, the elastohydrodynamic lubrication oil film thickness, the pressureviscosity coefficient, and the lubricating characteristics. One study[19]reported the performance of several commercial CVTFs from Japan; the viscosity of the CVTFs ranged from 29.8 to 40.3 mm2/s at 40 ℃, and the viscosity index was between 155 and 227. In another study[20], the author tested and discussed the primary performance of several CVTFs.

    In this paper, a new type of CVTF was developed; this new CVTF consists of base oil (synthetic oil) and special functional additives and is applied in selected original equipment manufacturer (OEM) automobiles. This paper describes the developed CVTF T10 and its performance with a particular focus on the pressure-viscosity and lubricating characteristics.

    2 Experimental

    To satisfy the requirements for reducing wear and maintaining an adequate traction force from a CVT, the CVTF should exhibit excellent lubricating properties and a good comprehensive performance, which requires a proper viscosity and viscosity index, an appropriate external friction and internal friction, and a good lubricating ability.

    2.1 Base oil

    To obtain good physical and chemical properties, anti-oxidation ability and low-temperature performance in particular, the selection of the base oil is extremely important. Table 1 presents the classification and physicochemical index of the base oil. The traditional base oil, which contains aromatic hydrocarbons, unsaturated hydrocarbons and other impurities, is unsuitable to be used as the base oil for CVTFs due to its poor anti-oxidation stability and poor low-temperature fluidity. It is recommended that the primary components of the base oil should include hydrogenated oil and polyalphaolefin (PAO). Table 2 presents the physicochemical properties of several base oils.

    Table 1 API base oil categories (API publication 1509)

    Table 2 Physicochemical properties of several base oils

    2.2 Functional additives

    2.2.1 Viscosity index improver

    A viscosity index improver is a type of oil-soluble polymer that improves the viscosity temperature properties and viscosity index of the base oil. When the viscosity index improver is dissolved in a solvent (oil), different molecular structures are formed, such as reticulate, pectinate and stellate structures, which can greatly improve performance.

    Poly(methyl acrylate) (PMA) is an acrylic polymer that is commonly used as an improver. By changing the degree of polymerization (molecular weight) and the molecular structure (the length and arrangement of the main chains and branched chains), the rheological property of PMA can be significantly changed to satisfy the special performance requirements for viscosity, viscosity index, lowtemperature properties and dispersion properties.

    2.2.2 Lubricant additives

    Lubricant additives are widely used in transmission fluids. Oiliness, anti-wear, and extreme pressure agents are generally included. Lubricant additives can improve the lubrication performance and reduce wear. Because CVTFs provide friction transmission, the selection of a friction improver is extremely important because it results in a suitable friction coefficient for CVTs. Synthetic esters exhibit good viscosity-temperature characteristics, excellent low-temperature fluidity, good anti-oxidation ability and good pressure-viscosity characteristics, which are typical requirements of CVTFs. In addition, borate ester, overbased calcium petroleum sulfonate and sulfurphosphorous type additives are used in the formula design of CVTF T10.

    CVTF T10 is a special formula design, in which a mixture of hydrogenated oil and polyalphaolefin is used as the base oil, organic borate ester is used as a load-carrying additive containing sulfur and phosphorus, and polymethylmethacrylate is used as a viscosity index improver. The batch formula and physicochemical index of CVTF T10 are shown in Table 3. The physicochemical analysis results are presented in Table 4.

    Table 3 Batch formula of CVTF T10

    Table 4 Physicochemical analysis results of CVTF T10

    The tests used to determine the viscosity-pressure and viscosity-temperature performance were performed using a high-pressure quartz viscosity measurement instrument manufactured by Bolenz and Schafer in Germany. The oil sample was compressed in the high-pressure cavity within the instrument at a constant temperature, and the viscosity was measured via the vibrations of the quartz vibrator in high-pressure oil at temperatures of 20 ℃, 40 ℃, and 60 ℃, respectively. The testing pressures ranged from atmospheric pressure to the oil-curing pressure. The samples were measured three times at each temperature, and the average value was reported.

    The friction lubricating performance was investigated by a MS-10A four-ball tester manufactured by the Xiamen Tankey Automation Co., Ltd. The steel balls, which had a diameter of 12.7 mm, were made from the GCr15 steel. The oil film strength and sintering load were measured according to the national standard GB/T 3142. However, the wear scar diameter and average friction coefficient were also measured based on the national standard. The elemental analysis of the worn steel ball surfaces was conducted using an X-ray photoelectron spectrometer.

    3 Results and Discussion

    3.1 Pressure-viscosity characteristics

    The pressure-viscosity (p-v) relationship of the test fluids at 20 ℃, 40 ℃, and 60 ℃ are shown in Figure 1 (a), (b), and (c), respectively. The pressure-viscosity characteristics of the oil can influence the elastohydrodynamic film thickness, thereby affecting the transfer capacity and oil film bearing capacity[21]. The results indicate that CVTF T10 has a higher solidification pressure and more stablep-vcoefficient than that of the base oil as the temperature changes, which increases the friction transmission capacity and oil film bearing capacity.

    3.2 Lubrication characteristics

    Comparison of the four-ball wear test results between the base oil and CVTF T10 are shown in Table 5. Figure 2 shows the wear scar diameters of the base oil and CVTF T10.

    Figure 1 Pressure-viscosity relationship of the test fluids at different temperatures

    Table 5 Comparison of the four-ball wear test results

    Figure 2 Wear scar diameters of the base oil and CVTF T10

    Figure 3 Trends of the friction coefficient

    4 Mechanism of High Friction and Low Wear

    To investigate the mechanism of high friction and low wear in the developed CVTF, the elemental types and chemical states of the worn surfaces on the steel ball were examined by X-ray photoelectron spectroscopy. The test was conducted according to the national standard method GB/T 19500. The pressure in the analysis room was 2.0×10-7Pa; the X-ray source was equipped with a monochromator Al-Kα (1 486.6 eV) at a power of 150 W. The results are shown in Figure 4 and Figure 5.

    Figure 4 XPS spectra of the steel surface and worn steel surface

    Figure 5 Typical element XPS spectra of the worn steel surface

    Judging from the binding energy of the P element at 132 eV and the binding energy of 713 eV in the Fe2Pspectra, it can be concluded that FePO4is present, which indicatesthat the P element has reacted on the metal surface. In the case of the S element, its peak corresponding to Fex(SO4)yprimarily appeared at 169 eV, which was in good agreement with the characteristic peak in the Fe2Pspectra. The binding energy of 713 eV in the Fe2Pspectra can be treated as an overlapping peak from FePO4or Fex(SO4)y. The absence of a B peak in the spectra suggests that the B element was still in an organic state and did not react upon the metal surface. This absence also suggests the presence of a strong adsorption film of borate esters during the friction process[22]. In the literature[23], details were analyzed, and the conclusion was consistent with the results in this paper. These products in the worn steel surface formed a boundary lubricating film, which effectively improved the tribological properties of the oil.

    5 Conclusions

    CVTF T10 has a greater solidification pressure and more stable pressure-viscosity coefficient with the changing temperature than that of the base oil; thus, CVTF T10 shows an improved friction transmission capacity and oil film bearing capacity.

    CVTF T10 exhibits good oil film strength and low wear along with a high friction coefficient. CVTF T10 provides a good lubricating performance and appropriate friction during CVT operation.

    The elements S and P, which are the active extreme pressure agents, reacted upon the metal friction surface during the friction process and formed an extreme pressure lubricating film on the surface of the friction pair, whereas the element B, an inert functional agent, did not react on the metal surface but did provide lubrication in the form of an adsorption film and fillers.

    Acknowledgements:This work was financially supported by the China National Machinery Industry Corporation Science & Technology Development Fund (SINOMACH12 No.180).

    [1] Feng Ying, Luo Yongge. CVT—Review of the development of CVT[J]. Journal of Hubei Automotive Industrial Institute, 1999, 13(4): 15-18 (in Chinese)

    [2] Cheng Naishi. Automotive Metal Belt CVT: CVT Principle And Design[M]. Beijing: Mechanical Industry Press, 2008 (in Chinese)

    習總書記精準扶貧內涵可以高度概括為“六個精準”和“五個一批”。六個精準,即“對象要精準、項目安排要精準、資金使用要精準、措施到位要精準、因村派人要精準、脫貧成效要精準”。五個一批,即“通過扶持生產和就業(yè)發(fā)展一批,通過易地搬遷安置一批,通過生態(tài)保護脫貧一批,通過教育扶貧脫貧一批,通過低保政策兜底一批”,廣泛動員全社會力量共同參與扶貧[5],做到“扶真貧、真扶貧”。

    [3] Sun Dezhi, Tan Zhenjiang. Analysis of metal belt CVT transmission efficiency[J]. Journal of Northeastern University: Natural Science, 2002, 23(1): 52-56 (in Chinese)

    [4] Ishikawa T, Murakami Y, Yauchibara R, et al. The effect of belt-drive CVT fluid on the friction coefficient between metal components[J]. Evaluation, 1997, 2013: 5-13

    [5] Nakazawa K, Mitsui H, Kakegawa K, et al. Performance of a CVT fluid for high torque transmitting belt-CVTs[R]. SAE Technical Paper 982675, 1998

    [6] Narita K, Abe A, Deshimaru J, et al. Improvement of torque capacity of metal V-belt type CVT fluids[J]. SAE Technical-Paper 2003-01-15.

    [7] Pennings B, Drogen M, Brandsma A, et al. Van doorne CVT fluid test—A test method on belt-pulley level to select fluids for push belt CVT application[J]. SAE Paper 2003-01-3253, 2003

    [8] Narita K, Priest M. Metal-metal friction characteristics and the transmission efficiency of a metal V-belt-type continuously variable transmission[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(1): 11-26

    [9] Narita K. Tribological properties of metal V-Belt type CVT lubricant[J]. SAE Peper 476028, 2012

    [10] An Ying. Research on transmission characteristics and comprehensive control technology of metal V-belt type CVT[D]. Changchun: Jilin University, 2012 (in Chinese)

    [11] Zhang Shupei. Study on controlling method of metal belt continuously variable transmission (CVT) in clamping force aiming slip rate[D]. Changchun: Jilin University, 2007 (in Chinese)

    [12] Wang Cheng. Research on the strategy of ratio control of metal belt CVT[D]. Changchun: Jilin University, 2007 (in Chinese)

    [13] Gao Shuai. Development of the electric-hydraulic system for continuously variable transmission and research on the key technology[D]. Changchun: Jilin University, 2012 (in Chinese)

    [14] Liu Jingang. Study on key technology of electro-hydraulic control system for metal-belt continuously variable transmission[D]. Changchun: Jilin University, 2008 (in Chinese).

    [15] Yang Yalian. Study on some key problems of metalbelt continuously variable transmission[D]. Chongqing:Chongqing University, 2002 (in Chinese)

    [16] Martin J M, Grossiord C, Le Mogne T, et al. The twolayer structure of ZnDTP tribofilms: Part I: AES, XPS and XANES analyses[J]. Tribology International, 2001, 34(8): 523-530

    [17] Yin Z, Kasrai M, Bancroft G M, et al. Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP. Part II: The effect of detergents and dispersants[J]. Wear, 1997, 202(2): 192-201

    [18] Fujita H, Spikes H A. The formation of zinc dithiophosphate antiwear films[J]. Journal of Engineering Tribology, 2004, 218(4): 265-278

    [19] Sato T. Trends of metal pushing V-belt CVT fluid[C]. CVT-HYBRID 2007 Yokohama, 20074558(2007): 95-98

    [20] Li Maosheng, Du Qungui, Jia Jiixin. Current technology and development trends of automatic transmission fluids[J]. Lubrication Engineering, 2014(1): 101-106 (in Chinese)

    [21] Yang Wenzhi, Yang Siquan. Determination of mechanical continuously variable transmission pressure viscosity coefficient[J]. Lubrication Engineering, 1996(3): 32-35 (in Chinese)

    [22] Wang Yonggang, Li Jiusheng, Ren Tianhui. Tribological study of a novel borate ester containing dialkylthiophosphate group as multifunctional additive[J]. Industrial Lubrication and Tribology, 2009, 61(1): 33-39

    [23] Li Maosheng, Du Qungui. Study of friction lubrication characteristics research for CVT fluids in field test[J]. Advanced Materials Research, 2014, 915-916: 183-188

    Received date: 2014-05-28; Accepted date: 2014-08-14.

    Prof. Li Maosheng, Telephone: +86-20-32385265; E-mail: 827341372@qq.com.

    猜你喜歡
    易地動員內涵
    活出精致內涵
    “十三五”易地扶貧搬遷建設任務全面完成
    理解本質,豐富內涵
    陜西易地扶貧搬遷報告
    當代陜西(2020年16期)2020-09-11 06:20:54
    海底總動員
    挖掘習題的內涵
    國防動員歌
    青年歌聲(2018年3期)2018-10-20 03:25:16
    《全國“十三五”易地扶貧搬遷規(guī)劃》四大看點
    農家書屋(2016年11期)2016-12-23 09:36:23
    要準確理解“終身追責”的豐富內涵
    學習月刊(2016年2期)2016-07-11 01:52:32
    易地扶貧搬遷將投入6000億元
    婦女生活(2016年4期)2016-05-03 11:56:14
    日韩欧美一区二区三区在线观看| 色综合站精品国产| 亚洲av.av天堂| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 最近手机中文字幕大全| av卡一久久| 国产人妻一区二区三区在| 干丝袜人妻中文字幕| 中文在线观看免费www的网站| 久久精品国产鲁丝片午夜精品| 丝袜喷水一区| a级一级毛片免费在线观看| 国产探花在线观看一区二区| 久久久久久久久中文| 老熟妇乱子伦视频在线观看| 22中文网久久字幕| 精品一区二区免费观看| 日本免费a在线| 国产精品久久视频播放| 麻豆国产av国片精品| 久久99热6这里只有精品| 高清毛片免费看| 成人一区二区视频在线观看| 又黄又爽又刺激的免费视频.| 免费看av在线观看网站| 成熟少妇高潮喷水视频| 色尼玛亚洲综合影院| 99热这里只有是精品50| 在线播放无遮挡| 99久久成人亚洲精品观看| 国产日本99.免费观看| 午夜爱爱视频在线播放| 18禁裸乳无遮挡免费网站照片| 免费搜索国产男女视频| 日本爱情动作片www.在线观看 | 狂野欧美白嫩少妇大欣赏| 成人性生交大片免费视频hd| 亚洲欧美日韩高清专用| 一级黄片播放器| 天堂影院成人在线观看| 欧美激情国产日韩精品一区| 国产男靠女视频免费网站| 国产精品爽爽va在线观看网站| 人妻少妇偷人精品九色| 中文资源天堂在线| av国产免费在线观看| 日本免费a在线| 又爽又黄无遮挡网站| av在线亚洲专区| 日本五十路高清| 成人特级av手机在线观看| 乱系列少妇在线播放| 欧美潮喷喷水| 一区二区三区高清视频在线| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 久久精品久久久久久噜噜老黄 | 国产亚洲91精品色在线| 久久午夜亚洲精品久久| 亚洲中文日韩欧美视频| 婷婷色综合大香蕉| 中国美女看黄片| 久久精品国产鲁丝片午夜精品| 小说图片视频综合网站| 亚洲精品色激情综合| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 亚洲精品日韩av片在线观看| 亚洲五月天丁香| 九九爱精品视频在线观看| 伦理电影大哥的女人| 最新中文字幕久久久久| 18禁在线无遮挡免费观看视频 | 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 日本色播在线视频| 欧美xxxx黑人xx丫x性爽| 国产精品永久免费网站| 日本-黄色视频高清免费观看| 深夜精品福利| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看| 一a级毛片在线观看| 99久久无色码亚洲精品果冻| 久久久久久久亚洲中文字幕| 久久热精品热| 久久综合国产亚洲精品| 国产精品伦人一区二区| av天堂中文字幕网| 国产av不卡久久| 能在线免费观看的黄片| 国产亚洲精品av在线| 99国产极品粉嫩在线观看| 我要搜黄色片| 深夜精品福利| 乱系列少妇在线播放| 看片在线看免费视频| 亚洲av中文av极速乱| 最近视频中文字幕2019在线8| 国产69精品久久久久777片| 伦精品一区二区三区| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 中文字幕久久专区| 色在线成人网| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 久久人人精品亚洲av| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 特级一级黄色大片| 免费av毛片视频| 禁无遮挡网站| 午夜视频国产福利| 自拍偷自拍亚洲精品老妇| 亚洲av第一区精品v没综合| 精品久久久久久成人av| 亚洲专区国产一区二区| 色综合站精品国产| 精品久久久久久成人av| ponron亚洲| 噜噜噜噜噜久久久久久91| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 国产单亲对白刺激| 亚洲精品一卡2卡三卡4卡5卡| 精品乱码久久久久久99久播| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 一区福利在线观看| 在线观看午夜福利视频| 国产精品人妻久久久久久| 国产 一区精品| 日日摸夜夜添夜夜爱| 又爽又黄a免费视频| 人妻夜夜爽99麻豆av| 久久久精品94久久精品| 亚洲国产精品久久男人天堂| 天天躁夜夜躁狠狠久久av| 欧美性感艳星| 级片在线观看| 久久久久久九九精品二区国产| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 三级男女做爰猛烈吃奶摸视频| 国产精品一区二区三区四区久久| 成年女人毛片免费观看观看9| 白带黄色成豆腐渣| 女生性感内裤真人,穿戴方法视频| 免费在线观看成人毛片| 日韩,欧美,国产一区二区三区 | 搡老岳熟女国产| 亚洲精品久久国产高清桃花| 久久亚洲国产成人精品v| 日本 av在线| 亚洲av免费高清在线观看| 少妇的逼水好多| 日本色播在线视频| 成人av在线播放网站| 国产伦在线观看视频一区| 久久精品夜夜夜夜夜久久蜜豆| 毛片女人毛片| 日韩在线高清观看一区二区三区| 久久精品久久久久久噜噜老黄 | 国产精品久久视频播放| 亚洲无线观看免费| 99热只有精品国产| 女的被弄到高潮叫床怎么办| ponron亚洲| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| 男女啪啪激烈高潮av片| 午夜福利在线观看吧| 99热精品在线国产| 搡女人真爽免费视频火全软件 | 免费av不卡在线播放| 国产国拍精品亚洲av在线观看| 色视频www国产| 波野结衣二区三区在线| 女生性感内裤真人,穿戴方法视频| 如何舔出高潮| 亚洲一区二区三区色噜噜| 观看美女的网站| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| 嫩草影院入口| 国产亚洲精品av在线| 久久久成人免费电影| 三级毛片av免费| 色综合色国产| 有码 亚洲区| 亚洲精品456在线播放app| 高清午夜精品一区二区三区 | 韩国av在线不卡| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 日韩欧美精品v在线| 一级毛片我不卡| 18+在线观看网站| 久久精品国产自在天天线| 亚洲最大成人手机在线| 大香蕉久久网| 国产一区二区三区在线臀色熟女| 成人综合一区亚洲| 最新中文字幕久久久久| 成人鲁丝片一二三区免费| 日本-黄色视频高清免费观看| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆 | 国产亚洲av嫩草精品影院| 午夜日韩欧美国产| 国产成年人精品一区二区| 欧美3d第一页| 我的老师免费观看完整版| 精品免费久久久久久久清纯| 久久久精品大字幕| 一a级毛片在线观看| 国产片特级美女逼逼视频| 国产午夜精品论理片| 婷婷六月久久综合丁香| 91精品国产九色| 国产高清视频在线播放一区| 男人的好看免费观看在线视频| 亚洲无线观看免费| 色综合站精品国产| 日韩大尺度精品在线看网址| www日本黄色视频网| 国产片特级美女逼逼视频| 少妇高潮的动态图| 中国国产av一级| 国产 一区 欧美 日韩| 日本与韩国留学比较| 在现免费观看毛片| 亚洲经典国产精华液单| 欧美日韩乱码在线| 亚洲国产日韩欧美精品在线观看| 男女边吃奶边做爰视频| 国产高清三级在线| 国产蜜桃级精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 日本成人三级电影网站| 别揉我奶头~嗯~啊~动态视频| 成人高潮视频无遮挡免费网站| 99在线人妻在线中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 俺也久久电影网| 国产伦一二天堂av在线观看| 国产一区亚洲一区在线观看| 欧美国产日韩亚洲一区| 波多野结衣高清无吗| 美女cb高潮喷水在线观看| 日本熟妇午夜| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 伦理电影大哥的女人| 色综合站精品国产| 国产av麻豆久久久久久久| 久久久成人免费电影| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| 男人的好看免费观看在线视频| 成人高潮视频无遮挡免费网站| 欧美性猛交黑人性爽| 99热这里只有是精品50| 美女黄网站色视频| 久久精品国产鲁丝片午夜精品| 深夜a级毛片| 最近的中文字幕免费完整| 欧美三级亚洲精品| 日韩欧美精品免费久久| 亚洲经典国产精华液单| av视频在线观看入口| 亚洲精华国产精华液的使用体验 | 18禁裸乳无遮挡免费网站照片| 伊人久久精品亚洲午夜| 一级毛片电影观看 | 在线免费十八禁| 婷婷精品国产亚洲av| 偷拍熟女少妇极品色| 99久久精品一区二区三区| 丰满的人妻完整版| 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 欧美色视频一区免费| 久久久久国产网址| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添av毛片| 中文字幕熟女人妻在线| 久久久欧美国产精品| 深夜精品福利| 老师上课跳d突然被开到最大视频| 国产一区二区三区av在线 | 午夜免费男女啪啪视频观看 | 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 黄色日韩在线| 亚洲av免费在线观看| 国产精品一区www在线观看| 亚洲无线观看免费| 精品国产三级普通话版| 六月丁香七月| 中国美白少妇内射xxxbb| 精品乱码久久久久久99久播| 国产高清三级在线| av免费在线看不卡| 国产av一区在线观看免费| 少妇人妻一区二区三区视频| 麻豆精品久久久久久蜜桃| 一进一出抽搐gif免费好疼| 狠狠狠狠99中文字幕| 看黄色毛片网站| 精品午夜福利在线看| 免费黄网站久久成人精品| 深夜a级毛片| 日韩 亚洲 欧美在线| 色5月婷婷丁香| 久久中文看片网| 成人二区视频| 女同久久另类99精品国产91| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 国产高清三级在线| 日韩成人av中文字幕在线观看 | 国产高清视频在线观看网站| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻视频免费看| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站| 在现免费观看毛片| 成人毛片a级毛片在线播放| 春色校园在线视频观看| 国产熟女欧美一区二区| 日本欧美国产在线视频| 不卡一级毛片| 麻豆国产av国片精品| 精品一区二区三区人妻视频| 简卡轻食公司| 精品人妻偷拍中文字幕| 简卡轻食公司| 91久久精品电影网| 欧美xxxx性猛交bbbb| 我的老师免费观看完整版| 久久久色成人| 亚洲成人久久性| 亚洲av免费高清在线观看| 亚洲中文字幕日韩| 一本一本综合久久| 久久精品91蜜桃| 99久久精品国产国产毛片| 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 女同久久另类99精品国产91| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频| 在线a可以看的网站| 精品久久久久久久末码| 免费av不卡在线播放| 午夜福利在线观看吧| 小说图片视频综合网站| 一级毛片我不卡| 一级黄色大片毛片| 最后的刺客免费高清国语| 亚洲av二区三区四区| 亚洲av熟女| 国内精品一区二区在线观看| 免费观看人在逋| 亚洲成av人片在线播放无| 综合色av麻豆| 午夜日韩欧美国产| 深爱激情五月婷婷| 内射极品少妇av片p| 亚洲七黄色美女视频| 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 国产成人91sexporn| 欧美国产日韩亚洲一区| 99久久中文字幕三级久久日本| 久久久久久久久久久丰满| 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有精品一区| 99热网站在线观看| 中文字幕久久专区| 欧美性猛交黑人性爽| 搡老熟女国产l中国老女人| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| 综合色丁香网| 两性午夜刺激爽爽歪歪视频在线观看| 欧美在线一区亚洲| 网址你懂的国产日韩在线| 日本免费a在线| 黄色配什么色好看| 夜夜爽天天搞| 国产高清不卡午夜福利| 国内精品宾馆在线| 久久热精品热| 啦啦啦啦在线视频资源| av在线观看视频网站免费| 美女高潮的动态| 日本与韩国留学比较| 国产精品伦人一区二区| 欧美bdsm另类| 亚洲第一电影网av| 亚州av有码| 国产精品一区二区免费欧美| 免费电影在线观看免费观看| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 看片在线看免费视频| 久久久久久久久久黄片| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 精品午夜福利视频在线观看一区| 少妇丰满av| 国产乱人偷精品视频| 亚洲一级一片aⅴ在线观看| 老女人水多毛片| 丰满人妻一区二区三区视频av| 99热精品在线国产| 亚洲精品国产成人久久av| 国产免费男女视频| 一区二区三区四区激情视频 | 日韩,欧美,国产一区二区三区 | 在线免费观看的www视频| 最近最新中文字幕大全电影3| 日韩精品有码人妻一区| 欧美国产日韩亚洲一区| 变态另类丝袜制服| 99久久精品一区二区三区| 我要看日韩黄色一级片| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 1000部很黄的大片| 在线免费观看不下载黄p国产| 国产av在哪里看| 校园春色视频在线观看| www.色视频.com| 青春草视频在线免费观看| 有码 亚洲区| 黄色欧美视频在线观看| 亚洲国产欧洲综合997久久,| 国产精品电影一区二区三区| 久久综合国产亚洲精品| 黄色日韩在线| 毛片女人毛片| 亚洲精品一区av在线观看| 成年女人毛片免费观看观看9| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 亚洲av美国av| 国产精品电影一区二区三区| 精品免费久久久久久久清纯| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩一区二区精品| 此物有八面人人有两片| 国产69精品久久久久777片| 久久婷婷人人爽人人干人人爱| 99久久成人亚洲精品观看| 亚洲av成人av| 内射极品少妇av片p| 欧美在线一区亚洲| 人妻夜夜爽99麻豆av| 日本撒尿小便嘘嘘汇集6| 黄片wwwwww| 亚洲人成网站高清观看| 精品久久国产蜜桃| 不卡视频在线观看欧美| 男人的好看免费观看在线视频| 97碰自拍视频| 精品午夜福利视频在线观看一区| 精品乱码久久久久久99久播| 亚洲国产日韩欧美精品在线观看| 欧美激情在线99| 亚洲第一区二区三区不卡| 99热6这里只有精品| 日本色播在线视频| 国产色爽女视频免费观看| 成人特级av手机在线观看| 国产毛片a区久久久久| 亚洲精品久久国产高清桃花| 久久欧美精品欧美久久欧美| 特大巨黑吊av在线直播| 99热只有精品国产| 亚洲,欧美,日韩| 免费搜索国产男女视频| 成人毛片a级毛片在线播放| 97超级碰碰碰精品色视频在线观看| 少妇丰满av| 国产探花在线观看一区二区| 天美传媒精品一区二区| 精品一区二区三区视频在线观看免费| 亚洲成a人片在线一区二区| 男人舔女人下体高潮全视频| 男女那种视频在线观看| 成人漫画全彩无遮挡| 欧美区成人在线视频| 国产黄色视频一区二区在线观看 | 欧美三级亚洲精品| 午夜激情福利司机影院| 精品一区二区免费观看| 国产av麻豆久久久久久久| 男女之事视频高清在线观看| 免费观看在线日韩| 夜夜夜夜夜久久久久| 久久中文看片网| 麻豆一二三区av精品| 毛片一级片免费看久久久久| 我的老师免费观看完整版| 如何舔出高潮| 亚洲18禁久久av| 欧美激情国产日韩精品一区| 美女cb高潮喷水在线观看| 国产av在哪里看| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 精品欧美国产一区二区三| 无遮挡黄片免费观看| 99热这里只有是精品50| 成人漫画全彩无遮挡| 全区人妻精品视频| 久久精品国产亚洲网站| 国产精品久久久久久精品电影| av专区在线播放| 男女视频在线观看网站免费| 成人毛片a级毛片在线播放| 欧美成人免费av一区二区三区| 99在线人妻在线中文字幕| 亚洲,欧美,日韩| 久久午夜亚洲精品久久| 欧美日韩在线观看h| 午夜福利成人在线免费观看| 91av网一区二区| 老司机福利观看| 免费电影在线观看免费观看| 亚洲av成人av| 久久久久久久亚洲中文字幕| 长腿黑丝高跟| 国产激情偷乱视频一区二区| 男女边吃奶边做爰视频| 免费看光身美女| 夜夜爽天天搞| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩高清专用| 亚洲第一区二区三区不卡| 国产亚洲精品久久久com| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看 | 十八禁国产超污无遮挡网站| 亚洲av.av天堂| 在线国产一区二区在线| 日韩强制内射视频| 久久精品国产亚洲av涩爱 | 国产成人影院久久av| 亚洲成人av在线免费| 久久久色成人| 亚洲精品在线观看二区| 成熟少妇高潮喷水视频| 国产男人的电影天堂91| 亚洲人成网站在线观看播放| 九九热线精品视视频播放| 久久精品国产亚洲av涩爱 | 在线免费十八禁| 亚洲欧美日韩无卡精品| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 精品99又大又爽又粗少妇毛片| 国产精品,欧美在线| 国内精品久久久久精免费| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| 99久久无色码亚洲精品果冻| 小说图片视频综合网站| 免费观看的影片在线观看| 成人毛片a级毛片在线播放| 99热6这里只有精品| 婷婷色综合大香蕉| 精品一区二区三区av网在线观看| 男女边吃奶边做爰视频| 国内精品一区二区在线观看| 男插女下体视频免费在线播放| 日韩人妻高清精品专区| 国产中年淑女户外野战色| 亚洲乱码一区二区免费版| 国产v大片淫在线免费观看| 色噜噜av男人的天堂激情| 老师上课跳d突然被开到最大视频| 波多野结衣高清作品| 欧美激情国产日韩精品一区| 中国美女看黄片| 我的老师免费观看完整版| 欧美丝袜亚洲另类| 美女大奶头视频| 久久久久久久久久久丰满| 国产一区二区激情短视频| 小说图片视频综合网站| 干丝袜人妻中文字幕|