• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以聚苯胺表面包覆鈦酸鋇作為填料的環(huán)氧復合材料的微觀結(jié)構(gòu)與介電性能

    2014-07-24 18:58:09陳秋婷梁先文于淑會孫蓉謝盛輝汪正平
    集成技術(shù) 2014年6期
    關(guān)鍵詞:鈦酸鋇聚苯胺電性能

    陳秋婷梁先文于淑會孫 蓉謝盛輝汪正平

    1(中科院深圳先進技術(shù)研究院 深圳 518055)2(深圳大學材料學院 深圳 518060)3(香港中文大學工程學院 香港 999077)

    以聚苯胺表面包覆鈦酸鋇作為填料的環(huán)氧復合材料的微觀結(jié)構(gòu)與介電性能

    陳秋婷1,2梁先文1于淑會1孫 蓉1謝盛輝2汪正平3

    1(中科院深圳先進技術(shù)研究院 深圳 518055)2(深圳大學材料學院 深圳 518060)3(香港中文大學工程學院 香港 999077)

    通過原位聚合的方法合成了表面包覆鈦酸鋇的聚苯胺復合納米顆粒(BT@PANI),并將該復合納米顆粒作為填料制備了具有特殊結(jié)構(gòu)的 BT@PANI/EP 三相復合材料。實驗發(fā)現(xiàn)由于導電聚苯胺增強了界面極化,因此隨著 BT@PANI 中 PANI 質(zhì)量的增加(即 BT 在復合材料中的質(zhì)量分數(shù)減少),該復合材料的介電常數(shù)也隨之增加。當PANI 的質(zhì)量分數(shù)從 0% 增加至 26% 時,其介電常數(shù)也從 17 提高到了 53,并且當 BT@PANI 中 PANI 的質(zhì)量分數(shù)達到 26% 時,該復合材料并沒有出現(xiàn)明顯的滲流效應(yīng),且其導電率保持在 1.64×10—6S/m 這一較低值。此外,當測量溫度范圍在 60℃ 到 100℃ 之間時,該復合材料的介電常數(shù)發(fā)生了明顯的上升,這一現(xiàn)象可以說明隨著溫度的上升,導電聚苯胺、環(huán)氧分子鏈在 Tg 溫度(90℃)下運動增強及鈦酸鋇在居里溫度(120℃)下的相變共同產(chǎn)生了強烈的界面極化。

    聚合物;鈦酸鋇;聚合物復合材料;介電性能

    1 Introduction

    Flexible polymer-matrix composites with high dielectric constant have drawn much attention due to their potential applications in many fields[1,2]such as embedded capacitors[3,4], actuators[5,6]gate dielectrics[7]andso on. Efforts have been madeto prepare ceramics/polymer composites composedof ferroelectric ceramic fillers including BaTiO[8-10],3BST[11], PZT[12]and PMN-PT[13]and polymer matrix. However, these composites possess low dielectric constant due to the low dielectric constant of polymer matrix. Dang et al.[9]reported that the dielectric constant of BaTiO3/polyimide composites containing 40 vol% BaTiO3was only 18. Dielectric constant of BaTiO3/epoxy composites with a high loading of 60 vol% BaTiO3was about 27[10].In order to obtain a dielectric constant larger than 20, the ceramic concentration has to be increasedto 50 vol% or higher, which however, will deteriorate the flexibility of ceramic/polymer composites and limit their applications[14]. On the other hand, some attempts have been focused on the conductor/ polymer composites with high dielectric constant and excellent flexibility. The concentration dependence of dielectric constant of the conductor/polymer composites is given by the following power law on the basis of percolation theory[15]∶

    where k is the dielectric constant of the composite, k

    0

    is the dielectric constant of polymer matrix, f

    c

    is the percolation threshold, s is a critical exponent (0<s<1), and f is the volume concentration of conducting fillers. As is mentioned above, when the volume concentration of conducting fillers is close to a critical value, the dielectric constant of the composites increases a few orders of magnitude due to the formation of conductive networks induced by the conducting fillers. Rao and Wong et al.

    [16]

    reported that a high dielectric constant of 2000 was obtained in the Ag flake/epoxy composites. And a dielectric constant of about 110 was observed in the Al/epoxy composites

    [17]

    . Unfortunately, some disadvantages have been found in such percolative composites including (1) the large loss is caused by leakage current near percolation threshold; (2) the dielectric constant of the composites will drop remarkably with the increase of frequency; (3) the dielectric constant remains a low value unless the concentration of conducting fillers reaches percolation threshold; and (4) the dielectric properties of the composites are sensitive to the content of conducting fillers when the filler concentration is close to percolationthreshold

    [15-18]

    . In order to improve the dielectric constant of materials, some groups have introduced conducting fillers and ferroelectric ceramics simultaneously into polymer matrix to prepare the three-phase dielectric composites. For instance, Dang et al.

    [14]

    reported the three-phase Ni-BaTiO

    3

    / PVDF composites. George et al.

    [15]

    reported the three-phase Silver-Ca[(Li

    1/3

    Nb

    2/3

    )

    0.8

    Ti

    0.2

    ]O

    3-δ

    (CLNT)/ epoxy composite. However, these composites also show a typical percolation effect.

    In this paper, polyaniline(PANI) was deposited on the BT surface to obtain hybrid nanoparticles (BT@ PANI) through in-situ oxidative polymerization. BT@PANI particles were incorporated into the epoxy matrix to prepare the special three-phase BT@PANI/epoxy composites. Effects of PANI deposition amount, on the dielectric properties of the composites were investigated. Results showed that the dielectric properties of the composite can be well-tailored through controlling the PANI content in the BT@PANI hybrid. The dependence of dielectric behavior on frequency and temperature was analyzed systematically.

    2 Experimental

    2.1 Materials

    Barium titanate nanoparticles with an average diameter of 100 nm(BT) were obtained from Guoci Co., Ltd. Aniline (C6H7N, 99.5%), Ammonium persulfate (APS, (NH4)2S2O8, reagent grade, 98%), Sodium dodecyl benzene sulfonate (SDBS) (all from Shanghai Lingfeng Chemical Reagent Co., Ltd) and Hydrochloric acid (HCl) (Dongguan Dongjiang Chemical Reagent Co., Ltd) were used as monomer, initiator, emulsifier and dopant, respectively. The epoxy resin(trademark E51) (Sunstar Technology Co., Ltd) was employed as polymer matrix. Dicyandiamide and 2-Ethyl-4-methylimidazole (2E4MI) (both from Shanghai Lingfeng Chemical Co., Ltd) were used as curing agent and catalyst, respectively. Butanone, Ethanol (both from Tianjin Kaitong Chemical Co., Ltd) and Dimethyl formamide (DMF) (Shanghai Lingfeng Chemical Reagent Co., Ltd) were selected as solvent. Copper foil was purchased from Changchun Chemical Co., Ltd, Taiwan, China. All the chemicals were used as received without any treatment.

    2.2 Preparation of BT@PANI Nanoparticles

    The polyaniline deposited BT nanoparticles were prepared through in-situ oxidative polymerization. Firstly, 20.00 g BT particles with a mean size of 100 nm and 0.60 g SDBS were dispersed in deionized water in a 500 mL beaker with ultrasound treatment for 2 h to get a fine aqueous dispersion. Then mixture was transferred into a 500 mL threeneck flask, followed by the addition of aniline in 2 mol/L HCl solution. The monomer-BT-water dispersion was mixed by mechanical stirring at room temperature for 1 h to produce a homogenous mixture, and then was cooled down to 0℃ in an ice bath. After that, an aqueous solution of APS was dropwise added into the above solution (15-20 min intervals) to initiate a polymerization. The molar ratio of aniline ∶ HCl ∶ APS was adjusted to 1 ∶ 1 ∶ 2. The polymerization was carried out at 0℃ for 1 h, accompanied with mechanical stirring. A dark green colour of precipitate was formed at the end of reaction. The precipitate was collected by filtration and washed with distilled water and ethanol until SDBS was removed absolutely. At last, the obtained products were dried in a vacuum oven at 80℃ for 24h. According to above method, the PANI deposited BT (BT@PANI) nanoparticles with different weight fractions of PANI in the BT@PANI (5 wt%, 10 wt%, 17 wt%, 20 wt% and 26 wt% PANI) were synthesized, as were given in Table 1.

    Table 1 The parameters of BT@PANI nanoparticles and BT@PANI/epoxy composites

    2.3 Fabrication of the BT@PANI/Epoxy Composites

    For preparation of the BT@PANI/epoxy composites, firstly, 2.50 g epoxy and 0.25 g dicyandiamide were dissolved in butanone and DMF, respectively. And 10.00 g BT@PANI nanoparticles were dispersed into butanone with ultrasound treatment. Then the above three solutions were mixed with stirring. Finally, uniform BT@PANI/epoxy composite slurry was obtained through adding 2E4MI into the above mixture, and was deposited on copper foil via a bar coating process. The composite films were heated at 120℃ for 1 h to evaporate the residual solvent and then cured at 150℃ for 2 hrs.

    2.4 Characterization

    The morphology of BT@PANI nanoparticles was examined via scanning electron microscopy (SEM) of Nova Nona 450. Thermogravimetry analyses (TGA) was performed by TA DSC Q20 in nitrogen with a heating rate of 10℃/min from 30℃ to 1000℃. The Fourier transform infrared (FT-IR) spectra were recorded from 4000 cm—1to 400 cm—1through Bruker Vertex 70. The conducting silver paste was painted on the surface of specimens as electrode for dielectric measurement with impedance analyzer Agilent 4294A at the frequencies of 102—107Hz. The effect of temperature on dielectric properties of BT@PANI/epoxy composites was characterized with impedance analyzer Agilent 4294A equipped with a THMS 600 temperature controlled stage (Linkam scientific instruments) and a T95-LinkPad temperature programmer (Linkam scientific instruments) in a temperature range from—50℃ to 100℃.

    3 Results and Discussion

    3.1 The Morphology of BT@PANI NanoparticlesFig. 1 presents SEM images of pure BT and BT@ PANI nanoparticles with different weight fractions of PANI. As is shown in Fig. 1 (a), the surface of pure BT nanoparticles is smooth. In contrast, the surface of BT@PANI hybrid nanoparticles is rough withsome PANI particles distributed on it, as is shown in Fig. 1(b)—(d). It is noted that the PANI particles and layer coexist on the surface of BT when PANI content is increased to 26 wt%, as is shown in Fig. 1(d).

    Fig. 1. SEM images of (a) pure BT and BT@PANI nanoparticles with (b) 5 wt%, (c) 17 wt% and (d) 26 wt% PANI, respectively

    3.2 FTIR and TGA Analysis of BT@PANI Nanoparticles

    Fig. 2 shows FT-IR spectra of pure BT, PANI and BT@PANI nanoparticles with different amounts of PANI. As is shown in Fig. 2, the absorption peaks of pure BT nanoparticles at 578 cm—1and 450 cm—1correspond to Ti-O vibration and characteristic of BaTiO3, respectively. And the absorption peaks of PANI at 1584, 1504, 1303, 1240, 1154 and 820 cm—1are attributed to the main absorption bands of PANI. Among these peaks, the absorption bands at 1584, 1504 and 1303 cm—1are due to the stretching mode of N=quinine (Q)=N ring, N-benzene (B)-N ring and C-N (C aromatic-N) deformation, respectively[19-21]. The strong characteristic peak at 1154 cm—1originates from “electron-like band”and is considered to be a measure of electron delocalization, leading to the conductive feature of PANI, as is reported by Macdiarmid et al.[22-23]. The absorption band at 1240 cm—1(C-N+stretching vibration) indicates the doped form of PANI. The FT-IR curves of BT@PANI nanoparticles contain the peaks of both BT nanoparticles and PANI, and the characteristic peaks from PANI become much stronger with the increase of PANI content. However, the absorption peak at 578 cm—1from BT nanoparticles is suppressed as a result of the coverage of PANI on BT surface, as is illustrated in Fig. 2 (a) to (e), further confirming the successful synthesis of the BT@PANI nanoparticles.

    Fig. 2. FT-IR spectra of (a) pure BT, (b) PANI and BT@PANI nanoparticles with (c) 5 wt%, (d) 17 wt% and (e) 26 wt% PANI, respectively

    Fig. 3 presents the thermogravimetric analysis of pure BT and BT@PANI nanoparticles with different PANI contents. The weight of pure BT nanoparticles almost maintains a constant value in the whole measured temperature range, as is shown in Fig. 3 (a). The weight loss of BT@PANI nanoparticles within100—250℃ may result from the loss of bound water molecules serving as secondary dopants in PANI, because the synthesis was carried out in an aqueous medium. The major weight loss starts at 700℃ for the BT@PANI nanoparticles[21]. According to the abovecurves, the final weight losses of BT@PANI nanoparticles are about 5 wt%, 17 wt% and 26 wt% through the whole curves, respectively.

    Fig. 3. The thermogravimetric analysis of (a) pure BT and BT@ PANI nanoparticles with (b)5 wt%, (c)17 wt% and (d)26 wt% PANI, respectively

    3.3 The Dielectric Properties of the BT@PANI/ Epoxy Composites

    Fig. 4 displays dependence of dielectric constant k and loss tanδ of the BT@PANI/epoxy composites on PANI weight fraction, based on the BT@PANI hybrid nanoparticles. As is shown in Fig. 4, the dielectric constant of the composite increases with the increase of PANI. When the content of PANI increases from 0 wt% to 26 wt%, the k rises from 17 to 53 at 100 Hz. The enhanced dielectric constant in the composite should be demonstrated by the interfacial polarization. According to the Maxwell-Wagner-Sillar (MWS) effect[24-27], the interfacial polarization takes place in heterogeneous system and the charge carriers are blocked at the internal surfaces or interfaces between matrix and fillers[28]. The BT@PANI/epoxy composites consist of PANI with conducting feature, and both of BT and epoxy with insulating nature. The protons (hydrogen ions) provided by the doping acid in the PANI on the surface of BT move along the PANI chains, but these charge movements will be blocked by the BT and epoxy matrix, leading to large amount of space charges accumulating at the interfaces of PANI-BT and PANI-epoxy, which results in a large interfacial polarization[29,30]. For the loss of the BT@PANI/ epoxy composites, when the PANI content ranges from 5 wt% to 17 wt%, the tanδ almost keeps a constant low value of 0.05, but it exceeds 0.1 as the content of PANI approaches 20 wt% or above, as is present in Fig. 4. The reason is that when the PANI content was low, a few discrete PANI particles were deposited on the surface of BT. The charge carriers are limited in the area of a single PANI particle, and they only need to move a short distance and reach the interfaces between PANI and other phasesto establish interfacial polarization under external field, which leads to a low energy consumption. In contrast, when the concentration of PANI is increased to higher values, a continuous PANI layeris formed on the surface of BT, as is shown in Fig. 1 (d). The external field has to drive these charge carriers to move a longer distance than that of a single PANI particle to accomplish interfacial polarization, which consumes more energy and results in increased loss. Meanwhile, they introduce a large amount of charge carriers (hydrogen ions) and interfaces, which results in the larger interfacial relaxation process.

    Fig. 4. Dependence of dielectric constant k and loss tanδ of the BT@PANI/epoxy composites on the weight fraction of PANI(based on the BT@PANI hybridnanoparticles) at 100 Hz

    Fig. 5 presents variation of the dielectric constant k and loss tanδ of the BT@PANI/epoxy composites with the weight fraction of BT in the total content of (BT+PANI+epoxy) at 100 Hz and 100 kHz. Herein, we set the total weight fraction of BT@PANI hybrid nanoparticles in the BT@PANI/epoxy composites as a constant value of 80 wt% for all samples, and the calculated results are depicted in Table 1. Actually, when the content of PANI in the BT@PANI increases from 0 wt% to 26 wt%, the responding fractionof BT in the total content of (BT+PANI+epoxy) decreases from 80 wt% to 59.2 wt%. It is worth noting that the values of k and tanδ increase with the decrease of BT, as is shown in Fig. 5, which is assigned to the strong interfacial polarization caused by the conducting PANI and corresponds to the result given in Fig. 4. This phenomenon is in favor of the enhancement of dielectric constant and flexibility of materials. When the BTcontent is 66.4 wt% in the BT@PANI/ epoxy composite (17 wt% PANI in the BT@PANI), the k and tanδ of the composite are 34 and 0.051 at 100 Hz, respectively, which is superior to that of the BaTiO3/polyimide composites with 40 vol% BaTiO3(k~18)and the BaTiO3/epoxy composites with a high loading of 60 vol% (k~27)[9,10]. Additionally, the dielectric constant and loss of the BT@PANI/epoxy composites at 100 kHz are less than that of 100 Hz, originating from the weakening of interfacial polarization with the measured frequency increasing.

    Fig. 5. Dielectric constant k and loss tanδ of the BT@PANI/ epoxy composites versus the weight fraction of BT in the total content of (BT+PANI+epoxy) at 100 Hz and 100 kHz

    Fig. 6 presents dependence of dielectric constant k and loss tanδ of the BT@PANI/epoxy composites on the measured frequency. As is shown in Fig. 6 (a), the dielectric constant of the composite with BT@ PANI (17 wt%) or less shows weak dependenceon the frequency in the whole measured frequency range. However, when the contents of PANI exceed 17 wt%, the k of the composites shows obvious decrement with the frequency at low frequencies of 100 Hz to 10 kHz. For example, the k value of the composite with BT@PANI (26 wt%) decreases from 53 (100 Hz) to 40 (10 kHz). This phenomenon is demonstrated through the interfacial polarization caused by accumulated charges, which is sensitive to the frequency[31]. Interestingly, it is noticed that the k of the composites with higher PANI contents still maintains a higher value in the high frequency range of 10 kHz to 1 MHz due to the diffused electrical double layer in the internal interfaces between different phases. For instance, the k of the composite with BT@PANI(26 wt%) remains a relatively high value of 38, more than that of other composites at 100 kHz, as is depicted in Fig. 6(a). It can be explained that the PANI becomes charged positively owing to the protons (hydrogen ions) provided by the doping acid, as is mentioned above, and the epoxy matrix will respond by establishing an excess counter charge atmosphere screening the charge on the surface of PANI, which induces the polarization of epoxy matrix involving both electronic polarizability and the orientation of permanent dipoles, leading to the enhanced dielectric constant in the composites with higher PANI contents at high frequencies[32]. The loss of the BT@PANI/epoxy composites shows similar trend with that of the dielectric constant, as is displayed in Fig. 6 (b).

    Fig. 6. Dielectric constant k and loss tanδ of the BT@PANI/epoxy composites as a function of frequency

    Fig. 7 presents variation of dielectric constant and loss of the BT@PANI/epoxy composites with temperature. The k of all the composites shows a slight increase below 60℃, but increases fast in the temperature range of 60℃ to 100℃, as is shown in Fig. 7(a). The increasing temperature is in favor of charge movements along PANI chains and also promotes the motion of polymer PANI molecule chains, which enhances the interfacial polarization and improves dielectric constant. Additionally, the increasing dielectric constant is associated with the motion of epoxy molecule chains around the transition temperature (Tg) of pure epoxy. In this case, the Tg of pure epoxy as given by Fig. 7 is about 90℃. It is wellknown that the dipoles with enough mobility can enhance the dielectric constant. The polymer in the amorphous statedemonstrates a relaxation field associated with the glass transition, and the relaxation process is usually named as α and used to present the primary or glass-rubber relaxation. From the view of a dipolar point, the enhanced dielectric constant is induced by large-range motions “dipole-elastic process”corresponding to micro-Brownian segmental motion of chain near epoxy Tg[33]. On the other hand, the dielectric constant could also be influenced by the temperature near the curie point (around 120℃) of BT, which undergoes a phase transition, resulting in the increase of dielectric constant. Correspondingly, the loss of the BT@PANI/epoxy composites shows the similar variation, as is presented in Fig. 7 (b). The tanδ increases with the temperature, which possibly results from thermally activated conduction of BT with a pseudo-cubic structure.

    Fig. 8 shows DSC curve of pure epoxy. We can see that the transition temperature (Tg) of pure epoxy is 90℃, and the cure reaction peak is 152℃.

    Fig. 8. Differential calorimeter analysis (DSC) of pure epoxy

    Fig. 7. Dependence of (a) dielectric constant k and (b) loss tanδ

    3.4 The Conductivity of the BT@PANI/Epoxy Composites

    Fig. 9 shows the effects of frequency and temperature on the conductivity of the BT@PANI/epoxy composites. It is noticed that the conductivity of the composites increases with the frequency. At 100 Hz, the conductivity of all specimens keeps low values of less than 10—5S/m, and it is 1.64×10—6S/m for 26 wt% of PANI in the BT@PANI, further indicating insulating nature of the composites, as is depicted in Fig. 9 (a). Besides, the decreasing conductivity of the composites with the temperature is observed in Fig. 9 (b). It is demonstrated that the volume of epoxy matrix will expand when the temperature is increased, especially near the Tg point, resulting in the increasing gap between BT@PANI nanoparticles.Therefore, the conducting path developed by PANI is destroyed, which leads to the reduced conductivity. In contrast, the conductivity of pure BT filled epoxy composite almost keeps a constant value at the whole temperature range, which indicates the evidence of this phenomenon.

    Fig. 9. Effects of frequency and temperature on the conductivity of the BT@PANI/epoxy composites at 100 Hz

    4 Conclusion

    PANI deposited BaTiO3hybrid nanoparticles (BT@PANI) were synthetized through in-situ polymerization successfully. As-prepared BT@PANI nanoparticles were introduced into epoxy matrix to fabricate the special three-phase BT@PANI/epoxy composites. The enhancement of dielectric constant of the composites with the increase of PANI content was due to the interfacial polarization caused by the conducting PANI. There was no percolation effect appearing in the composite system. Additionally, when the measured temperature ranged from 60℃to 100℃, the dielectric constant of the composites increased remarkably. This phenomenon was explained by the enhanced interfacial polarization induced by the increasing temperature, the strengthened motion of epoxy molecule chains near Tg (90℃) and the phase transition of BT near the curie point 120℃. The composite with a tunable dielectric property was potential for practical applications.

    [1] Zhang QM, Li H, Poh M, et al. An all-organic composite actuator material with a high dielectric constant [J]. Nature, 2002, 419∶ 284-287.

    [2] Li JY. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction [J]. Physical Review Letters, 2003, 90(2)∶ 217601.

    [3] Panda M, Srinivas V, Thakur AK. Role of polymer matrix in large enhancement of dielectric constant in polymer-metal composites [J]. Applied Physics Letters, 2011, 99(4)∶ 042905. doi∶10.1063/1.3600345.

    [4] Li M, Deng Y, Wang Y, et al. High dielectric properties in a three-phase polymer composite induced by a parallel structure [J]. Materials Chemistry and Physics, 2013,139 (2-3)∶ 865-870.

    [5] MolbergM, Crespy D, Rupper P, et al. High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler [J]. Advanced Functional Materials, 2010, 20(19)∶ 3280-3291.

    [6] Huang C, Zhang Q. Fully functionalized highdielectric-constant nanophasepolymers with highelectromechanical response advanced functional materials [J]. Advanced Materials, 2005, 17(9)∶1153-1158.

    [7] Maliakal A, Katz H, Cotts PM, et al. Inorganic oxide core, polymer shell nanocomposite as a high kgate dielectric for flexible electronics applications [J]. Journal of the American Chemical Society, 2005, 127(42)∶ 14655-14662.

    [8] Zeng X, Yu S, Sun R, et al. Microstructure, thermal and dielectric properties of homogeneous bismaleimide-triazine/barium titanate nanocomposite films [J]. Materials Chemistry and Physics, 2011, 131(1-2)∶ 387-392.

    [9] Dang Z, Yu Y, Xu H, et al. Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites [J]. Composite Science and Technology, 2008, 68(1)∶ 171-177.

    [10] Guo Z, Lee SE, Kim H, et al. Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles [J]. Acta Materialia, 2009, 57∶ 267-277.

    [11] Hu T, Juuti J, Jantunen H, et al. Dielectric properties of BST/polymer composite [J]. Journal of the European Ceramic Society, 2007, 27(13-15)∶ 3997-4001.

    [12] Ploss B, Ng W, Chan HL, et al. Poling study of PZT/P(VDF-TrFE) composites [J]. Composite Science and Technology, 2001, 61(7)∶ 957-962.

    [13] Lam KH, Chan HLW. Piezoelectric and pyroelectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites [J]. Composites Science and Technology, 2005, 65(7-8)∶ 1107-1111.

    [14] Dang Z, Shen Y, Nan C. Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites [J]. Applied Physics Letters, 2002, 81(25)∶ 4814-4816.

    [15] George S, Sebastian MT. Three-phase polymerceramic-metal composite for embedded capacitor applications [J]. Composites Science and Technology, 2009, 69(7-8)∶ 1298-1302.

    [16] Rao Y, Wong CP. Ultra high dielectric constant epoxy silver composite for embedded capacitor application [C] // Proceedings of 52nd Electronic Components and Technology Conference, 2002∶ 920-923.

    [17] Xu JW, Wong CP. Low-loss percolative dielectric composite [J]. Applied Physics Letters, 2005, 87(8)∶082907. doi∶ 10.1063/1.2032597.

    [18] Baibarac M, Baltog I, Lefrant S, et al. Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes [J]. Chemistry Materials, 2003, 15(21)∶ 4149-4156.

    [19] Markovic MG, Matisons JG, Cervini R, et al. Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization [J]. Chemistry Materials, 2006, 18(26)∶ 6258-6265.

    [20] Zhu Y, Fu Y, Natsuki T, et al. Fabrication and microwave absorption properties of BaTiO3nanotube/polyaniline hybrid nanomaterials [J]. Polymer Composites, 2013, 34(2)∶ 265-273.

    [21] Zengin H, Zhou W, Jin J, et al. Carbon nanotube doped polyaniline [J]. Advance Materials, 2002, 14(20)∶ 1480-1483.

    [22] Boyer MI, Quillard S, Rebourt E, et al. Vibrational analysis of polyaniline∶ a model compound approach [J]. The Journal of Physical Chemistry B, 1998, 102(38)∶ 7382-7392.

    [23] Ramajo L, Castro MS, Reboredo MM. Dielectric response of Ag/BaTiO3/epoxy nanocomposites [J]. Journal of Materials Science, 2010, 45∶ 106-111.

    [24] Dang Z, Wang L, Yin Y, et al. Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites [J]. Advance Materials, 2007, 19(6)∶ 852-857.

    [25] Huang C, Zhang QM, Su J. High-dielectric-constant all-polymer percolative composites [J]. Applied Physics Letters, 2003, 82(20)∶ 3502-3504.

    [26] Liang X, Yu S, Sun R, et al. Microstructure and dielectric behavior of the three-phase Ag@SiO2/ BaTiO3/PVDF composites with high permittivity [J]. Journal of Materials Research, 2012, 27(7)∶991-998.

    [27] Sch?nhals A, Goering H, Costa FR, et al. Dielectric properties of nanocomposites based on polyethylene and layered double hydroxide [J]. Macromolecules, 2009, 42(12)∶ 4165-4174.

    [28] Lu J, Moon K, Kim B, et al. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications [J]. Polymer, 2007, 48(6)∶ 1510-1516.

    [29] Fang F, Kim JH, Choi HJ, et al. Organic/inorganic hybrid of polyaniline/BaTiO3composites and their electrorheological and dielectric characteristics [J]. Journal of Applied Polymer Science, 2007, 105(4)∶1853-1860.

    [30] Yang W, Yu S, Sun R, et al. Nano- and micro-size effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites [J]. Acta Materialia, 2011, 59 (14)∶ 5593-5602.

    [31] Lewis TJ. Interfaces are the dominant feature of dielectrics at the nanometric level [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5)∶ 739-753.

    [32] Ramajo L, Reboredo M, Castro M. Dielectric response and relaxation phenomena in composites of epoxy resin with BaTiO3particles [J]. Composites Part A, 2005, 36(9)∶ 1267-1274.

    [33] Xu HP, Dang ZM, Bing NC, et al. Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites [J]. Journal of Applied Physics, 2010, 107(3)∶ 034105. doi∶10.1063/1.3289731.

    Microstructure and Dielectric Properties of Epoxy Composites with Polyaniline-Deposited BaTiO3as Fillers

    CHEN Qiuting1,2LIANG Xianwen1YU Shuhui1SUN Rong1XIE Shenghui2WONG Chingping31

    ( Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China )2( Department of Materials, Shenzhen University, Shenzhen 518060, China )3( Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China )

    Polyaniline deposited BaTiO3hybrid nanoparticles (BT@PANI) were synthesized via in-situ polymerization process and then used as fillers to fabricate the BT@PANI/epoxy composites. The dielectric constant of the composites increased with the increment of PANI in BT@PANI(while the fraction of BT decreased in the composite), which wasattributed to the enhanced interfacial polarization induced by the conducting PANI. The value of k increased from 17 for 0 wt% PANI to 53 for 26 wt% PANI. No typical percolation effect was observed in the composite and when the content of PANI in the BT@PANIreached 26 wt%, the conductivity maintained a low value of 1.64×10—6S/m. Besides, the dielectric constant of the composites jumped remarkably inthe measured temperature range from 60℃ to 100℃ as anevidenceof the stronger interfacial polarization generated by conducting PANI with temperature increasing, theenhanced motion of epoxy molecule chains around Tg (90℃)and the phase transition of BT near the curie point 120℃.

    polymers; BaTiO3; polymeric composites; dielectricproperties

    2014-09-22

    TM 21

    A

    Foundation:National Natural Science Foundation of China(51377157);Guangdong Innovative Research Team Program(2011D052);Shenzhen Peacock Pragram(KYPT20121228160843692);ShenzhenElectronic Packaging Materials (深發(fā)改【2012】372 號)

    Author:Chen Qiuting, Master’s degree candidate. Her research interest are preperation and characterization of nano composite dielectric materials; Liang Xianwen, Research Assistant. His research interests are manufacturing and application of nano materials; Yu Shuhui (corresponding author), Ph.D, Associate Research Professor. Her research interests are nano functional materials and embedded components, E-mail:sh.yu@siat.ac.cn; Sun Rong (corresponding author), Ph. D, Research Professor. Her research interests are electronic packaging materials, E-mail:rong.sun@siat.ac.cn; Xie Shenghui, Associate Professor. His research interest is composite material; Wong Chingping, Ph. D, Professor.His research interests are polymer nanocomposites and high-density electric packaging materials.

    猜你喜歡
    鈦酸鋇聚苯胺電性能
    鋯鈦酸鋇陶瓷的Fe摻雜改性與電學性能研究*
    CoO/rGO復合催化劑的合成、表征和電性能研究
    三維結(jié)構(gòu)鈦酸鋇陶瓷-樹脂材料制備與介電性能研究
    陶瓷學報(2019年6期)2019-10-27 01:18:34
    Zr摻雜對CaCu3Ti4O12陶瓷介電性能的影響
    三維鎳@聚苯胺復合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導電復合材料研究進展
    中國塑料(2015年7期)2015-10-14 01:02:34
    聚苯胺復合材料研究進展
    中國塑料(2014年11期)2014-10-17 03:07:18
    高電導率改性聚苯胺的合成新工藝
    Bi2O3摻雜對Ag(Nb0.8Ta0.2)O3陶瓷結(jié)構(gòu)和介電性能的影響
    擴散無源推進對太陽電池電性能的影響
    河南科技(2014年5期)2014-02-27 14:08:32
    联通29元200g的流量卡| 可以在线观看的亚洲视频| 久久精品国产鲁丝片午夜精品| 天天一区二区日本电影三级| 18禁黄网站禁片免费观看直播| 嫩草影院精品99| 在线免费十八禁| 亚洲人成网站高清观看| 亚洲国产高清在线一区二区三| 一区福利在线观看| 一夜夜www| 国产69精品久久久久777片| 亚洲丝袜综合中文字幕| 日本免费一区二区三区高清不卡| a级毛片免费高清观看在线播放| 久久久久网色| 国产色婷婷99| 男女啪啪激烈高潮av片| 国产视频首页在线观看| 人妻系列 视频| 亚洲丝袜综合中文字幕| 日韩av不卡免费在线播放| 少妇的逼好多水| 国内精品宾馆在线| 欧美最黄视频在线播放免费| 亚洲精品自拍成人| 波多野结衣高清作品| 久久久久久久午夜电影| 欧美日韩乱码在线| 在线观看午夜福利视频| 国产淫片久久久久久久久| 成人av在线播放网站| 男人狂女人下面高潮的视频| 桃色一区二区三区在线观看| 精品国产三级普通话版| 国产不卡一卡二| 久久99热这里只有精品18| 久久久久久国产a免费观看| 嫩草影院新地址| 亚洲精品国产av成人精品| 最近2019中文字幕mv第一页| 嘟嘟电影网在线观看| 老女人水多毛片| 国产成人午夜福利电影在线观看| 看免费成人av毛片| 欧美三级亚洲精品| 哪个播放器可以免费观看大片| 国产精品一及| 搡老妇女老女人老熟妇| 老司机影院成人| 中出人妻视频一区二区| 观看免费一级毛片| 亚洲成人久久性| 又粗又硬又长又爽又黄的视频 | 亚洲图色成人| 99视频精品全部免费 在线| 日韩精品有码人妻一区| 欧美成人一区二区免费高清观看| 级片在线观看| 两个人的视频大全免费| 亚洲内射少妇av| 在线免费十八禁| 啦啦啦韩国在线观看视频| 国产极品精品免费视频能看的| 亚洲精品色激情综合| 亚洲精品国产av成人精品| 午夜久久久久精精品| 小说图片视频综合网站| 亚洲精品色激情综合| 亚洲四区av| 黄色欧美视频在线观看| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx在线观看| 免费在线观看成人毛片| 国内精品一区二区在线观看| 久久亚洲精品不卡| 午夜免费激情av| 观看免费一级毛片| 日本免费一区二区三区高清不卡| 观看美女的网站| 极品教师在线视频| 一个人看的www免费观看视频| 国产伦精品一区二区三区视频9| 亚洲婷婷狠狠爱综合网| 日韩欧美国产在线观看| 国产成人精品久久久久久| 国产成人精品婷婷| 麻豆乱淫一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 久久婷婷人人爽人人干人人爱| 欧美成人a在线观看| 日本在线视频免费播放| 在线天堂最新版资源| 久久久久久久久久黄片| 久久久国产成人免费| 久久这里有精品视频免费| 亚洲精品自拍成人| av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 女同久久另类99精品国产91| 丰满乱子伦码专区| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 99热只有精品国产| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 久久精品国产自在天天线| 18禁在线无遮挡免费观看视频| 精品人妻一区二区三区麻豆| 日本免费一区二区三区高清不卡| а√天堂www在线а√下载| 亚洲美女搞黄在线观看| 国产精品一区二区性色av| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 黄色配什么色好看| 国产精品人妻久久久影院| 简卡轻食公司| 久久鲁丝午夜福利片| 久久99热这里只有精品18| 午夜福利视频1000在线观看| a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 97热精品久久久久久| 精品久久久噜噜| 91午夜精品亚洲一区二区三区| 99九九线精品视频在线观看视频| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 观看美女的网站| 蜜桃久久精品国产亚洲av| 在线天堂最新版资源| 哪里可以看免费的av片| 干丝袜人妻中文字幕| 亚洲色图av天堂| 免费不卡的大黄色大毛片视频在线观看 | 日本与韩国留学比较| 校园人妻丝袜中文字幕| 又黄又爽又刺激的免费视频.| 国内少妇人妻偷人精品xxx网站| 美女xxoo啪啪120秒动态图| 成人亚洲精品av一区二区| 人体艺术视频欧美日本| 国国产精品蜜臀av免费| 一级av片app| 在线观看66精品国产| 久久人人爽人人爽人人片va| 成熟少妇高潮喷水视频| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看免费完整高清在 | 成年av动漫网址| 亚洲中文字幕日韩| 免费大片18禁| 国产日韩欧美在线精品| 91av网一区二区| 最后的刺客免费高清国语| 欧美潮喷喷水| av国产免费在线观看| 最后的刺客免费高清国语| 欧美最黄视频在线播放免费| 男女啪啪激烈高潮av片| 深夜精品福利| 日日摸夜夜添夜夜爱| 99久国产av精品国产电影| 十八禁国产超污无遮挡网站| 免费看a级黄色片| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 波多野结衣高清无吗| 亚洲av熟女| 国产日韩欧美在线精品| 久久99蜜桃精品久久| 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 美女大奶头视频| 在线观看午夜福利视频| 久久久久免费精品人妻一区二区| av又黄又爽大尺度在线免费看 | 亚洲一区高清亚洲精品| 日韩在线高清观看一区二区三区| 亚洲一区二区三区色噜噜| 亚洲av男天堂| 欧美xxxx黑人xx丫x性爽| 校园春色视频在线观看| 免费看光身美女| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 99热6这里只有精品| 亚洲三级黄色毛片| 亚洲第一区二区三区不卡| 99热网站在线观看| 亚洲高清免费不卡视频| 国产在视频线在精品| av福利片在线观看| 美女国产视频在线观看| 欧美日韩综合久久久久久| 欧美又色又爽又黄视频| 男女边吃奶边做爰视频| 日本欧美国产在线视频| 老女人水多毛片| 欧美高清成人免费视频www| 啦啦啦啦在线视频资源| 男女那种视频在线观看| 国产精品人妻久久久久久| 国产高潮美女av| 国产欧美日韩精品一区二区| 午夜视频国产福利| 国产午夜福利久久久久久| 哪个播放器可以免费观看大片| 国产精品日韩av在线免费观看| 国产成人影院久久av| 欧美高清性xxxxhd video| 老熟妇乱子伦视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 校园春色视频在线观看| 变态另类成人亚洲欧美熟女| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 亚洲精品乱码久久久v下载方式| 老熟妇乱子伦视频在线观看| 欧美bdsm另类| 99国产精品一区二区蜜桃av| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区免费观看| 色噜噜av男人的天堂激情| 毛片一级片免费看久久久久| 国产久久久一区二区三区| 在线a可以看的网站| 精品午夜福利在线看| 午夜激情福利司机影院| 看黄色毛片网站| 亚洲精品自拍成人| 春色校园在线视频观看| 国产黄片美女视频| 中国国产av一级| 午夜久久久久精精品| 国产三级在线视频| 国产麻豆成人av免费视频| 在线观看66精品国产| 最近视频中文字幕2019在线8| 国产综合懂色| 18禁黄网站禁片免费观看直播| 国产精品久久久久久精品电影小说 | av黄色大香蕉| 最新中文字幕久久久久| 性欧美人与动物交配| 国产午夜福利久久久久久| 69人妻影院| 天堂av国产一区二区熟女人妻| 精品一区二区免费观看| 校园春色视频在线观看| 欧美日韩在线观看h| 麻豆国产av国片精品| 久久久久久久久久久免费av| 我要看日韩黄色一级片| 青春草视频在线免费观看| 国内揄拍国产精品人妻在线| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 六月丁香七月| 色综合色国产| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 精品一区二区免费观看| 成年av动漫网址| av在线观看视频网站免费| 亚洲av免费高清在线观看| 九草在线视频观看| 国产黄色小视频在线观看| 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 干丝袜人妻中文字幕| 日韩欧美 国产精品| 精品久久久久久久末码| 国产精品一区二区三区四区免费观看| 综合色av麻豆| 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 一本精品99久久精品77| www.色视频.com| 成人二区视频| 只有这里有精品99| 热99re8久久精品国产| 天堂中文最新版在线下载 | 国产精品电影一区二区三区| av又黄又爽大尺度在线免费看 | 中文在线观看免费www的网站| 日本色播在线视频| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 欧美成人一区二区免费高清观看| h日本视频在线播放| 美女xxoo啪啪120秒动态图| 成人欧美大片| 亚洲内射少妇av| 一本精品99久久精品77| 99热网站在线观看| 国产乱人偷精品视频| av国产免费在线观看| 国产日本99.免费观看| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| www.色视频.com| 欧美日韩乱码在线| 女人被狂操c到高潮| av天堂中文字幕网| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线观看播放| 丰满乱子伦码专区| 少妇的逼水好多| 国产成人精品婷婷| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 午夜精品国产一区二区电影 | 久久精品综合一区二区三区| 日韩一区二区视频免费看| 美女黄网站色视频| 国产亚洲av片在线观看秒播厂 | 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| 亚洲无线观看免费| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 日韩视频在线欧美| 一边亲一边摸免费视频| 99精品在免费线老司机午夜| 麻豆国产97在线/欧美| 久久久精品大字幕| 国产av不卡久久| 三级经典国产精品| 天天躁日日操中文字幕| 国产精品一区二区在线观看99 | 哪个播放器可以免费观看大片| 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 人妻系列 视频| 亚洲精品自拍成人| 日韩一区二区三区影片| 国产精品福利在线免费观看| 成人鲁丝片一二三区免费| 蜜臀久久99精品久久宅男| 一进一出抽搐动态| 波多野结衣高清无吗| 日韩 亚洲 欧美在线| 寂寞人妻少妇视频99o| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 夜夜看夜夜爽夜夜摸| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 国产精品1区2区在线观看.| 免费搜索国产男女视频| av福利片在线观看| videossex国产| 欧美最新免费一区二区三区| 能在线免费看毛片的网站| 夫妻性生交免费视频一级片| 高清毛片免费观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 男人的好看免费观看在线视频| 人体艺术视频欧美日本| 日本欧美国产在线视频| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 国产精品一区二区性色av| 1024手机看黄色片| 久久精品人妻少妇| 国产亚洲欧美98| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| 五月伊人婷婷丁香| 久久精品国产亚洲av天美| 亚洲美女视频黄频| 国产 一区 欧美 日韩| 国产精品免费一区二区三区在线| 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| a级一级毛片免费在线观看| 久久久久久国产a免费观看| 午夜视频国产福利| 国产精品女同一区二区软件| 两性午夜刺激爽爽歪歪视频在线观看| 欧美在线一区亚洲| 国产亚洲精品久久久久久毛片| 久久久久九九精品影院| 国产极品精品免费视频能看的| 一本一本综合久久| 久久精品人妻少妇| 欧美3d第一页| 一区福利在线观看| 最近最新中文字幕大全电影3| 亚洲av免费在线观看| 黄色欧美视频在线观看| 亚洲无线在线观看| 精品少妇黑人巨大在线播放 | 亚洲av不卡在线观看| 欧美bdsm另类| 老师上课跳d突然被开到最大视频| 99久久中文字幕三级久久日本| 真实男女啪啪啪动态图| 精品久久国产蜜桃| 久久久久免费精品人妻一区二区| 一区二区三区四区激情视频 | 精品一区二区三区视频在线| 亚洲精品自拍成人| 蜜桃亚洲精品一区二区三区| 久久婷婷人人爽人人干人人爱| 中文在线观看免费www的网站| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清在线视频| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲婷婷狠狠爱综合网| 不卡一级毛片| 99热全是精品| 少妇被粗大猛烈的视频| 国产综合懂色| 国国产精品蜜臀av免费| 特级一级黄色大片| 好男人视频免费观看在线| 国产老妇女一区| 亚洲最大成人手机在线| 在线观看美女被高潮喷水网站| 亚洲在久久综合| 亚洲国产精品成人综合色| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| 边亲边吃奶的免费视频| 久久精品国产亚洲网站| 哪个播放器可以免费观看大片| 亚洲精品乱码久久久v下载方式| 国产私拍福利视频在线观看| 精品久久久噜噜| 色综合站精品国产| 久久久久久久久久成人| 国产成人a∨麻豆精品| 亚洲中文字幕日韩| 久99久视频精品免费| 免费看a级黄色片| 特大巨黑吊av在线直播| 亚洲综合色惰| 啦啦啦韩国在线观看视频| 舔av片在线| 九草在线视频观看| 一本久久中文字幕| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 国产午夜精品久久久久久一区二区三区| 午夜精品国产一区二区电影 | 女人被狂操c到高潮| 26uuu在线亚洲综合色| 国产大屁股一区二区在线视频| 变态另类丝袜制服| av在线亚洲专区| 亚洲国产精品成人综合色| 你懂的网址亚洲精品在线观看 | 99久久精品一区二区三区| 欧美一区二区亚洲| 人人妻人人澡人人爽人人夜夜 | 深夜精品福利| 少妇的逼水好多| а√天堂www在线а√下载| 国产高清不卡午夜福利| 成人av在线播放网站| 黄片无遮挡物在线观看| 直男gayav资源| АⅤ资源中文在线天堂| 亚洲性久久影院| 亚洲婷婷狠狠爱综合网| 边亲边吃奶的免费视频| 免费看av在线观看网站| 最新中文字幕久久久久| 午夜精品一区二区三区免费看| 狂野欧美激情性xxxx在线观看| 国内精品一区二区在线观看| 男插女下体视频免费在线播放| 久久精品人妻少妇| 成熟少妇高潮喷水视频| 国产一区亚洲一区在线观看| 日韩大尺度精品在线看网址| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆| 亚洲欧美成人综合另类久久久 | 日本黄色片子视频| 18禁黄网站禁片免费观看直播| 亚洲天堂国产精品一区在线| 久久久久久国产a免费观看| 亚洲最大成人中文| 国产亚洲精品久久久com| 欧美又色又爽又黄视频| 亚洲精品乱码久久久v下载方式| 欧美精品国产亚洲| 国产免费男女视频| 亚洲欧美清纯卡通| 日产精品乱码卡一卡2卡三| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 日韩国内少妇激情av| 春色校园在线视频观看| 久久99精品国语久久久| 高清在线视频一区二区三区 | 一个人免费在线观看电影| 人体艺术视频欧美日本| 秋霞在线观看毛片| 久久久成人免费电影| 成人午夜精彩视频在线观看| 91久久精品国产一区二区成人| 国产精品一区二区性色av| 久久久国产成人精品二区| 免费电影在线观看免费观看| 国产亚洲精品av在线| 中国美女看黄片| 日韩精品青青久久久久久| 欧美高清性xxxxhd video| 有码 亚洲区| 欧美激情久久久久久爽电影| 亚洲欧美日韩高清专用| 亚洲成人中文字幕在线播放| 欧美一级a爱片免费观看看| 免费观看人在逋| 亚洲国产高清在线一区二区三| 日本撒尿小便嘘嘘汇集6| 免费av毛片视频| 波野结衣二区三区在线| 人妻少妇偷人精品九色| 最新中文字幕久久久久| 久久这里有精品视频免费| 69av精品久久久久久| 一区二区三区高清视频在线| 校园春色视频在线观看| 男女边吃奶边做爰视频| 老熟妇乱子伦视频在线观看| 熟女人妻精品中文字幕| 久久这里只有精品中国| 午夜免费男女啪啪视频观看| 美女内射精品一级片tv| 日日啪夜夜撸| 国产亚洲av片在线观看秒播厂 | 久久久午夜欧美精品| 久久精品国产鲁丝片午夜精品| 91久久精品国产一区二区三区| .国产精品久久| 非洲黑人性xxxx精品又粗又长| 久久99热这里只有精品18| 国产成人午夜福利电影在线观看| 久久午夜福利片| 日韩av不卡免费在线播放| 别揉我奶头 嗯啊视频| 国产精品爽爽va在线观看网站| 三级男女做爰猛烈吃奶摸视频| 少妇熟女欧美另类| 美女黄网站色视频| 一个人看视频在线观看www免费| 在现免费观看毛片| 免费观看a级毛片全部| 欧美最黄视频在线播放免费| 免费人成视频x8x8入口观看| 亚洲精品自拍成人| 老师上课跳d突然被开到最大视频| 欧美一区二区亚洲| 身体一侧抽搐| 精品99又大又爽又粗少妇毛片| 国产精品日韩av在线免费观看| 亚洲av二区三区四区| 韩国av在线不卡| 美女黄网站色视频| 亚洲欧美日韩东京热| 乱系列少妇在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 一个人看的www免费观看视频| 午夜激情福利司机影院| 久久中文看片网| 日韩国内少妇激情av| 简卡轻食公司| 国产成人91sexporn| 成人永久免费在线观看视频| 国产老妇伦熟女老妇高清| 久久精品夜夜夜夜夜久久蜜豆| 18+在线观看网站| 男人的好看免费观看在线视频| 97人妻精品一区二区三区麻豆| 国产欧美日韩精品一区二区| 欧美成人一区二区免费高清观看| 国产午夜精品久久久久久一区二区三区| 天堂网av新在线| 少妇猛男粗大的猛烈进出视频 | 成熟少妇高潮喷水视频| a级毛片免费高清观看在线播放| 国产亚洲精品久久久久久毛片| 国产一级毛片在线| 97在线视频观看| 亚洲中文字幕日韩| 中文字幕制服av| 国产精品爽爽va在线观看网站| 亚洲国产高清在线一区二区三| 晚上一个人看的免费电影| 色综合站精品国产| 亚洲中文字幕日韩| 午夜福利成人在线免费观看| 久久久精品94久久精品| 亚洲国产高清在线一区二区三| 中文字幕制服av| 舔av片在线| 麻豆久久精品国产亚洲av| 亚洲不卡免费看| 一级毛片久久久久久久久女| 悠悠久久av| 中文字幕人妻熟人妻熟丝袜美| 国产黄片视频在线免费观看|