• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨化溫度對多孔碳微球/石蠟復(fù)合相變熱界面材料性能的影響

    2014-07-24 18:58:09曹志華徐益濤史劍吳曉琳符顯珠孫蓉袁銘輝汪正平
    集成技術(shù) 2014年6期
    關(guān)鍵詞:香港科技大學(xué)石蠟微球

    曹志華徐益濤史 劍吳曉琳符顯珠孫 蓉袁銘輝汪正平

    1(中國科學(xué)院深圳先進(jìn)技術(shù)研究院深圳電子封裝材料工程實驗室 深圳 518055)2(香港科技大學(xué)機械與航空系 香港 999077)3(香港中文大學(xué) 香港 999077)

    石墨化溫度對多孔碳微球/石蠟復(fù)合相變熱界面材料性能的影響

    曹志華1徐益濤1史 劍1吳曉琳1符顯珠1孫 蓉1袁銘輝2汪正平3

    1(中國科學(xué)院深圳先進(jìn)技術(shù)研究院深圳電子封裝材料工程實驗室 深圳 518055)2(香港科技大學(xué)機械與航空系 香港 999077)3(香港中文大學(xué) 香港 999077)

    文章利用葡萄糖水熱法合成炭微球,并用氫氧化鉀進(jìn)行燒結(jié)處理,得到多孔結(jié)構(gòu)的炭微球。在以硝酸鐵為催化劑的條件下,對多孔炭微球進(jìn)行不同溫度下的石墨化處理,利用 SEM、XRD、FTIR 和 BET 對材料進(jìn)行了表征。結(jié)果表明,炭微球表現(xiàn)出了良好的球形形貌、豐富的孔結(jié)構(gòu)及大的比表面積。炭微球在經(jīng)過 1500℃ 處理后,其石墨化程度達(dá) 90%。通過對石蠟進(jìn)行物理吸附,制備了多孔石墨化炭微球/石蠟相變復(fù)合材料并用作熱界面材料,其熱導(dǎo)率隨石墨化溫度的增加而增加。

    多孔炭微球;石墨化;相變;熱界面材料;石蠟

    1 Introduction

    Phase change thermal interface materials (TIMs) might be more effectively used in the electronics compared with conventional TIMs since the large latent heat absorption during the phase change process can delay or modify the temperature increase. Paraffin waxes are usually used as the phase change materials (PCMs) due to their advantages such as high latent heat, chemically stable, and commercially available at low cost[1]. However, paraffin wax has low thermal conductivity and might overflow when it melts, which has impeded the absorption and release of heat for the phase change materials.

    Various techniques have been used to improve the performance of thermal conductivity of phase change materials, such as filling high thermal fillers into organic PCMs and providing an effective thermal conductive way for the PCMs, choosing high thermal conductive porous materials as substrate or encapsulating phase change materials with high thermal conductive shell[2-6].

    Carbonaceous materials such as expanded graphite[7]and carbon fiber[8]would be good filler to enhance thermal conductivity of PCMs. However, many carbonaceous materials could not provide three-dimensional thermal conduction path because of their low dimension structure. Carbon microsphere could be a better choice due to its 3D structure. In order to obtain a better coordination with paraffin, it is essential to increase the specific surface area and graphitization.

    In this paper, we report the porous graphitized carbon microspheres-paraffin composite as phase change thermal interface materials. The effect of graphitization of porous carbon microspheres on the thermal performance was also investigated.

    2 Experimental

    2.1 Preparation of Carbon Microspheres

    A certain quality of glucose and Fe(NO3)3.9H2O were dissolved in aqueous solution respectively and mixed into 60 mL solution. After ultrasonic dispersing, the mixed solution was put into PTFE lining and the hydrothermal reaction happened when the hydrothermal synthesis reactor was put into a drying oven. After hydrothermal reaction, the dark brown colloid was washed with anhydrous ethanol and deionized water. At last, carbon microspheres were obtained after drying and grinding.

    2.2 Preparation of Porous and Graphitic Carbon Microspheres

    A certain quality of carbon microspheres and KOH were dissolved in aqueous solution respectively and mixed. After ultrasonic dispersing, the mixed solution was dried in the drying oven and the drying powder was put into ceramic crucible. Then

    3 Results and Discussion

    the drying powder was calcined in tube furnace at nitrogen atmosphere. The heating rate was 5℃/min and the calcined temperature was 700℃. The porous carbon microspheres were obtained after washing the calcined product with HCl and deionized water. The preparation of porous graphitized carbon microspheres was similar to porous carbon microspheres except that original materials were porous carbon microspheres and Fe(NO3)3.9H2O and the calcined temperature was higher than 1000℃. At last, porous and graphitized carbon microspheres were obtained after drying and grinding.

    2.3 Characterization and Measurement

    The morphology of samples was characterized by field emission scanning electron microscopy (FE-SEM, FEI Nova Nano SEM 450). The X-ray diffraction (XRD, Rigaku D/Max 2500, Japan) with Cu-Kα radiation was taken to measure the crystallographic structure of the products. Adsorption-desorption measurements were conducted on a micromeritics ASAP 2020 BET apparatus with liquid nitrogen at 77 K. The thermal conductivity was investigated by TIM thermal resistance & conductivity measurement apparatus (LW-9389), as is shown in Fig. 1.

    As is shown in Fig. 2 (a, b), the particle size of initial carbon microspheres prepared by hydrothermal method were about 5—10 μm with good sphericity. The dehydration reaction take place between glucose molecules with long chains gave rise to the bonding between carbon microspheres. The dispersion of the carbon microspheres was improved by ultrasonic and more homogeneous carbon microspheres could be prepared. As is shown in Fig. 2 (c, d), the highly graphitized porous carbon microspheres remain good sphericity. The specific surface area was expected to have a substantial increase after porous-forming treating at 700℃ and graphitization at 1500℃.

    Fig. 1. The core part of the TIM thermal resistance and thermal conductivity measurement apparatus (LW-9389)

    Fig. 2. SEM of carbon microspheres

    The principle of porous treatment was shown in equation (1), (2), (3) and (4). At high temperature (700℃), KOH had been decomposed into K2O andH2O, and the K2O and H2O reacted with the carbon microspheres. After the reaction between KOH and carbon microspheres, more and more holes had been obtained and the surface area improved substantially.

    Graphitized carbon microspheres were obtained by adding Fe(NO3)3in the carbon microspheres and being calcined together to reorder carbon atoms of carbon microspheres. As is shown in Fig. 3, the XRD curves of carbon microspheres which were prepared at different temperature showed different shape. The curve of initial carbon microspheres displayed a broad and weak peak. It suggested that initial carbon microspheres were amorphous carbon and the degree of graphitization was very low. After treated with KOH and calcined at 700℃, the peak of curve changed sharply but the degree of crystallinity and the graphitization of carbon microspheres were still very low. As the temperature increased, the degree of crystallinity and the graphitization of carbon microspheres increased and were closer to graphite. The degree of graphitization was calculated by equation (5) and the corresponding values of 1200℃, 1300℃, 1400℃ and 1500℃ were 68%, 75%, 79% and 90%, respectively. High temperature made the carbon atoms react with iron atoms to generate compounds and higher temperature made the reaction be completed more fully. As the temperature fell, the carbon atoms were separated out from compounds and arranged into structure of graphite[9-11].

    Fig. 3. XRD curves of porous carbon microspheres treated by porous-forming at 700℃ and graphitization at different temperatures

    Here, g means the degree of graphitization, d002=λ/(2sinθ) corresponds to the interlayer distance, λ is X-ray wavelength, and θ is (002) plane diffraction angle.

    As is shown in Fig. 4, the carbon microspheres prepared by the hydrothermal method contained more functional groups, suggesting that the graphitization of initial carbon microspheres was very low which was consistent with the XRD results. The graphitization of carbon microspheres was improved at higher temperatures. After treatment at 700℃, some infrared absorption peaks disappeared or the intensity was reduced, for example, the absorption peaks at 1016.6 cm—1and 1693.5 cm—1disappeared and the one at 1372.8 cm—1was reduced. When the initial carbon microspheres were treated at a high temperature, the process of dehydration and carbonization made initial carbon microspheres lose H and O atoms, therefore the amount of C-H and C-O functional groups was decreased and the absorption peaks disappeared or became weakened. Although many functional groups were decomposed during porous progress, the carbon microspheres were amorphous and the graphitization of porous carbon microspheres were low. As is shown in Fig. 4(c), after being graphitized at 1500℃, the functional groups were further reduced or disappeared. The hydrogen and oxygen contained in carbon microspheres have been removed after calcination at 1500℃.

    In order to increase the surface area and improve the adsorptivity of carbon microspheres, the porous carbon microspheres were prepared by calcination with KOH at 700℃. After calcination, the pore size in the surface of carbon microspheres and surface area of carbon microspheres were improved obviously as is shown in Fig. 5. The BET surface

    Fig. 4. Infrared absorption spectrum of carbon microspheres

    Fig. 5. BET adsorption curves and pore size distribution

    area of initial carbon microspheres was 5.7 m2/g and the average size of carbon microspheres was less than 5 nm. After porous-forming at 700℃ and graphitized at 1500℃, the BET surface area of carbon microspheres was 1307.5 m2/g and the average size of carbon microspheres was greater than 10 nm. It is expected that the high surface area could improve the absorption of paraffin.

    Fig. 6. Thermal conductivity of paraffin composite phase change thermal interface materials with porous carbon microspheres graphitized at different temperature

    As is shown in Fig. 6, the thermal conductivity of porous graphitic carbon microspheres (20 wt%)-paraffin (80 wt%) composite thermal interface materials gradually increased along with the graphitized temperature. When the temperature was higher than 1000℃, Fe atoms reacted with C and generated iron-carbon compounds. As thetemperature was higher, the reaction was more intensive. When the temperature dropped, Fe of ironcarbon compounds was separated and carbon atoms were recombined into graphite. And the higher temperature resulted in higher graphitization and better thermal conductivity. Compared with the pure paraffin wax, the thermal conductivity of composite thermal interface material was improved 300% and reached 1.6 W/(m·K) when the porous carbon microspheres were graphitized at 1400℃.

    4 Conclusions

    Highly graphitized porous carbon microspheres were obtained and used as substrate for phase change thermal interface materials. After porousforming and graphitization at high temperature, the surface area of carbon microspheres was improved 260 times to achieve 1307.5 m2/g and the degree of graphitization of carbon microspheres reached 90%. With the increase of graphitized temperature, the thermal conductivity of graphitized porous carbon microspheres-paraffin composite phase change thermal interface materials was also enhanced. Compared with the two-dimensional graphite, carbon microspheres with high graphitization and large specific surface area have the advantages of 3D thermal conductive path, which might be a more attractive filler for thermal management.

    [1] Zegers P. Overview of energy storage work carried out in the framework of the European Community’s energy storage [C] // The 2nd BHRA Fluid Engineering International Conference on Energy Storage and Energy Management, Cranfied, 1983∶19-28.

    [2] Bugaje IM. Enhancing the thermal response of latent heat storage systems [J]. International Journal of Energy Research, 1997, 21∶ 759-766.

    [3] Zhou D, Zhao CY. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials [J]. Applied Thermal Engineering, 2011, 31∶ 970-977.

    [4] Tian Y, Zhao CY. Heat transfer analysis for phase change material (PCMs) [C] // The 11th International Conference on Energy Storage (Effstock 2009), 2009∶ 1-8.

    [5] Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs) [J]. Solar Energy, 2010, 84∶ 1402-1412.

    [6] Boomsma K, Poulikakos D, Zwick F. Metal foams as compact high performance heat exchangers [J]. Mechanics of Materials, 2003, 35(12)∶ 1161-1176.

    [7] Zhang ZG, Fang XM. Study on paraffin/expanded graphite composite phase change thermal energy storage material [J]. Energy Conversion and Management, 2006, 47∶ 303-310.

    [8] Jun FK, Makoto K, Kodama Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers [J]. Energy Conversion Management, 2000, 41(14)∶ 1543-1556.

    [9] Dhakate SR, Mathur RB, Bahl OP. Catalytic effect of iron oxide on carbon/carbon composites during graphitization [J]. Carbon, 1997, 35(12)∶ 1753-1756.

    [10] Oya A, Otani S, Tomizuka I. Electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel [J]. Carbon, 1979, 17(1)∶ 71-76.

    [11] Oya A, Otani S. Influence of particle size of metal on catalytic graphitization on non-graphitizing carbons [J]. Carbon, 1981, 19(5)∶ 391-394.

    Effect of Graphitization Temperature on the Performance of Porous Carbon Microspheres/Paraffin Composite Phase Change Thermal Interface Materials

    CAO Zhihua1XU Yitao1SHI Jian1WU Xiaolin1FU Xianzhu1SUN Rong1YUEN Matthew2WONG Chingping31

    ( Shenzhen Electronic Packaging Materials Engineering Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China )2( Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China )3( The Chinese University of Hong Kong, Hong Kong 999077,China )

    Graphitized porous carbon microspheres/paraffin composite phase change materials were prepared whichcould be used for the thermal management. KOH was introduced to help carbon microspheres to form the porous structure. The porous carbon microspheres exhibited good sphericity, abundant pores and large surface area, which would be more convenient to absorb the paraffin. The porous carbon microspheres were treated under different temperatures using Fe(NO3)3as catalyst to investigate the degree of graphitization. The graphitization temperature played an important role in improving the thermal conductivity of the phase change composite.

    porous carbon microspheres; graphitization; phase change; thermal interface materials; paraffin

    2014-07-31

    TK 124

    A

    Foundation:Guangdong Innovative Research Team Program(2011D052);Shenzhen Peacock Pragram(KYPT20121228160843692);Shenzhen Electronic Packaging Materials (深發(fā)改【2012】372 號)

    Author:Cao Zhihua, Master’s degree candidate. His research interests are the synthesis and application of carbon-based composite materials; Xu Yitao, Master’s degree candidate. His research interests are the synthesis and application of micro/nano-composite materials; Shi Jian, Master’s degree candidate. His research interests are the phase change thermal interface materials; Wu Xiaolin, Ph.D., Research Assistant. Her research interest is materials science; Fu Xianzhu, Ph. D., Associate Professor. His research interests include electronic & packaging materials and applied electrochemistry; Sun Rong(corresponding author), Ph. D., Professor. Her research interest is electronic packaging materials, E-mail:rong.sun@siat.ac.cn; Yuen Matthew, Ph.D., Professor. His research interests are advanced materials & technology, design & manufacturing, CAD/CAM, electronic packaging, energy, microsystems and technology; Wong Chingping, Ph. D., Professor. His research interests are polymer nanocomposites and high-density electric packaging materials.

    猜你喜歡
    香港科技大學(xué)石蠟微球
    教育部批準(zhǔn)設(shè)立香港科技大學(xué)(廣州)
    留學(xué)(2022年12期)2022-07-21 08:17:20
    體積占比不同的組合式石蠟相變傳熱數(shù)值模擬
    煤氣與熱力(2022年2期)2022-03-09 06:29:16
    懸浮聚合法制備窄尺寸分布聚甲基丙烯酸甲酯高分子微球
    二元低共熔相變石蠟的制備及熱性能研究
    世界石蠟市場供需現(xiàn)狀及預(yù)測
    空間大載荷石蠟驅(qū)動器研制
    論當(dāng)代高校圖書館空間環(huán)境設(shè)計與服務(wù)理念創(chuàng)新——以香港科技大學(xué)圖書館空間環(huán)境設(shè)計為例
    TiO2/PPy復(fù)合導(dǎo)電微球的制備
    MOOC促進(jìn)高等教育改革與創(chuàng)新——訪香港科技大學(xué)首席副校長資深顧問龐鼎全教授
    可吸收止血微球在肝臟部分切除術(shù)中的應(yīng)用
    99久久久亚洲精品蜜臀av| 欧美不卡视频在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 日韩免费av在线播放| 最新中文字幕久久久久| АⅤ资源中文在线天堂| 亚洲五月婷婷丁香| 观看免费一级毛片| 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清| 深爱激情五月婷婷| 午夜精品在线福利| 午夜精品一区二区三区免费看| 国产乱人伦免费视频| 日韩欧美国产一区二区入口| 变态另类丝袜制服| 一级作爱视频免费观看| 国产精品电影一区二区三区| 国产午夜福利久久久久久| 日本 av在线| 国产伦人伦偷精品视频| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 亚洲真实伦在线观看| 变态另类丝袜制服| 在线免费观看不下载黄p国产 | 国产综合懂色| 波野结衣二区三区在线| 久久久成人免费电影| 天美传媒精品一区二区| 免费看日本二区| 午夜日韩欧美国产| 一进一出抽搐gif免费好疼| 久久中文看片网| 毛片一级片免费看久久久久 | 亚洲第一电影网av| 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 成人国产综合亚洲| 亚洲美女视频黄频| 欧美xxxx黑人xx丫x性爽| 欧美3d第一页| 免费av观看视频| 三级国产精品欧美在线观看| 九色成人免费人妻av| 色播亚洲综合网| 国产视频内射| 美女被艹到高潮喷水动态| 小说图片视频综合网站| 国产蜜桃级精品一区二区三区| 观看美女的网站| 亚洲人与动物交配视频| 韩国av一区二区三区四区| 一区二区三区高清视频在线| 亚洲精品色激情综合| 欧美激情在线99| 狠狠狠狠99中文字幕| 精品一区二区三区视频在线| 99riav亚洲国产免费| 欧美激情在线99| 露出奶头的视频| 少妇被粗大猛烈的视频| 九九久久精品国产亚洲av麻豆| 五月伊人婷婷丁香| 久久天躁狠狠躁夜夜2o2o| 亚洲av第一区精品v没综合| 欧美在线一区亚洲| 美女cb高潮喷水在线观看| 少妇人妻精品综合一区二区 | 国产国拍精品亚洲av在线观看| 亚洲五月天丁香| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 日韩人妻高清精品专区| 久久人人爽人人爽人人片va | 亚洲中文日韩欧美视频| 日韩精品青青久久久久久| 国产av不卡久久| 午夜老司机福利剧场| 免费黄网站久久成人精品 | 啪啪无遮挡十八禁网站| 直男gayav资源| 99视频精品全部免费 在线| 国产伦精品一区二区三区视频9| 天美传媒精品一区二区| 一区二区三区免费毛片| 嫁个100分男人电影在线观看| 日日干狠狠操夜夜爽| 亚洲国产欧洲综合997久久,| 中亚洲国语对白在线视频| 51国产日韩欧美| 蜜桃亚洲精品一区二区三区| 国产色爽女视频免费观看| 亚洲av中文字字幕乱码综合| 在线观看免费视频日本深夜| 国产蜜桃级精品一区二区三区| 五月玫瑰六月丁香| 国产精品久久久久久精品电影| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放| 高清毛片免费观看视频网站| 1024手机看黄色片| 好男人在线观看高清免费视频| 狂野欧美白嫩少妇大欣赏| www.熟女人妻精品国产| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮的动态| www.熟女人妻精品国产| 欧美日韩黄片免| 亚洲内射少妇av| 国产精品嫩草影院av在线观看 | 国内久久婷婷六月综合欲色啪| 黄色配什么色好看| 黄片小视频在线播放| 午夜福利视频1000在线观看| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| 在线免费观看不下载黄p国产 | 成人性生交大片免费视频hd| 桃色一区二区三区在线观看| 天堂网av新在线| av天堂中文字幕网| 村上凉子中文字幕在线| 人人妻人人看人人澡| 免费观看精品视频网站| 亚洲av二区三区四区| 精品久久久久久,| 长腿黑丝高跟| 午夜福利在线观看吧| 色视频www国产| 一级作爱视频免费观看| 非洲黑人性xxxx精品又粗又长| 欧美3d第一页| 高潮久久久久久久久久久不卡| 一个人看视频在线观看www免费| 精品一区二区三区人妻视频| 91av网一区二区| 亚洲av熟女| 国产成人啪精品午夜网站| 小说图片视频综合网站| 综合色av麻豆| 直男gayav资源| 国产亚洲精品久久久久久毛片| av天堂在线播放| 亚洲av.av天堂| 国产伦人伦偷精品视频| 十八禁网站免费在线| 99国产精品一区二区蜜桃av| 日本 欧美在线| 亚洲人成伊人成综合网2020| 国产成人a区在线观看| 黄色配什么色好看| 成人三级黄色视频| 黄色视频,在线免费观看| 国产高清有码在线观看视频| 此物有八面人人有两片| av天堂在线播放| 亚州av有码| 精品免费久久久久久久清纯| 一本一本综合久久| 日本在线视频免费播放| 亚洲无线观看免费| 欧美日韩综合久久久久久 | 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 亚洲黑人精品在线| 级片在线观看| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 亚洲三级黄色毛片| 亚洲精品成人久久久久久| 国产精品久久视频播放| 99精品在免费线老司机午夜| 搡老岳熟女国产| 中国美女看黄片| 国产精品电影一区二区三区| 久久精品国产亚洲av香蕉五月| 免费观看的影片在线观看| 精品久久久久久久人妻蜜臀av| 丁香欧美五月| 午夜福利视频1000在线观看| 久久久久久久久中文| 男女下面进入的视频免费午夜| 给我免费播放毛片高清在线观看| 99久久99久久久精品蜜桃| 婷婷色综合大香蕉| 亚洲国产色片| 久久久久久久久久成人| 精品久久国产蜜桃| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区性色av| 黄色视频,在线免费观看| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久一区二区三区 | 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 国产高清有码在线观看视频| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 久久久色成人| 国产毛片a区久久久久| 国产成年人精品一区二区| 亚洲欧美激情综合另类| 亚洲 欧美 日韩 在线 免费| 久久这里只有精品中国| 淫秽高清视频在线观看| 岛国在线免费视频观看| 午夜激情福利司机影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产一区二区在线观看日韩| 一区二区三区免费毛片| 午夜日韩欧美国产| 88av欧美| 久久精品国产亚洲av天美| 三级国产精品欧美在线观看| 男女视频在线观看网站免费| 看片在线看免费视频| 欧美在线黄色| 99热6这里只有精品| av天堂中文字幕网| 岛国在线免费视频观看| 91九色精品人成在线观看| 99热只有精品国产| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 日韩高清综合在线| 欧美日韩瑟瑟在线播放| 午夜福利免费观看在线| 国产精品永久免费网站| 日韩欧美精品v在线| 成年人黄色毛片网站| 国产亚洲精品av在线| 国产91精品成人一区二区三区| 99热6这里只有精品| 亚洲国产欧美人成| 欧美极品一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 免费观看的影片在线观看| 特级一级黄色大片| 亚洲国产欧美人成| 国产高清三级在线| 黄色女人牲交| 一级黄片播放器| 99视频精品全部免费 在线| 18禁在线播放成人免费| 啦啦啦韩国在线观看视频| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 999久久久精品免费观看国产| 制服丝袜大香蕉在线| 亚洲在线观看片| 少妇被粗大猛烈的视频| 99热6这里只有精品| 在线天堂最新版资源| 国产精品精品国产色婷婷| 国产aⅴ精品一区二区三区波| 深夜a级毛片| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 最近视频中文字幕2019在线8| 级片在线观看| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 久久草成人影院| 欧美成人性av电影在线观看| 精品99又大又爽又粗少妇毛片 | 久久精品国产99精品国产亚洲性色| 欧美性猛交╳xxx乱大交人| 美女高潮的动态| 国产黄片美女视频| av欧美777| 丝袜美腿在线中文| 中出人妻视频一区二区| 国产精品99久久久久久久久| 一进一出好大好爽视频| www.www免费av| 日韩大尺度精品在线看网址| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 精品99又大又爽又粗少妇毛片 | 欧美最新免费一区二区三区 | 免费观看的影片在线观看| 国产欧美日韩精品一区二区| 自拍偷自拍亚洲精品老妇| 我要搜黄色片| 精品日产1卡2卡| 精品不卡国产一区二区三区| 香蕉av资源在线| 日本免费a在线| 蜜桃亚洲精品一区二区三区| 午夜精品一区二区三区免费看| 欧美一区二区精品小视频在线| 日韩欧美三级三区| 天美传媒精品一区二区| 日韩欧美在线二视频| 午夜福利在线观看免费完整高清在 | 亚洲色图av天堂| 床上黄色一级片| 人妻久久中文字幕网| 欧美最新免费一区二区三区 | 欧美xxxx性猛交bbbb| 国产精品电影一区二区三区| 日韩精品青青久久久久久| 日本a在线网址| 国产久久久一区二区三区| 国产视频一区二区在线看| 国产一区二区在线av高清观看| 国产成人欧美在线观看| 黄色日韩在线| 久久久久久久久久黄片| 亚洲男人的天堂狠狠| 亚洲真实伦在线观看| 简卡轻食公司| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 老熟妇乱子伦视频在线观看| 最近中文字幕高清免费大全6 | 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 国产精品一区二区免费欧美| 日本 av在线| 欧美丝袜亚洲另类 | 国产私拍福利视频在线观看| 精品久久久久久久久久久久久| 亚洲成人中文字幕在线播放| 成年女人毛片免费观看观看9| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 动漫黄色视频在线观看| 男人的好看免费观看在线视频| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 欧美日本视频| 国产精品爽爽va在线观看网站| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 久久中文看片网| 级片在线观看| 97超视频在线观看视频| 亚洲人成网站高清观看| 天堂动漫精品| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女视频黄频| 国产av一区在线观看免费| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品 | 亚洲人成网站高清观看| 五月玫瑰六月丁香| 看免费av毛片| 日韩欧美三级三区| 精品国内亚洲2022精品成人| 精品久久久久久久久av| 免费观看精品视频网站| 麻豆国产97在线/欧美| 亚洲av成人精品一区久久| 日韩欧美一区二区三区在线观看| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 亚洲美女搞黄在线观看 | 国内少妇人妻偷人精品xxx网站| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 国产成人aa在线观看| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站| 久久久国产成人免费| 999久久久精品免费观看国产| 午夜福利视频1000在线观看| 精品一区二区三区人妻视频| 能在线免费观看的黄片| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 我要看日韩黄色一级片| 9191精品国产免费久久| 亚洲av一区综合| 91在线观看av| 国产精品女同一区二区软件 | 国产老妇女一区| 日韩av在线大香蕉| 在线a可以看的网站| 欧美成人一区二区免费高清观看| 亚洲中文字幕日韩| 久久性视频一级片| 在线观看av片永久免费下载| 一级黄片播放器| 午夜福利在线在线| 性欧美人与动物交配| 亚洲精品成人久久久久久| 人妻久久中文字幕网| 少妇丰满av| 色av中文字幕| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 黄片小视频在线播放| 男女那种视频在线观看| 国产成人福利小说| 免费av观看视频| 欧美性感艳星| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| 亚洲人成网站在线播放欧美日韩| 在现免费观看毛片| 一进一出抽搐gif免费好疼| 国产精品美女特级片免费视频播放器| 亚洲精品亚洲一区二区| 国产精品亚洲av一区麻豆| 精品久久久久久久久亚洲 | 99久久99久久久精品蜜桃| 深爱激情五月婷婷| 黄色一级大片看看| 老鸭窝网址在线观看| 小说图片视频综合网站| 亚洲欧美日韩高清专用| 欧美一区二区精品小视频在线| 欧美xxxx性猛交bbbb| 亚洲精品一区av在线观看| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 精品一区二区免费观看| 高潮久久久久久久久久久不卡| 国产精品三级大全| 搞女人的毛片| 亚洲精品影视一区二区三区av| 国语自产精品视频在线第100页| 欧美成人a在线观看| av天堂中文字幕网| 欧美色视频一区免费| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 精华霜和精华液先用哪个| 久久草成人影院| 草草在线视频免费看| 真实男女啪啪啪动态图| 男女床上黄色一级片免费看| 免费观看精品视频网站| 噜噜噜噜噜久久久久久91| 欧美日本视频| 亚洲aⅴ乱码一区二区在线播放| 日本成人三级电影网站| 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 日本黄色片子视频| 国内揄拍国产精品人妻在线| 九色国产91popny在线| 国产欧美日韩精品亚洲av| 国产精品人妻久久久久久| 日韩欧美免费精品| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| 美女大奶头视频| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 中文字幕av在线有码专区| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| 最后的刺客免费高清国语| 精品一区二区三区人妻视频| 99久久精品国产亚洲精品| 男人舔女人下体高潮全视频| 久久久久久久亚洲中文字幕 | 老司机深夜福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩中文字幕欧美一区二区| 亚洲人成电影免费在线| 国产精品影院久久| 亚洲人成网站在线播| 男女床上黄色一级片免费看| 免费av观看视频| 日韩av在线大香蕉| 欧美日韩黄片免| 97超级碰碰碰精品色视频在线观看| 美女免费视频网站| 99久久成人亚洲精品观看| 精品久久久久久久久av| 久久精品国产亚洲av涩爱 | 99久久久亚洲精品蜜臀av| 麻豆av噜噜一区二区三区| 国产免费av片在线观看野外av| 欧美最黄视频在线播放免费| 超碰av人人做人人爽久久| 网址你懂的国产日韩在线| 欧美色视频一区免费| 村上凉子中文字幕在线| 亚洲国产精品久久男人天堂| 亚洲熟妇熟女久久| 好看av亚洲va欧美ⅴa在| 久久天躁狠狠躁夜夜2o2o| 久久久久久九九精品二区国产| 成年女人毛片免费观看观看9| 宅男免费午夜| 国产亚洲精品综合一区在线观看| 男女视频在线观看网站免费| 国产高清视频在线播放一区| 国产精品久久久久久久久免 | 亚洲av不卡在线观看| 国产私拍福利视频在线观看| 在线国产一区二区在线| 欧美黑人巨大hd| 欧美三级亚洲精品| 很黄的视频免费| 3wmmmm亚洲av在线观看| 九色国产91popny在线| 乱人视频在线观看| h日本视频在线播放| 真人一进一出gif抽搐免费| 亚洲欧美日韩无卡精品| 真实男女啪啪啪动态图| 18禁在线播放成人免费| 国产亚洲精品久久久久久毛片| 99热6这里只有精品| 国产高清激情床上av| 怎么达到女性高潮| 最近中文字幕高清免费大全6 | 日韩欧美国产一区二区入口| 亚洲精品乱码久久久v下载方式| 亚洲av成人av| 欧美+日韩+精品| 免费观看的影片在线观看| 村上凉子中文字幕在线| 国产色爽女视频免费观看| 偷拍熟女少妇极品色| 国产精品久久久久久久电影| 免费在线观看成人毛片| 91麻豆精品激情在线观看国产| 午夜日韩欧美国产| 一边摸一边抽搐一进一小说| 99国产极品粉嫩在线观看| av黄色大香蕉| 欧美性感艳星| 亚洲第一区二区三区不卡| xxxwww97欧美| 久久久久久久久大av| 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看| 99国产极品粉嫩在线观看| 天堂影院成人在线观看| 俄罗斯特黄特色一大片| 动漫黄色视频在线观看| 久久草成人影院| 十八禁网站免费在线| 少妇熟女aⅴ在线视频| 午夜精品久久久久久毛片777| 久久精品国产自在天天线| av专区在线播放| 亚洲五月天丁香| av天堂在线播放| 国产色爽女视频免费观看| 观看美女的网站| 我的老师免费观看完整版| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 网址你懂的国产日韩在线| 一级黄片播放器| 我的女老师完整版在线观看| 欧美+日韩+精品| 1024手机看黄色片| av欧美777| 18+在线观看网站| 男插女下体视频免费在线播放| 成人三级黄色视频| 欧美潮喷喷水| 午夜福利在线观看吧| 国产三级在线视频| 午夜精品一区二区三区免费看| 久久6这里有精品| 国产高清视频在线播放一区| 日本三级黄在线观看| 99国产综合亚洲精品| 亚洲一区二区三区色噜噜| 亚洲av电影不卡..在线观看| 九九热线精品视视频播放| 全区人妻精品视频| 91麻豆av在线| 亚洲精品粉嫩美女一区| 日本成人三级电影网站| 久久久国产成人精品二区| 国产黄a三级三级三级人| 亚洲专区国产一区二区| 国产人妻一区二区三区在| av欧美777| 韩国av一区二区三区四区| 真人一进一出gif抽搐免费| 搡女人真爽免费视频火全软件 | 非洲黑人性xxxx精品又粗又长| 国产精品免费一区二区三区在线| 色5月婷婷丁香| 午夜精品久久久久久毛片777| 九九久久精品国产亚洲av麻豆| 国产伦在线观看视频一区| 国产真实乱freesex| 亚洲综合色惰| 婷婷亚洲欧美| 欧美色欧美亚洲另类二区|