• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    室溫超聲鍵合中 Cu/Sn 固液界面間的超聲聲化學(xué)效應(yīng)

    2014-07-24 18:58:09李卓霖李明雨
    集成技術(shù) 2014年6期
    關(guān)鍵詞:固液空化室溫

    李卓霖 李明雨 肖 勇

    (哈爾濱工業(yè)大學(xué)深圳研究生院深圳市新材料技術(shù)重點(diǎn)實(shí)驗(yàn)室 深圳 518055)

    室溫超聲鍵合中 Cu/Sn 固液界面間的超聲聲化學(xué)效應(yīng)

    李卓霖 李明雨 肖 勇

    (哈爾濱工業(yè)大學(xué)深圳研究生院深圳市新材料技術(shù)重點(diǎn)實(shí)驗(yàn)室 深圳 518055)

    文章通過對 Cu/Sn/Cu 互連結(jié)構(gòu)短時(shí)間施加超聲波實(shí)現(xiàn)了 Cu/Cu6Sn5/Cu 或Cu/Cu3Sn/Cu 高性能的焊接接頭。由于超聲空化效應(yīng)的作用 Cu/Sn 固液界面產(chǎn)生了快速元素?cái)U(kuò)散從而加速了金屬間化合物的形成。研究發(fā)現(xiàn),空化氣泡在固液界面附近坍塌會對固相銅界面造成嚴(yán)重的空化腐蝕,并且在液相錫中會形成銅過飽和區(qū)導(dǎo)致金屬間化合物的快速形成。值得說明的是,這種室溫超聲鍵合所形成的金屬間化合物接頭具有良好的機(jī)械可靠性并且可實(shí)現(xiàn)超高溫服役的優(yōu)勢。

    超聲化學(xué);空化作用;擴(kuò)散;超聲鍵合;金屬間化合物

    1 Introduction

    Homogeneous intermetallic phase joints have been widely used in semiconductor electronic industry because they have higher melting points than common solder joints and can elegantly improve the reliability of interconnections in the electronic assemblies and systems operated at elevated temperatures. The conventional joining method for fabricating this type of joint is using transientliquid-phase (TLP) bonding process[1-7]in which the intermetallic compounds (IMCs) or solid solution phase is formed through a lower melting point depressant (MPD) in an interlayer, or filler, diffusing into a surrounding bulk base metal under extended isothermal solidification. However, an inevitable drawback of TLP bonding is that it often necessitates a long processing time[1,4]up to several hours, which may lead extra thermal stresses to bond components and seriously affect the reliability of packaging system. In the present work, we applied ultrasonic bonding process to a similar Cu/Sn foil/Cu interconnection system as that employed in previous TLP bonding studies, forming homogeneous Cu6Sn5and Cu3Sn IMCs joints in a dramatically reduced short bonding time of several seconds, respectively. Our main focus was on the sonochemical effects of ultrasonic waves at the interface between liquid Sn and solid Cu, which were vital for exploring the ultrarapid formation mechanism and kinetics of these full intermetallic phase joints.

    2 Experimental

    The sandwich Cu/Sn foil/Cu interconnection system and ultrasonic bonding we used are schematically illustrated in Fig. 1(a) and (b). The interlayer is one piece of pure Sn foil with thickness of 25 μm, and the base metals are two pieces of pure Cu plate with thickness of 0.3 mm. The reason for choosing Cu/ Sn foil/Cu system as joining couple is its wide usage in electronic packaging interconnecting. The bonding is performed with the assembly initially at room temperature, using only a pressure of 0.6 MPa and a horizontal ultrasonic vibration of 20 kHz for a short period of 3 s. To clarify the formation of liquid solder interlayer, a thermal couple was placed underneath the interconnection system to detect its overall temperature profile during the bonding procedure. As is shown in Fig. 1(c), it indicates that the temperature of the entire assembly firstly underwent a steep rise to 297℃ and then sustained around 277℃ until the bonding was over. Considering that the melting point of Sn is 232℃, the formation of liquid Sn interlayer during bonding is doubtless. Thereason for the initial abrupt temperature increase can be attributed to the frictional heat generation at the rubbing interfaces between the solid solder and base metal. As to the thermal effect after liquid interlayer formation, it is because the propagation of ultrasonic waves in the liquid interlayer will induce acoustic cavitation phenomenon, where bubble collapse results in enormous concentration of energy from the conversion of the surface energy, kinetic energy of liquid motion into heat and chemical energy[8,9]hence sustaining the bonding temperature.

    Fig. 1. (a), (b) Schematic illustration of the Cu/Sn foil/Cu interconnection system and the ultrasonic bonding; (c) Overall temperature profile of the interconnection system during the bonding procedure

    3 Results and Discussion

    The cross-sectional backscattered electron (BSE) image and X-ray diffraction (XRD) analysis of one produced joint are shown in Fig. 2(a) and (e), the connection layer of joint has a thickness of 20 μm, where the Sn interlayer has been completely consumed and remained homogeneous Cu6Sn5(η) intermetallic phase. At the boundary between connection layer and base metal, the Cu6Sn5phase advanced into the Cu base metal, forming potshape damage pits on the original flat Cu surface. Reviewing previous study of TLP soldering in similar Cu/Sn foil/Cu system[7], a long processing time of at least 90 minutes is necessary to form the same homogeneous Cu6Sn5joint as that we formed using present method with a processing time of 3 s. This ultrarapid development of homogeneous Cu6Sn5phase joint can be wholly attributed to the sonochemical effects induced by the propagation of ultrasonic waves in the liquid solder interlayer.

    Fig. 2. Cross-sectional BSE images and XRD analysis of ultrarapidly formed joints using ultrasonic waves

    Propagation of ultrasonic waves in the liquid interlayer can generate acoustic cavitation, which is the formation, growth, and rapid implosive collapse of a vapor filled microbubble. Sonochemical effects are primarily derived from this acoustic cavitation. Rapid bubble implosion can induce tiny hot spots with the localized extreme temperature and pressure estimated to be 5000 K and 0.1 GPa, respectively[10-13]. But the action region itself is so small and the heat dissipates in a short period of 2 μs[10], so only the bubbles imploding adjacent to the interface can generate effects on the solidsurface. Actually in our study, the cavitation was confined in a thin liquid solder interlayer, therefore most bubble collapse could be seen to occur in the vicinity of either base metal surface.

    When the bubble is close to the base metal surface, the liquid motion in its vicinity is hindered, leading to micro-jet phenomenon[14]. In addition, the collapse of the bubble leads to the emission of a shock wave supposed to reach a pressure of several GPa with a starting shock velocity of 4000 ms—1[15]. The conjoint work of liquid-solder micro-jets, shock waves, and localized high temperature could result in microdamages (pits) on base metal surface, which is known as cavitation erosion[16], thus an excessive amount of Cu was detached from the base metal and released into the molten Sn during bonding. When the detached Cu particle entered into the action region of an imploding bubble, they would be dissolved into the molten Sn instantly under the effect of localized high temperature. Although single cavity collapse would only last for several microseconds, the bubbles confined in this thin layer of molten Sn were imploding consecutively. Therefore, on macro perspective, the liquid Sn layer was throughout kept in a dynamically unequilibrium state with high supersaturation of Cu. On subsequent cooling stage, Cu6Sn5nucleus would rapidly precipitate and grow as a result of reaction crystallization, driven by the high level Cu supersaturation in the liquid solder interlayer, and eventually forming homogeneous Cu6Sn5phase connection layer. Just due to these sonochemical effects, the ultrarapid formation of homogeneous Cu6Sn5joint is realized.

    Furthermore, through adjusting the interval distance between the two base metal plates during bonding (solder interlayer will be pressed thin by the up horn and the fallen position of up horn is controllable), we can change the IMC phase consisting in the produced joint as shown in Fig. 2(a)—(e). It indicates that, with the thickness of connection layer hcin the joint decreasing from 20 μm to 12 μm (overlooking the slight volume reduction of liquid solder during solidification, the thickness of connection layer is roughly equal to the interval distance between base metal plates during bonding), the consisting intermetallic phase of joint transformed from single Cu6Sn5(η) phase, coexistences of Cu6Sn5(η) and Cu3Sn (ε) phases, to single Cu3Sn (ε) phase, and a correlated increaseof Cu-consisting ratio in the connection layers was characterized by electron probe micro-analyzer (EPMA) and energy dispersive X-ray spectroscopy (EDS) as are shown in Fig. 3. This evolution of intermetallic phases is mostly attributed to the amplification of sonochemical effects induced by the changes in localized cavitation condition.

    Fig. 3. EPMA and EDS analysis of the formed joints with different connection layer thickness hc, where an increasing trend in Cu concentration consisting in the connection layer is characterized

    Cavitation erosion of solid surfaces is generally attributed to two principle effects[16]∶ micro-jets and shock waves, the relative importance of each effect depends on the localized cavitation conditions, such as bubble radius and its distance from the solid surface[14-16]. The source of impact pressure at the solid surface can be classified into three types depending on L/Rmax[17], where L is the distance between solid surface and bubble center, and Rmaxis the radius of bubble at its maximum size. The type and the region of their existence are∶

    (1) L/Rmax<0.3 and >1.5, shock wave is dominant;

    (2) 0.6<L/Rmax<0.8, liquid jet is dominant;

    (3) 0.3<L/Rmax<0.6 and 0.8<L/Rmax<1.5, shock wave and liquid jet coexist.

    The actual radius of bubble at its maximum size (Rmax) is difficult to measure in liquid Sn interlayer during bonding process, but as reported in the previous studies on the approximate size of cavitation bubble, the bubble size is mainly determined by the ultrasonic frequency[18]and for the 20 kHz ultrasonic waves employed in present work, the generated bubble has a roughly estimated radius around 5 μm[19-20]. As to the distance L between solid surface and bubble center, we assume the condition that the bubble center is localized at the middle point of liquid solder layer with equal distance to each surface of the two base metals. When the interval distance between the two Cu plates are approximated to the eventual thickness of connection layers in the bonded joints varying from 20 μm to 12 μm, the calculated L changes in a range of 5 μm to 1 μm, and the L/Rmaxis confined in an region from 1 to 0.2 in our work. Referring to classification of the source of impact pressure at the solid surface, for the fabricated joints in present study, the reduction of the interval distance between the two Cu plates in ultrasonic bonding process, would lead the mechanism of cavitation erosion at the liquid Sn/ solid Cu gradually transformed from a dominant work of micro-jets to shock waves. Through the comparison of the amplitudes of micro-jets and shock waves from ultrasonic cavitation at 20 kHz in water, the hammer pressure exerted by the micro-jet at the impact zone was 0.225 GPa and the average velocity of the microjet hitting the solid surface was 150 m/s[15]. However, shock wave pressure estimated from single bubble sonoluminescence was in a range of 4—6 GPa and its impacting velocity was almost 4000 m/s[21]. Obviously, more amplified damage effects would be resulted in by shock waves than by micro-jets. This was also confirmed by the gradual expansion of cavitation erosion pits generated on the Cu plate surfaces with the decreasing of the interval distance between base metals as is shown in Fig. 2. In Cu/Sn reaction system, there are two kinds of intermetallic phase, namely Cu6Sn5and Cu3Sn, whose formation is determined by the consisting ratio of Cu to Sn. Therefore, with more amplified damage effects generated on the Cu plate surfaces induced by the changes in localized cavitation condition, a larger volume of Cu was released into the liquid melt interlayer and increased the Cu-consisting ratio in reaction system, forming Cu3Sn phase in Cu6Sn5phase matrix. When the Cu-consisting ratio exceeded a critical threshold, homogeneous Cu3Snjoint was produced.

    Following shear test performed with a shearing speed of 200 μm/s shows that the average shear strengths of the homogeneous Cu6Sn5joints and Cu3Sn joints are 57.3 MPa and 64.5 MPa, respectively, which are both higher than common Sn solder joints (45.7 MPa) and meet the requirement of reliability for the interconnections in electronic packaging.

    4 Conclusion

    Ultrarapid melting diffusion bonding in Cu/Sn foil/Cu system using ultrasonic waves at room temperature has been demonstrated in present work, yielding homogeneous Cu6Sn5and Cu3Sn joints with high melting points, which are especially suitable for the electronic systems operated at elevated temperatures. Ultrasonic vibration can serve as heating source to rapidly melt the solder interlayer and subsequent sonochemical effects induced by the propagation of ultrasonic waves in the liquid interlayer dramatically accelerate the melting diffusion kinetics. Resulted joints are verified to have reliable strengths. The efficiency and reliability of this joining method afford it a promising application in electronic packaging.

    [1] Hong SM, Bartlow CC, Reynolda TB, et al. Ultrarapid transient-liquid-phase bonding of Al2O3ceramics [J]. Advanced Matererials, 2008, 20(24)∶ 4799-4803.

    [2] MacDonald WD, Eagar TW. Transient liquid phase bonding [J]. Annual Review of Materials Science, 1992, 22∶ 23-46.

    [3] Zhou Y, Gale WF, North TH. Modelling of transient liquid phase bonding [J]. International Materials Reviews, 1995, 40∶ 181-196.

    [4] Cook GO, Sorensen CD. Overview of transient liquid phase and partial transient liquid phase bonding [J]. Journal of Materials Science, 2011, 46(16)∶ 5305-5323.

    [5] Bosco NS, Zok FW. Critical interlayer thickness for transient liquid phase bonding in the Cu-Sn system [J]. Acta Materialia, 2004, 52(10)∶ 2965-2972.

    [6] Li JF, Agyakwa PA, Johnson CM. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process [J]. Acta Materialia, 2010, 58(9)∶ 3429-3443 .

    [7] Li JF, Agyakwa PA, Johnson CM. Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process [J]. Acta Materialia, 2011, 59(3)∶1198-1211 .

    [8] Shchukin DG, Ekaterina S, Belova V, et al. Ultrasonic cavitation at solid surfaces [J]. Advanced Matererials, 2011, 23(17)∶ 1922-1934.

    [9] Suslick KS, Flannigan DJ. Inside a collapsing bubble∶sonoluminescence and the conditions during cavitation [J]. Annual Review of Physical Chemistry, 2008, 59∶659-683.

    [10] Suslick KS, Hammerton DA, Cline RE. The sonochemical hot spot [J]. Journal of the American Chemical Society, 1986, 108(18)∶ 5641-5642.

    [11] Suslick KS, Didenko Y, Fang MM, et al. Acoustic cavitation and its chemical consequences [J]. Philosophical Transactions of the Royal Society A, 1999, 357(1751)∶ 335-353.

    [12] Flint EB, Suslick KS. The temperature of cavitation [J]. Science, 1991, 253(5026)∶ 1397-1399.

    [13] Suslick KS, Price GJ. Application of ultrasound to materials chemistry [J]. Annual Review of Materials Science, 1999, 29∶ 295-326.

    [14] Chen XG, Yan JC, Gao F, et al. Interaction behaviors at the interface between liquid Al-Si and solid Ti-6Al-4V in ultrassonic-assisted brazing in air [J]. Ultrasonics Sonochemistry, 2013, 20(1)∶ 144-154.

    [15] Virot M, Chave T, Nikitenko SI, et al. Acoustic cavitation at the water-glass interface [J]. Journal of Physical Chemistry C, 2010, 114(30)∶ 13083-13091.

    [16] Karimi A, Martin JL. Cavitation erosion of materials [J]. International Metals Review, 1986, 31(1)∶ 1-26.

    [17] Shima A, Takayama K, Tomita Y. An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse [J]. Acoustica, 1981, 48(5)∶ 293-301.

    [18] Brotchie A, Grieser F, Ashokkumar M. Effect of power and frequency on bubble-size distributions in acoustic cavitation [J]. Physical Review Letters, 2009, 102∶084302 .

    [19] Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry (H2O2Yield) and bubble dynamics∶ frequency and power effects [J]. Ultrasonics Sonochemistry, 2008, 15(2)∶ 143-150.

    [20] Ashokkumar M. The characterization of acoustic cavitation bubbles - an overview [J]. Ultrasonics Sonochemistry, 2011, 18(4)∶ 864-872.

    [21] Pecha R, Gompf B. Microimplosions∶ cavitation collapse and shock wave emission on a nanosecond time scale [J]. Physical Review Letters, 2000, 84(6)∶1328-1330.

    Sonochemical Effects at the Interface Between Liquid Sn and Solid Cu in Ultrasonic Bonding at Room Temperature

    LI Zhuolin LI Mingyu XIAO Yong
    ( Shenzhen Key Laboratory of Advanced Materials, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518060, China )

    Homogeneous Cu6Sn5and Cu3Sn joints were formed in Cu/Sn foil/Cu interconnection system respectively, using ultrasonic bonding process for a short period of 3 seconds at room temperature. This ultrarapid development of full intermetallic compound (IMC) joints required an accelerated interdiffusion kinetics at the interface between liquid Sn and solid Cu which could be wholly attributed to the sonochemical effects induced by acoustic cavitation phenomenon. When bubble collapsed near the liquid/solid interface, excessive cavitation erosion was generated on the solid Cu surface, resulting in supersaturation of Cu in the liquid Sn and hence facilitating the formation of intermetallic phases as chemical reaction products. The resulted intermetallic joints performed high mechanical reliability.

    sonochemistry; cavitation; interdiffusion; ultrasonic bonding; intermetallic compound

    2014-09-03

    TG 456.9

    A

    Foundation:National Natural Science Foundation of China(51175116)

    Author:Li Zhuolin, Ph.D., lecturer of Harbin Institute of Technology at Weihai. His research interests include electronic interconnection processes, special joining technology; Li Mingyu (corresponding author), Ph.D., Professor at the Shenzhen Graduate School of HIT. His research interests include electronic interconnection processes, special joining technology, and electronic interconnection materials, E-mai:myli@hit.edu.cn; Xiao Yong, Ph.D. candidate. His research interest is electronic interconnection materials.

    猜你喜歡
    固液空化室溫
    功率超聲作用下鋼液中空化泡尺寸的演變特性
    鋼鐵釩鈦(2023年5期)2023-11-17 08:48:34
    超導(dǎo)追求
    我國新一代首款固液捆綁運(yùn)載火箭長征六號甲成功首飛
    上海航天(2022年2期)2022-04-28 11:58:46
    室溫采集裝置及供熱二級管網(wǎng)智能化改造
    煤氣與熱力(2021年2期)2021-03-19 08:55:50
    三維扭曲水翼空化現(xiàn)象CFD模擬
    固液結(jié)合復(fù)合酶在保育豬日糧上的應(yīng)用研究
    廣東飼料(2016年1期)2016-12-01 03:43:00
    不同運(yùn)動形式下水物相互作用空化數(shù)值模擬
    一種在室溫合成具有寬帶隙CdS的簡單方法
    固液分離旋流器壁面磨損的數(shù)值模擬
    甲氧基MQ樹脂補(bǔ)強(qiáng)縮合型室溫硫化硅橡膠的研究
    老司机福利观看| 黄色片一级片一级黄色片| 他把我摸到了高潮在线观看| 国产又爽黄色视频| 免费在线观看影片大全网站| 亚洲精品国产区一区二| 欧美不卡视频在线免费观看 | 亚洲美女黄片视频| 99国产极品粉嫩在线观看| 欧美+亚洲+日韩+国产| ponron亚洲| 热re99久久精品国产66热6| 国产亚洲精品久久久久久毛片 | 国产精品av久久久久免费| 视频区欧美日本亚洲| 亚洲中文av在线| www.999成人在线观看| 两个人免费观看高清视频| 免费少妇av软件| 国产不卡一卡二| 一区二区日韩欧美中文字幕| 在线视频色国产色| 国产精品久久久av美女十八| 国产精品久久久av美女十八| 国产主播在线观看一区二区| 精品一区二区三卡| av在线播放免费不卡| 日韩欧美一区视频在线观看| 成年动漫av网址| 丝瓜视频免费看黄片| 嫩草影视91久久| 欧美日韩亚洲高清精品| 黄色 视频免费看| 又黄又爽又免费观看的视频| 成年版毛片免费区| 午夜两性在线视频| 身体一侧抽搐| 999精品在线视频| 老司机亚洲免费影院| 精品高清国产在线一区| 午夜免费鲁丝| 国产麻豆69| 热99re8久久精品国产| 久久草成人影院| 欧美国产精品一级二级三级| 中文字幕最新亚洲高清| 淫妇啪啪啪对白视频| 久久青草综合色| 91九色精品人成在线观看| 国产成+人综合+亚洲专区| av电影中文网址| 岛国在线观看网站| 在线观看66精品国产| 亚洲精品在线美女| 又紧又爽又黄一区二区| 色婷婷久久久亚洲欧美| 在线观看免费高清a一片| 亚洲美女黄片视频| 黄色 视频免费看| av天堂在线播放| 999精品在线视频| 亚洲精品在线观看二区| 欧美av亚洲av综合av国产av| 国产高清激情床上av| 国产高清激情床上av| 一a级毛片在线观看| 亚洲av成人av| 国产免费现黄频在线看| 久久精品国产亚洲av高清一级| 狠狠狠狠99中文字幕| 黄片小视频在线播放| 久久天堂一区二区三区四区| 99精品欧美一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 欧美黑人欧美精品刺激| 久久久久久久午夜电影 | 久久国产精品影院| 亚洲精品中文字幕在线视频| 日本黄色视频三级网站网址 | 欧美成狂野欧美在线观看| 成人黄色视频免费在线看| 久久久精品国产亚洲av高清涩受| 在线av久久热| 国内久久婷婷六月综合欲色啪| 正在播放国产对白刺激| 中文字幕av电影在线播放| 久久久久国产精品人妻aⅴ院 | 亚洲人成电影观看| 亚洲色图 男人天堂 中文字幕| 91国产中文字幕| 热99re8久久精品国产| 久久久国产一区二区| av一本久久久久| 日日摸夜夜添夜夜添小说| 日韩免费高清中文字幕av| 超碰97精品在线观看| 国产真人三级小视频在线观看| 伊人久久大香线蕉亚洲五| 一区二区三区激情视频| 韩国精品一区二区三区| av欧美777| 国产精品.久久久| 99国产精品一区二区蜜桃av | 色老头精品视频在线观看| 久久婷婷成人综合色麻豆| videos熟女内射| 国产一卡二卡三卡精品| 成年人免费黄色播放视频| 亚洲av电影在线进入| 欧美激情高清一区二区三区| 中文欧美无线码| 18禁黄网站禁片午夜丰满| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片精品| 超碰成人久久| 精品国产超薄肉色丝袜足j| 乱人伦中国视频| 国产免费av片在线观看野外av| 99在线人妻在线中文字幕 | 久久 成人 亚洲| 老熟妇乱子伦视频在线观看| 自线自在国产av| 欧美午夜高清在线| 亚洲性夜色夜夜综合| 国产精品久久视频播放| 极品人妻少妇av视频| 国产精品永久免费网站| 亚洲色图综合在线观看| 高清欧美精品videossex| 亚洲精品国产区一区二| 美女午夜性视频免费| 女性生殖器流出的白浆| 老鸭窝网址在线观看| 69精品国产乱码久久久| 欧美日韩一级在线毛片| 国产男女内射视频| 欧美乱色亚洲激情| 超碰97精品在线观看| 无遮挡黄片免费观看| 亚洲久久久国产精品| 少妇裸体淫交视频免费看高清 | 欧美一级毛片孕妇| 精品第一国产精品| 欧美最黄视频在线播放免费 | 国产精品永久免费网站| 亚洲精品av麻豆狂野| 又黄又爽又免费观看的视频| 亚洲三区欧美一区| 一级a爱片免费观看的视频| 中文字幕人妻丝袜一区二区| 国产成人精品久久二区二区91| 午夜福利在线观看吧| 欧美日韩福利视频一区二区| 久久久久久亚洲精品国产蜜桃av| 日韩欧美在线二视频 | 精品人妻熟女毛片av久久网站| 午夜福利乱码中文字幕| 欧美激情极品国产一区二区三区| 久久久久久久精品吃奶| 国产成人一区二区三区免费视频网站| 成人18禁在线播放| 9191精品国产免费久久| 麻豆乱淫一区二区| 精品亚洲成国产av| 欧美黄色片欧美黄色片| 91av网站免费观看| 大香蕉久久成人网| 久久久国产成人精品二区 | 欧美大码av| 看片在线看免费视频| 97人妻天天添夜夜摸| 日本五十路高清| 精品乱码久久久久久99久播| 免费高清在线观看日韩| 两性夫妻黄色片| 精品欧美一区二区三区在线| 久久 成人 亚洲| 久久久精品区二区三区| 国产在线观看jvid| 19禁男女啪啪无遮挡网站| 日韩人妻精品一区2区三区| 中文字幕人妻熟女乱码| 搡老乐熟女国产| 久久精品亚洲熟妇少妇任你| 丰满饥渴人妻一区二区三| 欧美在线黄色| 美女高潮到喷水免费观看| 亚洲一区二区三区欧美精品| 欧美丝袜亚洲另类 | 国产真人三级小视频在线观看| av视频免费观看在线观看| 国产亚洲欧美在线一区二区| 一级片免费观看大全| 国产成人一区二区三区免费视频网站| 国产人伦9x9x在线观看| 成人永久免费在线观看视频| 欧美 日韩 精品 国产| 久久亚洲精品不卡| 俄罗斯特黄特色一大片| 国产色视频综合| 久久久久国产一级毛片高清牌| 窝窝影院91人妻| 欧美日韩黄片免| 久久精品国产清高在天天线| 亚洲一码二码三码区别大吗| 三级毛片av免费| 成人三级做爰电影| 丁香六月欧美| 一区二区三区激情视频| avwww免费| 精品国产一区二区三区久久久樱花| 久久香蕉激情| 法律面前人人平等表现在哪些方面| 中文字幕精品免费在线观看视频| 老熟妇仑乱视频hdxx| 午夜福利一区二区在线看| 99国产精品一区二区蜜桃av | 日本五十路高清| 19禁男女啪啪无遮挡网站| 久久久国产成人免费| 国产日韩一区二区三区精品不卡| 曰老女人黄片| 免费看a级黄色片| 一个人免费在线观看的高清视频| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜美足系列| 久久久久久人人人人人| 在线免费观看的www视频| 日韩欧美免费精品| 日本wwww免费看| 国产高清videossex| av电影中文网址| 国产精品综合久久久久久久免费 | 中国美女看黄片| 亚洲免费av在线视频| 黄片播放在线免费| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| 国产欧美亚洲国产| 欧美乱妇无乱码| 欧美中文综合在线视频| 女性被躁到高潮视频| 91成人精品电影| 岛国毛片在线播放| 嫁个100分男人电影在线观看| 校园春色视频在线观看| 欧美乱色亚洲激情| 国产深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 久久精品成人免费网站| 亚洲精品国产一区二区精华液| 欧美日韩国产mv在线观看视频| 国产一区二区三区视频了| 热99久久久久精品小说推荐| 大型av网站在线播放| 成人三级做爰电影| 咕卡用的链子| 少妇粗大呻吟视频| 亚洲熟妇熟女久久| 丝袜人妻中文字幕| av网站在线播放免费| 国产精品久久久久成人av| 亚洲av成人一区二区三| 久久久久国产精品人妻aⅴ院 | 最近最新免费中文字幕在线| 99久久综合精品五月天人人| 精品久久久精品久久久| av中文乱码字幕在线| 亚洲av电影在线进入| 欧美日韩一级在线毛片| 99精品在免费线老司机午夜| 激情视频va一区二区三区| 国产主播在线观看一区二区| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| 激情在线观看视频在线高清 | 国产欧美日韩综合在线一区二区| 人妻丰满熟妇av一区二区三区 | av在线播放免费不卡| 天堂中文最新版在线下载| 亚洲成国产人片在线观看| 香蕉久久夜色| 新久久久久国产一级毛片| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 在线观看舔阴道视频| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 日本一区二区免费在线视频| 看免费av毛片| 亚洲精品中文字幕在线视频| 午夜福利,免费看| 免费看十八禁软件| 国产人伦9x9x在线观看| 亚洲精品成人av观看孕妇| 国产高清激情床上av| 视频在线观看一区二区三区| 国产精品久久电影中文字幕 | 亚洲成人免费av在线播放| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 美国免费a级毛片| 丁香欧美五月| 亚洲一码二码三码区别大吗| 高清av免费在线| 又紧又爽又黄一区二区| 宅男免费午夜| 后天国语完整版免费观看| 99精品在免费线老司机午夜| 中文字幕制服av| 在线天堂中文资源库| 在线观看免费午夜福利视频| 亚洲成人手机| 丝袜在线中文字幕| 91成年电影在线观看| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 一a级毛片在线观看| 欧美日韩成人在线一区二区| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 免费观看a级毛片全部| 日日夜夜操网爽| 一进一出抽搐gif免费好疼 | 国产免费现黄频在线看| 国产亚洲欧美98| 咕卡用的链子| 午夜福利欧美成人| 精品福利永久在线观看| 久久午夜综合久久蜜桃| 国产亚洲一区二区精品| 欧美日韩中文字幕国产精品一区二区三区 | 两个人免费观看高清视频| 一级片免费观看大全| 久久人妻av系列| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 国产成人欧美在线观看 | 欧美在线一区亚洲| av一本久久久久| 国产成人欧美| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 国产精品免费视频内射| 亚洲熟妇中文字幕五十中出 | 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 一区二区日韩欧美中文字幕| 男人操女人黄网站| av电影中文网址| 丰满的人妻完整版| 少妇裸体淫交视频免费看高清 | 黑人猛操日本美女一级片| 久久九九热精品免费| 久久久精品国产亚洲av高清涩受| 久9热在线精品视频| 男女下面插进去视频免费观看| 黄片大片在线免费观看| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 电影成人av| 99精品在免费线老司机午夜| 亚洲欧美色中文字幕在线| a在线观看视频网站| 精品少妇久久久久久888优播| 十八禁高潮呻吟视频| 日韩人妻精品一区2区三区| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 亚洲精品av麻豆狂野| 国产野战对白在线观看| 亚洲一区二区三区欧美精品| 久久 成人 亚洲| 啦啦啦免费观看视频1| 欧美乱妇无乱码| 香蕉久久夜色| 亚洲成人国产一区在线观看| 美女 人体艺术 gogo| 亚洲色图av天堂| 天堂√8在线中文| 亚洲免费av在线视频| 少妇 在线观看| 国产又爽黄色视频| 51午夜福利影视在线观看| av天堂久久9| 日韩欧美国产一区二区入口| 夜夜爽天天搞| 国产激情欧美一区二区| 国产又爽黄色视频| tocl精华| 免费在线观看视频国产中文字幕亚洲| av在线播放免费不卡| 黄片大片在线免费观看| 一级毛片高清免费大全| 国产xxxxx性猛交| 国产精品成人在线| 午夜91福利影院| 国产又色又爽无遮挡免费看| 香蕉国产在线看| 中文字幕精品免费在线观看视频| 国产精品久久久人人做人人爽| 后天国语完整版免费观看| 超碰成人久久| 欧美老熟妇乱子伦牲交| 免费在线观看亚洲国产| 一级a爱视频在线免费观看| 1024香蕉在线观看| 女人精品久久久久毛片| 国产亚洲av高清不卡| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 国产欧美日韩一区二区三区在线| 精品福利永久在线观看| 在线国产一区二区在线| 国产高清激情床上av| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| 亚洲精品国产精品久久久不卡| 欧美大码av| 亚洲全国av大片| 日韩人妻精品一区2区三区| 欧美日韩国产mv在线观看视频| 午夜免费观看网址| 亚洲第一欧美日韩一区二区三区| 女人被躁到高潮嗷嗷叫费观| 在线看a的网站| 啦啦啦在线免费观看视频4| 久久精品熟女亚洲av麻豆精品| av福利片在线| 精品福利观看| 啦啦啦 在线观看视频| 夫妻午夜视频| 男女午夜视频在线观看| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 宅男免费午夜| 99久久精品国产亚洲精品| 水蜜桃什么品种好| videosex国产| 国产片内射在线| 日韩欧美精品v在线| 俺也久久电影网| 搞女人的毛片| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩精品青青久久久久久| 日韩欧美精品免费久久 | 麻豆一二三区av精品| ponron亚洲| 最近最新免费中文字幕在线| 欧美高清成人免费视频www| 久久久成人免费电影| 精品无人区乱码1区二区| 国产视频一区二区在线看| av在线天堂中文字幕| 脱女人内裤的视频| 国产伦精品一区二区三区视频9 | 欧美日本视频| 久久99热这里只有精品18| 色视频www国产| 日本黄大片高清| 国产成人av激情在线播放| 国内精品一区二区在线观看| 久久香蕉国产精品| 亚洲欧美精品综合久久99| 中文亚洲av片在线观看爽| 嫩草影院精品99| 欧美一级a爱片免费观看看| avwww免费| 国产视频内射| 一区二区三区高清视频在线| av视频在线观看入口| 18+在线观看网站| 欧美黄色片欧美黄色片| 又爽又黄无遮挡网站| 999久久久精品免费观看国产| 国产精品 国内视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性猛交黑人性爽| 看免费av毛片| 国产欧美日韩一区二区三| 精品99又大又爽又粗少妇毛片 | 久久久国产成人精品二区| 在线观看av片永久免费下载| 欧美黑人巨大hd| 久久精品国产亚洲av涩爱 | 怎么达到女性高潮| 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 色哟哟哟哟哟哟| 国产精华一区二区三区| 黄色成人免费大全| 亚洲七黄色美女视频| 国产精品乱码一区二三区的特点| 精品久久久久久久毛片微露脸| 欧美一级a爱片免费观看看| 国产精品av视频在线免费观看| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 亚洲最大成人手机在线| 国产精品一区二区三区四区免费观看 | 我的老师免费观看完整版| 日本一二三区视频观看| 又紧又爽又黄一区二区| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院| 制服丝袜大香蕉在线| 亚洲国产日韩欧美精品在线观看 | av黄色大香蕉| 亚洲美女视频黄频| 成熟少妇高潮喷水视频| 日韩欧美精品v在线| 国产97色在线日韩免费| 久久人人精品亚洲av| 亚洲人成电影免费在线| 欧美最新免费一区二区三区 | 国产一区二区在线观看日韩 | 久久精品国产亚洲av涩爱 | 日本五十路高清| e午夜精品久久久久久久| 国产免费一级a男人的天堂| 日本一二三区视频观看| 精品不卡国产一区二区三区| 国产精品久久视频播放| 国内精品一区二区在线观看| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看| 好男人在线观看高清免费视频| 国产精品亚洲美女久久久| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 黄色视频,在线免费观看| 在线国产一区二区在线| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 午夜福利欧美成人| 中出人妻视频一区二区| 美女免费视频网站| 色综合欧美亚洲国产小说| 女人高潮潮喷娇喘18禁视频| 很黄的视频免费| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 黄色成人免费大全| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 久久久久国内视频| 老司机在亚洲福利影院| 日本 欧美在线| 变态另类成人亚洲欧美熟女| 母亲3免费完整高清在线观看| 欧美绝顶高潮抽搐喷水| 国产黄色小视频在线观看| 久久精品国产综合久久久| 亚洲成人久久性| 最新中文字幕久久久久| 黄色片一级片一级黄色片| 成人国产一区最新在线观看| 精品无人区乱码1区二区| 亚洲专区中文字幕在线| 欧美中文日本在线观看视频| 香蕉av资源在线| a级一级毛片免费在线观看| 亚洲狠狠婷婷综合久久图片| 色老头精品视频在线观看| 欧美zozozo另类| 动漫黄色视频在线观看| 国产真实乱freesex| 在线观看av片永久免费下载| 亚洲成a人片在线一区二区| 丁香欧美五月| 在线免费观看不下载黄p国产 | 亚洲精品一卡2卡三卡4卡5卡| 欧美成人性av电影在线观看| 国产精品国产高清国产av| 亚洲精品影视一区二区三区av| 欧美日韩精品网址| www.www免费av| 身体一侧抽搐| 一级黄片播放器| 日韩成人在线观看一区二区三区| 欧美成人免费av一区二区三区| 日本 av在线| 国产色爽女视频免费观看| 亚洲精品色激情综合| 制服人妻中文乱码| 国产av不卡久久| 国产激情欧美一区二区| 噜噜噜噜噜久久久久久91| 亚洲最大成人中文| 国产精品久久视频播放| 一区二区三区激情视频| 午夜精品在线福利| 精品人妻偷拍中文字幕| 黄色片一级片一级黄色片| 2021天堂中文幕一二区在线观| 成年女人毛片免费观看观看9| 五月伊人婷婷丁香| 日本在线视频免费播放| 丰满人妻一区二区三区视频av | 在线观看66精品国产| 日韩高清综合在线| 欧美日韩黄片免| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 午夜激情福利司机影院| 美女大奶头视频| 99久久成人亚洲精品观看|